	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

4th Meeting: Klagenfurt, Austria, 22-26 July, 2002
	Document: JVT-D087
Filename: JVT-D087.doc

	Title:
	Network Abstraction Layer and High-level Syntax

	Status:
	Input Document to JVT

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Toby Walker, Ali Tabatabai
Sony Corporation
3300 Zanker Road
San Jose, CA, USA
	
Tel:
Email:
	
1-408-955-4081
toby.walker@am.sony.com

	Source:
	Sony Corporation

1 Summary

This contribution presents several modifications intended to simplify and cleanup the NAL design: replacing the picture header with slice-level parameter sets, some modifications to slice header to move some information to slice parameters, as well as a reduction in the number of NAL unit types. It also presents some constraints on the ordering of NAL unit in an AVC stream.

The changes proposed include:
· Picture Header: Remove the picture header introduced at the Fairfax meeting and replace it by moving elements that do not change frequently to a "slice parameter" set and including frequently changes picture elements in the slice header.

· Parameter Sets: The parameters are split into sequence parameter set (i.e. static parameters) and slice parameter set (i.e. dynamic parameters). The sequence level parameter contains parameter settings that are constant for each frame in a Group of Pictures (GOP) and can only be changed a GOP boundaries. Slice parameters, on the other hand, contain information that changes at the slice or picture level. Some information from the picture header has been moved to the slice parameter set. Each slice parameter set references a sequence parameter set.

· Slice Headers: The slice header has been modified to include some elements from picture header, e.g. frame number. Other elements in the current slice header syntax have moved to slice parameter level, such as the RPS layer. In addition, some slice header are now signaled as deltas from slice parameter set defaults, e.g. the QP value for each slice is specified as the difference from the default QP value in the slice parameter set.

· NAL Unit Types: We propose simplifying the existing 31 NAL unit types into a simpler set of 16 types allowing room for future extensions.

· Constraining NAL Syntax: The current high-level syntax does not define any constraints on the ordering of NAL units inside a video stream. Without such constraint it is possible to create "worst case" bit streams that require arbitrary amounts of memory in the decoder to decoder the stream correctly. We propose some ideas on constraining the set of legal orders for NAL units further than is done in the Committee Draft.
· Relative Timing Information: We propose to signal repeated patterns of relative timing by encoding these patterns in sequence parameter sets. The idea is an extension of that proposed in JVT-D1
At this stage, we have not provided modified specification text, as most of the changes proposed here can be implemented by rearranging (i.e. cutting and pasting with some new glue) text in the Committee Draft rather than writing new text.
·
2 Parameter Sets

The following are the proposed designed changes compared to the JVT Committee Draft:

·
· Sequence and Slice Parameter Sets: The current design only supports sequence level parameters. The parameter set has been split into sequence parameters, which are the same for all pictures in a GOP, and slice parameters, which change at the picture or slice level.

·
· Removed
· Picture Header: The picture header has been replaced by moving some elements to the slice parameters (e.g. RPS layer) and others to the slice header (e.g. frame number).
· Slice Header / Slice Parameter Set Integration: The signaling of slice headers has changed so that many values are now signaled only in the slice parameter set. The changes to the slice header syntax are described in Section 4.

· Parameter Overrides: The syntax for slice supports overrides of parameter sets at the slice level.
· Modified Parameter Set Update NAL Unit: The syntax has been modified so that a single Parameter Set update can include any number of sequence parameter sets and slice parameter sets.

The proposed changes are detailed in the following sections.

2.1 Parameter Set Update NAL Unit

The proposed change is as follows:
· The parameter set NAL unit can contain more than one parameter set allowing mutiple parameter sets to be signaled at the same time.

2.1.1 Syntax

	parameter_set_rbsp() {
	Category
	Descriptor
	Range
	Bits

	num_sequence_parameter_sets
	0
	e(v)
	
	

	
for (i = 0; i < num_sequence_parameter_sets; i++)
	
	
	
	

	
sequence_parameter_set();
	All
	
	
	

	}
	All
	
	
	

	num_slice_parameter_sets
	0
	e(v)
	
	

	
for (i = 0; i < num_sequence_parameter_sets; i++)
	
	
	
	

	
slice_parameter_set();
	All
	
	
	

	}
	All
	
	
	

	rbsp_trailing_bits()
	All
	
	
	

	}
	
	
	
	

2.1.2 Semantics

A parameter set RBSP contains the values for zero or more sequence-level parameter sets and zero or more slice- level parameter sets. Each parameter set in this type of NAL unit shall be identified by its parameter_set_id. Slice-level parameter sets containing the same parameter_set_id as another parameter set in this NAL unit shall not occur. Similarly, sequence-level parameter set with the same parameter_set_id. Similarly, slice-level parmater sets with the same parameter_set_id shall not occur in a single parameter set RBSP. The parameter set identifiers do not need to be consecutive and may contain gaps in the sequence. For example, a parameter set NAL unit containing only sequence-level parameter sets 2 and 5 is legal.
num_sequence_parameter_sets indicates the number of sequence parameter sets contained in this parameter set RBSP.

num_slice_parameter_sets indicates the number of slice-level parameter contained in this parameter set RBSP.

2.2 Sequence Parameter Set

It may be advantageous to allow certain sets of parameters to be optional with the values for those specified by the profile.

2.2.1 Syntax

	sequence_parameter_set() {
	Category
	Descriptor
	Range
	Min Bitt
	Avg Bits

	
parameter_set_id
	0
	e(v)
	
	1
	

	
buffer_info
	0
	u(1)
	
	1
	1

	
if (buffer_info) {
	0
	u(1)
	
	1
	1

	

log2_max_frame_num_minus_4
	0
	e(v)
	
	1
	

	

num_of_reference_pictures
	0
	e(v)
	
	1
	

	

required_frame_num_update_behaviour
	0
	u(1)
	
	1
	1

	
}
	
	
	
	
	

	
presentation_info
	0
	u(1)
	
	1
	1

	
if (presentation_info) {
	0
	u(1)
	
	1
	1

	

frame_width_in_MBs_minus1
	0
	e(v)
	
	1
	

	

frame_height_in_MBs_minus1
	0
	e(v)
	
	1
	

	

frame_cropping_rect_left_offset
	0
	e(v)
	
	0
	

	

frame_cropping_rect_right_offset
	0
	e(v)
	
	0
	

	

frame_cropping_rect_top_offset
	0
	e(v)
	
	0
	

	

frame_cropping_rect_bottom_offset
	0
	e(v)
	
	0
	

	

aspect_ratio_info
	0
	b(8)
	
	8
	8

	

if (aspect_ratio_info == “extended_PAR”) {
	
	
	
	0
	

	

par_width
	0
	u(8)
	
	8
	8

	

par_height
	0
	u(8)
	
	8
	8

	

}
	
	
	
	0
	

	
}
	
	
	
	
	

	
video_signal_type
	0
	u(1)
	
	1
	

	
if (video_signal_type) {
	
	
	
	0
	

	

video_format
	0
	u(3)
	
	3
	3

	

video_range
	0
	u(1)
	
	1
	1

	

colour_description
	0
	u(1)
	
	1
	1

	

if (colour_description) {
	
	
	
	0
	

	

colour_primaries
	0
	b(8)
	
	8
	8

	

transfer_characteristics
	0
	b(8)
	
	8
	8

	

matrix_coefficients
	0
	b(8)
	
	8
	8

	

}
	
	
	
	0
	

	
}
	
	
	
	0
	

	
entropy_coding_mode
	0
	e(v)
	
	1
	3

	
motion_resolution
	0
	e(v)
	
	1
	3

	
constrained_intra_prediction_flag
	0
	u(1)
	
	1
	1

	
time_information_flag
	0
	u(1)
	
	1
	1

	
if (time_information_flag) {
	
	
	
	0
	0

	

num_units_in_tick
	0
	u(32)
	
	32
	32

	

time_scale
	0
	u(32)
	
	32
	32

	
}
	
	
	
	0
	0

	
num_slice_groups
	0
	u(3)
	
	3
	3

	
if (num_slice_groups > 0) { /* use of Flexible MB Ordering */
	
	
	
	0
	0

	

mb_allocation_map_type
	0
	e(v)
	
	1
	3

	

if (mb_allocation_map_type = = 0) {
	
	
	
	0
	0

	for (loop_count = 0; loop_count <= max_slice_group_id; loop_count++)
	
	
	
	0
	0

	

run_length
	0
	e(v)
	
	1
	

	}
	
	
	
	0
	

	

else if (mb_allocation_map_type = = 2) {
	
	
	
	0
	

	for (loop_count = 0; loop_count < num_mbs_in_picture; loop_count++)
	
	
	
	0
	

	
slice_group_id
	0
	u(3)
	
	3
	

	}
	
	
	
	0
	

	

else
	
	
	
	0
	

	reserved
	
	variable
	
	0
	

	}
	
	
	
	0
	

	rbsp_trailing_bits()
	All
	
	
	0
	

	}
	
	
	
	
	

	Totals
	
	
	
	106
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

2.2.2 Semantics

The semantics of this section are as defined in the Committee Draft with the obvious semantics for the flag elements.
2.3 Slice Parameter Sets

The slice parameter set now contains the following from the picture header:

· Picture Type

· Number of forward and backward reference frames.

· Motion Interpolation Parameters

· RPS Layer

The following elements come from the former slice header syntax:

· Slice QP (including S-frame QP values)

· RPS Layer

New elements are:

· Sequence parameter Set Id: Identifies the corresponding sequence parameter set to be used with this sequence parameter.

	slice_parameter_set() {
	Category
	Descriptor

	
slice_parameter_set_id
	4
	e(v)

	
sequence_parameter_set_id
	4
	e(v)

	
picture_structure
	
	

	
coding_type
	4
	f(2)

	
if(coding_type() = = Inter | | coding_type() = = Bipred) {
	
	

	

if(coding_type() = = Bipred)
	
	

	

num_ref_pic_active_bwd_minus1
	4
	e(v)

	
}
	
	

	
rps_layer()
	
	

	
slice_qp_minus26 /* relative to 26 */
	4
	e(v)

	
if(coding_type() = = SP | | coding_type() = = SI) {
	
	

	

if(coding_type() = = SP)
	
	

	

sp_for_switch_flag
	4
	u(1)

	

slice_qp_s_minus26 /* relative to 26 */
	4
	e(v)

	
}
	
	

	
if(entropy_coding_mode = = 1)
	
	

	

num_mbs_in_slice
	4
	e(v)

	
if (coding_type() == Bipred) {
	
	

	

direct_mv_scale_fwd
	3
	e(v)

	

direct_mv_scale_bwd
	3
	e(v)

	

direct_mv_scale_divisor
	3
	e(v)

	

explicit_bipred_weight_indicator
	3
	e(v)

	

if(explicit_bipred_weight_indicator > 1)
	
	

	

adaptive_B_prediction_coeff_table()
	3
	

	
}
	
	

	}
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

2.3.1 Semantics

slice_parameter_set: identifies the slice-level parameter set for reference in slice headers.

sequence_parameter_set_id: indicates which sequence-level parameter set is used for this slice or picture.
Remaining fields have semantics as currently defined in the Committee Draft.
3 Slice and Picture Headers

In this section we propose a restructuring based on the slice parameter sets proposed in section 2 and the removal of picture headers.

3.1 Picture Parameter Header

Replaced as follows:

· Moved picture_structure, rps_layer to slice parameter set.

· Moved frame_num to slice header.

3.2 Slice Header

The slice header has been simplified so that as much information as possible is stored in slice parameter sets. We have been "aggressive" in moving information to slice parameter sets; for example, we moved the RPS layer to the slice parameter set, the slice QP value, etc. all into the slice parameter set. If necessary a slice can "override" these parameters in a signal slice. We believe that this will reduce the size of slice headers by essentially creating a codebook for slice headers as a set of slice parameter sets.

3.2.1 Syntax

	slice_header() {
	Category
	Descriptor

	
slice_parameter_set_id
	4
	e(v)

	
frame_num
	4
	e(v)

	
first_mb_in_slice
	4
	e(v)

	
slice_parameter_set_override_flag
	4
	b(1)

	
if (slice_parameter_override_flag = = 0) {
	
	

	

slice_parameter_set_override(); // Overrides slice header
	
	

	
}

	
	

	}
	
	

3.2.2 Semantics
slice_parameter_set_id: Indicates which slice-level shall be applied when decoding this slice.

frame_num: Semantics as defined in Committee Draft.

first_mb_in_slice: Semantics as defined in Committee Draft.

slice_parameter_set_override_flag: Indicates whether or not the values in the slice parameter set are further overridden for the purposes of decoding this slice.

3.3 Slice Header Parameter Set Override

The purpose of the slice override is to specify changes to the parameter used to decode a slice without requiring a new slice parameter set to be created for each small variation in parameter values. The slice header overrides are either expressed as delta to the values, when values are numeric, or by signaling necessary information
3.3.1 Syntax

	slice_parameter_set_override() {
	Category
	Descriptor

	
if(coding_type() = = Inter | | coding_type() = = Bipred) {
	
	

	

num_ref_pic_active_fwd_delta
	4
	e(v)

	

if(coding_type() = = Bipred)
	
	

	

num_ref_pic_active_bwd_delta
	4
	e(v)

	
}
	
	

	
rps_layer()
	
	

	
slice_qp_delta
	4
	e(v)

	
if(coding_type() = = SP | | coding_type() = = SI) {
	
	

	

if(coding_type() = = SP)
	
	

	

sp_for_switch_flag
	4
	u(1)

	

slice_qp_s_delta
	4
	e(v)

	
}
	
	

	
if(entropy_coding_mode = = 1)
	
	

	

num_mbs_in_slice_delta
	4
	e(v)

	
if (coding_type() = Bipred)
	4
	e(v)

	
{
	4
	e(v)

	

direct_mv_scale_fwd_delta
	4
	e(v)

	

direct_mv_scale_bwd_delta
	4
	e(v)

	

direct_mv_scale_divisor_delta
	4
	e(v)

	

explicit_bipred_weight_override
	4
	e(v)

	

if(explicit_bipred_weight_indicator)
	
	

	

adaptive_B_prediction_coeff_table()
	4
	e(v)

	}
	
	

3.3.2 Semantics [TBD]

All deltas are coded using the standard 0, 1, -1, -2, 2 code values using entropy coding.
num_ref_pic_active_fwd_delta: Indicates the change to the number of forward reference pictures used in this slice.

num_ref_pic_active_bwd_delta: Indicates the change to the number of backward reference pictures used in this slice.

rps_layer(): If the RPS layer is present then it overrides the RPS layer in the slice header for this slice.

slice_qp_delta: Indicates the change to the default QP value used for decoding this slice.

sp_for_switch_flag: ????

slice_qp_s_delta

num_mbs_in_slice_delta: When CABAC entropy coding is active, this signal the change in the number of macroblocks.

direct_mv_scale_fwd_delta: Indicate the change to the forward scale factor, relative to the value in the slice parameter set, that shall be used to decode this slice.
direct_mv_scale_bwd_delta: Indicate the change to the backward scale factor, relative to the value in the slice parameter set, that shall be used to decode this slice.

direct_mv_scale_divisor_delta: Indicate the change to the scale divisor, relative to the value in the slice parameter set, that shall be used to decode this slice.

(1)
(2)
4 NAL Units
We propose to simplify the current system that assigns over 31 different NAL types with no room left for expansion given that only 5 bits are used to signal the NAL type in the 8-bit NAL type header. We made the following modifications to reduce the number of NAL unit types to a more manageable 16 categories:
· Removed all NAL types that refer to picture header. This reduces the number of NAL unit types by 10.
· Removed the "picture_header_included" flag from the NAL header as it is no longer needed.
· Replace the various kind of "instantaneous decoder refresh" NAL types with a reset_flag that indicates that the decoder state for all NAL units associated with a picture involve a complete decoder reset. This flag can apply to any NAL type, including parameter sets, slices (partitioned and unpartitioned), and SEI messages. This corresponds to a "random access flag" used in many systems layers.
· Remove the distinction between "Mixed" pictures and "All X". The need for this distinction is not clear to us. If it must be maintained a further 12 types would have to be reintroduced into the table below.
4.1 NAL Unit

4.1.1 Syntax
	nal_unit(NumBytesInEBSP) {
	Category
	Descriptor

	
error_flag
	
	u(1)

	
reset_flag
	
	u(1)

	
non_stored_content_flag
	
	u(1)

	
nal_unit_type
	
	u(5)

	
for(i=0; i<NumBytesInEBSP; i++)
	
	

	

ebsp[i]
	
	b(8)

	}
	
	

4.1.2 Semantics
As before except for:

reset_flag: Indicates that the decoder state for all NAL units associated with a picture involve a complete decoder reset. This flag can apply to any NAL type, including parameter sets, slices (partitioned and unpartitioned), and SEI messages.

4.2 NAL Unit Types

The following is the proposed set of NAL unit types.
4.3
	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

4.4

Table 8-1. Modified NAL Unit Type (NUT) Codes

	Code
	NAL Unit Type (nal_unit_type)
	Category
	Priority of nal_unit_type (PNUT)
	coding_type

	0x01
	I-Slice
	3
	1
	I

	0x02
	P-Slice
	3
	1
	P

	0x03
	B-Slice
	3
	1
	B

	0x05
	SI-Slice
	3
	1
	SI

	0x06
	SP-Slice
	3
	1
	SP

	0x07
	I-Slice DPA
	3, 4
	1
	I

	0x08
	P-Slice DPA
	3, 4
	1
	B

	0x09
	B-Slice DPA
	3, 4
	1
	B

	0x0A
	SP-Slice DPA
	3, 4
	1
	SI

	0x0B
	SI-Slice DPA
	3, 4
	1
	SI

	0x0C
	DPB
	5
	4
	na

	0x0D
	DPC
	6
	4
	na

	0x0E
	Supplemental Enhancement Information
	7
	5
	na

	0x0F
	Parameter Set Information
	0
	0
	na

	0x10-0x1F
	Reserved
	
	
	

5 SEI Messages

Unlike MPEG-2 and MPEG-4, JVT SEI messages can carry information that may be crucial for the decoder or systems to operate correctly in certain configurations. For example, presentation and decoding timing information can be sent as an SEI message for systems that do not handle timing at the systems level. However, the current definition of SEI messages does not provide a decoder with any hint about the class of the SEI message.
Another problem with the current specification of SEI messages is that all SEI message identifiers that are not defined in the standard are reserved. This prohibits the use of SEI message to carry messages not defined in the standard, including "user data". This effectively renders a major application of SEI impossible.

To address these issues we propose the following changes:

(1) Define three ranges of identifiers:
a. JVT Assigned. Range of identifiers that are reserved for definition in the JVT standard,which allows plenty of room for future expansion.
b. Registration Authority Managed: Range of SEI messages that are managed by a registration authority.

c. Private (User Data): Range of identifiers used reserved for private application use. No guarantees or management is guaranteed by the standard. Applications use this range "at their own risk".
As a starting point we recommend reserving 0-255 for JVT SEI messages, 256-512 for private messages, and all higher identifiers for registration authority managed identifiers.

(2) Introduce an assignment of classes of messages. As a starting point we propose the following:

a. Display Messages: Messages that deal with the presentation of the video stream.
b. Control Messages: Messages that deal with (optional) control information sent to the decoder as SEI messages. These include timing messages, HRD messages, and the like.
c. Hint: Messages containing extra information about the stream that might assist the decoder in decoding the stream.

d. Metadata: Messages dealing with data about the stream.
e. Other: For messages that are not included in the above set of
To allow for larger ranges of identifiers we note that the current variable length encoding scheme for identifiers, which takes ceil(id/254) bytes may not be optimal if large identifier values are common. For example, a identifier value of 1024 would take 5 bytes to encode. An alternative would be to use a fixed two byte code for message identifier—typically, an insignificant overhead. If more efficient encoding is desired we can reserve the high-bit of the first byte as an escape signal and encode values from 0-127 in one byte (first bit off, one byte only) and values from 127-2**15 in two bytes (high bit of first byte on, two byte encoding with the rest of value in lower order bits)

6 Ordering of NAL Units
7
Currently, the JVT CD does not define impose any on the order of occurrence of the NAL units in a JVT stream. In this section we propose several minimal constraints on the occurrence order of NAL units. Some such constrain the order of occurrence of NAL units; some others are captured as new sequence level parameters that can tell a decoder how difficult the stream is to decode.
First of all, it is to distinguish between the order in which NAL unit are delivered and the order in which they occur in the stream. A delivery can deliver NAL units in an order that differs from order in the stream; for example, a Systems layer might choose to interleave NAL units from mutiple pictures into a single packet for delivery – such a facility exists in the RTP simple payload format for MPEG-4. Here we are concerned only with constraints on the stream order of NAL units as such reorderings at the delivery layer are transparent at the JVT NAL layer. Of course, it is possible that some decoders may be implemented so that they can directly decode streams where NAL units are delivered "out-of-order" from the systems layer, but such an implementation choice should not affect the standard itself.
7.1 Pathological Streams: Bounding Reordering Order
Under the current Committee Draft, reordering of frames from presentation is allowed for any picture type, including both I and B pictures, as long as the decoding order satisfies "data dependency" requirements. In other words, the constraint on ordering pictures in the stream is the partial ordering implied by the dependency relation of one frame referencing another. Such an ordering does not determine a unique ordering for the frames in a video. It also implies that the decoding order and presentation order can be arbitrarily different. For example, imagine encoding a sequence only as a set of I-frames and sending the sequence (the subscripts indicate presentation order):

Presentation Order:
I1
I2
I3
…

Im-2
Im-1
Im
Decoding Order:

Im
Im-1
Im-2
…

I3
I2
I1
The first frame in presentation would not occur until the very end of the sequence -- the decoder would have to buffer every single frame in the sequence before it could present them. In practice, of course, no realistic encoder would generate such a pathological sequence but a standard must bar it from occurring.

We propose adding a reordering constraint, which is implemented by a parameter in the sequence level parameter set. The reordering number of a frame is defined as the difference between its presentation ordering and decoding ordering. We define the maximum reordering number for an entire sequence as the maximum absolute value of the reordering numbers for each frame in the sequence.
Maximum Reordering = 0

I
P
P
P
P
P
…

PO
0
1
2
3
3
3
…
DO
0
1
2
3
3
3
…
RN
0
0
0
0
0
0

Maximum Reordering =

I
P
B
B
P
B
B
…

PO
0
3
1
2

DO
0
1
2
3

We propose adding the max_reordering as a new sequence level parameter:
	sequence_parameter_set() {
	Category
	Descriptor

	
…
	
	u(1)

	
max_reordering
	
	e(v)

	
…
	
	

	}
	
	

The semantics of the field are as described above. This value tells the decoder how
7.2 Parameter Sets

The current Committee Draft states "Received parameter set information shall come into effect just before the next IDER". However it is not clear on the meaning of "parameter updates". That is, what happens when a parameter set with the same parameter set identifier but different parameter values is sent to the decoder? It seems that the intent is to allow such updates. Therefore, we have to specify how they are handled.

Assuming the JVT CD scheme, we propose adding the following to a section on the decoding of parameter sets: "Received parameter sets with a given parameter set identifier shall come into effect just prior to the IDER. If a parameter set are received in-band and a parameter set containing the same identifier is received more than once between one IDER point and the immediately following IDER point, then the last such parameter set received shall be the effective value for that parameter set."

The situation becomes more complex if parameter sets are used at both the slice and sequence level as we can expect slice parameter sets to be more numerous and to be updated more frequently. We propose to adopt an extension of the rule given above for sequences but instead to apply it at the picture level, fixing slice parameters while a picture is being decoded. So we modify the above as follows:
· Received sequence parameter sets with a given parameter set identifier shall come into effect just prior to the IDER. If sequence parameter sets are received in-band and a sequence parameter set containing the same identifier is received more than once between one IDER point and the immediately following IDER point, then the last such parameter set received prior to the IDER in which it comes into effect shall become the effective value for that parameter set.
· Received slice parameter sets with a given parameter set identifier shall come into effect just prior to the first slice of the next picture (see more on where to define start of picture in a stream of NAL units). If sequence parameter sets are received in-band and a slice parameter set containing the same identifier is received more than once between the first slice of a picture and prior to the last slice of that picture, then the last such parameter set received before the first slice of the picture for which it comes into effect shall become the effective value for that parameter set.

7.3 Repetition of NAL Units
The current CD specification is not clear on whether NAL units can occur more than once at the NAL level and, if they can occur, what the normative behavior of a decoder is when receiving such NAL units. To be clear, at the System level such techniques may be defined, as in the MPEG-4 RTP payload format. However, as we discussed earlier such techniques are outside the scope of the JVT video specification.
One option would be to disallow such repetition entirely and leave it to the systems layer, such as the MPEG-2 Systems layer for JVT. However, as the example of MPEG-2 has shown, allowing certain headers to repeat in the video stream greatly facilitates applications like broadcasting that must support applications that need to join a stream at any point in time. Therefore, we propose that parameter set repetition be allowed, but that repetition of all other NAL types be disallowed.

The clarification to the update semantics of parameter sets defined above allows us to repeat a given parameter set as many times as desired: Each retransmission is an "update" that does not repeat the parameter set.

7.4 Associating SEI Messages with Targets
In this section we consider how SEI message should be linked to their target item, which may be a sequence, a GOP, a picture, or a slice. We first discuss the case when the SEI messages are all "in-band".

Assume that all SEI messages are sent in-band with the video data. The current semantics CD for SEI messages does not clearly specify how they are to be linked to their target item. For example, the three SEI messages currently defined—temporal reference, clock timestamp, and pan-scan rectangle – apply to the "current" picture. However, the notion of current picture for an SEI slice is not well defined. Consider the following situation:
[image: image11.wmf]Slice

FN=2

Timestamp

SEI

Slice

FN=3

Which is the current picture for this timestamp SEI message: frame number 2 or frame number 3?
To resolve this ambiguity there are at least three options:

(3) Use SEI Message Positions. Define the target item for each SEI message by its relative position with respect to the target. For example, we can define the target picture for "picture SEI" (any SEI message pertaining to a pictures) to be the next picture in sequence order, which would resolve the ambiguity above
(4) Include Target Information in the SEI Message. We could, for example, include the frame number of the target picture in the SEI message itself. Such a mechanism will be needed if SEI messages are delivered out of band.
(5) Leave the "Syncing" of SEI Messages & Targets to the Systems Layer: For example, a systems layer could assign timestamps or use a grouping mechanism that indicates the association between SEI messages and content.

We propose using (1) for in-band SEI messages and (3) for the systems that support out of band delivery of SEI messages.
7.5 Interleaving of Slices from Different Pictures
The current AVC CD is not clear on whether the slices of different pictures can be interleaved in the stream. For example, is it possible to have a stream in the order: slice 1 from picture 1, slice 1 of picture 2, slice 2 of picture 1, slice 2 of picture 2, and so on? The standard does not say if is allowed, or if it is disallowed. The standard can be read either way.

We argue that the default should be to disallow this unless strong evidence of the usefulness of such a feature as given.
One argument imaginable is that interleaving of picture information might be useful in certain environments, especially those prone to errors. However, the interleaving is likely to be highly dependent on the systems layer and lower protocols and therefore better handled at that level. Such a feature is, for example, supported by the MPEG-4 RTP payload format.
Another conceivable use for interleaving of slices is for "slice-based" decoding where encoder sends slices from one picture ahead of time, interspersed with the slices of other pictures. For example, an encoder might choose to send an I-frame for a commercial a slice at time far ahead of when it is display. JVT-C141 proposes such a scenario. Supporting this scenario requires either that the decoder hold the slices from the out-of-order picture in its decoding buffer until the decoding time arrives for the pictures and all slices have arrived (requiring a larger decoding buffer); or that it be able to decode individual slices directly and store them slice by slice into the picture buffer. The first alternative requires no changes to the decoder model, but we are not sure the current HRD handles a scenario like that proposed.
Pending such evidence we do not see a need to support interleaving of pictures at the JVT codec level. Therefore, we propose that a statement be added to the standard that explicitly disallows interleaving while making it clear that a systems layer may provide such a feature.
7.6 Arbitrary Slice Ordering

The current JVT CD seems to support arbitrary sequencing of the slices in a single picture. In other words, the slices are not limited to being in scan order – defined as having monotonically increasing first macroblock numbers in their headers (this definition is needed to support flexible macroblock ordering). As it stands, a JVT compliant decoder must be prepared to receive the slices for a picture in any order.

Obviously, it is simpler for the decoder if it knows that slices arrive in a fixed order. The issue at hand is whether: (1) Does handling out of order slices impose a burden on the decoder? If so, how much? (2) What benefits, if any, are there to allowing the decoder to handle out-of-order slices?
Regarding the first question, for a software decoder, the complexity of out of order decoding is likely to be small. It has reported that adding this capability to the JM software is matter of a few hundred lines of software with no significant changes in performance. On the other hand, for an "obvious" hardware implementation that can only decode ordered slices, the decoder must add an extra buffer to hold the undecoded slices until it can reassemble them in the 'proper' order, costing memory.
Regarding the second question we can imagine the following advantages for arbitrary slice ordering:

· Encoding Latency: The encoder can choose to send slices in whatever order it chooses to encode without waiting, potentially, for slices later in scanning order to be complete encoding.

· Decoding Latency: A decoder handling arbitrarily ordered slices can decode then in the order they arrive, which might be out of order even the original was in order, without stalling to wait for slice to be reordered. This could help reduce decoding delays.

· System Latency: Intermediate nodes in the network can pass on slices as soon as they arrive avoiding the need to buffer them.
· Error Resilience: The slices can be grouped together to optimize for error resilience.

· Network Friendliness: Slice can be easily grouped to fit together, e.g. to fit into a given packet structure, packet structure).
Taking each of these points in turn:

· Encoding Latency: In theory this holds, however it is not if it actually makes a significant difference. More evidence is needed here.
· Decoding Latency: This is certainly may be an implementation advantage for a decoder tightly integrated with the systems layer; however, the net change in end-to-end delay is not clear to us.
· Error Resilience: This feature is already provided by the flexible macroblock ordering feature and by some systems level protocols, such as the MPEG-4 RTP payload format.
· Network Friendliness: This is better left to the systems level rather than influencing the order at decoding level.
In conclusion, we think that there are some arguments for the usefulness of allowing arbitrary slice orderings, the evidence available does not yet in to make a clear case for this. When in doubt, we recommend erring on the conservative side and disallowing arbitrary and leaving it as a systems function.

7.7
8 Conclusions

We have recommended some modifications to the network abstraction layer to clean up the design including:

· Remove picture header.
· Introduction of Slice Parameter Sets
· Simplified NAL Types
· Constraints on the ordering of NAL units.
We recommend that these proposals be considered for adoption in the JVT Final Committee Draft.

(1)
(2)
(3)
(4)
(5)

·
·

9
9.1

(1)
(2)
(3)
(4)

9.2

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

9.3
	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	

	
	
	

	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	

	
	
	

	
	
	

	
	
	

	
	
	

	

	
	

	
	

	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	

	
	
	

	
	
	

	
	
	

	
	
	

	

	

	
	

	
	

	
	

	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	

Based on an earlier draft sent to the authors, we believe that the issues addressed in JVT-D094 are similar to those addressed here, and believe that the ideas could be harmonized here.

File:JVT-D087.doc
Page: 1
Date Saved: 2002-07-16

