	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

5th Meeting: Geneva, Switzerland, October, 2002
	Document: JVT-Exxx
Filename: JVT-Exxx.doc

	Title:
	CABAC cleanup and complexity reduction

	Status:
	Input Document

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Frank Bossen
181 Metro Drive Ste 300
San Jose CA 95110
USA
	
Tel:
Email:
	
+1 408 451 4712
bossen@docomolabs-usa.com

	Source:
	DoCoMo Communications Laboratories USA, Inc.

Noting that:

· The ordering of bits within bytes of arithmetic coded content (LSB of a byte comes first) is reversed with respect to all other coded data;
· The probabilities defined by the probability estimation state machine all have their 6 LSBs equal to 0;
· The register R always has its 6 LSBs equal to 0;
· The register L in the encoder always has its 6 LSBs equal to 0, except while coding an equi-probable event where the 6th LSB may take a non-zero value before renormalization;
· The arithmetic decoding engine may read more bits than are present in the bit stream (in the software implementation which arguably does not do what the text says);
· The termination of arithmetic coding is not clearly defined;
· The first bit read by an arithmetic decoder is always zero;
· The FCD (JVT-D157) does not clearly specify the byte alignment procedure before starting arithmetic decoding;
· The renormalization test cannot be implemented by a bit test;
· The cabac_stuffing_bit’s cannot be uniquely identified.
· The subinterval for the MPS may be smaller than the subinterval for the LPS

· The probability estimation state machine is not unique. A “truncated” state machine is used for I-slices.

· The stationary behaviour of the probability estimation state machine is far from optimal.
We recommend to:

· Reorder bits within bytes such that the first bit lies in the MSB of a byte;
· Resize the registers R and V to full16 bits;
· Constrain the value of the register R after renormalization to 0xff00-0x8000 inclusive;

· Scale the probabilities defined by the state machine by 6 bits to the right (removing the LSBs that contain zeros);
· Modify the initialization procedure to read two bytes;

· Modify the flowcharts decoding procedure for adapted and equi-probable events to account for new register sizes;
· Modify the decoding of end_of_slice_flag such as to properly define termination;
· Modify the syntax and semantics of cabac_stuffing_bit such as to enable a decoder to uniquely identify the stuffed bits;
· Modify the flowcharts such that data is added on a byte basis to V.

· Modify the probability table to ensure that the subinterval for the MPS is always larger or equal to the subinterval for the LPS.

· Modify the probability estimation state machine such as to have a unique state machine for all types of slices.

Notes:
· The encoder is modified such as to not send a first bit upon the first renormalization.
· When coding an end_of_slice_flag with value 0, L is increment by 2, R is decrement by 2, followed by renormalization (assuming 9 bit registers in the encoder).
· When encoding an end_of_slice_flag with value 1, no operation is carried out.
· When terminating the arithmetic encoder, R is set to 2 (assuming a 9-bit register), renormalization is carried out, and the two MSBs of L are sent (along with potential outstanding bits). Following termination the rbsp_stop_bit and rbsp_trailing_bit’s are added to the stream. Finally cabac_stuffing_byte’s are added as needed.
· Given a stream, a decoder can uniquely identify the cabac_stuffing_byte’s, as well as the rbsp_trailing_bit’s and the rbsp_stop_bit. After having decoded the last event, the last byte that was read is the one containing the rbsp_stop_bit and the rbsp_alignment_bit’s. This last byte has the following properties:
· (last_byte>>B)&1 == 1, this is the stop bit

· (last_byte&((1<<B)-1)) == 0, these are the alignment bits

· The order of rMPS and rLPS is inverted for end_of_slice_flag. Whereas the rLPS is the top sub-interval for all other bins, the rLPS bottom sub-interval for end_of_slice_flag. This inversion simplifies the test in the decoder.
· When renormalizing after an MPS, R is shifted left by at most one bit.

· Implementation of the proposed changes shows no significant difference in coding efficiency.
Annexes

· Modified flowchart of arithmetic decoder initialization

· Modified flowchart of arithmetic decoding of an event
· Modified flowchart of renormalization

· Modified flowchart of arithmetic decoding of an equi-probable event
· Modified probability table and modified state transition table
· Modified syntax & semantics of cabac_stuffing_bit

· Byte alignment before CABAC decoding

· Sample encoder code

· Stationary behaviour of probability estimator

· Results

References

JVT-D157: Joint FCD

· Modified arithmetic decoder intialization

[image: image1.wmf]Init Decoder

R = 0xff00

Done

V = getbyte() << 8

V = V | getbyte()

B = 7

Modified decoding of a bin

[image: image2.wmf]V >= R

S = !MPS(CTX)

V = V - R

R=R

LPS

S = MPS(CTX)

State(CTX) = Next_State_MPS[State(CTX)]

Yes

No

RenormD

Done

Decode (CTX)

R

LPS

 = RTAB

[State(CTX)

][(R>>13)-4]<<7

R

 = R - R

LPS

State(CTX) == 0?

MPS(CTX) = MPS(CTX)^1

State(CTX) = Next_State_LPS[State(CTX)]

Yes

No

Modified renormalization procedure

[image: image3.wmf]R < 0x8000?

Done

RenormD

B = 7

V = V | getbyte()

Yes

R = R << 1

V = V << 1

B = B - 1

No

B < 0?

Yes

No

Modified decoding of a bin with equi-probability

[image: image4.emf]V >= R

S = 1

V = V - R

S = 0

Yes

No

Done

Decode_eq_prob

V = V << 1

B = B - 1

B < 0?

V = V | getbyte()

B = 7

No

Yes

[image: image5.emf]V >= R ||

V’&0x8000

S = 1

V = V - R

S = 0

Yes

No

Done

Decode_eq_prob

V’ = V

V = V << 1

B = B - 1

B < 0?

V = V | getbyte()

B = 7

No

Yes

Left: implementation requiring a 17-bit register V. Right: implementation assuming a 16-bit register V.

Decoding of end_of_slice_flag

[image: image6.wmf]V<0x100?

S = 1

S = 0

R = R-0x100

V = V-0x100

Yes

No

RenormD

Done

Decode (end_of_slice_flag)

RTAB[State][Q] Table for interval subdivision with scaled values
{ 128, 176, 208, 240, },

{ 128, 167, 197, 227, },

{ 128, 158, 187, 216, },

{ 123, 150, 178, 205, },

{ 116, 142, 169, 195, },

{ 111, 135, 160, 185, },

{ 105, 128, 152, 175, },

{ 100, 122, 144, 166, },

{ 95, 116, 137, 158, },

{ 90, 110, 130, 150, },

{ 85, 104, 123, 142, },

{ 81, 99, 117, 135, },

{ 77, 94, 111, 128, },

{ 73, 89, 105, 122, },

{ 69, 85, 100, 116, },

{ 66, 80, 95, 110, },

{ 62, 76, 90, 104, },

{ 59, 72, 86, 99, },

{ 56, 69, 81, 94, },

{ 53, 65, 77, 89, },

{ 51, 62, 73, 85, },

{ 48, 59, 69, 80, },

{ 46, 56, 66, 76, },

{ 43, 53, 63, 72, },

{ 41, 50, 59, 69, },

{ 39, 48, 56, 65, },

{ 37, 45, 54, 62, },

{ 35, 43, 51, 59, },

{ 33, 41, 48, 56, },

{ 32, 39, 46, 53, },

{ 30, 37, 43, 50, },

{ 29, 35, 41, 48, },

{ 27, 33, 39, 45, },

{ 26, 31, 37, 43, },

{ 24, 30, 35, 41, },

{ 23, 28, 33, 39, },

{ 22, 27, 32, 37, },

{ 21, 26, 30, 35, },

{ 20, 24, 29, 33, },

{ 19, 23, 27, 31, },

{ 18, 22, 26, 30, },

{ 17, 21, 25, 28, },

{ 16, 20, 23, 27, },

{ 15, 19, 22, 25, },

{ 14, 18, 21, 24, },

{ 14, 17, 20, 23, },

{ 13, 16, 19, 22, },

{ 12, 15, 18, 21, },

{ 12, 14, 17, 20, },

{ 11, 14, 16, 19, },

{ 11, 13, 15, 18, },

{ 10, 12, 15, 17, },

{ 10, 12, 14, 16, },

{ 9, 11, 13, 15, },

{ 9, 11, 12, 14, },

{ 8, 10, 12, 14, },

{ 8, 9, 11, 13, },

{ 7, 9, 11, 12, },

{ 7, 9, 10, 12, },

{ 7, 8, 10, 11, },

{ 6, 8, 9, 11, },

{ 6, 7, 9, 10, },

{ 6, 7, 8, 9, },

{ 5, 7, 8, 9, },
Next_State_LPS[State]:
0, 0, 1, 2, 2, 4, 4, 5, 6, 7, 8, 9, 9, 11, 11, 12, 13, 13, 15, 15, 16, 16, 18, 18, 19, 19, 21, 21, 22, 22, 23, 24, 24, 25, 26, 26, 27, 27, 28, 29, 29, 30, 30, 30, 31, 32, 32, 33, 33, 33, 34, 34, 35, 35, 35, 36, 36, 36, 37, 37, 37, 38, 38, 38,

Modified syntax and semantics for cabac_stuffing_bit

	rbsp_slice_trailing_bits() {
	Category
	Descriptor

	
rbsp_stop_bit /* equal to 1 */
	All
	f(1)

	
while(!byte_aligned())
	
	

	

rbsp_alignment_bit /* equal to 0 */
	All
	f(1)

	
if(entropy_coding_mode = = 1)
	
	

	

while(more data in RBSP)
	
	

	

cabac_stuffing_byte /* equal to 0x00 */
	All
	f(8)

	}
	
	

7.4.2.9. RBSP slice trailing bits semantics

rbsp_stop_bit has the same semantics as in subclause Error! Reference source not found..

NOTE: when entropy_coding_mode == 1, this bit is consumed by the CABAC decoder (see clause 9).
rbsp_alignment_bit has the same semantics as in subclause Error! Reference source not found..

NOTE: when entropy_coding_mode == 1, this bit is consumed by the CABAC decoder (see clause 9).
cabac_stuffing_byte is a byte-aligned sequence of 8 bits having the value 0 ('0000 0000'). When entropy_coding_mode is equal to 1, the number of cabac_stuffing_byte shall be such that the combined number of executions of the functions decode(CTX) and decode_eq_prob described in subclause 9.2.4.2 to decode the current slice layer NAL unit does not exceed 32 times the number of bytes in the NAL unit.

NOTE: the number of executions of decode(end_of_slice_flag) is not taken into account.

NOTE: each cabac_stuffing_byte is represented by two bytes equal to 0x0003 in the EBSP.
rbsp[i] a raw byte sequence payload is specified as an ordered sequence of bytes that contains an SODB. The RBSP contains the SODB in the following form:

a)
If the SODB is null, the RBSP is also null.

b)
Otherwise, the RBSP shall contain the SODB in the following form:

1)
The first byte of the RBSP shall contain the (most significant, left-most) eight bits of the SODB; the next byte of the RBSP shall contain the next eight bits of the SODB, etc.; until fewer than eight bits of the SODB remain.

2)
The final byte of the RBSP shall have the following form:

i)
The first (most significant, left-most) bits of the final RBSP byte shall contain the remaining bits of the SODB, if any,

ii)
The next bit of the final RBSP byte shall consist of a single rbsp_stop_bit having the value one (‘1‘), and

iii)
Any remaining bits of the final RBSP byte, if any, shall consist of one or more rbsp_alignment_bit having the value zero (‘0‘).

The final byte of a RBSP shall never have the value zero (0x00), because it contains the rbsp_stop_bit. If the RBSP contains one or more cabac_stuffing_byte, the final byte of the RBSP is defined as the byte immediately preceeding the first cabac_stuffing_byte.
If the boundaries of the RBSP are known, the decoder can extract the SODB from the RBSP by concatenating the bits of the bytes of the RBSP and discarding the rbsp_stop_bit, which is the last (least significant, right-most) bit having the value one (‘1‘), and discarding any following (less significant, farther to the right) bits that follow it, which have the value zero (‘0‘).

Syntax structures having these RBSP properties are denoted in the syntax tables using an "_rbsp" suffix. These structures shall be carried within NAL units as the content of the rbsp[i] data bytes. The association of the RBSP syntax structures to the NAL units shall be as specified in Error! Reference source not found..

emulation_prevention_byte is a byte equal to 0x03.

Within the NAL unit, an emulation_prevention_byte shall be present after an rbsp[i] byte having the value zero (0x00) if and only if there is no next byte of RBSP data rbsp[i+1] or a next byte of RBSP data rbsp[i+1] follows that has one of the following four values:

–
zero (0x00)

–
one (0x01)

–
two (0x02)

–
three (0x03)

NOTE - Example encoder procedure. The encapsulation of an SODB within an RBSP and the encapsulation of an RBSP within a NAL unit is specified to prevent the emulation of start codes within NAL units while allowing any arbitrary SODB to be represented within a NAL unit and enable identification of the end of the SODB within the NAL unit.

The encoder can produce a NAL unit from an RBSP by the following procedure:

The RBSP data is searched for byte-aligned bits of the following binary patterns:

'00000000 000000xx' (where xx represents any 2 bit pattern: 00, 01, 10 or 11),

and a byte having the value three (0x03) is inserted to replace these bit patterns with the patterns

'00000000 00000011 000000xx'

A byte having the value three (0x03) is also appended is the last byte of a RBSP has value zero (0x00), i.e. is a cabac_stuffing_byte.
The resulting sequence of bytes is then prefixed with the first byte of the NAL unit containing the indication of the type of RBSP data structure it contains.

This process can allow any RBSP data to be sent in NAL unit while ensuring that no long SCP and no byte-aligned short SCP is emulated in the NAL unit.

	nal_unit(NumBytesInNALunit) {
	Category
	Descriptor

	
forbidden_bit
	
	u(1)

	
nal_storage_idc
	
	u(2)

	
nal_unit_type
	
	u(5)

	
NumBytesInRBSP = 0
	
	

	
for(i = 0; i < NumBytesInNALunit-1; i++) {
	
	

	

if(previous_bits(8) == 0x00 && next_bits(8) = = 0x03) {
	
	

	

emulation_prevention_byte /* = = 0x03 */
	
	f(8)

	

} else
	
	

	

rbsp[NumBytesInRBSP++]
	
	b(8)

	
}
	
	

	}
	
	

	slice_data() {
	Category
	Descriptor

	
if (entropy_coding_mode == 1)
	
	

	

while (!byte_aligned())
	
	

	

alignment_bit
	
	

	
if(mb_frame_field_adapative_flag &&

(pic_structure = = 0 | |

pic_structure = = 3 | |

pic_structure = = 4)) {
	
	

	

MbPairY = first_mb_in_slice / (pic_width_in_mb_minus1 + 1)
	
	

	

MbPairX = first_mb_in_slice % (pic_width_in_mb_minus1+1)
	
	

	

MbNum = (MbPairY << 1) * (pic_width_in_mb_minus1 + 1)

+ MbPairX
	
	

	
} else
	
	

	

MbNum = first_mb_in_slice
	
	

	
do {
	
	

	

if(slice_type() ! = Intra && slice_type() ! = SIntra)
	
	

	

if(entropy_coding_mode = = 0) {
	
	

	

mb_skip_run
	4
	ue(v)

	

MoreDataFlag = more_rbsp_data()
	
	

	

} else {
	
	

	

mb_skip_flag
	4
	ae(v)

	

MoreDataFlag = !mb_skip_flag
	
	

	

}
	
	

	

if(MoreDataFlag) {
	
	

	

if(mb_frame_field_adaptive_flag &&

(pic_structure = = 0 | |

 pic_structure = = 3 | | pic_structure = = 4) &&

(slice_type() ! = BiPred)) {
	
	

	

if(MbNum % 2 = = 0)
	
	

	

MbFieldDecodingFlag = 1
	
	

	

if(MbFieldDecodingFlag) {
	
	

	

mb_field_decoding_flag
	4
	u(1) | ae(v)

	

MbFieldDecodingFlag = 0
	
	

	

} else
	
	

	

mb_field_decoding_flag = 0
	
	

	

}
	
	

	

if(adaptive_block_size_transform_flag = = 0)
	
	

	

macroblock_layer()
	4 | 5 | 6
	

	

else
	
	

	

macroblock_layer_abt()
	4 | 5 | 6
	

	

if(entropy_coding_mode = = 0)
	
	

	

MoreDataFlag = more_rbsp_data()
	
	

	

else {
	
	

	

if(mb_frame_field_adaptive_flag &&

(pic_structure = = 0 | |

pic_structure = = 3 | | pic_structure = = 4) &&
	
	

	

MbNum % 2 ! = 0)
	
	

	

MoreDataFlag = 1
	
	

	

else {
	
	

	

end_of_slice_flag
	4
	ae(v)

	

MoreDataFlag = !end_of_slice_flag
	
	

	

}
	
	

	

}
	
	

	

MbNum++
	
	

	
} while(MoreDataFlag)
	
	

	}
	
	

Sample encoder (informative):
void start_encode() {
 send_NAL_first_byte();
 encode_slice_header();

 while (!byte_aligned())

 send_bit(0);

 R = 0x1fe; // range
 L = 0; // low
 BO = 0; // bits outstanding
 C = 0; // event counter
 FB = 1; // first bit flag
}

void finish_encode() {

 R = 2;

 renorm_encode();

 bit_plus_follow((L >> 9) & 1);

 send_bit((L >> 8) & 1);

 send_bit(1); // stop_bit

 while (!byte_aligned())

 send_bit(0); // alignment_bit
 RBSP_to_EBSP();
 C = (C+31)>>5;

 while (C > bytes_in_NAL_unit())

 send_two_bytes(0x0003); // write bytes directly into NAL unit
}

void bit_plus_follow(int b) {

 if (FB == 1)

 FB = 0;

 else

 send_bit(b);

 while (BO > 0) {

 BO--;

 send_bit(!b);

 }

}

void encode_renorm() {

 while (!(R&0x100) {

 if (L+R < 0x200)

 bit_plus_follow(0);

 else if (L >= 0x200) {

 bit_plus_follow(1);

 L -= 0x200;

 }

 else {

 BO++;

 L -= 0x100;

 }

 R <<= 1;

 L <<= 1;

 }

}

void encode_event(int ctx, int b) {

 rLPS = table[state[ctx]][(R>>6)-4];

 R -= rLPS;

 if (b == MPS[state[ctx]])

 state[ctx] = next_state_MPS[state[ctx]];

 else {

 L += R;

 R = rLPS;

 if (state[ctx] == 0)

 MPS[state[ctx]] = !MPS[state[ctx]];

 state[ctx] = next_state_LPS[state[ctx]];

 }

 encode_renorm();

 C++;

}

void encode_equiprob_event(int b) {

 L <<= 1;

 if (b)

 L += R;

 if (L+R < 0x400)

 bit_plus_follow(0);

 else if (L >= 0x400) {

 bit_plus_follow(1);

 L -= 0x400;

 }

 else {

 BO++;

 L -= 0x200;

 }

 C++;

}

void encode_end_of_slice_flag(int b) {

 if (b == 0) {

 R-=2;

 L+=2;

 encode_renorm();

 }

}

[image: image7.emf]Stationary behaviour of probability estimators

1

1.02

1.04

1.06

1.08

1.1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P(LPS)

Inefficiency

Old INTER

Old INTRA

New

The graph above shows the stationary behaviour of three probability estimators: the INTRA estimator defined in the FCD, the INTER estimator defined in the FCD, and the proposed estimator. Note that the INTRA estimator is a subset of the INTER estimator (only 24 out of 64 states are used). It can be seen that the INTER estimator is highly inefficient at probabilities around 1/8 (where the INTRA estimator is more than 2 percent better). The proposed estimator has a more consistent behaviour across a wider range of probabilities.

Results for I-frame only

	Sequence
	QP
	Old
	New
	Old with RDO
	New with RDO

	Container
	28
	731.73 (36.95)
	730.10 (36.95)
	728.20 (37.10)
	726.41 (37.10)

	
	32
	490.94 (34.10)
	490.51 (34.10)
	489.06 (34.25)
	488.63 (34.25)

	
	36
	323.80 (31.37)
	323.40 (31.37)
	322.28 (31.48)
	321.98 (31.48)

	
	40
	214.91 (28.81)
	214.73 (28.81)
	210.75 (28.84)
	210.26 (28.84)

	Foreman
	28
	776.24 (36.39)
	774.28 (36.39)
	768.18 (36.52)
	766.20 (36.53)

	
	32
	506.19 (33.50)
	505.24 (33.50)
	499.48 (33.58)
	498.22 (33.59)

	
	36
	319.77 (30.87)
	319.22 (30.87)
	313.31 (30.89)
	312.61 (30.89)

	
	40
	205.53 (28.45)
	205.05 (28.45)
	199.66 (28.44)
	199.23 (28.43)

	News
	28
	803.61 (37.49)
	802.34 (37.49)
	795.09 (37.65)
	793.20 (37.64)

	
	32
	568.83 (34.30)
	568.20 (34.30)
	564.56 (34.44)
	563.90 (34.45)

	
	36
	389.13 (31.36)
	388.46 (31.36)
	382.60 (31.42)
	382.16 (31.42)

	
	40
	262.65 (28.55)
	262.33 (28.55)
	255.99 (28.60)
	255.53 (28.60)

	Silent
	28
	790.11 (36.18)
	787.07 (36.18)
	782.06 (36.35)
	779.67 (36.37)

	
	32
	503.29 (33.28)
	502.22 (33.28)
	496.99 (33.41)
	495.96 (33.42)

	
	36
	316.00 (30.83)
	315.43 (30.83)
	310.64 (30.86)
	310.53 (30.87)

	
	40
	197.52 (28.43)
	197.24 (28.43)
	193.65 (28.42)
	193.15 (28.41)

	Mobile
	28
	7003.82 (35.00)
	6955.08 (35.00)
	6992.41 (35.37)
	6946.82 (35.39)

	
	32
	5019.96 (31.45)
	4996.24 (31.45)
	5007.94 (31.74)
	4984.88 (31.76)

	
	36
	3406.76 (28.21)
	3396.78 (28.21)
	3383.80 (28.42)
	3373.68 (28.43)

	
	40
	2266.59 (25.33)
	2260.14 (25.33)
	2236.04 (25.44)
	2229.79 (25.44)

	Tempete
	28
	4480.41 (35.83)
	4459.49 (35.83)
	4468.46 (36.14)
	4451.40 (36.16)

	
	32
	3055.74 (32.53)
	3048.59 (32.53)
	3042.30 (32.77)
	3036.67 (32.78)

	
	36
	1977.97 (29.56)
	1975.02 (29.56)
	1958.78 (29.69)
	1956.14 (29.70)

	
	40
	1242.78 (26.90)
	1239.43 (26.90)
	1221.41 (26.92)
	1220.19 (26.93)

	Paris
	28
	4132.01 (36.40)
	4122.89 (36.40)
	4103.86 (36.55)
	4091.91 (36.56)

	
	32
	2867.64 (33.24)
	2862.85 (33.24)
	2847.55 (33.38)
	2841.75 (33.39)

	
	36
	1916.06 (30.28)
	1913.06 (30.28)
	1898.17 (30.38)
	1894.75 (30.39)

	
	40
	1275.52 (27.52)
	1272.62 (27.52)
	1251.36 (27.53)
	1247.91 (27.53)

Results for I/B/P-frames
	Sequence
	QP
	Old
	New
	Old with RDO
	New with RDO

	Container
	28
	34.36 (36.09)
	34.31 (36.09)
	32.53 (36.03)
	32.41 (36.04)

	
	32
	18.65 (33.24)
	18.65 (33.24)
	19.29 (33.27)
	19.02 (33.26)

	
	36
	11.18 (30.55)
	11.24 (30.55)
	12.50 (30.56)
	12.43 (30.60)

	
	40
	7.69 (27.99)
	7.78 (27.99)
	8.75 (27.96)
	9.08 (27.96)

	Foreman
	28
	136.66 (35.61)
	136.20 (35.61)
	118.19 (35.40)
	117.89 (35.39)

	
	32
	74.70 (32.86)
	74.52 (32.86)
	63.60 (32.70)
	63.42 (32.71)

	
	36
	43.44 (30.36)
	43.35 (30.36)
	37.00 (30.21)
	37.00 (30.24)

	
	40
	27.07 (28.06)
	27.01 (28.06)
	23.13 (27.78)
	23.21 (27.86)

	News
	28
	75.79 (36.89)
	75.55 (36.89)
	71.14 (36.83)
	71.55 (36.79)

	
	32
	45.73 (33.68)
	45.58 (33.68)
	43.27 (33.70)
	43.34 (33.71)

	
	36
	27.76 (30.86)
	27.69 (30.86)
	26.06 (30.78)
	25.85 (30.75)

	
	40
	17.20 (28.00)
	17.15 (28.00)
	16.37 (27.98)
	16.54 (28.08)

	Silent
	28
	83.28 (35.78)
	83.01 (35.78)
	76.91 (35.81)
	76.86 (35.80)

	
	32
	48.46 (32.86)
	48.36 (32.86)
	45.65 (32.90)
	45.47 (32.93)

	
	36
	28.10 (30.33)
	28.03 (30.33)
	26.60 (30.37)
	26.61 (30.42)

	
	40
	16.55 (27.97)
	16.51 (27.97)
	16.29 (27.92)
	16.21 (27.90)

	Mobile
	28
	1334.57 (34.06)
	1327.73 (34.06)
	1224.87 (33.90)
	1219.58 (33.90)

	
	32
	659.37 (30.68)
	656.66 (30.68)
	583.22 (30.54)
	580.87 (30.55)

	
	36
	311.37 (27.62)
	310.33 (27.62)
	272.89 (27.52)
	271.26 (27.52)

	
	40
	158.27 (24.92)
	157.73 (24.92)
	153.66 (24.72)
	153.19 (24.72)

	Tempete
	28
	1072.33 (35.01)
	1066.38 (35.01)
	962.67 (34.83)
	956.53 (34.83)

	
	32
	513.87 (31.87)
	511.74 (31.87)
	444.93 (31.74)
	443.84 (31.74)

	
	36
	243.17 (29.12)
	242.27 (29.12)
	209.97 (29.02)
	209.79 (29.02)

	
	40
	126.50 (26.62)
	125.87 (26.62)
	112.40 (26.48)
	112.55 (26.49)

	Paris
	28
	470.83 (35.60)
	467.83 (35.60)
	458.88 (35.44)
	456.63 (35.44)

	
	32
	261.39 (32.48)
	259.83 (32.48)
	256.42 (32.33)
	255.21 (32.35)

	
	36
	141.29 (29.51)
	140.61 (29.51)
	139.36 (29.44)
	140.52 (29.45)

	
	40
	78.59 (26.84)
	78.18 (26.84)
	82.55 (26.73)
	82.46 (26.75)

(Append for Proposal Documents)

JVT Patent Disclosure Form

	International Telecommunication Union
Telecommunication Standardization Sector
	International Organization for Standardization
	International Electrotechnical Commission

	[image: image8.wmf]
	[image: image9.png]1S0
NS

	[image: image10.png]

Joint Video Coding Experts Group - Patent Disclosure Form
(Typically one per contribution and one per Standard | Recommendation)

Please send to:

JVT Rapporteur Gary Sullivan, Microsoft Corp., One Microsoft Way, Bldg. 9, Redmond WA 98052-6399, USA

Email (preferred): Gary.Sullivan@itu.int Fax: +1 425 706 7329 (+1 425 70MSFAX)

This form provides the ITU-T | ISO/IEC Joint Video Coding Experts Group (JVT) with information about the patent status of techniques used in or proposed for incorporation in a Recommendation | Standard. JVT requires that all technical contributions be accompanied with this form. Anyone with knowledge of any patent affecting the use of JVT work, of their own or of any other entity (“third parties”), is strongly encouraged to submit this form as well.

This information will be maintained in a “living list” by JVT during the progress of their work, on a best effort basis. If a given technical proposal is not incorporated in a Recommendation | Standard, the relevant patent information will be removed from the “living list”. The intent is that the JVT experts should know in advance of any patent issues with particular proposals or techniques, so that these may be addressed well before final approval.

This is not a binding legal document; it is provided to JVT for information only, on a best effort, good faith basis. Please submit corrected or updated forms if your knowledge or situation changes.

This form is not a substitute for the ITU ISO IEC Patent Statement and Licensing Declaration, which should be submitted by Patent Holders to the ITU TSB Director and ISO Secretary General before final approval.

	Submitting Organization or Person:

	Organization name
	DoCoMo USA Labs
	

	Mailing address
	
	

	Country
	
	

	Contact person
	
	

	Telephone
	
	

	Fax
	
	

	Email
	
	

	Place and date of submission
	
	

	Relevant Recommendation | Standard and, if applicable, Contribution:

	Name (ex: “JVT”)
	JVT
	

	Title
	
	

	Contribution number
	JVT-E086
	

	
	
	

(Form continues on next page)

	Disclosure information – Submitting Organization/Person (choose one box)

	
	

	[image: image11.wmf]
	2.0
The submitter is not aware of having any granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

or,

	The submitter (Patent Holder) has granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution. In which case,

	[image: image12.wmf]
	2.1
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a free license to an unrestricted number of applicants on a worldwide, non-discriminatory basis to manufacture, use and/or sell implementations of the above Recommendation | Standard.

	
	

	[image: image13.wmf]
	2.2
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a license to an unrestricted number of applicants on a worldwide, non-discriminatory basis and on reasonable terms and conditions to manufacture, use and/ or sell implementations of the above Recommendation | Standard.

Such negotiations are left to the parties concerned and are performed outside the ITU | ISO/IEC.

	
	

	
[image: image14.wmf]

X

	2.2.1
The same as box 2.2 above, but in addition the Patent Holder is prepared to grant a “royalty-free” license to anyone on condition that all other patent holders do the same.

	
	

	[image: image15.wmf]
	2.3
The Patent Holder is unwilling to grant licenses according to the provisions of either 2.1, 2.2, or 2.2.1 above. In this case, the following information must be provided as part of this declaration:

· patent registration/application number;
· an indication of which portions of the Recommendation | Standard are affected.
· a description of the patent claims covering the Recommendation | Standard;

	In the case of any box other than 2.0 above, please provide the following:

	Patent number(s)/status
	
	

	Inventor(s)/Assignee(s)
	
	

	Relevance to JVT
	
	

	Any other remarks:
	
	

	(please provide attachments if more space is needed)

(form continues on next page)

Third party patent information – fill in based on your best knowledge of relevant patents granted, pending, or planned by other people or by organizations other than your own.

	Disclosure information – Third Party Patents (choose one box)

	
	

	
[image: image16.wmf]

X

	3.1
The submitter is not aware of any granted, pending, or planned patents held by third parties associated with the technical content of the Recommendation | Standard or Contribution.

	[image: image17.wmf]
	3.2
The submitter believes third parties may have granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

	For box 3.2, please provide as much information as is known (provide attachments if more space needed) - JVT will attempt to contact third parties to obtain more information:

	3rd party name(s)
	
	

	Mailing address
	
	

	Country
	
	

	Contact person
	
	

	Telephone
	
	

	Fax
	
	

	Email
	
	

	Patent number/status
	
	

	Inventor/Assignee
	
	

	Relevance to JVT
	
	

	
	
	

	Any other comments or remarks:

File:JVT-Eyyy v2
Page: 17
Date Saved: 2002-10-03

_1093855853.vsd
�

Ja�

�

 �

Nein�

�

R < 0x8000?�

Done�

RenormD�

B = 7�V = V | getbyte()�

B < 0?�

Yes�

No�

Yes�

R = R << 1
V = V << 1
B = B - 1�

No�

_1093856643.vsd
�

�

Ja�

Nein�

�

�

 �

�

Ja�

Nein�

Init Decoder�

R = 0xff00�

Done�

V = getbyte() << 8�V = V | getbyte()
B = 7 �

_1093869287.vsd
�

 �

Ja�

Nein�

�

�

V >= R ||
V�&0x8000�

S = 1
V = V - R�

S = 0�

Yes�

No�

Done�

Decode_eq_prob�

V� = V
V = V << 1
B = B - 1�

B < 0?�

V = V | getbyte()
B = 7�

No�

Yes�

_1093860696.vsd
�

 �

�

Ja�

Nein�

�

Decode (end_of_slice_flag)�

V<0x100?�

S = 1�

S = 0
R = R-0x100
V = V-0x100�

Yes�

No�

RenormD�

Done�

_1093856185.vsd
�

 �

Ja�

Nein�

�

�

V >= R�

S = 1
V = V - R�

S = 0�

Yes�

No�

Done�

Decode_eq_prob�

V = V << 1
B = B - 1�

B < 0?�

V = V | getbyte()
B = 7�

No�

Yes�

_1087916783.doc

X

_1093855783.vsd
�

 �

�

Ja�

Nein�

�

Decode (CTX)�

State(CTX) == 0?�

V >= R�

S = !MPS(CTX)
V = V - R
R=RLPS�

S = MPS(CTX)
State(CTX) = Next_State_MPS[State(CTX)]�

Yes�

No�

RenormD�

MPS(CTX) = MPS(CTX)^1�

Done�

State(CTX) = Next_State_LPS[State(CTX)]�

Yes�

RLPS = RTAB[State(CTX)][(R>>13)-4]<<7
R = R - RLPS�

No�

_1087916746.doc

X

