	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

4th Meeting: Klagenfurt, Austria, 22-26 July, 2002
	Document: JVT-D121
Filename: JVT-D121.doc

	Title:
	FMO Cost Burden to Decoders Operating in Reliable Networks

	Status:
	Input Document to JVT

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Yasser Syed

400 Centennial Pkwy

Louisville, Co 80027
	
Tel:
Email:
	
1.303.664-8149

y.syed@cablelabs.com

	Source:
	Broadcom, LSI Logic, Scientific- Atlanta, Motorola, and CableLabs (on behalf of its members)

Summary

This summarizes a collection of e-mails illustrating the FMO cost burden to decoders operating in reliable networks

Comment

FMO and other error resilience tools should all be in an error-resilience profile, unless it can be proven to the satisfaction of NB's and companies with an interest in broadcast applications that each error resilience tool does not add significant cost to decoders. Error resilient coding is an encoder attribute; the standard only allows it, it does not require it. Improved error resilience is only achieved in cases where the encoder chooses to spend the substantial extra bit rate for error resilient coding, and this is not likely to happen in cable, satellite, terrestrial, or DSL markets. Putting error resilience tools in the baseline makes decoders more expensive without improving error resilience at all except in those special cases where the encoders spend the bits on error resilient coding. FMO is a particularly expensive tool to add to decoders, and one that is not particularly valuable for many applications; it is apparently most valuable for video telephony where minimum delay is important. Error prevention can be implemented in the network, at the physical, link and transport layers, with better visual results than error resilience, and network solutions are required in all cases where non-error resilient streams are forwarded over lossy networks such as in-home wireless. Also, broadcast differs significantly from conversational services regarding coding tools - for conversational services the capabilities of all parties are negotiated at call set up, so devices do not have to implement any optional capabilities. This is not the case with broadcast; all broadcast decoders need to be able to decode all compliant streams.

Some Points About Decoding Devices

Decoder implementations will come in various flavors:
1. Some decoders will be SW based running on general computer architectures (albeit with MM acceleration support).
2. Others will be general media processor/DSP based.
3. Yet, others will be customized highly-integrated solutions that tend to be complex state-machines in silicon.
The third option is suitable for cost-effective solutions in high-volume products which allows for widespread adoption of the technology. At the same time these implementations (Especially in TV applications with existing established markets) demand high performance, robustness, and low-power; thereby requiring the decoder to maintain quality by decoding all compliant streams while still maintaining a cost-effective product. To maintain the quality, any worst case compliant scenario needs to work. The option is also often used in high-end (HD) solutions for same cost motivation.

The trade-off is that this option is also the most cost-sensitive of the approaches in relation to changes in picture size, complexity, and memory demands. Computation and throughput is so extensive in high-end devices that customized state-machines must function similar to a highly automated pipelined factory. Multiple processes must be carefully orchestrated and synchronized to a very fine detailed level. (Arturo)

The FMO tool by itself and in combination with other tools like loop filtering disrupts the synchronization of these multiple processes by increasing pipeline complexity and amount of fetched data to be available at the same time on the silicon in a time-critical basis. This tool (FMO) greatly affects the design of decoders using option 3, and even to a greater extent because these decoders mostly used large picture sizes (Standard/ HD). At the same time, these decoders do not require FMO since they are used in systems that already have these capabilities (broadcast/cable) or do not require it (e.g. DVD CE devices). It places a large burden on a big existing decoder market with no tangible benefits and yet must be supported by the industry if it exists in either the baseline or main profile. Some of the points that have been discussed on the JVT reflector that contribute to this viewpoint are listed below.

1.Conditional Acceptance

In Fairfax, FMO were accepted conditionally to cross verification (to validate performance)

and a favorable implementation complexity study. At least, we should make sure that both conditions be met to keep FMO in the CD. The also is an indication that not enough study has been done on the FMO tool. The responsibility of the JVT members is to prove that FMO should belong in the CD (and profiles). Otherwise if no action is taken to do this, FMO should be taken out of the CD (and profiles). (Iole)

2.Our Comments to JVT-C089 (document that resulted in FMO being conditionally added)

First, the background. According to JVT-C089, the contribution that resulted in FMO:
4 Decoder Operation

[This section describes only a decoder operation where slices are decoded in the order they are received, i.e. not raster scan order]

....

Comment 1:

We believe that, for FMO and the normative part of the WD, we can follow the current outline of the WD and not cover the topic at all - it is an implementation detail for error prone environments, which is outside the scope of the WD.

6 The impact of FMO to the current JVT design

Comment 2:

The authors acknowledge that FMO comes in at a relatively late time for incorporation into the JVT WD. Hence, we feel that in addition to the "normal" technical information that has to accompany every proposal, we should spend some time and space covering the procedural impact that the adoption of FMO to the JVT WD would have.

6.1 Technical Impact

Table 1 summarizes the technical impact to the system design introduced by FMO:

Table 1: Attributes of FMO: Technical

[the table does not reproduce well in email so I will type the first 2 rows as normal text:]

Computational complexity

Encoder: Very small

Decoder: Very small

Remarks: Practically only through D-cache misses with complex MBAmaps, none for the default MBAmap. Experience with real-world designs, CIF, 30fps, 384 Kbits/s: less than 5 per cent.

Implementation complexity

Encoder: small

Decoder small

Remarks: One man-week for the implementation into the JM 1.7 reference software

6.1.4 Delay

...

Depending on the implementation of FMO in the decoder, and the design of the MBAmap, there is a theoretical delay of up to one frame in the decoder....

Comment 3:
The contribution has more detail indicating that decoder implementation complexity is very small, in many cases it is referred to as being "unmeasurable".

"Computational complexity" in the contribution covers only the processing of the MBA map.
"Implementation complexity" refers only to the modifications to the test model, not to actual implementations.

The bulk of the description of operations in the decoder assumes decoding slices in the order they are received. There is a brief mention of the possibility of an alternate method of collecting slices first and decoding in raster order, although the implications of that are not explored, other than mentioning that some additional buffer would be required and latency would be increased.

There is a mention that "Some seem to believe that the deblocking filter process should be performed immediately after the reconstruction of each macroblock, whereas other prefer, for reasons of computational performance, to apply the filter after the entire picture has been reconstructed."

Given this input, it is understandable that many experts and delegates attending the May JVT / MPEG meeting would believe that there would be little or no implementation impact on real world JVT decoder implementations due to the addition of FMO. This document tries to show that there are implementation impacts. (Sandy)

3.Framestore

FMO causes extra framestores to occur by creating differences in display in decoded picture order and by forcing the loopfilter to operate only after frame is processed.

The FMO tool causes differences between the decoded picture and the displayed picture since out-of-ordering occur. For decoders in embedded devices, a separate display buffer (typical in PC environments) does not exist and the decoded picture buffer is what is used to create displays. The effect of this is adding the support for an extra framestore (more DRAM) in the decoder silicon to accommodate worse-case situations where it is not in the multi-frame buffer.

Case1:

It may be helpful to think of broadcast applications in which a decoder faces back-to-back B pictures and goes through the exercise of keeping track of decoding, display and framestores as time progresses, all while driving an interlaced display. I am sure you have contemplated this exercise. I find it useful to walk through it once in awhile (not herein though).

Putting aside bit buffer in this discussion, assume that "number of Framestores required by decoder" equals "number of anchor pictures" + "K"
Some may argue that the "K" should be a "2" because of the difficulty of supporting back-to-back B pictures without a second additional framestore. The above exercise may lead some to reach this conclusion. But this does not have to be the case in some decoder designs. For instance, an MPEG-2 decoder may be designed to decode employing only three framestores.
If a decoder design uses "K = 2," then FMO may not necessarily introduce the extra framestore. However, keeping in mind that a compliant decoder must guarantee worst-case conditions, an extra framestore will be introduced in those decoders capable of decoding with "K=1". (Arturo)

Addendum to Case 1:

This problem with FMO (or indeed any out of order slices hich exist in JVT without FMO) occurs any time that the frame being displayed is not frame stored in the multi-picture buffer. Hence his attention to back-to-back B-pictures.

However, assume a stream of all P-frames, and assume that the encoder has designated
the current P-frame to be disposable (not stored in the multi-picture buffer). Then on the
next frame we have Arturo's problem, because we need to write over the non-stored P-frame. (Peer Borgwardt)

Case2: FMO causes loopfilter to work only after entire frame is processed

Before FMO was added, decoders were able to perform concurrent operations of decoding and loop filtering. These operations could be overlapped 100%, with practically no delay between motion compensation and loop filtering. However, with the addition of FMO, according to the decoder scheme in the JVT-C089, macroblocks can be required to be decoded in any arbitrary order as determined by the encoder's output. There is nothing to prevent e.g. the top left macroblock from being decoded last, nor any other order.

So loop filtering cannot *start* until decoding is *completed*. This causes can cause the addition of a frame buffer to the decoder. (Sandy)

Now we need: (a) one for previous frame which is being loop filtered, (b) one for the current frame

which is being decoded and (c) a third for the display buffer. These are in addition to the frame

stores required for the reference frames. (Krishna)

4.Tradeoffs in Memory, Complexity, and Silicon Real Estate:

Some FMO implications could have workarounds that solve the immediate problem but would result in creating other problems. For instance the extra memory needed for additional frame storage might be worked around using pointers and more complex manipulation of the bit buffers, but this would cause added complexity and additional silicon which adds cost to the decoders.

Silicon providers need to assess if the extra pointers result in aggregate cost for gates/circuitry (e.g., extra-dedicated registers). These registers may need double banked to clock in updates for the respective pointers as required. Additional logic to orchestrate data retrieval from bit buffer with pointers is likely to accommodate all possible FMO scenarios, including whatever the worst-case may be. Worst-case may not necessarily be based on FMO but also on particular design. This is an educated opinion but not an expert’s opinion and silicon vendors would need to weigh in on this. (Arturo)
5. Concurrency/Performance/ Complexity:

Before FMO was added, decoders were able to perform concurrent operations of decoding and loop filtering. These operations could be overlapped 100%, with practically no delay between motion compensation and loop filtering.

However, with the addition of FMO, according to the decoder scheme in the JVT-C089, macroblocks can be required to be decoded in any arbitrary order as determined by the encoder's output. There is nothing to prevent e.g. the top left macroblock from being decoded last, nor any other order.

So loop filtering cannot *start* until decoding is *completed*.

Judging from the emails, it may appear to some that this is not a problem; the thought may be that the decoder can just add some memory and do the loop filtering later. But the problem is much worse than just the addition of a frame buffer in the decoder.

Since the loop filter is a loop filter, i.e. it is in the decoding loop, loop filtering must be *completed* before decoding of the next picture can *start*. In addition this becomes an even more serial operation due to predicted constraints. Suppose at any time when filtering of picture N has not been completed, then picture N+1 cannot begin to be decoded unless we know that there are no predictions in N+1 that depend on N. In general N+1 is predicted, at least in part from N.
So decoding and loop filtering cannot overlap at all, and concurrency is not possible.

Therefore the amount of time that used to be available for decoding and loop filtering concurrently now must be split into disjoint times for decoding and for loop filtering. As a result the amount of time for each of these tasks is cut approximately in half, and the performance requirement for decoding and loop filtering is approximately doubled. This is not a minor implementation detail.

The lack of concurrency means operations are required to be serial, and they have to run faster as a result. For consumer embedded devices this is a real burden. Think of e.g. a consumer high definition TV receiver. Think very inexpensive decoders, with no fans to cool the chips. Think of the performance that would be required to do FMO and loopfiltering without concurrency. High performance, robust, low cost, low power implementations are absolutely required in the vast majority of television applications. That is what we daily deal with in this industry. Other industries also have to deal with this problem. For instance, Cell phones also have extreme needs for low power consumption; this is often best attained by reduced clock rates and increased concurrency, and similar comments likely apply to many other applications.

It is apparent that the JVT Experts and MPEG delegates did not know this before they agreed to add FMO to the CD.

For that reason alone (lack of concurrency), FMO should not be in the CD.

At the very least it should not be in the baseline or main profiles.

For completeness, there has also been some discussion on the main and loopfilter reflectors, after the CD was issued, of an alternative form of decoder operation where all slices in a picture are assembled before any decoding of a picture starts, and the decoder decodes the macroblocks in raster scan order. It is apparent that implementation issues of this type of decoder have not been analyzed by the committee either. It may be possible to do this, but it is neither trivial nor free. There may be serious problems with this method too. In any case the implications have not been studied, and they need to be studied before JVT can say anything meaningful about the implementation complexity of FMO using this method.(Sandy)

Addendum to case 1:

Your pointing out that folks did not consider seriously out-of-order slices should be right. Before the JVT Fairfax meeting, there were some discussions in the loop-filter reflector on when to do loop filter. The points were: 1) To do loop filter after processing an entire frame can ease the implementation so that intra prediction is done on unfiltered content. 2) To do loop filter after processing an entire frame has some benefits when there are slice losses. 3) Similar problem as "concurrency" pointed out by Sandy exists. The out-of-order slices issue was not touched.

In fact, to take care of out-of-order slices implicitly says that loop filter must be done after an entire frame is processed (encoded/decoded). Therefore, there must be an compromise: either allow the "concurrency" with encoder/decoder mismatching in processing out-of-order slices hence FMO and other related techniques, or allow perfect processing of out-of-order slices with the sacrifice of "concurrency". (Ye-Kui Wang)

Proposal

FMO should be removed from baseline and main profiles and placed into an error resilience profile.

