Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

4th Meeting: Klagenfurt, Austria, 22-26 July, 2002
Document: JVT-D153
Filename: JVT-D153.doc

Title:
A Computational Complexity Comparison of MPEG4 and JVT Codecs

Status:
Input Document to JVT

Purpose:
Information

Author(s) or
Contact(s):
Massimo Ravasi
[1] Marco Mattavelli
Christophe Clerc

Tel:
Email:

Tel:
Email:

Tel:
Email:
+ 41 21 693 69 78 Massimo.Ravasi@epfl.ch

[2]
+41 21 693 6979
[3] Marco.Mattavelli@epfl.ch

[4] + 41 21 693 69 78
[5] Christophe.Clerc.epfl.ch

Source:
[6] Swiss Federal Institute of Technology (EPFL)

Introduction

[7] This document presents the initial results of a computational complexity analysis of the generically optimized MPEG4 codec (simple profile) [1] and of the JVT codec [2]. The analysis is based on the number of operations performed during program execution in real working conditions. The results provided with this analysis are used to compare the performance of the two codecs. According to the recommendations specified in document N4571, the settings for the testbench are copied from the configuration files appended in document N4570.

This analysis was carried out by means of the Software Instrumentation Tool (SIT), an automatic tool for algorithmic complexity analysis of complex systems, currently developed at the Swiss Federal Institute of Technology (EPFL).

Testbench Definition

[8] The reference softwares used for this complexity analysis are the MPEG-4 Verification Model FPDAM1-020414 [3], generically optimized version for simple profile (OptSimple), and the JVT Joint Model JM 2.1 [4].

[9] The proposed testbench consists of three sequences (Table 1). Mother and Daughter is a low complexity head and shoulders sequence. Foreman has a medium complexity and Calendar and Mobile is a high complexity sequence, with a lot of movement including rotation.

[10] Table 1: Characteristics of the test sequences

Test Case
Frame rate (fps)

Mother & Daughter
30

Foreman
25

Calendar & Mobile
15

JVT JM has been tested with two different encoding settings:

· “Simple” settings: in this configuration JM performance is similar, in terms of PSNR and bitrate, to that of MPEG-4 simple profile VM. This configuration is meant to compare the algorithmic complexity of the two codecs in similar working conditions.

· “Complex” settings: this configuration activates all JM’s functionalities. The analysis will show how the improvement of JM’s performance, due to “complex” settings, increases the algorithmic complexity of the overall coding process.

[11] The following tables show the different settings and performance of the three considered cases. MPEG-4 and JVT in “simple” configuration were run on the same number of frames, 100, and with the same settings for the three sequences. As shown in Table 2 and Table 3, we can see that the performance of the VM and the JM are slightly different, depending on the coded sequence. Because of simulation time constraints, the JM in “complex” configuration was tested on 9 frames only, as shown in Table 4. To compare the complexity of the JM in “complex” configuration versus the VM and the JM in “simple” configuration, a projection of the results of Table 4, on a virtual 100 frames sequence is shown in Table 6. Because of the fact that, independently on the number of frames, the VM “complex” configuration codes input frames according to a IBPBP[…] sequence, the projected bitrates of Table 6 are computed by adding to the I frame bits the projections of the P and B frame bits (Table 5) according to following equation and considering that a 100 frames sequence would have 49 P frames and 50 B frames:

[12]
[image: image1.wmf]
(1)

Concerning the PSNR, the values for the 100 frames sequence can be assumed to be close to those of the 9 frames sequence, because the PSNR values of each single I, P and B frame differs of few tenths of dB and consequently the average PSNR of the whole sequence does not change sensibly with the number of frames.

[13] Table 6 shows that the “complex” configuration sensibly reduces the bitrate with respect to “simple” configuration and provides a PSNR gain of about 2dB. As it will be shown at paragraph 0, the price of such performance improvements corresponds to a computational complexity increase of more one order of magnitude for the encoder and of about three times for the decoder.

[14] Table 2: MPEG-4 VM frame rate and performance

Test Case
Number of Frames
Bitrate (kbps)
PSNR Y (dB)
PSNR U (dB)
PSNR V (dB)

Mother & Daughter
100
82
34.689
39.798
40.514

Foreman
100
167
30.912
35.197
35.620

Calendar & Mobile
100
195
23.182
28.405
27.256

[15] Table 3: JVT “simple” frame rate and performance

Test Case
Number of Frames
Bitrate (kbps)
PSNR Y (dB)
PSNR U (dB)
PSNR V (dB)

Mother & Daughter
100
46
32.372
40.130
41.076

Foreman
100
141
30.900
38.313
39.718

Calendar & Mobile
100
243
26.537
31.928
31.261

[16] Table 4: JVT “complex” frame rate and performance

Test Case
Number of Frames
Bitrate (kbps)
PSNR Y (dB)
PSNR U (dB)
PSNR V (dB)

Mother & Daughter
9
55
34.213
40.145
41.238

Foreman
9
135
32.241
38.761
40.606

Calendar & Mobile
9
244
27.537
33.102
32.649

[17] Table 5: JVT “complex” I, P, B frames total bits

Test Case
Number of Frames
I frames
P frames
B frames

#
TotBits
#
TotBits
#
TotBits

Mother & Daughter
9
1
14152
4
1576
4
712

Foreman
9
1
22480
4
22240
4
3904

Calendar & Mobile
9
1
99144
4
36992
4
10384

[18] Table 6: JVT “complex” performance projected on 100 frames

Test Case
Number of Frames
Bitrate (kbps)
Bitrate vs “simple” cfg
PSNR Y (dB)
PSNR U (dB)
PSNR V (dB)

Mother & Daughter
100
13
23.6%
34.213
40.145
41.238

Foreman
100
86
63.7%
32.241
38.761
40.606

Calendar & Mobile
100
102
41.8%
27.537
33.102
32.649

SIT Analysis

The Software Instrumentation Tool is an automatic tool for complexity analysis of algorithms specified in C. SIT complexity analysis consists basically of two steps. First, the algorithm under test is instrumented and compiled to produce the instrumented executable. Second, the instrumented executable is run with different input data and configurations to produce the complexity analysis results that can be explored by means of a graphical tool. The results of this analysis are in terms of number of operations and data types, corresponding to C operators and data types. The results are organized on a context tree, where a “context” corresponds to a function or compound statement and the context tree maps how these contexts are traversed during the execution. The analysis aims to be as independent as possible from the compilation and the underlying architecture chosen to run the software: assuming the C code to be an abstract implementation of the algorithm for validation purposes, the real input of the analysis are the algorithm itself and the input data influencing its behaviour.

In the following paragraphs the results of the complexity analysis of the different test cases are presented and compared.

Encoder

Preliminary Computational Complexity

[19] Table 7 shows the complexity analysis results collected for MPEG-4 VM encoder with “mother & daughter” sequence. These results are relative to context “function main” and all its subtrees, thus to the whole encoding process. Data types correspond to C data types as they are represented on the workstation on which the VM was tested.

[20] Table 7: Detailed results for MPEG-4 VM encoder, function ‘main’, “mother & daughter” sequence

[image: image2.emf]
[21] Considering the results for the other coders and sequences, a preliminary coarse comparison of the three coders is shown in Figure 1 and Table 8. The operations are grouped in the following four sets:

· Comparison operations: they correspond to C operators “==”, “!=”, “>”, “>=”, “<” and “<=”.

· Logical operations: they correspond to C operators “!”, “&&”, “||”.

· Memory operations: they correspond to C operators “=”, “[]”, “->” and the pointer dereferencing operator “*”.

· Arithmetic operations: all the other operations.

Concerning the results for the JM with “complex” configuration, scaled values of the results obtained with the 9 frames sequence simulation are considered. While the VM and the JM in “simple” configuration present almost the same computational complexity, the cost for the best performance of the JM in “complex” configuration, specifically a reduction of the bitrate of about 50% and a small PSNR gain, is an increase of more than one order of magnitude of the computational complexity.

The different visual complexity of the test sequences does not alter sensibly the computational complexity of all the coders. Furthermore in all the studied cases it is clear that the most important role is played by “arithmetic” and “memory” operations.

[22] Figure 1: Encoders - Computational complexity

[image: image3.emf]
[23] Table 8: Encoders - Computational complexity comparison. The table shows the number of operations and their ratios vs MPEG-4 VM.

MPEG-4 VM
JVT JM, “simple” cfg
JVT JM, “complex” cfg

ops
ops
ratio vs VM
ops
ratio vs VM

Arithmetic ops.
2.76E+10
6.52E+10
2.36
2.77E+11
10.01

Comparison ops.
7.58E+09
6.31E+09
0.83
6.16E+10
8.12

Logical ops.
1.15E+08
2.46E+08
2.15
8.99E+09
78.43

Memory ops.
2.72E+10
5.71E+10
2.10
5.36E+11
19.71

All ops.
6.26E+10
1.29E+11
2.06
8.84E+11
14.13

Decoder

Preliminary Computational Complexity

[24] Similarly to the comparison described at paragraph 0 for the encoders, following Figure 2 and Table 9 show the computational complexity analysis for the decoders in the three cases. The computational complexity of the JM in “simple” configuration is about the double of that of the VM, as in the case of the encoder. On the contrary, the computational complexity of the JM in “complex” configuration is about three times higher than that of the VM, while in the case of the encoder the increase was of more than one order magnitude. Furthermore the results clearly show that the computational complexity of decoding process, in all the three cases, does depend on the visual complexity of the sequences.

[25] Figure 2: Decoders - Computational complexity (results for “mother and daughter” sequence with JM in “simple” configuration are not available).

[image: image4.emf]
[26] Table 9: Decoders - Computational complexity comparison. The table shows the number of operations and their ratios vs MPEG-4 VM.

MPEG-4 VM
JVT JM, “simple” cfg
JVT JM, “complex” cfg

ops
ops
ratio vs VM
ops
ratio vs VM

Arithmetic ops.
1.42E+09
2.97E+09
2.09
5.04E+09
3.54

Comparison ops.
4.33E+08
8.80E+08
2.03
1.59E+09
3.67

Logical ops.
2.33E+06
3.33E+07
14.30
3.37E+07
14.48

Memory ops.
1.52E+09
2.64E+09
1.74
3.51E+09
2.31

All ops.
3.38E+09
6.53E+09
1.93
1.02E+10
3.01

Conclusions

This document presented a preliminary computational complexity comparison of the optimized MPEG-4 simple profile VM and JVT JM codecs. With respect to the MPEG-4 VM, the analysis showed that activating all the functionalities of JVT encoder, in order to achieve better compression ratios, results in a quite higher computational complexity of the overall encoding process, namely more than one order of magnitude, and in a smaller increase of about three times for the decoding process.

References

[27] ISO/IEC JTC1/SC29WG11, “AHG report on editorial convergence of MPEG-4 reference software”, m8041, Jeju, March 2002.

[28] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, “Joint Model Number 1, Revision 1 (JM-1r1)”, JVT_A003r1, Pattaya, December 2001

[29] http://megaera.ee.nctu.edu.tw/mpeg/Optimized_Ref_Software/MoMuSys-FPDAM1-1.0-020414_nctu.zip
[30] http://bs.hhi.de/~suehring/tml/download/jm21.zip
[1] File:JVT-D153.doc
Page: 1
Date Saved: 2002-07-25

_1088844581.xls
mother_daughter_enc.main.mpeg4

		Node in main.Func@332

		At line 332 of file 'vm_enc/src/vm_enc_main_1.c'

		Results for: Full tree

				INT8		INT016		INT32		FLT32		FLT64		PNTR		VECT		BOOL		STRU		Tot

		ADD		0		0		6.35E++09		2.80E++06		1.30E++08		2.00E++09		3.52E++06		0		0		8.49E++09

		ADDE		0		0		5.41E++08		4.71E++05		2.04E++07		6.99E++08		0		0		0		1.26E++09

		SUB		0		0		1.13E++10		1.84E++06		1.10E++08		3.80E++05		0		0		0		1.14E++10

		SUBE		0		0		7.37E++04		7.84E++04		0		0		0		0		0		1.52E++05

		MUL		0		0		1.25E++09		2.52E++06		1.22E++08		0		0		0		0		1.38E++09

		DIV		0		0		4.78E++07		4.30E++05		7.50E++04		0		0		0		0		4.83E++07

		DIVE		0		0		3.92E++04		0		7.84E++04		0		0		0		0		1.18E++05

		MOD		0		0		4.99E++05		0		0		0		0		0		0		4.99E++05

		SINC		0		0		6.50E++08		0		0		2.84E++08		0		0		0		9.34E++08

		PDEC		0		0		3.40E++04		0		0		0		0		0		0		3.40E++04

		SDEC		0		0		3.64E++08		0		0		0		0		0		0		3.64E++08

		LT		0		0		6.42E++09		7.88E++05		7.85E++05		0		0		0		0		6.42E++09

		LTE		0		0		4.88E++07		3.94E++04		0		0		0		0		0		4.88E++07

		GT		0		0		4.43E++08		8.59E++05		1.57E++06		0		0		0		0		4.45E++08

		GTE		0		0		5.32E++07		3.92E++05		0		0		0		0		0		5.36E++07

		EQU		0		0		1.26E++08		1.13E++05		1.39E++05		2.46E++04		0		0		0		1.26E++08

		NEQU		0		0		3.73E++06		0		1.00E++00		1.22E++08		0		0		0		1.26E++08

		LAND		0		0		0		0		0		0		0		9.21E++07		0		9.21E++07

		LOR		0		0		0		0		0		0		0		1.86E++07		0		1.86E++07

		AND		0		0		1.52E++06		0		0		0		0		0		0		1.52E++06

		OR		0		0		4.04E++04		0		0		0		0		0		0		4.04E++04

		ORE		0		0		1.86E++05		0		0		0		0		0		0		1.86E++05

		XOR		0		0		7.72E++02		0		0		0		0		0		0		7.72E++02

		LSH		0		0		2.63E++07		0		0		0		0		0		0		2.63E++07

		LSHE		0		0		2.72E++05		0		0		0		0		0		0		2.72E++05

		RSH		0		0		7.40E++07		0		0		0		0		0		0		7.40E++07

		RSHE		0		0		5.48E++05		0		0		0		0		0		0		5.48E++05

		NOT		0		0		0		0		0		0		0		1.67E++06		0		1.67E++06

		NEG		0		0		2.44E++09		9.27E++05		4.85E++03		0		0		0		0		2.44E++09

		COPY		4.38E++04		3.33E++08		5.91E++08		5.43E++06		2.68E++08		4.63E++07		0		0		0		1.24E++09

		ADDR		0		3.53E++05		5.75E++05		2.12E++06		2.00E++00		2.97E++02		0		0		4.04E++02		3.05E++06

		DREF		0		0		0		0		0		1.25E++09		0		0		0		1.25E++09

		ARRW		0		0		0		0		0		1.19E++08		0		0		0		1.19E++08

		BRKT		0		0		0		0		0		2.20E++10		1.29E++09		0		0		2.33E++10

		Tot		4.38E++04		3.34E++08		3.07E++10		1.88E++07		6.52E++08		2.65E++10		1.29E++09		1.12E++08		4.04E++02		5.96E++10

_1088859297.xls
Chart2

		mot. & dau.
JM "complex"		mot. & dau.
JM "complex"		mot. & dau.
JM "complex"		mot. & dau.
JM "complex"

		foreman		foreman		foreman		foreman

		cal. & mob.		cal. & mob.		cal. & mob.		cal. & mob.

		mot. & dau.
JM "simple"		mot. & dau.
JM "simple"		mot. & dau.
JM "simple"		mot. & dau.
JM "simple"

		foreman		foreman		foreman		foreman

		cal. & mob.		cal. & mob.		cal. & mob.		cal. & mob.

		mot. & dau.
VM		mot. & dau.
VM		mot. & dau.
VM		mot. & dau.
VM

		foreman		foreman		foreman		foreman

		cal. & mob.		cal. & mob.		cal. & mob.		cal. & mob.

Arith.

Comp.

Log.

Mem.

271924868455.556

59656518688.8889

8857391911.11111

524969890055.556

280126689911.111

61714919933.3333

9211040011.11111

539468393755.556

278046062688.889

63311044244.4444

8890186088.88889

544852507600

64895086940

6240843683

242035179

56768828978

65191340129

6317501372

247025669

57150733806

65369304840

6379137083

250289485

57293772414

26389832442

7222054099

112396205

25891039178

26199729592

7191086770

113869763

25784357995

30354725502

8322752179

117458470

29981978740

Sheet1

				JM "complex"								JM "simple"								VM

				mot. & dau.		foreman		cal. & mob.				mot. & dau.		foreman		cal. & mob.				mot. & dau.		foreman		cal. & mob.

		Arith.		271924868455.556		280126689911.111		278046062688.889				64895086940		65191340129		65369304840				26389832442		26199729592		30354725502				11.1111111111

		Comp.		59656518688.8889		61714919933.3333		63311044244.4444				6240843683		6317501372		6379137083				7222054099		7191086770		8322752179

		Log.		8857391911.11111		9211040011.11111		8890186088.88889				242035179		247025669		250289485				112396205		113869763		117458470

		Mem.		524969890055.556		539468393755.556		544852507600				56768828978		57150733806		57293772414				25891039178		25784357995		29981978740

																				24473238161		25211402092		25024145642		original values, not scaled

																				5369086682		5554342794		5697993982

																				797165272		828993601		800116748

																				47247290105		48552155438		49036725684

Sheet1

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

Arith.

Comp.

Log.

Mem.

Sheet2

		

Sheet3

		

_1088859271.xls
Chart1

		mot. & dau.
JM "complex"		mot. & dau.
JM "complex"		mot. & dau.
JM "complex"		mot. & dau.
JM "complex"

		foreman		foreman		foreman		foreman

		cal. & mob.		cal. & mob.		cal. & mob.		cal. & mob.

		mot. & dau.
JM "simple"		mot. & dau.
JM "simple"		mot. & dau.
JM "simple"		mot. & dau.
JM "simple"

		foreman		foreman		foreman		foreman

		cal. & mob.		cal. & mob.		cal. & mob.		cal. & mob.

		mot. & dau.
VM		mot. & dau.
VM		mot. & dau.
VM		mot. & dau.
VM

		foreman		foreman		foreman		foreman

		cal. & mob.		cal. & mob.		cal. & mob.		cal. & mob.

Arith.

Comp.

Log.

Mem.

2100719900

541301077.777778

24941488.8888889

2096753077.77778

5152901155.55556

1648741088.88889

36959344.4444444

3555244166.66667

7875907422.22222

2584313533.33333

39314000

4865785644.44444

0

0

0

0

2456705806

704690453

30507831

2270661693

3489920260

1055325352

36115900

3011758579

1151643954

315213587

1545413

1110477167

1457332919

448041545

2355197

1569908150

1661903984

536305248

3087800

1878789441

Sheet1

				JM "complex"								JM "simple"								VM

				mot. & dau.		foreman		cal. & mob.				mot. & dau.		foreman		cal. & mob.				mot. & dau.		foreman		cal. & mob.

		Arith.		2.10E+09		5.15E+09		7.88E+09				0.00E+00		2.46E+09		3.49E+09				1.15E+09		1.46E+09		1.66E+09

		Comp.		5.41E+08		1.65E+09		2.58E+09				0.00E+00		7.05E+08		1.06E+09				3.15E+08		4.48E+08		5.36E+08

		Log.		2.49E+07		3.70E+07		3.93E+07				0.00E+00		3.05E+07		3.61E+07				1.55E+06		2.36E+06		3.09E+06

		Mem.		2.10E+09		3.56E+09		4.87E+09				0.00E+00		2.27E+09		3.01E+09				1.11E+09		1.57E+09		1.88E+09

		tot		4.76E+09		1.04E+10		1.54E+10				0.00E+00		5.46E+09		7.59E+09				2.58E+09		3.48E+09		4.08E+09

		Arith.		5.04E+09		3.54						1.98E+09		1.39						1.42E+09

		Comp.		1.59E+09		3.67						5.87E+08		1.35						4.33E+08

		Log.		3.37E+07		14.48						2.22E+07		9.53						2.33E+06

		Mem.		3.51E+09		2.31						1.76E+09		1.16						1.52E+09

		tot		1.02E+10		3.01						4.35E+09		1.29						3.38E+09

		original values, not scaled				scale:		11.1111111111

		copy values
here ->		1.89E+08		4.64E+08		7.09E+08						2.46E+09		3.49E+09				1.15E+09		1.46E+09		1.66E+09

				4.87E+07		1.48E+08		2.33E+08						7.05E+08		1.06E+09				3.15E+08		4.48E+08		5.36E+08

				2.24E+06		3.33E+06		3.54E+06						3.05E+07		3.61E+07				1.55E+06		2.36E+06		3.09E+06

				1.89E+08		3.20E+08		4.38E+08						2.27E+09		3.01E+09				1.11E+09		1.57E+09		1.88E+09

		encoder		2.45E+10		2.52E+10		2.50E+10				6.49E+10		6.52E+10		6.54E+10				2.64E+10		2.62E+10		3.04E+10

				5.37E+09		5.55E+09		5.70E+09				6.24E+09		6.32E+09		6.38E+09				7.22E+09		7.19E+09		8.32E+09

				7.97E+08		8.29E+08		8.00E+08				2.42E+08		2.47E+08		2.50E+08				1.12E+08		1.14E+08		1.17E+08

				4.72E+10		4.86E+10		4.90E+10				5.68E+10		5.72E+10		5.73E+10				2.59E+10		2.58E+10		3.00E+10

		decoder		1.89E+08		4.64E+08		7.09E+08				3.71E+10		2.46E+09		3.49E+09				1.15E+09		1.46E+09		1.66E+09

				4.87E+07		1.48E+08		2.33E+08				1.40E+10		7.05E+08		1.06E+09				3.15E+08		4.48E+08		5.36E+08

				2.24E+06		3.33E+06		3.54E+06				2.02E+07		3.05E+07		3.61E+07				1.55E+06		2.36E+06		3.09E+06

				1.89E+08		3.20E+08		4.38E+08				1.60E+10		2.27E+09		3.01E+09				1.11E+09		1.57E+09		1.88E+09

Sheet1

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

Arith.

Comp.

Log.

Mem.

Sheet2

		

Sheet3

		

_1088840655.unknown

