	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

3rd Meeting: Fairfax, Virginia, USA, 6-10 March, 2002
	Document: JVT-C143

Filename: JVT-C143 AppA.doc

	Title:
	File Format for JVT Video based on MP4

	Status:
	Input Document to JVT

	Purpose:
	Proposed Draft Specification Text

	Author(s) or
Contact(s):
	Toby Walker, Ali Tabatabai, Zubair Mohammed Visharam

Sony Electronics
3300 Zanker Road

San Jose, CA, USA

David Singer

Two Infinite Loop

Cupertino, CA, USA

	Tel:
Email:
	1-408-955-4081

toby.walker@am.sony.com

	Source:
	Sony Electronics, Apple Computer

21
Generic MP4 Extensions

21.1
Sample Fragment Size Box

21.1.1
Definition:

21.1.2
Syntax

21.1.3
Semantics

21.1.4
Layout

31.2
Sample Fragment To Sample Box

31.2.1
Definition

31.2.2
Syntax

31.2.3
Semantics

31.2.4
Layout

41.3
Sample Fragment Description Association Box

41.3.1
Definition

41.3.2
Syntax

41.3.3
Semantics

51.3.4
Layout

51.4
Sample Fragment Description Box

51.4.1
Definition

51.4.2
Syntax

61.4.3
Semantics

61.4.4
Layout

61.5
Priority Box

61.5.1
Definition

71.5.2
Syntax

71.5.3
Semantics

71.6
Sequences – Higher Level Sample Groupings:

71.6.1
Sample Sequence Box

81.6.2
Sequence Description Box

101.7
Parameter Sets:

101.7.1
Parameter Set Description Box:

111.7.2
Sample to Parameter Set Box:

121.7.3
Sample Fragment to Parameter Set Box:

132
JVT Specific Extensions

132.1.1
Sample Fragment Description Entry

132.1.2
Sub-Sequence Description Entry

142.1.3
Layer Description Entry

1 Generic MP4 Extensions
1.1 Sample Fragment Size Box

1.1.1 Definition:

Box Type:
‘sbsz’
Container:
Sample Table Box (‘stbl’)
Mandatory:
No
Quantity:
Zero or exactly one.

This box contains the sample fragment count and a table giving the size in bytes of each sample fragment. The total number of sample fragments is always indicated in the sample fragment count.

There are two variants of the sample fragment size box. The first variant has a fixed size 32-bit field for representing the sample fragment sizes; the second variant permits smaller size fields, to save space when the sizes are varying but small. One of these boxes must be present; the first version is preferred for maximum compatibility.

1.1.2 Syntax

aligned(8) class SampleFragmentSizeBox extends FullBox(‘sbsz’, version = 0, 0) {

unsigned int(32)
subsample_size;

unsigned int(32)
subsample_count;

if (subsample_size==0) {

for (i=1; i <= subsample_count; i++) {

unsigned int(32)
entry_size;

}

}
}

1.1.3 Semantics

version is an integer that specifies the version of this box

subsample_size is an integer specifying the default sample fragment size.

If this field is set to 0, then the sample fragments have different sizes, and those sizes are stored in the sample fragment size table.

If this field is not 0, it specifies the constant sample fragment size, and no array follows.

subsample_count is an integer that gives the number of sample fragments in the track; if sample-size is 0, then it is also the number of entries in the following table.

entry_size is an integer specifying the size of each sample fragment.

1.1.4 Layout

	Sample Fragment Size Box

	Box - Size

	Type = ‘sbsz’

	Version

	Flags

	Sample Fragment size

	Sample Fragment_count

	Sample Fragment Table

	SampleFragment Size 1

	SampleFragment Size 2

	SampleFragment Size 3

	

	

	SampleFragment Size n

1.2 Sample Fragment To Sample Box

1.2.1 Definition

Box Type:
‘sbss’
Container:
Sample Table Box (‘stbl’)
Mandatory:
No
Quantity:
Zero or Exactly one.

Fragments within the media data are grouped into samples. Samples can be of different sizes, and the sample fragments within a sample can have different sizes. This table can be used to find the total number of sample fragments within a sample.
The table is compactly coded. Each entry gives the index of the first sample of a run of samples with the same characteristics. By subtracting one entry here from the previous one, you can compute how many samples are in this run. You can convert this to a sample fragment count by multiplying by the appropriate sample fragments per sample.

1.2.2 Syntax

aligned(8) class SampleFragmentToSampleBox

extends FullBox(‘sbss’, version = 0, 0) {

unsigned int(32)
entry_count;

unsigned int(8)
entry_size;

for (i=1; i <= entry_count; i++) {

unsigned int(32)
first_sample;

unsigned int(8*entry_size)
fragments_per_sample;

}
}

1.2.3 Semantics

version is an integer that specifies the version of this box

entry_count is an integer that gives the number of entries in the following table

entry_size is an integer that gives the length in bytes of the fragments_per_sample in the following table

first_sample is an integer that gives the index of the first sample in this run of samples which share the same number of sample fragments-per-sample

fragments_per_sample is an integer that gives the number of sample fragments in each of these samples.

1.2.4 Layout

	Sample Fragment to Sample Box

	Box -Size

	Type = ‘sbss’

	Version

	Flags

	Number of entries

	Sample Fragment to Sample Table

	First Sample
	Sample Fragments per Sample

	1
	18

	5
	20

	
	

	…
	…

1.3 Sample Fragment Description Association Box

1.3.1 Definition

Box Type:
‘sbda’
Container:
Sample Table Box (‘stbl’)
Mandatory:
No
Quantity:
Zero or more

This table associates a sample fragment description with each sample fragment. The sample fragments within a sample could for instance represent slices, different data-partition types, or a mixture of both, SEI packets, etc.
This table can be used to find the sample fragment description ID associated with each sample fragment. Multiple instances of this table are allowed so that different types of descriptions can be associated with sample fragments. The description of a sample fragment could indicate its data-partition, a region of interest, etc.
The table is compactly coded. Each entry gives the index of the first sample fragment of a run of sample fragments with the same characteristics. The sample fragment description ID could be a code or an index. If it is an index it then refers to a Sample Fragment Description Box, which contains entries describing the characteristics of the sample fragments.

1.3.2 Syntax

aligned(8) class SampleFragmentDescriptionAssociationBox

extends FullBox(‘sbda’, version = 0, 0) {

unsigned int(32)
entry_count;

unsigned int(8)
entry_size;

unsigned int(32)
description_type_identifier;

for (i=1; i <= entry_count; i++) {

unsigned int(16)
first_subsample;

unsigned int(8*entry_size)
subsample_length;

}

}

1.3.3 Semantics

version is an integer that specifies the version of this box

entry_count is an integer that gives the number of entries in the following table

Description_Type_Identifier This is a 4-byte compact type, normally consisting of four printable characters. This type could be:

- ‘jvtd’ - refers to a JVT description, like data partition mode.

- ‘pars’ - Parameter Set description Table, etc

- ‘roid’ - Region of interest description Table, etc

first_subsample is an integer that gives the index of the first sample fragment in this run of sample fragments which share the same characteristics

subsample_description_ID depending on the type specified in the Description_Type_Identifier type, could be a code specifying the data partition mode, etc, or could serve as an index to another table called the Sample Fragment Description Table.

1.3.4 Layout

	Sample Fragment Description Association Box

	Box - Size

	Type = ‘sbda’

	Version

	Flags

	Description Type Identifier

	Number of entries

	Sample Fragment Table

	First Sample Fragment
	Sample Fragment Desc ID

	1
	1

	19
	2

	37
	3

	38
	4

	39
	1

	40
	5

	41
	6

	42
	5

	43
	1

	44
	33

	
	

	
	

	…
	…

1.4 Sample Fragment Description Box

1.4.1 Definition

Box Types:
‘sbsd’
Container:
Sample Table Box (‘stbl’)
Mandatory:
No
Quantity:
Zero or more

This description table gives information about the characteristics of the sample fragments. The descriptive information could be related to particular regions-of-interest, data partitions, parameter sets or any other information needed to define/characterize the sample fragments. The description type identifier indicates the type.
The information is stored in the sample fragment description box after the entry-count. For video tracks, a Visual_Sub_SampleEntry is used; there could be similar extensions for audio tracks as well.

1.4.2 Syntax
aligned(8) abstract class SampleFragmentEntry (unsigned int(32) format)
{

const unsigned int(8)[6] reserved = 0;

unsigned int(16) data_reference_index;
}

// Visual Sequences

class VisualSampleEntry(codingname) extends SampleEntry (codingname){
}

aligned(8) class SampleFragmentDescriptionBox (unsigned int(32) handler_type)

extends FullBox('sbsd', 0, 0){

int i ;

unsigned int(32) entry_count;

for (i = 1 ; i <= entry_count ; i++){

switch (handler_type){

case ‘vide’: // for video tracks

VisualSampleFragmentEntry();

break;

case 'soun': // for audio tracks

AudioSampleFragmentEntry();

// Future extns to ‘soun’, ‘hint’…

default:

// Nothing

}

}

}

1.4.3 Semantics

version is an integer that specifies the version of this box

entry_count is an integer that gives the number of entries in the following table

1.4.4 Layout

	Sample Fragment Description Box

	Box - Size

	Type = ‘sbsd’

	Version

	Flags

	Desc_Type_Identifier=‘pars’

	Number of entries

	Sample Fragment Description Table

	SampleFragment Desc 1

	SampleFragment Desc 2

	SampleFragment Desc 3

	

	

	SampleFragment Desc n

1.5 Priority Box

1.5.1 Definition

Box Type:
‘sspr’
Container:
Sample Table Box (‘stbl’).
Mandatory:
No.
Quantity:
Zero or one.
This box contains the degradation priority of each sample. The values are stored in the table, one for each sample. The size of the table, sample_count is taken from the sample_count in the Sample Size Box ('stsz').

1.5.2 Syntax

aligned(8) class SampleFragmentPriorityBox

extends FullBox(‘sspr’, version = 0, 0) {

int i;

for (i=0; i < subsample_count; i++) {

unsigned int(16)
priority;

}
}

1.5.3 Semantics

version - is an integer that specifies the version of this box.

priority - is integer specifying the priority for each sample fragment.

1.6 Sequences

1.6.1 Sample Sequence Box

1.6.1.1 Definition

Box Type:
‘sbst’
Container:
Sample Table Box (‘stbl’)
Mandatory:
No
Quantity:
Zero or more.

Samples within a track can be are grouped into sequences, such as Group of Pictures which reflect high-level syntax of the underlying coding scheme or sequences formed on semantics boundaries, such as shots. This table can be used to find the samples that make up a sequence and the associated description of a sequence.

The table is compactly coded. Each entry gives the index of the first sample of a run of samples with the same sequence descriptor. The sequence description ID is an index/refers to a Sequence Description Box, which contains entries describing the characteristics of the sequence.
There may be more than one set of sequences within the same track and, therefore, there may be multiple instances of these boxes within the file. Each sequence box is assigned a unique identifier which is used to link to. Furthermore, sequence structures are often hierarchical, so a sequence may optionally indicate a parent sequence box, which contains the next higher level in a hierarchy of sequences and sub-sequences.

1.6.1.2 Syntax

aligned(8) class SampleSequenceBox

extends FullBox(‘sbst’, version = 0, 0) \

{

unsigned int(16)
sequence_id;

unsigned int(32)
entry_count;

for (i=1; i <= entry_count; i++)

{

unsigned int(32)
sequence_count;

unsigned int(32)
sequence_description_index;

}
}

1.6.1.3 Semantics

version is an integer that specifies the version of this box
sequence_id is an integer that identifies this sequences and links it to its sequence description table.
entry_count is an integer that gives the number of entries in the following table

sample_count is an integer that gives the number of consecutive sample in the sequence.
sequence_description_index is an integer that gives the index of the sequence entry which describes the samples in this sequence. The index ranges from 1 to the number of sample fragment entries in the Sequence Description Box

1.6.1.4 Layout

	Sample Sequence Box

	Box - Size

	Type = ‘sbst’

	Version

	Flags

	Sequence_Identifier_Type= ‘layr’

	Number of entries

	Sequence Table

	First Sample
	Sequence Desc ID

	3
	2

	4
	1

	3
	2

	
	

	
	

	
	

	…
	…

1.6.2 Sequence Description Box

1.6.2.1 Definition

Box Types:
‘seqd’
Container:
Sample Table Box (‘stbl’)
Mandatory:
No
Quantity:
Zero or more, with one for each Sequence Table box.
This description table gives information about the characteristics of the sequences. The descriptive information could be related to particular sequences and any other information needed to define/characterize the sequences.
The information is stored in the sequence description box after the entry-count. For video tracks, an abstract VisualSequenceEntry is used. There could be similar extensions for audio tracks as well.

1.6.2.2 Syntax

// Sequence Entry

abstract class SequenceEntry (unsigned int(32) handler_type)

{

}

// Visual Sequence

abstract class VisualSequence (type) extends SequenceEntry(type)

{
}
// Visual Sequences

abstract class AudioSequence (type) extends SequenceEntry(type)

{
}

aligned(8) class SequenceDescriptionBox (unsigned int(32) handler_type)

extends FullBox('seqd', 0, 0){

unsigned int(16) sequence_id;

unsigned int(32) entry_count;

int i;

for (i = 1 ; i <= entry_count ; i++){

switch (handler_type){

case ‘vide’: // for video tracks

VisualSequenceEntry ();

break;

case ‘soun’: // for audio tracks

AudioSequenceEntry();

break;

case ‘hint’: // for hint tracks

HintSequenceEntry();

break;

}

}

}

1.6.2.3 Semantics

version is an integer that specifies the version of this box
sequence_id is an integer that specifies the version of this box.

entry_count is an integer that gives the number of entries in the following table

1.6.2.4 Layout

	Sequence Description Box

	Box - Size

	Type = ‘seqd’

	Version

	Flags

	Sequence_Identifier_Type

	Number of entries

	Sequence Description Table

	Sequence Desc 1

	Sequence Desc 2

	Sequence Desc 3

	

	

	Sequence Desc n

1.7 Parameter Sets:

1.7.1 Parameter Set Description Box:

1.7.1.1
Definition

Box Types:
‘pard’
Container:
Track Box (‘trak’)
Mandatory:
Yes
Quantity:
Exactly One.

The Parameter Set description box contains the number of parameter sets and a table containing entries for each defined parameter set.

1.7.1.2 Syntax

// Possible ParameterSet Entries

class ParameterSetEntry(){

const unsigned int(16) reserved = 0;

unsigned int(16) MaxPicID;

unsigned float(16) PixAspectRatio; // Pixel geometry

unsigned int(16) DisplayWindowOffsetTop;// The visible display window

unsigned int(16) DisplayWindowOffsetBottom;

unsigned int(16) DisplayWindowOffsetRight;

unsigned int(16) DisplayWindowOffsetLeft;

unsigned int(16) XsizeMB;

//

unsigned int(16) YSizeMB ;

//
// Etc.

// ...

}

aligned(8) class ParameterSetDescriptionBox extends FullBox(‘pard’, version = 0, 0) {

unsigned int(32)
parameterset_count;

for (int i=1; i <= parameterset _count; i++)

{

ParameterSetEntry();

}
}

1.7.1.3 Semantics

The semantic of the fields in ParameterSetEntry are as defined in one of the contributions to JVT.
version is an integer that specifies the version of this box

parameterset_count is an integer that gives the number of entries in the following table

ParameterSetEntry is the appropriate ParameterSet entry class.
1.7.1.4 Layout

	Parameter Set Description Box

	Box - Size

	Type = ‘pard’

	Version

	Flags

	Number of entries

	Parameter Set Table

	Parameter Set 1

	Parameter Set 2

	Parameter Set 3

	

	

	Parameter Set n

1.7.2 Sample to Parameter Set Box:

1.7.2.1
Definition

Box Types:
‘spst’
Container:
Sample Table Box (‘stbl’)
Mandatory:
Yes
Quantity:
Exactly One.

1.7.2.2 Syntax

aligned(8) class SampletoParameterSetBox extends FullBox(‘spst’, version=0,0){

unsigned int(32)
default_parametersetID;

unsigned int(32)
parameterset_count;

if (default_parametersetID == 0) {

for (i=1; i <= parameterset_count; i++) {

unsigned int(16)
first_sample;

unsigned int(16)
parameterset_index;

}

}
}

1.7.2.3 Semantics

default_parametersetID is an integer specifying the default parameterSet ID.

If this field is set to 0, then the samples have different parameter sets, and those sets are stored in the sample to parameter set table

If this field is not 0, it specifies the constant parameter set, and no array follows.

parameterset _count is an integer that gives the number of samples in the track;

first_sample is an integer that gives the index of the first sample in this run of samples which share the same parameter set.

parameterset_index is an integer that gives the number of the parameter set, which is an index to the parameter set description box.

1.7.2.4 Layout

	Sample to Parameter Set Box

	Box - Size

	Type = ‘spst’

	Version

	Flags

	Default Parameter Set ID

	Number of entries

	Sample to Parameter Set Table

	First Sample
	Parameter Set Index

	1
	1

	50
	2

	75
	1

	
	

	…
	…

1.7.3 Sample Fragment to Parameter Set Box:

1.7.3.1
Definition

Box Types:
‘sbda’
Container:
Sample Table Box (‘stbl’)

 Mandatory:
No
Quantity:
Exactly One.

The Sample Fragment Parameter Set box indicates the parameter set used for each sample fragment. Parameter sets can optionally be associated with each sample fragment. This is achieved by using an occurrence of the Sample Fragment Description Association Box. The description table identifier type of this box is set as ‘pars’. The description ID in the table indicates the index in the Parameter Set Description Box.

Note: When this box is present then it overrides the ‘Sample to Parameter Set Box’.
1.7.3.2 Syntax
aligned(8) class SampleFragmentDescriptionAssociationBox

extends FullBox(‘sbda’, version = 0, 0) {

unsigned int(32) description_type_identifier;

unsigned int(32) entry_count;

for (i=1; i <= entry_count; i++) {

unsigned int(16)
first_subsample;

unsigned int(16)
subsample_length;

}

1.7.3.3 Semantics
version is an integer that specifies the version of this box

entry_count is an integer that gives the number of entries in the following table

description_type_identifier This is a 4-byte compact type, normally consisting of four printable characters. This type could be:

- ‘pars’ - Parameter Set description Table, etc

first_subsample is an integer that gives the index of the first sample fragment in this run of sample fragments which share the same characteristics

subsample_description_ID depending on the type specified in the Description_Type_Identifier type, could be an index to the Partition Set Description Box specifying the partition set ID.
1.7.3.4 Layout

	Sample Fragment Description Association Box

	Box - Size

	Type = ‘sbda’

	Version

	Flags

	Description Type Identifier = “pars”

	Number of entries

	Sample Fragment Table

	First Sample Fragment
	Sample Fragment Desc ID

	1
	1

	40
	2

	
	

	
	

	
	

	
	

	…
	…

2 JVT Specific Extensions

2.1.1 Sample Fragment Description Entry
Box Types:
‘avcs’
Container:
Sample Fragment Description Box (‘ssdrl’)
Mandatory:
Yes
Quantity:
Exactly one
A JVTVisualSampleFragmentEntry is used to describe the property of a JVT sample fragment.
2.1.1.1 Syntax

class JVTVisualSampleEntry() extends VisualSampleFragmentEntry ('jvtv')
{

unsigned int(8) type;

// Other things

}
2.1.1.2 Semantics
type is an integer that specifies the type of sample fragment. The possible values are specified in Table 1.

Table 1 – JVT Sample Fragment type.

	
	To be filled in once NAL packet types are finalized.

	
	

2.1.2 Sub-Sequence Description Entry
Box Types:
‘jvss'’
Container:
Sequence Description Box (‘xxxx’)
Mandatory:
No
Quantity:
Zero or more.

An entry describing a sub-sequence of pictures in a GOP. A sub-sequence shall not depend in the same or higher scalability layers. In other words, it shall only depend on one or more sub-sequences in one or more less enhanced scalability layers. A sub-sequence in the base layer can be decoded independently of any other sub-sequences.

A picture shall reside in one layer and in one sub-sequence only.

2.1.2.1 Syntax

aligned(8) class DependencyInfo

{

unsigned int(8) layerNumber;

unsigned int(32) subSequenceIdentifier;

}
class JVTSubSequenceEntry () extends SequenceDescriptionEntry ('jvss')
{

unsigned int(32) subSequenceIdentifer;

unsigned int(32) avgBitRate;

unsigned int(32) avgFrameRate;

unsigned int(16) numReferences;

DependencyInfo dependency[numReferences];

}
}
2.1.2.2 Semantics
layerNumber and subSequenceIdentifier within the dependencyInfo class identify a sub-sequence that is used as a reference for this sub-sequence.
subSequenceIdentifier in the Sub-Sequence Box gives the identifier for the sub-sequence.

avgBitRate gives the average bit rate in bits/second of the sub-sequence within the segment. Payloads and payload headers taken into account in the calculation. Value zero means an undefined bit rate.

avgFrameRate gives the average frame rate in frames/(256 seconds) of the sub-sequence within the segment. Value zero means an undefined frame rate.

numReferencedSubSequences gives the number of directly referenced sub-sequences in this sub-sequence. dependencyData is an array of dependencyInfo structures giving the identification information of the referenced sub-sequences.

2.1.3 Layer Description Entry
Box Types:
‘jvll’
Container:
Sequence Description Box (‘xxxx’)
Mandatory:
No
Quantity:
Zero or more.

This box defines the layer information for picture. Layers are ordered hierarchically based on their dependency on each other: The first or base layer is independently decodable. The second and subsequent layers are enhancement layers that depend on some data in the base layer. Pictures in a higher layer can only depend on pictures in lower layers.

}

2.1.3.1 Syntax

class JVTLayerEntry() extends VisualSampleFragmentEntry ('jvll')
{

unsigned int(8) layerNumber;

unsigned int(32) avgBitRate;

unsigned int(32) avgFrameRate;

}
2.1.3.2 Semantics
layerNumber gives the number of this layer with the base layer being numbered as zero and all enhancement layers being numbered as one or higher with consecutive numbers.

avgBitRate gives the average bit rate in bits/second of the layer within the segment. A value of zero indicates an undefined bit rate.
avgFrameRate gives the average frame rate in frames per 1000 seconds of this layer with a value of zero indicating an undefined frame rate.
File:Storage AL Appendix A Apr29.doc
Page: 14
Date Saved: 2002-04-29

