
	Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG

5th Meeting: Geneva, Switzerland, 9-17 October, 2002
	Document: JVT-E124
File: JVT-E124Appendix.doc

Generated: 2002-10-07

	Title:
	Issues on High-Level Syntax and Semantics
Appendix: Changes relative to JVT-E022d7

	Status:
	Input Document to JVT

	Purpose:
	Proposal

7.3 Syntax in tabular form

7.3.1 NAL unit syntax

	nal_unit(NumBytesInNALunit) {
	Category
	Descriptor

	
forbidden_bit
	
	u(1)

	
nal_storage_idc
	
	u(2)

	
nal_unit_type
	
	u(5)

	
NumBytesInRBSP = 0
	
	

	
for(i = 0; i < NumBytesInNALunit-1; i++) {
	
	

	

if(next_bits(16) = = 0x0003) {
	
	

	

rbsp[NumBytesInRBSP++]
	
	b(8)

	

i++
	
	

	

emulation_prevention_byte /* = = 0x03 */
	
	f(8)

	

} else
	
	

	

rbsp[NumBytesInRBSP++]
	
	b(8)

	
}
	
	

	}
	
	

7.3.2 Raw byte sequence payloads and RBSP trailing bits syntax

7.3.2.1 Sequence parameter set RBSP syntax

	seq_parameter_set_rbsp() {
	Category
	Descriptor

	
profile_idc
	0
	ue(v)

	
level_idc
	0
	ue(v)

	
seq_parameter_set_id
	0
	ue(v)

	
log2_max_frame_num_minus4
	0
	ue(v)

	
pic_order_cnt_type
	0
	ue(v)

	
if(pic_order_cnt_type = = 0)
	
	

	

log2_max_pic_order_cnt_minus4
	0
	ue(v)

	
else if(pic_order_cnt_type = = 1) {
	
	

	

offset_for_non_stored_pic
	0
	se(v)

	

num_stored_frames_in_pic_order_cnt_cycle
	0
	ue(v)

	

for(i = 0; i < num_stored_frames_in_pic_order_cnt_cycle; i++)
	
	

	

offset_for_stored_frame[i]
	0
	se(v)

	
}
	
	

	
num_of_ref_frames
	0
	ue(v)

	
required_frame_num_update_behaviour_flag
	0
	u(1)

	
pic_width_in_mbs_minus1
	0
	ue(v)

	
pic_height_in_mbs_minus1
	0
	ue(v)

	
filter_parameters_flag
	0
	u(1)

	
constrained_intra_pred_flag
	0
	u(1)

	
frame_coding_only_flag
	0
	u(1)

	
mb_frame_field_adaptive_flag
	0
	u(1)

	
vui_seq_parameters_flag
	0
	u(1)

	
if(vui_seq_parameters_flag)
	
	

	

vui_seq_parameters()
	0
	

	
rbsp_trailing_bits()
	0
	

	}
	
	

[Ed.Note: Syntax structure functions should have category assignments, mention that parameters of parameter sets are global]

7.3.2.2 Picture parameter set RBSP syntax

	pic_parameter_set_rbsp() {
	Category
	Descriptor

	
pic_parameter_set_id
	1
	ue(v)

	
seq_parameter_set_id
	1
	ue(v)

	
entropy_coding_mode
	1
	ue(v)

	
motion_resolution
	1
	ue(v)

	
adaptive_block_size_transform_flag
	1
	u(1)

	
num_slice_groups_minus1
	1
	ue(v)

	
if(num_slice_groups_minus1 > 0) {
	
	

	

mb_allocation_map_type
	1
	ue(v)

	

if(mb_allocation_map_type = = 0)
	
	

	

for(i = 0; i <= num_slice_groups_minus1; i++)
	
	

	

run_length
	1
	ue(v)

	

else if(mb_allocation_map_type = = 2)
	
	

	

for(i = 0; i < num_mbs_in_pic; i++)
	
	

	

slice_group_id [Ed. Note: how many bits ?]
	1
	u(v)

	

else if(mb_allocation_map_type = = 3)
	
	

	

for(i = 0; i < num_slice_groups_minus1; i++) {
	
	

	

top_left_mb
	1
	u(v)

	

bottom_right_mb
	1
	u(v)

	

}
	
	

	

else if(mb_allocation_map_type = = 4 | |

mb_allocation_map_type = = 5 | |

mb_allocation_map_type = = 6) {
	
	

	

slice_group_change_direction
	1
	u(1)

	

slice_group_change_rate_minus1
	1
	ue(v)

	

}
	
	

	
}
	
	

	
num_ref_idx_l0_active_minus1
	1
	ue(v)

	
num_ref_idx_l1_active_minus1
	1
	ue(v)

	
weighted_pred_flag
	1
	u(1)

	
weighted_bipred_explicit_flag
	1
	u(1)

	
weighted_bipred_implicit_flag
	1
	u(1)

	
slice_qp_minus26 /* relative to 26 */
	1
	se(v)

	
slice_qp_s_minus26 /* relative to 26 */
	1
	se(v)

	
redundant_slice_flag
	1
	u(1)

	
vui_pic_parameters_flag
	1
	u(1)

	
if(vui_pic_parameters_flag) {
	
	

	

vui_pic_parameters()
	1
	

	
}
	
	

	
rbsp_trailing_bits()
	1
	

	}
	
	

7.3.2.3 Supplemental enhancement information RBSP syntax

	sei_rbsp() {
	Category
	Descriptor

	do
	
	

	sei_message()
	7
	

	while(more_rbsp_data())
	
	

	rbsp_trailing_bits()
	7
	

	}
	
	

7.3.2.3.1 Supplemental enhancement information message syntax

	sei_message() {
	Category
	Descriptor

	PayloadType = 0
	
	

	while(next_bits(8) = = 0xFF) {
	
	

	byte_ff /* equal to 0xFF */
	7
	u(8)

	PayloadType += 255
	
	

	}
	
	

	last_payload_type_byte
	7
	u(8)

	PayloadType += last_payload_type_byte
	
	

	PayloadSize = 0
	
	

	while(next_bits(8) = = 0xFF) {
	
	

	byte_ff
	7
	u(8)

	PayloadSize += 255
	
	

	}
	
	

	last_payload_size_byte
	7
	u(8)

	PayloadSize += last_payload_size_byte
	
	

	sei_payload(PayloadType, PayloadSize)
	7
	

	}
	
	

7.3.2.4 Picture delimiter RBSP syntax

	pic_delimiter_rbsp() {
	Category
	Descriptor

	
three_reserved_bits
	8
	u(3)

	
pic_type
	8
	u(3)

	
non_stored_pic_flag
	8
	u(1)

	
rbsp_trailing_bits()
	8
	

	}
	
	

7.3.2.5 Filler data RBSP syntax

	filler_data_rbsp(NumBytesInRBSP) {
	Category
	Descriptor

	
while(next_bits(8) = = 0xFF)
	
	

	

byte_ff
	9
	f(8)

	
rbsp_trailing_bits()
	9
	

	}
	
	

7.3.2.6 Slice layer RBSP syntax

	slice_layer_no_partitioning_rbsp() {
	Category
	Descriptor

	
slice_header()
	4
	

	
slice_data() /* all categories of slice_data() syntax */
	4 | 5 | 6
	

	
rbsp_slice_trailing_bits()
	4
	

	}
	
	

7.3.2.7 Data partition RBSP syntax

7.3.2.7.1 Data partition A RBSP syntax

	dpa_layer_rbsp() {
	Category
	Descriptor

	
slice_header()
	4
	

	
slice_id
	4
	ue(v)

	
slice_data() /* only the category 4 parts of slice_data() syntax */
	4
	

	
rbsp_slice_trailing_bits()
	4
	

	}
	
	

7.3.2.7.2 Data partition B RBSP syntax

	dpb_layer_rbsp() {
	Category
	Descriptor

	
slice_id
	5
	ue(v)

	
slice_data() /* only the category 5 parts of slice_data() syntax */
	5
	

	
rbsp_slice_trailing_bits()
	5
	

	}
	
	

7.3.2.7.3 Data partition C RBSP syntax

	dpc_layer_rbsp() {
	Category
	Descriptor

	
slice_id
	6
	ue(v)

	
slice_data() /* only the category 6 parts of slice_data() syntax */
	6
	

	
rbsp_slice_trailing_bits()
	6
	

	}
	
	

7.3.2.8 RBSP trailing bits syntax

	rsbp_trailing_bits() {
	Category
	Descriptor

	
rbsp_stop_bit /* equal to 1 */
	All
	f(1)

	
while(!byte_aligned())
	
	

	

rbsp_alignment_bit /* equal to 0 */
	All
	f(1)

	}
	
	

7.3.2.9 RBSP slice trailing bits syntax

	rbsp_slice_trailing_bits() {
	Category
	Descriptor

	
rbsp_stop_bit /* equal to 1 */
	All
	f(1)

	
if(entropy_coding_mode = = 1)
	
	

	

while(next_bits(1) = = '1')
	
	

	

cabac_stuffing_bit /* equal to 1 */
	All
	f(1)

	
while(!byte_aligned())
	
	

	

rbsp_alignment_bit /* equal to 0 */
	All
	f(1)

	}
	
	

7.3.3 Slice header syntax

	slice_header() {
	Category
	Descriptor

	
pic_parameter_set_id
	4
	ue(v)

	
frame_num
	4
	u(v)

	
if (frame_coding_only_flag = = 0)
	
	

	

pic_structure
	4
	ue(v)

	
first_mb_in_slice
	4
	u(v)

	
slice_type_idc
	4
	ue(v)

	
if(pic_order_cnt_type = = 0)
	
	

	

pic_order_cnt
	4
	u(v)

	
else if(pic_order_cnt_type = = 1)
	
	

	

delta_pic_order_cnt
	4
	se(v)

	
if(redundant_slice_flag)
	
	

	

redundant_pic_cnt
	4
	ue(v)

	
if(slice_type_idc = = BiPred)
	
	

	

direct_spatial_mv_pred_flag
	4
	u(1)

	
num_ref_idx_active_override_flag
	4
	u(1)

	
if(num_ref_idx_active_override_flag) {
	
	

	

if(slice_type_idc = = Pred | | slice_type_idc = = SPred | |

slice_type_idc = = BiPred) {
	
	

	

num_ref_idx_l0_active_minus1
	4
	ue(v)

	

if(slice_type_idc = = BiPred)
	
	

	

num_ref_idx_l1_active_minus1
	4
	ue(v)

	

}
	
	

	
}
	
	

	
ref_idx_reordering()
	4
	

	
if((weighted_pred_flag &&

((slice_type_idc = = Pred) | | (slice_type_idc = = SPred))) | |

(weighted_bipred_explicit_flag &&

(slice_type_idc = = BiPred)))
	
	

	

pred_weight_table()
	4
	

	
ref_pic_buffer_management()
	4
	

	
slice_qp_delta
	4
	se(v)

	
if(slice_type_idc = = SPred | | slice_type_idc = = SIntra) {
	
	

	

if(slice_type_idc = = SPred)
	
	

	

sp_for_switch_flag
	4
	u(1)

	

slice_qp_s_delta
	4
	se(v)

	
}
	
	

	
if(filter_parameters_flag = = 1) {
	
	

	

disable_deblocking_filter_flag
	4
	u(1)

	

if(!disable_deblocking_filter_flag) {
	
	

	

slice_alpha_c0_offset_div2
	4
	se(v)

	

slice_beta_offset_div2
	4
	se(v)

	

}
	
	

	
}
	
	

	
if(num_slice_groups_minus1 > 0 &&

mb_allocation_map_type >= 4 &&

mb_allocation_map_type <= 6)
	
	

	

slice_group_change_cycle
	4
	u(v)

	}
	
	

7.3.3.1 Reference index reordering syntax

	ref_idx_reordering() {
	Category
	Descriptor

	
if(slice_type() ! = Intra && slice_type() ! = SIntra) {
	
	

	

ref_idx_reordering_flag_l0
	4
	u(1)

	

if(ref_idx_reordering_flag_l0) {
	
	

	

do {
	
	

	

remapping_of_pic_nums_idc
	4
	ue(v)

	

if(remapping_of_pic_nums_idc = = 0 | |

remapping_of_pic_nums_idc = = 1)
	
	

	

abs_diff_pic_num_minus1
	4
	ue(v)

	

else if(remapping_of_pic_nums_idc = = 2)
	
	

	

long_term_pic_idx
	4
	ue(v)

	

} while(remapping_of_pic_nums_idc ! = 3)
	
	

	

}
	
	

	
}
	
	

	
if(slice_type() = = BiPred) {
	
	

	

ref_idx_reordering_flag_l1
	4
	u(1)

	

if(ref_idx_reordering_flag_l1) {
	
	

	

do {
	
	

	

remapping_of_pic_nums_idc
	4
	ue(v)

	

if(remapping_of_pic_nums_idc = = 0 | |

remapping_of_pic_nums_idc = = 1)
	
	

	

abs_diff_pic_num_minus1
	4
	ue(v)

	

else if(remapping_of_pic_nums_idc = = 2)
	
	

	

long_term_pic_idx
	4
	ue(v)

	

} while(remapping_of_pic_nums_idc ! = 3)
	
	

	

}
	
	

	
}
	
	

	}
	
	

7.3.3.2 Prediction weight table syntax

	pred_weight_table() {
	Category
	Descriptor

	
luma_log_weight_denom
	4
	ue(v)

	
chroma_log_weight_denom
	4
	ue(v)

	
for(i =0; i <= num_ref_idx_l0_active_minus1; i++) {
	
	

	

luma_weight_flag_l0
	4
	u(1)

	

if(luma_weight_flag_l0) {
	
	

	

luma_weight_l0[i]
	4
	se(v)

	

luma_offset_l0[i]
	4
	se(v)

	

}
	
	

	

chroma_weight_flag_l0
	4
	u(1)

	

if(chroma_weight_flag_l0)
	
	

	

for(j =0; j < 2; j++) {
	
	

	

chroma_weight_l0[i][j]
	4
	se(v)

	

chroma_offset_l0[i][j]
	4
	se(v)

	

}
	
	

	
}
	
	

	
if(slice_type() = = BiPred) {
	
	

	

for(i = 0; i<= num_ref_idx_l1_active_minus1num; i++) {
	
	

	

luma_weight_flag_l1
	4
	u(1)

	

if(luma_weight_flag_l1) {
	
	

	

luma_weight_l1[i]
	4
	se(v)

	

luma_offset_l1[i]
	4
	se(v)

	

}
	
	

	

chroma_weight_flag_l1
	4
	u(1)

	

if(chroma_weight_flag_l1)
	
	

	

for(j = 0; j < 2; j++) {
	
	

	

chroma_weight_l1[i][j]
	4
	se(v)

	

chroma_offset_l1[i][j]
	4
	se(v)

	

}
	
	

	

}
	
	

	

num_custom_bipred_weights
	4
	ue(v)

	

for(i=0; i < num_custom_bipred_weights; i++) {
	
	

	

if(num_ref_idx_l0_active_minus1> 0)
	
	

	

irp_l0
	4
	xe(v)

	

if(num_ref_idx_l1_active_minus1 > 0)
	
	

	

irp_l1
	4
	xe(v)

	

luma_weight_bipred_l0[irp_l0][irp_l1]
	4
	se(v)

	

luma_weight_bipred_l1[irp_l0][irp_l1]
	4
	se(v)

	

luma_offset_bipred[irp_l0][irp_l1]
	4
	se(v)

	

chroma_weight_flag_bipred[irp_l0][irp_l1]
	4
	u(1)

	

if (chroma_weight_flag_bipred[irp_l0][irp_l1])
	
	

	

for(j = 0; j < 2; j++) {
	
	

	

chroma_weight_bipred_l0[irp_l0][irp_l1][j]
	4
	se(v)

	

chroma_weight_bipred_l1[irp_l0][irp_l1][j]
	4
	se(v)

	

chroma_offset_bipred[irp_l0][irp_l1][j]
	4
	se(v)

	

}
	
	

	

}
	
	

	
}
	
	

	}
	
	

7.3.3.3 Reference picture buffer management syntax

	ref_pic_buffer_management() {
	Category
	Descriptor

	
ref_pic_buffering_mode
	4 | 7
	u(1)

	
if(ref_pic_buffering_mode = = 1)
	
	

	

do {
	
	

	

memory_management_control_operation
	4 | 7
	ue(v)

	

if(memory_management_control_operation = = 1 | |

memory_management_control_operation = = 3)
	
	

	

difference_of_pic_nums_minus1
	4 | 7
	ue(v)

	

if(memory_management_control_operation = = 2 | |

memory_management_control_operation = = 3)
	
	

	

long_term_pic_idx
	4 | 7
	ue(v)

	

if(memory_management_control_operation = = 4)
	
	

	

max_long_term_pic_idx_plus1
	4 | 7
	ue(v)

	

} while(memory_management_control_operation ! = 0 &&

 memory_management_control_operation ! = 5)
	
	

	}
	
	

7.4 Semantics

7.4.1 NAL unit semantics

NOTE - The Video Coding Layer (VCL) is specified to efficiently represent the content of the video data. The Network Abstraction Layer (NAL) is specified to format that data and provide header information in a manner appropriate for conveyance by the transport layers or storage media. All data are contained in NAL units, each of which contains an integer number of bytes. A NAL unit specifies a generic format for use in both packet-oriented and bitstream systems. The format of NAL units for both packet-oriented transport and bitstream is identical except that each NAL unit can be preceded by a start code prefix in a bitstream-oriented transport layer.

NumBytesInNALunit specifies the size of the NAL unit in bytes. This value is required for decoding of the NAL unit and shall be conveyed by external means. Framing of NAL units is necessary to enable inference of NumBytesInNALunit. Such framing into a byte stream format is specified in Annex B and other methods for framing may be specified outside of this Recommendation | International Standard.

NOTE - Any sequence of bits can be formatted into a sequence of bytes in a manner specified as an RBSP by suffixing the data with rbsp_trailing_bits(), and any RBSP can be encapsulated in a NAL unit in a manner that prevents emulation of byte stream start code prefixes within the NAL unit.

forbidden_bit shall be zero.

NOTE - The forbidden_bit may be used by external specifications to signal potentially corrupt NAL units.

nal_storage_idc equal to 0 signals that the content of the NAL unit belongs either to a picture that is not stored in the reference picture buffer, SEI data or Filler data. [Ed.Note: Not sure that the extension by SEI data or Filler Data here is right, but the point is these other types should be mentioned here.] nal_storage_idc shall not be 0 for sequence parameter set or picture parameter set NAL units. If nal_storage_idc is 0 for one slice or data partition NAL unit of a particular picture, it shall be 0 for all slice and data partition NAL units of the picture. nal_storage_idc greater than 0 signals that the content of the NAL unit belongs to a decoded picture that is stored in the reference picture buffer. [Ed.Note: resolve ambiguity between stored decoded and coded data.]

NOTE - In addition to signalling non-stored content, external specifications may use nal_storage_idc to indicate the relative transport priority of the NAL unit in a manner not specified in this Recommendation | International Standard. The value 0 should be used to signal the lowest transport priority and the priority should grow in ascending order of nal_storage_idc values.

nal_unit_type indicates the type of element contained in the NAL unit according to the types specified in Table 7‑1.

Table 7‑1 – NAL Unit Type Codes

	Value of nal_unit_type
	Content of NAL unit and RBSP syntax structure
	Category

	0x0 [Ed.Note: why hexadecimal ? make it decimal numbers ?]
	Reserved for external use [Ed.Note: Why external ?]
	

	0x1
	Coded slice
slice_layer_no_partitioning_rbsp()
	4, 5, 6

	0x2
	Coded data partition A (DPA)
dpa_layer_rbsp()
	4

	0x3
	Coded data partition B (DPB)
dpb_layer_rbsp()
	5

	0x4
	Coded data partition C (DPC)
dpc_layer_rbsp()
	6

	0x5
	Coded slice of an IDR picture
slice_layer_no_partitioning_rbsp()
	4, 5

	0x6
	Supplemental Enhancement Information (SEI)
sei_rbsp()
	7

	0x7
	Sequence Parameter Set (SPS)
seq_parameter_set_rbsp()
	0

	0x8
	Picture Parameter Set (PPS)
pic_parameter_set_rbsp()
	1

	0x9
	Picture Delimiter (PD)
pic_delimiter_rbsp()
	8

	0xA
	Filler Data (FD)
filler_data_rbsp()
	9

	0xB – 0x17
	Reserved
	

	0x18 – 0x1F
	For external use [Ed.Note: Why external ?]
	

[Ed.note: This paragraph should be revised and possibly moved?] An instantaneous decoder refresh picture (IDR picture) implies that all pictures in the multi-picture buffer are marked as “unused”. Moreover, the maximum long-term index is reset to zero. An IDR picture contains only I or SI slices, and IDR NAL unit type shall be used for all slices of an IDR picture. nal_storage_idc shall be non-zero for IDR nal units.
rbsp[i] a raw byte sequence payload is specified as an ordered sequence of bytes that contains an SODB. The RBSP contains the SODB in the following form:

a)
If the SODB is null, the RBSP is also null.

b)
Otherwise, the RBSP shall contain the SODB in the following form:

1)
The first byte of the RBSP shall contain the (most significant, left-most) eight bits of the SODB; the next byte of the RBSP shall contain the next eight bits of the SODB, etc.; until fewer than eight bits of the SODB remain.

2)
The final byte of the RBSP shall have the following form:

i)
The first (most significant, left-most) bits of the final RBSP byte shall contain the remaining bits of the SODB, if any,

ii)
The next bit of the final RBSP byte shall consist of a single rbsp_stop_bit having the value one (‘1‘), and

iii)
Any remaining bits of the final RBSP byte, if any, shall consist of one or more rbsp_alignment_bit having the value zero (‘0‘).

The last byte of a RBSP shall never have the value zero (0x00), because it contains the rbsp_stop_bit.

If the boundaries of the RBSP are known, the decoder can extract the SODB from the RBSP by concatenating the bits of the bytes of the RBSP and discarding the rbsp_stop_bit, which is the last (least significant, right-most) bit having the value one (‘1‘), and discarding any following (less significant, farther to the right) bits that follow it, which have the value zero (‘0‘).

Syntax structures having these RBSP properties are denoted in the syntax tables using an "_rbsp" suffix. These structures shall be carried within NAL units as the content of the rbsp[i] data bytes. The association of the RBSP syntax structures to the NAL units shall be as specified in Table 7‑1.

emulation_prevention_byte is a byte equal to 0x03.

Within the NAL unit, an emulation_prevention_byte shall be present after an rbsp[i] byte having the value zero (0x00) if and only if a next byte of RBSP data rbsp[i+1] follows that has one of the following four values:

–
zero (0x00)

–
one (0x01)

–
two (0x02)

–
three (0x03)

NOTE - Example encoder procedure. The encapsulation of an SODB within an RBSP and the encapsulation of an RBSP within a NAL unit is specified to prevent the emulation of start codes within NAL units while allowing any arbitrary SODB to be represented within a NAL unit and enable identification of the end of the SODB within the NAL unit.

The encoder can produce a NAL unit from an RBSP by the following procedure:

The RBSP data is searched for byte-aligned bits of the following binary patterns:

'00000000 000000xx' (where xx represents any 2 bit pattern: 00, 01, 10 or 11),

and a byte having the value three (0x03) is inserted to replace these bit patterns with the patterns

'00000000 00000011 000000xx'

The resulting sequence of bytes is then prefixed with the first byte of the NAL unit containing the indication of the type of RBSP data structure it contains.

This process can allow any RBSP data to be sent in NAL unit while ensuring that no long SCP and no byte-aligned short SCP is emulated in the NAL unit.

7.4.2 Raw byte sequence payloads and RBSP trailing bits semantics

7.4.2.1 Sequence parameter set RBSP semantics

A sequence parameter set is called an active sequence parameter set when an IDR NAL unit refers to it. The parameters of an active sequence parameter set shall be replaced only when an IDR NAL unit refers to a different sequence parameter set.

A picture parameter set includes the parameters that remain unchanged within a coded picture. Every picture parameter set shall refer to the active sequence parameter set. A decoded picture parameter set is an active picture parameter set when the first slice NAL unit or first DPA NAL unit of a coded picture refers to it. The picture parameters of an active picture parameter set shall be replaced only when the first slice NAL unit or DPA NAL unit of a picture refers to a different picture parameter set.

NOTE - The sequence and picture parameter set mechanism decouples the transmission of infrequently changing information from the transmission of coded macroblock data. The sequence parameter set, the picture parameter set, and the slice header contain all the parameters needed to decode the slice data. It is recommended to convey sequence and picture parameter sets out-of-band using a reliable transport mechanism. However, if an application requires a self-contained bitstream, in-band parameter set information units may be used. In error-prone transmission environments, in-band sequence and picture parameter set information units should be protected in a way that assures their successful reception. Synchronization between in-band and out-of-band transmission of the sequence and picture parameter set information is outside of the scope of this Recommendation | International Standard.

profile_idc and level_idc indicate profile and level as specified in Annex A.

seq_parameter_set_id identifies the sequence parameter set to be referred. The value of seq_parameter_set_id shall be in the range of 0 to 15, inclusive.
log2_max_frame_num_minus4 specifies the MAX_FN used in frame number related arithmetic as follows:

MAX_FN = 2^(log2_max_frame_num_minus4 + 4)
(7-1)

The value of log2_max_frame_num_minus4 shall be in the range of 0 to 12, inclusive.

pic_order_cnt_type equal to 0, 1, or 2 indicates the method to code picture order count (see subclause 0). pic_order_cnt_type values greater than 2 are reserved.

log2_max_pic_order_cnt_minus4 is used to specify the MaxPicOrderCnt used in picture order count related arithmetic as follows:

MaxPicOrderCnt = 2^(log2_max_pic_order_cnt_minus4 + 4)
(7-2)

The size of the pic_order_cnt parameter in the slice header is log2_max_pic_order_cnt_minus4 + 4 bits. The value of log2_max_pic_order_cnt_minus4 shall be in the range of 0 to 12, inclusive.

offset_for_non_stored_pic indicates an expected picture order count difference of a non-stored picture compared to the expected picture order count of the most recently decoded stored picture having a frame_num one less (modulo MAX_FN) than that of the non-stored picture.

num_stored_frames_in_pic_order_cnt_cycle signals the number of frame numbers in a picture order count cycle. A picture order count cycle is a repetitive pattern of picture order count differences, each of which corresponds to a frame_num increment of one.

offset_for_stored_frame indicates an expected difference of picture order count corresponding to a frame_num increment of one. The notation offset_for_stored_frame[i] indicates the offset_for_stored_frame corresponding to index ‘i’ in the picture order count cycle.

num_of_ref_frames specifies the total number of short- and long-term pictures in the reference picture buffer.

required_frame_num_update_behaviour_flag equal to 1 specifies a specific decoder behaviour in case of missing frame numbers. [Ed. Note: need to be more specific here]

pic_width_in_mbs_minus1 and pic_height_in_mbs_minus1 specify the size of the luma picture array internal to the decoder in units of macroblocks. The picture width and height in units of macroblocks is computed by adding 1 to the decoded values of each of these parameters. The maximum macroblock address, MaxMbAddress, shall be calculated according to Equation 7-3.

MaxMbAddress = (pic_width_in_mbs_minus1 + 1) (
 (pic_height_in_mbs_minus1 + 1) – 1
(7-3)

The NumBitsInMbAddress indicates the number of bits used to code a macroblock address with a fixed-length unsigned integer. It is calculated as follows.

If a picture is a field-structured picture or if macroblock-adaptive frame/field coding is not in use for the picture, then

NumBitsInMbAddress = Ceil(Log2(MaxMbAddress + 1))
(7-4)

otherwise, NumBitsInMbAddress shall be

NumBitsInMbAddress = Ceil(Log2(MaxMbAddress + 1) – 1)
(7-4a)
filter_parameters_flag specifies whether a set of parameters controlling the characteristics of the deblocking filter is indicated in the slice header.

constrained_intra_pred_flag equal to zero indicates normal intra prediction, whereas one indicates constrained intra prediction, where no intra prediction is done from macroblocks coded with mb_pred_type ! = Intra. [Ed.Note: SIntra ? MN: I think the text is OK as it is. SIntra_4x4 only ever occurs in SI slices, in macroblock locations where inter coding was used in the corresponding SP slice. Hence SIntra_4x4 is treated as inter, and so should not be used for prediction if inter is not used for prediction.].

mb_frame_field_adaptive_flag equal to zero indicates no switching between frame and field decoding mode at the macroblock layer, whereas one indicates the use of switching between frame and field decoding mode at the macroblock layer.
vui_seq_parameters_flag equal to zero specifies that default parameter values for the vui sequence parameters shall be applied. [Ed.Note: mention Annex E]

7.4.2.2 Picture parameter set RBSP semantics

pic_parameter_set_id the picture parameter set identifier to be used for reference. The value of pic_parameter_set_id shall be in the range of 0 to 63, inclusive.
seq_parameter_set_id refers to the sequence parameter set that is used with this picture parameter set.
entropy_coding_mode equal to zero indicates VLC and CAVLC (see subclause Error! Reference source not found.), whereas value one indicates CABAC (see subclause Error! Reference source not found.). If CABAC is indicated, the ae(v) entropy coding is used for the assigned syntax elements.

motion_resolution equal to zero indicates 1/4 luma sample accurate motion resolution, and equal to one indicates 1/8 luma sample accurate motion resolution.

adaptive_block_size_transform_flag equal to zero indicates usage of 4x4 transforms for the luma residual, and equal one indicates usage of transforms of size 4x4, 4x8, 8x4, and 8x8 for the luma residual. Clause Error! Reference source not found. specifies modifications as indicated in clause Error! Reference source not found. that are related to syntax, semantics, and decoding process.

num_slice_groups_minus1 the number of slice groups is equal to num_slice_groups_minus1 + 1. If num_slice_groups_minus1 is zero, all slices of the picture belong to the same slice group.

NOTE – One slice group means that no flexible macroblock ordering is applied. If num_slice_groups_minus1 is greater than zero, flexible macroblock ordering is in use.

mb_allocation_map_type the macroblock allocation map type is present only if num_slice_groups_minus1 is greater than 0. This parameter indicates how the macroblock allocation map is coded. The value of this syntax element shall be in the range of 0 to 6, inclusive.

mb_allocation_map_type 0 is used to indicate interleaved slices.

mb_allocation_map_type 1 is used to indicate a dispersed macroblock allocation.

mb_allocation_map_type 2 is used to explicitly assign a slice group to each macroblock location in raster scan order.

mb_allocation_map_type 3 is used to indicate one or more “foreground” slice groups and a “leftover” slice group.

mb_allocation_map_types 4, 5 and 6 are used to indicate changing slice groups. num_slice_groups_minus1 shall be 1, when mb_allocation_map_type is 4, 5 or 6.

If mb_allocation_map_type is 0, the run_length syntax element follows for each slice group. It indicates the number of consecutive macroblocks that are assigned to the slice group in raster scan order. After the macroblocks of the last slice group have been assigned, the process begins again from the first slice group. The process ends when all the macroblocks of a picture have been assigned.

NOTE - Example: To signal macroblock row interleaving in a QCIF picture (where all even numbered macroblocks are in slice group 0, and all odd numbered macroblocks are in slice group 1), the number of slice groups is two and run_length is 11 for both slice groups.

If mb_allocation_map_type is 1, the macroblock allocation map is formed using the following formula, where n is the number of columns in the picture (in macroblocks) and p is the number of slice groups to be coded. Specifically, macroblock position x is assigned to slice group S according to Equation 7-5.

S(x) = ((x % n) + ((floor(x / n) * p) / 2)) % p
(7-5)

If mb_allocation_map_type is 2, slice_group_id identifies a slice group of a macroblock. The size of the slice_group_id parameter shall be the minumum number of bits required for a fixed-length code to uniquely identify the number of slice groups. [Ed. Note: I’m sure this can be specified more clearly; I think this is the intention, but I do not see it specified anywhere.]

NOTE - slice_group_id is repeated as often as there are macroblocks in the picture.

If mb_allocation_map_type is 3, top_left_mb and bottom_right_mb are specified for each slice_group_id except for the last one. The top_left_mb specifies the top-left corner of a rectangle and bottom_right_mb specifies the bottom-right corner. top_left_mb and bottom_right_mb are indicated as macroblock addresses. The foreground slice group contains the macroblocks that are within the indicated rectangle and that do not belong to any slice group having a smaller slice_group_id. The last slice_group_id is dedicated for the leftover slice group, which contains the macroblocks that are not covered by the foreground slice groups. The leftover slice group shall not be empty. The size of the top_left_mb and bottom_right_mb parameters shall be NumBitsInMbAddress.

If mb_allocation_map_type is 4, 5 or 6, mb_allocation_map_type and slice_group_change_direction indicate the refined macroblock allocation map type according to Table 7‑2. The macroblock allocation map is generated each time the decoder starts decoding of a new picture as described in subclause 0.

Table 7‑2– Refined macroblock allocation map type

	mb_allocation_map_type
	slice_group
_change_direction
	refined macroblock allocation map type

	4
	0
	Box-out clockwise

	4
	1
	Box-out counter-clockwise

	5
	0
	Raster scan

	5
	1
	Reverse raster scan

	6
	0
	Wipe right

	6
	1
	Wipe left

slice_group_change_rate_minus1 is the minimum non-zero number of macroblocks by which the size a slice group can change from one picture to the next. The SliceGroupChangeRate variable is specified as follows:

SliceGroupChangeRate = slice_group_change_rate_minus1 + 1
(7-6)

The decoded value of slice_group_change_rate_minus1 shall be in the range of 0 to MaxMbAddress – 1, inclusive.

num_ref_idx_l0_active_minus1 specifies the number of reference pictures minus 1 in the reference list 0 that are used to decode the picture.

num_ref_idx_l1_active_minus1 specifies the number of reference pictures minus 1 in the reference list 1 that are used to decode the picture.

weighted_pred_flag equal to zero indicates that weighted prediction is not applied to P and SP slices. weighted_pred_flag equal to one indicates that weighted prediction is applied to P and SP slices.

weighted_bipred_explicit_flag equal to zero indicates that explicit weighted prediction is not applied to B slices. weighted_bipred_explicit_flag equal to one indicates that explicit weighted prediction is applied to B slices. weighted_bipred_explicit_flag shall be zero if weighted_bipred_implicit_flag is one.

weighted_bipred_implicit_flag equal to zero indicates that implicit weighted prediction is not applied to B slices. weighted_bipred_implicit_flag equal to one indicates that implicit weighted prediction is applied to B slices.weighted_bipred_implicit_flag shall be zero if weighted_bipred_explicit_flag is one.

slice_qp_minus26 specifies the value of the default QPY for the macroblocks in an I, SI, P, SP, or B slice as specified in Equation 7-7. The value of this syntax element shall be in the range of -26 to +25, inclusive.

slice_qp_s_minus26 specifies the value of the default QSY for the macroblocks in a SP or SI slice as specified in Equation 7-8. The value of this syntax element shall be in the range of -26 to +25, inclusive.

redundant_slice_flag indicates the presence of the redundant_pic_cnt [Ed.Note: pic or slice ?] parameter in all slice headers referencing the picture parameter set.

vui_pic_parameters_flag equal to zero specifies that default parameter values for the vui picture parameters shall be applied. [Ed.Note: mention Annex E]

7.4.2.3 Supplemental enhancement information RBSP semantics

Supplemental Enhancement Information (SEI) contains information that is not necessary to decode VCL data correctly but is helpful for decoding or presentation purposes.

7.4.2.3.1 Supplemental enhancement information message semantics

An SEI NAL unit contains one or more SEI messages. Each SEI message consists of SEI header and SEI payload. The type and size of the SEI payload are coded using an extensible syntax. The SEI payload size is indicated in bytes. SEI payload types are specified in Annex C.

The SEI payload may have an SEI payload header. For example, a payload header may indicate to which picture the particular data belongs. The payload header shall be specified for each payload type separately.

An SEI message is associated with the next slice or data partition RBSP in decoding order. [Ed.Note: isn’t it associated with a complete picture ? Will it remain active for the next pictures ?]

byte_ff is a byte equal to 0xFF identifying a need for a longer representation of the syntax structure it is used within.

last_payload_type_byte identifies the payload type of the last entry in an SEI message.

last_payload_size_byte identifies the size of the last entry in an SEI message.

7.4.2.4 Picture delimiter RBSP semantics

The picture delimiter may be used to signal the boundary between pictures, i.e., if present, it shall be inserted before the first NAL unit of a picture in decoding order. There is no normative decoder process associated with the picture delimiter.

pic_type signals which slice coding types are used in the following picture in decoding order. Table 7‑3shows the slice coding types that can occur in a picture with a given pic_type.

Table 7‑3– Meaning of pic_type

	pic_type
	Allowed slice_type_idc

	000
	Intra

	001
	Intra, Pred

	010
	Intra, Pred, BiPred

	011
	SIntra

	100
	SIntra, SPred

	101
	Intra, SIntra

	110
	Intra, SIntra, Pred, SPred

	111
	Intra, SIntra, Pred, SPred, BiPred

If adaptive_block_size_transform_flag = = 1, only pic_type = = ‘000’, pic_type = = ‘001’, and pic_type = = ‘010’ are allowed.
non_stored_content_flag equal to 1 indicates that the picture is not stored in the reference picture buffer.
7.4.2.5 Filler data RBSP semantics

The filler data RBSP contains bytes whose value shall be equal to 0xFF.

7.4.2.6 Slice layer RBSP semantics

The slice layer RBSP consists of a slice header and slice data.

7.4.2.7 Data partition RBSP semantics

7.4.2.7.1 Data partition A RBSP semantics

When data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Partition A contains all symbols of Category 4.

NOTE - Category 4 consists of the header symbols of all coded macroblocks.

slice_id Each slice of a picture is associated a unique slice identifier within the picture. The first coded slice of the picture shall have identifier 0 and the identifier shall be incremented by one per each coded slice.

7.4.2.7.2 Data partition B RBSP semantics

When data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Data partition B contains all symbols of Category 5.

NOTE - Category 5 consists of the intra coded block patterns and coefficients.

slice_id Each slice of a picture is associated a unique slice identifier within the picture. The first coded slice of the picture shall have identifier 0 and the identifier shall be incremented by one per each coded slice.

7.4.2.7.3 Data partition C RBSP semantics

When data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Data partition C contains all symbols of Category 6.

NOTE - Category 6 consists of the inter coded block patterns and coefficients.

slice_id Each slice of a picture is associated a unique slice identifier within the picture. The first coded slice of the picture shall have identifier 0 and the identifier shall be incremented by one per each coded slice.

7.4.2.8 RBSP trailing bits semantics

rbsp_stop_bit is a single bit having the value one ('1').

rbsp_alignment_bit is a single bit having the value zero ('0').

7.4.2.9 RBSP slice trailing bits semantics

rbsp_stop_bit has the same semantics as in subclause 7.3.2.8.

rbsp_alignment_bit has the same semantics as in subclause 7.3.2.8.

cabac_stuffing_bit is a single bit having the value one ('1'). When entropy_coding_mode is equal to 1, the number of bins resulting from decoding the contents of the slice layer NAL unit shall not exceed 32*NumBytesInNALunit. A number of inserted cabac_stuffing_bit guarantee this condition.

NOTE – The method for determining the number of inserted cabac_stuffing_bit at the encoder is as follows: First, at the beginning of the slice encoding, the index CodeLength pointing to the current position of the bit stream is stored in a variable CodeLengthStored, i.e., CodeLength (CodeLengthStored. In addition, two counters EBins and EBinsx8 are set to zero. Then, each time a symbol is encoded, EBins is incremented by one, i.e., EBins (EBins+1. In the renormalization procedure, each time a new byte of compressed data is written, the following procedure is done:

while(EBins > 7) {

EBins (EBins-8

EBinsx8 (EBinsx8+1

}
After terminating the arithmetic encoding process such that the last pending bits have been written to the bitstream, the number of written bits is determined by CodeLength (8*(CodeLength (CodeLengthStored). Given the number of encoded bins by EBins (8*EBinsx8+EBins and the number NumMbSlice of macroblocks per slice, the following procedure is done:

EBins (0.25*EBins

if(CodeLength >= 4*NumMbSlice)

{

if(EBins > CodeLength)

for(i = 0; i < EBins (CodeLength (1; i++)

putbits(‘1’) /* writes cabac_stuffing_bit */

}

7.4.3 Slice header semantics

pic_parameter_set_id indicates the picture parameter set in use.

frame_num labels the frame. frame_num shall be incremented by 1 for each coded picture in decoding order, in modulo MAX_FN operation, relative to the frame_num of the previous stored frame in decoding order. An IDR picture shall have frame_num equal to 0. Both fields of a frame shall have the same frame number. The decoding order of primary coded pictures shall be non-decreasing in frame number order. For non-stored pictures with the same frame number, the decoding order shall be non-decreasing in picture order count. The frame_num serves as a unique ID for each frame stored in the reference picture buffer. Therefore, a frame cannot be kept in the buffer after its frame_num has been used by another frame unless it has been assigned a long-term frame index as specified below. No frame_num of a frame to be added to the reference picture buffer shall equal to any other among the short-term frames in the reference picture buffer. A decoder which encounters a frame number on a current frame having a value equal to the frame number of some other short-term stored frame in the reference picture buffer should treat this condition as an error.

pic_structure identifies the picture structure according to Table 7‑4.
Table 7‑4 – Meaning of pic_structure

	Value of pic_structure
	Meaning

	0
	Progressive frame picture

	1
	Top field picture

	2
	Bottom field picture

	3
	Interlaced frame picture, whose top field precedes its bottom field in time.

	4
	Interlaced frame picture, whose bottom field precedes its top field in time.

If pic_structure is not present in the slice header, the value of this field shall be inferred to be zero.

Note that when top field and bottom field pictures are coded for a frame, the one that is decoded first is the one that occurs first in time.

first_mb_in_slice specifies the macroblock address of the first macroblock contained in this slice. The size of the first_mb_in_slice parameter is NumBitsInMbAddress. The value of first_mb_in_slice shall be in the range of 0 to MaxMbAddress, inclusive.

If macroblock-adaptive frame/field decoding is in use, first_mb_in_slice contains a macroblock pair address rather than a macroblock address and the number of macroblocks included in a slice shall be an even number.

slice_type_idc indicates the coding type of the slice according to Table 7‑5.

Table 7‑5 – Meaning of slice_type_idc

	Value of slice_type_idc
	Prediction type of slice
(slice type)

	0
	Pred (P slice)

	1
	BiPred (B slice)

	2
	Intra (I slice)

	3
	SPred (SP slice)

	4
	SIntra (SI slice)

Table 7‑6specifies, which macroblock prediction types are allowed when a slice type is decoded.

Table 7‑6 – Allowed macroblock prediction types for slice_type_idc

	Prediction type of slice
(slice type)
	Allowed macroblock prediction type

	Pred (P slice)
	Intra, Pred

	BiPred (B slice)
	Intra, Pred, BiPred

	Intra (I slice)
	Intra

	SPred (SP slice)
	SPred, Intra

	SIntra (SI slice)
	SIntra, Intra

If adaptive_block_size_transform_flag = = 1, the use of SI slices and SP slices is not allowed.
pic_order_cnt carries the picture order count coded in modulo MaxPicOrderCnt arithmetic. An IDR picture shall have pic_order_cnt equal to 0. The size of the pic_order_cnt parameter is log2_max_pic_order_cnt_minus4 + 4 bits.

delta_pic_order_cnt signals the picture order count difference compared to the expected picture order count as described in subclause 0.

redundant_pic_cnt is 0 for coded slices and data partitions belonging to the primary representation of the picture contents. The redundant_pic_cnt is greater than 0 for coded slices and data partitions that contain redundant coded representation of the picture contents. There should be no noticeable difference between the co-located areas of the decoded primary representation of the picture and any decoded redundant slices. Decoded slices having the same redundant_pic_cnt shall not overlap. Decoded slices having a redundant_pic_cnt greater than 0 may not cover the entire picture area.

direct_spatial_mv_pred_flag specifies the method used in the decoding process to determine the prediction values direct prediction. If direct_spatial_mv_pred_flag is set to 0, then direct mode motion parameters are calculated from the picture order count as described in subclause Error! Reference source not found.. Otherwise, if this flag is set to 1, then direct mode motion parameters are calculated using the spatial motion vector prediction technique as described in subclause Error! Reference source not found..

num_ref_idx_active_override_flag equal to zero indicates that the num_ref_idx_l0_active_minus1 and num_ref_idx_l1_active_minus1 specified in the referred picture parameter set are in effect. num_ref_idx_active_override_flag equal to one indicates that the num_ref_idx_l0_active_minus1 and num_ref_idx_l1_active_minus1 specified in the referred picture parameter set are overridden by the following values in the slice header.

num_ref_idx_l0_active_minus1 specifies the number of reference pictures minus 1 in the reference picture list 0 that are used to decode the slice.

num_ref_idx_l1_active_minus1 specifies the number of reference pictures minus 1 in the reference picture list 1 that are used to decode the slice.

slice_qp_delta specifies the value of the QPY for the macroblocks in the slice unless modified by the value of delta_qp in the macroblock layer. From this value, the initial QPY parameter for the slice is computed as:

QPY = 26 + slice_qp_minus26 + slice_qp_delta
(7-7)

The initial decoded QPY parameter shall be in the range of 0 to 51, inclusive. The value of QPY is initialised to the above result and this value is used for the decoding of each macroblock in the slice unless updated by a delta_qp sent in the macroblock layer.

sp_for_switch_flag indicates the decoding process to be used to decode the SP slice.

slice_qp_s_delta is signalled for SP and SI slices. The QSY parameter for the slice is computed as:

QSY = 26 + slice_qp_s_minus26 + slice_qp_s_delta
(7-8)

The value of QSY shall be in the range of 0 to 51, inclusive. This value of QSY is used for the decoding of all macroblocks in the slice.

disable_deblocking_filter_flag equal to zero specifes that the deblocking filter shall be applied to the edges controlled by the macroblocks within the current slice. If disable_deblocking_filter_flag is 1, Filter_Offset_A and Filter_Offset_B shall both be inferred to be equal to -51. If not present in the slice header the value of this field shall be inferred to be zero.

slice_alpha_c0_offset_div2 specifies the offset used in accessing the α and C0 deblocking filter tables for filtering operations controlled by the macroblocks within the slice. The decoded value of this parameter shall be in the range from -6 to +6, inclusive. From this value, the offset that shall be applied when addressing these tables is computed as:

Filter_Offset_A = slice_alpha_c0_offset_div2 << 1

If not present in the slice header the value of this field shall be inferred to be zero unless disable_deblocking_filter_flag is 1.

slice_beta_offset_div2 specifies the offset used in accessing the β deblocking filter Table for filtering operations controlled by the macroblocks within the slice. The decoded value of this parameter shall be in the range from -6 to +6, inclusive. From this value, the offset that is applied when addressing the β Table of the deblocking filter is computed as:

Filter_Offset_B = slice_beta_offset_div2 << 1

If not present in the slice header the value of this field shall be inferred to be zero unless disable_deblocking_filter_flag is 1.

slice_group_change_cycle (SliceGroupChangeRateindicates the number of macroblocks in slice group 0. The size of the slice_group_change_cycle field is Ceil(Log2(Ceil(MAX_MB_LOCATION (SliceGroupChangeRate))). The maximum value of slice_group_change_cycle is Ceil(MAX_MB_LOCATION (SliceGroupChangeRate).
The value of pic_parameter_set_id, frame_num, pic_structure, pic_order_cnt, delta_pic_order_cnt, sp_switch_flag, and slice_group_change_cycle shall remain unchanged in all slice headers of a redundant or primary coded picture. Moreover, the parameter values included in the ref_pic_buf_management() function shall remain unchanged in all slice headers of a redundant or primary coded picture.
The slices of a redundant picture shall have the same value of pic_structure as the corresponding primary picture. The frame_num of a redundant picture shall be the same as the frame_num in the primary picture, or both the redundant picture and the primary picture shall issue a reset memory management control operation (which resets the frame number stored into the decoded pictures buffer to 0). The PicOrderCnt of a redundant picture calculated according to subclause 8.3.2 shall be the same as for the corresponding primary picture.
7.4.3.1 Reference index reordering semantics

The syntax elements remapping_of_pic_nums_idc, abs_diff_pic_num_minus1, and long_term_pic_idx specify the change from the default reference index lists to the reference index lists used for decoding the slice.

ref_idx_reordering_flag_l0 indicates whether the syntax elements remapping_of_pic_nums_idc, abs_diff_pic_num_minus1, and long_term_pic_idx are present for specifying the reference index list 0.

ref_idx_reordering_flag_l1 has the same semantics as ref_idx_reordering_flag_l0 except that the reordering of the reference index list 1 is specified instead of the reference index list 0.

remapping_of_pic_nums_idc together with abs_diff_pic_num_minus1 and long_term_pic_idx indicates which of the reference pictures are re-mapped. The restrictions and the mapping to the code number are specified in Table 7‑7. The number of signalling remapping_of_pic_nums_idc is limited to the num_ref_idx_l0_active_minus1 + 1.

Table 7‑7 – remapping_of_pic_nums_idc operations for re-mapping of reference pictures

	Value of remapping_of_pic_nums_idc
	Re-mapping Specified

	0
	abs_diff_pic_num_minus1 is present and corresponds to a negative difference to add to a picture number prediction value

	1
	abs_diff_pic_num_minus1 is present and corresponds to a positive difference to add to a picture number prediction value

	2
	long_term_pic_idx is present and specifies the long-term index for a reference picture

	3
	End loop for re-mapping of reference picture set relative indexing default order

abs_diff_pic_num_minus1 plus 1 indicates the absolute difference between the picture number of the picture being remapped and the picture number prediction value.

long_term_pic_idx indicates the long-term picture index of the picture being remapped. In the case of frame-structured pictures, it shall be less than max_long_term_pic_idx_plus1; while in the case of field-structured pictures, it shall be less than 2 x max_long_term_pic_idx_plus1.

7.4.3.2 Reference picture buffer management semantics

The syntax elements ref_pic_buffering_mode, memory_management_control_operation, difference_of_pic_nums_minus1, long_term_pic_idx, and max_long_term_pic_idx_plus1 specify the buffering of a stored decoded picture into the reference picture buffer. Further, the reference picture buffer can be modified by marking pictures as unused, by assigning long-term pictures indices and by resetting of the reference picture buffer. The syntax elements ref_pic_buffering_mode, memory_management_control_operation, difference_of_pic_nums_minus1, long_term_pic_idx, and max_long_term_pic_idx_plus1 shall be identical for all coded slices of a coded picture.

ref_pic_buffering_mode specifies the buffering mode of the currently decoded picture and specifies how the reference picture buffer is modified after the current picture is decoded. The values for ref_pic_buffering_mode are specified in Table 7‑8.

Table 7‑8 – Interpretation of ref_pic_buffering_mode

	Value of ref_pic_buffering_mode
	Reference picture buffering mode specified

	0
	Sliding window buffering mode; A simple buffering mode providing a first-in first-out mechanism for pictures that are not assigned a long-term index

	1
	Adaptive buffering mode; A more flexible buffering mode than sliding window buffering mode providing syntax elements to specify marking pictures as unused, to assign long-term pictures indices, and to reset the reference picture buffer.

memory_management_control_operation specifies a control operation to be applied to manage the reference picture buffer. The memory_management_control_operation parameter is followed by data necessary for the operation specified by the value of memory_management_control_operation. memory_management_control_operation commands do not affect the buffer contents or the decoding process for the decoding of the current frame. They specify the necessary buffer status for the decoding of subsequent coded pictures. The values and control operations associated with memory_management_control_operation are specified in Table 7‑9.

If memory_management_control_operation is Reset, all frames and fields in the reference picture buffer (but not the current picture unless specified separately) shall be marked “unused” (including both short-term and long-term pictures). Moreover, the maximum long-term picture index shall be reset to zero.

The frame height and width shall not change within the bitstream except within a picture containing a Reset memory_management_control_operation command.

A “stored picture” shall not contain any memory_management_control_operation command which marks that (entire) picture as “unused”. If the current picture is non-stored picture, the value of the memory_management_control_operation shall not contain any of the following types of memory_management_control_operation commands:

a)
A Reset memory_management_control_operation command,

b)
Any memory_management_control_operation command which marks any other picture (other than the current picture) as “unused” that has not also been marked as “unused” in the RPS layer of a prior stored picture, or

c)
Any memory_management_control_operation command which assigns a long-term index to a picture that has not also been assigned the same long-term index in the RPS layer of a prior stored picture.

Table 7‑9 – Memory management control operation (memory_management_control_operation) values

	Value of

memory_management_control_operation
	Memory Management Control Operation
	Associated Data Fields Following

	0
	End memory_management_control_operation Loop
	None (end of RPS layer)

	1
	Mark a short-term picture as “Unused”
	difference_of_pic_nums_minus1

	2
	Mark a long-term picture as “Unused”
	long_term_pic_idx

	3
	Assign a long-term index to a picture
	difference_of_pic_nums and long_term_pic_idx

	4
	Specify the maximum long-lerm picture index
	max_long_term_pic_idx_plus1

	5
	Reset
	None

difference_of_pic_nums_minus1 is used to assign a long-term index to a picture or to mark a short-term picture as “unused”.

long_term_pic_idx is used to assign a long-term index to a picture or to mark a long-term picture as “unused”.

max_long_term_pic_idx_plus1 indicates the maximum index allowed for long-term reference frames (until receipt of another value of max_long_term_pic_idx_plus1). The decoder shall initially infer that max_long_term_pic_idx_plus1 is 0 until some other value has been received.

7.4.3.3 Prediction weight table semantics

luma_log_weight_denom is the binary logarithm of the denominator for all luma weighting factors.

chroma_log_weight_denom is the binary logarithm of the denominator for all chroma weighting factors.

luma_weight_flag_l0 indicates whether weighting factors are present for the luma component of the list 0 prediction.

luma_weight_l0[i] is the weighting factor applied to the luma prediction value for reference index i in list 0 prediction.

luma_offset_l0[i] is the additive offset applied to the luma prediction value for reference index i in list 0 prediction.

If luma_weight_flag_l0 is equal to zero, luma_weight_l0[i] shall be interpreted as equal to 2luma_log_weight_denom and luma_offset_l0[i] shall be interpreted as equal to zero.

chroma_weight_flag_l0 indicates whether weighting factors are present for the Cb and Cr components of the list 0 prediction.

chroma_weight_l0[i][0] is the weighting factor applied to the Cb prediction values for reference index i in list 0 prediction.

chroma_offset_l0[i][0] is the additive offset applied to the Cb prediction values for reference index i in list 0 prediction.

chroma_weight_l0[i][1] is the weighting factor applied to the Cr prediction values for reference index i in list 0 prediction.

chroma_offset_l0[i][1] is the additive offset applied to the Cr prediction values for reference index i in list 0 prediction.

If chroma_weight_flag_l0 is equal to zero, chroma_weight_l0[i] shall be interpreted as equal to 2chroma_log_weight_denom and chroma_offset_l0[i] shall be interpreted as equal to zero.

luma_weight_flag_l1 indicates whether weighting factors are present for the luma component of the list 1 prediction.

luma_weight_l1[i] is the weighting factor applied to the luma prediction values for reference index i in list 1 prediction.

luma_offset_l1[i] is the additive offset applied to the luma prediction value for reference index i in list 1 prediction.

If luma_weight_flag_l1 is equal to zero, luma_weight_l1[i] shall be interpreted as equal to 2luma_log_weight_denom and luma_offset_l1[i] shall be interpreted as equal to zero.

chroma_weight_flag_l1 indicates whether weighting factors are present for the chroma component of the list 1 prediction.

chroma_weight_l1[i][0] is the weighting factor applied to the Cb prediction values for reference index i in list 1 prediction.

chroma_offset_l1[i][0] is the additive offset applied to the Cb prediction values for reference index i in list 1 prediction.

chroma_weight_l1[i][1] is the weighting factor applied to the Cr prediction values for reference index i in list 1 prediction.

chroma_offset_l1[i][1] is the additive offset applied to the Cr prediction values for reference index i in list 1 prediction.

If chroma_weight_flag_l1 is equal to zero, chroma_weight_l1[i][j] shall be interpreted as equal to 2chroma_log_weight_denom and chroma_offset_l1[i][j] shall be interpreted as equal to zero.

num_custom_bipred_weights is the number of custom weight and offset combinations sent for bi-predictive weighting.

irp_l0 is the index of the reference picture in list 0 for which a custom weight and offset combination is indicated for custom bi-predictive weighting.

irp_l1 is the index of the reference picture in list 1 for which a custom weight and offset combination is indicated for custom bi-predictive weighting.

luma_weight_bipred_l0[irp_l0][irp_l1] is the weighting factor applied to the luma prediction value for reference index irp_l0 in list 0 when used with reference index irp_l1 in list 1 for bi-prediction.

luma_weight_bipred_l1[irp_l0][irp_l1] is the weighting factor applied to the luma prediction value for reference index irp_l1 in list 1 when used with reference index irp_l0 in list 0 for bi-prediction.

luma_offset_bipred[irp_l0][irp_l1] is the additive offset applied to the luma prediction values when reference index irp_l0 in list 0 is used with reference index irp_l1 in list 1 for bi-prediction.

chroma_weight_flag_bipred[irp_l0][irp_l1] indicates whether custom weight and offset combinations are sent for Cb and Cr prediction when reference index irp_l0 in list 0 is used with reference index irp_l1 in list 1 for bi-prediction.

chroma_weight_bipred_l0[irp_l0][irp_l1][0] is the weighting factor applied to the Cb prediction value for reference index irp_l0 in list 0 when used with reference index irp_l1 in list 1 for bi-prediction.

chroma_weight_bipred_l1[irp_l0][irp_l1][0] is the weighting factor applied to the Cb prediction value for reference index irp_l1 in list 1 when used with reference index irp_l0 in list 0 for bi-prediction.

chroma_offset_bipred[irp_l0][irp_l1][0] is the additive offset applied to the Cb prediction values when reference index irp_l0 in list 0 is used with reference index irp_l1 in list 1 for bi-prediction.

chroma_weight_bipred_l0[irp_l0][irp_l1][1] is the weighting factor applied to the Cr prediction value for reference index irp_l0 in list 0 when used with reference index irp_l1 in list 1 for bi-prediction.

chroma_weight_bipred_l1[irp_l0][irp_l1][1] is the weighting factor applied to the Cr prediction value for reference index irp_l1 in list 1 when used with reference index irp_l0 in list 0 for bi-prediction.

chroma_offset_bipred[irp_l0][irp_l1][1] is the additive offset applied to the Cr prediction values when reference index irp_l0 in list 0 is used with reference index irp_l1 in list 1 for bi-prediction.

If chroma_weight_flag_bipred[irp_l0][irp_l1] is zero, chroma_weight_bipred_l0[irp_l0][irp_l1][j] and chroma_weight_bipred[irp_l0][irp_l1][j] shall be interpreted as equal to 2chroma_log_weight_denom and chroma_offset_bipred[irp_l0][irp_l1][j] shall be interpreted as equal to zero.

For any combination of irp_l0 and irp_l1 that is not sent, the following values shall be inferred:

–
luma_weight_bipred_l0[irp_l0][irp_l1] = luma_weight_l0[irp_l0],

–
luma_weight_bipred_l1[irp_l0][irp_l1] = luma_weight_l1[irp_l1],

–
luma_offset_bipred[irp_l0][irp_l1] =

(luma_offset_l0[irp_l0] + luma_offset_l1[irp_l1] + 1) >> 1

–
chroma_weight_bipred_l0[irp_l0][irp_l1][j] = chroma_weight_l0[irp_l0][j],

–
chroma_weight_bipred_l1[irp_l0][irp_l1][j] = chroma_weight_l1[irp_l1][j],

–
chroma_offset_bipred[irp_l0][irp_l1][j] =

(chroma_offset_l0[irp_l0][j] + chroma_offset_l1[irp_l1][j] + 1) >> 1

1 Decoding process

8.1
Ordering of decoding process

[Ed.note: High-level decoding steps have to be added.]

A macroblock or sub-partition is decoded in the following order.

1.
Parsing of syntax elements using VLC/CAVLC (see subclause Error! Reference source not found.) or CABAC (see subclause Error! Reference source not found.)

2.
Motion compensation (see subclause Error! Reference source not found.) or Intra prediction (see subclause Error! Reference source not found.)

3.
Transform coefficient decoding (see subclause Error! Reference source not found.)

4.
Deblocking Filter (see subclause Error! Reference source not found.)

8.2
NAL unit decoding

8.2.1
NAL unit delivery and decoding order

This subclause presents the requirements for the NAL unit deliver and decoding order.

Decoders conforming to this Recommendation | International Standard shall be capable of receiving NAL units in decoding order.

Systems conveying NAL unit streams conforming to this Recommendation | International Standard shall either

· Present NAL unit streams to the decoder in decoding order, or

· Provide a means to indicate the NAL unit decoding order to the decoder in the case of enhanced-capability decoders which may be capable of receiving or processing some NAL units in an out-of-order fashion. No such enhanced capability is specified or required herein for decoders conforming to this Recommendation | International Standard.

The decoding order of a sequence parameter set shall precede the decoding order of other NAL units that refer to that sequence parameter set.

The decoding order of a picture parameter set shall precede the decoding order of other NAL units that refer to that picture parameter set.

A coded picture is called a primary coded picture if the redundant_slice_flag is 0 or if its slice headers contain redundant_pic_cnt equal to 0.

The decoding order of coded slices and data partitions of a primary coded picture shall be contiguous relative to the decoding order of coded slices and data partitions of other primary coded pictures.

The decoding order of coded slices and data partitions of a primary or redundant coded picture shall precede the decoding order of coded slices and data partitions of any other coded picture that uses the primary coded picture as a reference for inter-picture prediction.

The decoding order of any coded slices or data partitions of a primary coded picture shall precede the decoding order of any redundant slices or data partitions containing coded data for the same macroblock locations represented in the slice or data partition for the primary decoded picture.

The decoding order of any redundant coded slice or data partition shall precede the decoding order of the coded slices and data partitions of any other coded picture that uses the primary coded picture corresponding to the coded slice or data partition of the redundant coded slice or data partition as a reference for inter-picture prediction.

The decoding order of slices and data partitions of primary coded pictures shall be non-decreasing in frame number order. The decoding order of the slices and data partitions of non-stored primary coded pictures shall be subsequent to the decoding order of the the slices and data partitions of the stored picture with the same frame number. If multiple primary coded pictures share the same frame number, the decoding order of the slices and data partitions of the non-stored pictures shall be in ascending order of redundant_pic_cnt.

Depending on the profile in use, arbitrary slice ordering may or may not be allowed. If arbitrary slice ordering is allowed, the slices and data partitions of a primary coded picture may follow any decoding order relative to each other. If arbitrary slice ordering is not allowed, the decoding order of slices and data partitions of a primary coded picture shall be increasing in the raster scan order of the first macroblock of each slice, and the decoding order of data partition A of a coded slice shall precede the decoding order of data partition B of the same coded slice, and the decoding of data partition B of a coded slice shall precede the decoding order of data partition C of the same coded slice, and data partitions A, B, and C of a coded slice shall be contiguous in decoding order relative to the decoding order of any data partitions or non-partitioned slice data NAL units of other coded slices.

The decoding order of SEI NAL units shall precede the decoding order of the slices and the slices and data partitions of the corresponding slice or data partition or coded picture or sequence of pictures to which the SEI NAL unit corresponds, and shall be subsequent to the decoding order of any SEI NAL units, slices, and data partitions of pictures that preced the corresponding coded picture in decoding order.

The decoding order of a picture delimiter, if present, shall precede the decoding order of the SEI NAL units, slices and data partitions of the corresponding coded picture, and shall be subsequent to the decoding order of any SEI NAL units, slices, and data partitions of pictures that precede the corresponding coded picture in decoding order.

8.2.2
Parameter set decoding

The decoder maintains 16 sequence parameter set locations. For each of the 16 possible values of seq_parameter_set_id, the most recent decoded sequence parameter set is copied into the location referenced by seq_parameter_set_id immediately before the decoding of the next IDR picture.

The decoder maintains 64 picture parameter set locations. For each of the 64 possible values of pic_parameter_set_id, the most recent picture parameter set is copied into the location referenced by pic_parameter_set_id immediately before the decoding of a slice or DPA belonging to the next coded picture.

8.3
Slice decoding

8.3.1
Detection of coded picture boundaries

Decoding of a new picture is started from the slice to be decoded, herein called the current slice, if the slice is not a redundant slice and if one of the following conditions is true:

1. The frame number of the current slice is different from the frame number of the previously decoded slice.

2. The frame number of the current slice is the same as frame number of the previously decoded slice, the nal_storage_idc of the previously decoded slice is zero, and the nal_storage_idc of the current slice is non-zero.

3. The frame number of the current slice is the same as frame number of the previously decoded slice, pic_order_cnt_type is 0, and pic_order_cnt is different from the pic_order_cnt in the previously decoded slice.

4. The frame number of the current slice is the same as the previously decoded slice, pic_order_cnt_type is 1 and delta_pic_order_cnt is different from the delta_pic_order_cnt in the previously decoded slice.

8.3.2
Picture order count

Each coded picture is associated with a picture order count, called PicOrderCnt, which indicates the output order of each picture relative to the last IDR picture in decoding order.

NOTE – Picture order counts are used to determine the intended output order of coded pictures, to determine default index orderings for reference pictures (see 8.3.6.3) and to represent temporal distances between pictures for motion vector prediction (see 10.3.2).
The value of called PicOrderCnt shall be a 32-bit signed integer. An IDR picture shall have PicOrderCnt equal to 0. The PicOrderCnt of each stored picture shall be stored as long as the picture stays in the reference picture buffer. When a picture coded as a frame is used as a field reference, the picture order count of the top and bottom fields shall be the same as the picture order count of the frame.
There are three modes for coding picture order counts. The first mode, mode 0, uses a fixed size field to code the low order bits of the picture order count of each picture. The second mode, mode 1, uses values in the sequence parameter set to predict the picture order count for each picture and encodes only the difference between the predicted value and the true picture order count in the slice header. The third mode, mode 2, uses a cumulative frame number as the picture order count.
The decoder should treat a wraparound, underflow or overflow of pic_order_cnt, PicOrderCntOffset, FrameNumOffset and AbsFrameNum specified in subclauses 8.3.2.1 and 8.3.2.2 as an error.

8.3.2.1
Picture order count type 0

If pic_order_cnt_type is 0, the decoder shall maintain a picture order count offset, called PicOrderCntOffset, which is a 32-bit signed integer. The PicOrderCntOffset shall be zero for an IDR picture.

If pic_order_cnt_type is 0 and if the decoding of a new picture is started, the PicOrderCntOffset is updated and the pic_order_cnt of the picture is calculated. The pic_order_cnt of the previous picture in decoding order is herein called PreviousPicOrderCnt. If pic_order_cnt is smaller than PreviousPicOrderCnt and if (PreviousPicOrderCnt – pic_order_cnt) is greater than or equal to (MaxPicOrderCnt / 2), PicOrderCntOffset is calculated according to Equation 8-1.

PicOrderCntOffset = PicOrderCntOffset + MaxPicOrderCnt
(8-1)

If pic_order_cnt is greater than PreviousPicOrderCnt and if (pic_order_cnt – PreviousPicOrderCnt) is greater than or equal to (MaxPicOrderCnt / 2), PicOrderCntOffset is calculated according to Equation 8-2.

PicOrderCntOffset = PicOrderCntOffset – MaxPicOrderCnt
(8-2)

Otherwise, the value of PicOrderCntOffset is not changed.

If pic_order_cnt_type is 0 and if the decoding of a new picture is started, the PicOrderCnt of the picture is calculated according to Equation 8-3.

PicOrderCnt = PicOrderCntOffset + pic_order_cnt
(8-3)

8.3.2.2
Picture order count type 1

If pic_order_cnt_type is 1, the decoder shall maintain a FrameNumOffset that is a 32-bit unsigned integer. The FrameNumOffset of an IDR picture shall be set to zero. For an IDR picture the frame_num and the PicOrderCnt are always zero, and the calculations below are not carried out.

If pic_order_cnt_type is 1 and if the decoding of a new picture is started, the PicOrderCnt of the picture is calculated. In the following, AbsFrameNum and PicOrderCntCycleCnt are 32-bit unsigned integers, and PreviousFrameNum is the frame_num of the previous picture in decoding order. First, the FrameNumOffset is updated as follows. If frame_num is greater than or equal to the PreviousFrameNum, FrameNumOffset is unchanged. Otherwise, when frame_num is smaller than PreviousFrameNum, FrameNumOffset is calculated according to Equation 8-4.

FrameNumOffset = FrameNumOffset + MAX_FN
(8-4)

Second, the AbsFrameNum (the frame number relative to the last IDR picture) is calculated according to Equation 8-5.

AbsFrameNum = FrameNumOffset + frame_num
(8-5)

if(nal_storage_idc = = 0 && AbsFrameNum > 0)
(8-6)

AbsFrameNum = AbsFrameNum – 1

Third, if AbsFrameNum > 0, the PicOrderCntCycleCnt and FrameNumInPicOrderCntCycle are calculated according to Equation 8-7.

if(AbsFrameNum > 0) {

(8-7)

PicOrderCntCycleCnt = AbsFrameNum / num_stored_frames_in_pic_order_cnt_cycle

FrameNumInPicOrderCntCycle = (AbsFrameNum –1)%

num_stored_frames_in_pic_order_cnt_cycle
}

In the following, the ExpectedDeltaPerPicOrderCntCycle is the sum of offset_for_stored_frame values. Finally, the PicOrderCnt of the picture is computed using the algorithm expressed in Equation 8-8.

if(AbsFrameNum > 0){

ExpectedPicOrderCnt = PicOrderCntCycleCnt (ExpectedDeltaPerPicOrderCntCycle

for(i = 0; i <= FrameNumInPicOrderCntCycle; i++)

ExpectedPicOrderCnt = ExpectedPicOrderCnt + offset_for_stored_frame[i]
} else {

ExpectedPicOrderCnt = 0

if(nal_storage_idc = = 0)

ExpectedPicOrderCnt = ExpectedPicOrderCnt + offset_for_non_stored_pic

PicOrderCnt = ExpectedPicOrderCnt + delta_pic_order_cnt
}

(8-8)

[Ed. Note: something is wrong here …]
8.3.2.3
Picture order count type 2

If pic_order_cnt_type is 2, the decoder shall maintain a FrameNumOffset that is a 32-bit unsigned integer. The FrameNumOffset of an IDR picture shall be set to zero. For an IDR picture the frame_num and the PicOrderCnt are always zero, and the calculations below are not carried out.

If pic_order_cnt_type is 2 and if the decoding of a new picture is started, the PicOrderCnt of the picture is calculated. In the following, PreviousFrameNum is the frame_num of the previous picture in decoding order. First, the FrameNumOffset is updated as follows. If frame_num is greater than or equal to the PreviousFrameNum, FrameNumOffset is unchanged. Otherwise, when frame_num is smaller than PreviousFrameNum, FrameNumOffset is calculated according to Equation 8-9.

FrameNumOffset = FrameNumOffset + MAX_FN
(8-9)

The PicOrderCnt is calculated according to Equation 8-10.
PicOrderCnt = FrameNumOffset + frame_num
(8-10)

8.3.3
Decoder process for redundant slices

If the redundant_pic_cnt in the slice header of a coded slice is greater than 0, the decoder may discard the coded slice. If some of the samples in the decoded primary picture are incorrect and if the coded redundant slice can be correctly decoded, the decoder should replace the incorrect samples with the corresponding samples of the redundant decoded slice.

8.3.4
Specification of macroblock allocation map

If decoding of a new picture is started, if num_slice_groups_minus1 is greater than 0 and if mb_allocation_map_type is 4, 5 or 6, a macroblock allocation map is generated. Slice group 0 has a growth order specified in ubclauses 0-0. The number of macroblocks in slice group 0 is equal to slice_group_change_cycle (SliceGroupChangeRate. This number of macroblock locations in the specified growth order is allocated for slice group 0. The rest of the macroblocks of the picture are allocated for slice group 1.

8.3.4.1
Allocation order for box-out

Let H denote the number of coded macroblock rows of the picture and W denote the number of coded macroblocks columns of the picture. Macroblock locations are indicated with coordinates (x, y), where the top-left macroblock location of the picture has coordinates (0, 0) and the bottom-right macroblock location has coordinates (W – 1, H – 1). The allocation order is created using a AllocationDirection variable that indicates the next macroblock location relative to the current one. AllocationDirection can have four values: (-1, 0), (1, 0), (0, -1) and (0, 1). Furthermore, the left-most and right-most macroblock columns allocated in the allocation order and the top-most and bottom-most macroblock rows allocated in the allocation order are stored in the variables Left, Right, Top, and Bottom respectively. For the box-out clockwise macroblock allocation map type, the first macroblock location in the allocation order is (x, y) = (W/2, H/2) and the initial AllocationDirection is (-1, 0). For the counter-clockwise macroblock allocation map type, the first macroblock location in allocation order is (x, y) = ((W – 1)/2, (H – 1)/2) and the initial AllocationDirection is (0, 1). At the beginning, Left = Right = x, and Top = Bottom = y. A subsequent macroblock location (x, y) in allocation order is allocated by searching the first row from top to bottom in Table 8‑1for the same value of AllocationDirection and where the given condition is true. Then, the x, y, AllocationDirection, Left, Right, Top and Bottom variables are updated according to the refined macroblock allocation map type. If Left >= 0, Right < W, Top >= 0 and Bottom < H, the next macroblock location (x, y) in allocation order is allocated as described above. Otherwise, all macroblock locations have been allocated.

Table 8‑1 – Allocation order for the box-out macroblock map allocation type

	AllocationDirection
	Condition
	Box-out clockwise
	Box-out counter-clockwise

	(-1, 0)
	x > Left
	x = x – 1
	x = x – 1

	(-1, 0)
	x = = 0
	y = Top – 1
Top = Top – 1
AllocationDirection = (1, 0)
	y = Bottom + 1
Bottom = Bottom + 1
AllocationDirection = (1, 0)

	(-1, 0)
	x = = Left
	x = x – 1
Left = Left – 1
AllocationDirection = (0, -1)
	x = x –1
Left = Left – 1
AllocationDirection = (0, 1)

	(1, 0)
	x < Right
	x = x + 1
	x = x + 1

	(1, 0)
	x = = W – 1
	y = Bottom + 1
Bottom = Bottom + 1
AllocationDirection = (-1, 0)
	y = Top – 1
Top = Top – 1
AllocationDirection = (-1, 0)

	(1, 0)
	x = = Right
	x = x + 1
Right = Right + 1
AllocationDirection = (0, 1)
	x = x + 1
Right = Right + 1
AllocationDirection = (0, -1)

	(0, -1)
	y > Top
	y = y – 1
	y = y – 1

	(0, -1)
	y = = 0
	x = Right + 1
Right = Right + 1
AllocationDirection = (0, 1)
	x = Left – 1
Left = Left – 1
AllocationDirection = (0, 1)

	(0, -1)
	y = = Top
	y = y – 1
Top = Top –1
AllocationDirection = (1, 0)
	y = y –1
Top = Top –1
AllocationDirection = (-1, 0)

	(0, 1)
	y < Bottom
	y = y + 1
	y = y + 1

	(0, 1)
	y = = H – 1
	x = Left – 1
Left = Left – 1
AllocationDirection = (0, -1)
	x = Right + 1
Right = Right + 1
AllocationDirection = (0, -1)

	(0, 1)
	y = = Bottom
	y = y + 1
Bottom = Bottom + 1
AllocationDirection = (-1 ,0)
	y = y + 1
Bottom = Bottom + 1
AllocationDirection = (1 ,0)

8.3.4.2
Allocation order for raster scan

For the raster scan slice group macroblock allocation map type, the first macroblock in the allocation order is the top-left one of the picture, and the allocation order follows the raster scan order.

For the reverse raster scan slice group macroblock allocation map type, the first macroblock in the allocation order is the bottom-right one of the picture, and the allocation order follows the reverse raster scan order.

8.3.4.3
Allocation order for wipe

For the wipe right slice group macroblock allocation map type, the first macroblock in the allocation order is the top-left one of the picture. The allocation order runs from top to bottom. The next macroblock after the bottom macroblock of a column is the top macroblock of the column to the right of the previous column.

For the wipe left slice group macroblock allocation map type, the first macroblock in the allocation order is the bottom-right one of the picture. The allocation order runs from bottom to top. The next macroblock after the top macroblock of a column is the bottom macroblock of the column to the left of the previous column.

8.3.4.4
Allocation order for macroblock level adaptive frame and field coding

Allocation order follows Figure 6‑4 in subclause Error! Reference source not found., instead of raster scan. [Ed.Note: more text need here !!!]

8.3.5
Data partitioning

When data partitioning is not used, coded slices start with a slice header and are followed by all the entropy coded symbols of Categories 4, 5, and 6 (see Category column in clause Error! Reference source not found.) of the macroblock data for the macroblocks of the slice.

When Data Partitioning is used, the macroblock data of a Slice is partitioned in three partitions. Partition A contains a partition A header and all entropy coded symbols of Category 4. Partition B contains a partition B header all symbols of Category 5. Partition C contains a partition C header and all symbols of Category 6. When data partitioning is used, each partition is conveyed in its own NAL unit, which may be empty if no symbols of the respective Category.

NOTE - Symbols of Category 5 are relevant to the decoding of intra coded texture information. Symbols of Category 6 are relevant to the decoding of residual data in Inter slices. Category 4 encompasses all other symbol types related to the decoding of macroblocks, and their information is often denoted as header information. The Partition A header contains all the symbols of the slice header, and additionally a slice number that is used to associate the partitions B and C with the partition A. The partition B and C headers contain only the slice number which allows their association with the partition A of the slice

