Error! No text of specified style in document.



Error! No text of specified style in document.

	Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG

Geneva, Switzerland, January 29-February 1, 2002
	Document JVT-C079 Annex A
File: JVT-C079_AnnexA.doc

Generated: 2002-05-01

	Title:
	Improved Coding of Slice Headers
Proposed Changes Relative to Working Draft Number 2, Revision 7

	Status:
	Input Document to JVT

	Contact:
	Miska M. Hannuksela
Nokia Mobile Software
P.O. Box 68
33721 Tampere, Finland

Jani Lainema
Nokia Research Center
6000 Connection Drive
Irving, TX 75039, U.S.A.

	Purpose:
	Proposal


8
Semantics

8.1
Organization of syntax elements (NAL concept)

The Video Coding Layer (VCL) is defined to efficiently represent the content of the video data, and the Network Adaptation Layer (NAL) is defined to format that data and provide header information in a manner appropriate for conveyance by the higher level system.  The data is organized into data packets, each of which contains an integer number of bytes.  These data packets are then transmitted in a manner defined by the NAL.

Any sequence of bits can be formatted into a sequence of bytes in a manner defined as a Raw Byte Sequence Payload (RBSP), and any RBSP can be encapsulated in a manner that prevents emulation of byte stream start code prefixes in a manner defined defined as an encapsulated byte sequence payload (EBSP).  These two formats are described below in this section.  An NAL carries EBSP’s in a manner customized to some particular network environment. [Ed. Note: The last sentence added to indicate that emulation prevention applies to all NALs (so that emulation prevention will never need to be applied as part of a cross-network NAL translator), which appears to be the current consensus.]

8.1.1
Raw byte sequence payload (RBSP)

A raw byte sequence payload (RBSP) is defined as an ordered sequence of bytes that contains a string of data bits (SODB).  A SODB is defined as an ordered sequence of bits, in which the left-most bit is considered to be the first and most significant bit (MSB) and the right-most bit is considered to be the last and least significant bit (LSB).  The RBSP contains the SODB in the following form:

a)
If the SODB is null, the RBSP is also null.

b)
Otherwise, the RBSP shall contain the SODB in the following form:

1)
The first byte of the RBSP shall contain the (most significant, left-most) eight bits of the SODB; the next byte of the RBSP shall contain the next eight bits of the SODB, etc.; until fewer than eight bits of the SODB remain.

2)
The final byte of the RBSP shall have the following form:

i)
The first (most significant, left-most) bits of the final RBSP byte shall contain the remaining bits of the SODB, if any,

ii)
The next bit of the final RBSP byte shall consist of a single packet stop bit (PSB) having the value one ('1'), and

iii)
Any remaining bits of the final RBSP byte, if any, shall consist of byte-alignment stuffing bits (BASB’s) having the value zero ('0').

Note that the last byte of a RBSP can never have the zero (0x00), because it contains the PSB.

If the boundaries of the RBSP are known, the decoder can extract the SODB from the RBSP by concatenating the bits of the bytes of the RBSP and discarding the PSB, which is the last (least significant, right-most) bit having the value one ('1'), and discarding any following (less significant, farther to the right) bits that follow it, which have the value zero ('0').

The method of determining the boundaries of the RBSP depend on the NAL.

8.1.2
Encapsulated byte sequence payload (EBSP)

A encapsulated byte sequence payload (EBSP) is defined as an ordered sequence of bytes that contains the raw byte sequence payload (RBSP) in the following form:

a)
If the RBSP contains fewer than three bytes, the EBSP shall be the same as the RBSP.

b)
Otherwise, the EBSP shall contain the RBSP in the following form:

1)
The first byte of the EBSP shall contain the first byte of the RBSP,

2)
The second byte of the EBSP shall contain the second byte of the RBSP,

3)
Corresponding to each subsequent byte of the RBSP, the EBSP shall contain one or two subsequent bytes as follows:

i)
If the last two previous bytes of the EBSP are both equal to zero (0x00) and if the next byte of the RBSP is either equal to one (0x01) or equal to 255 (0xFF), the EBSP shall contain two bytes of data that correspond to the next byte of the RBSP.  The first of these two bytes shall be an emulation prevention byte (EPB) equal to 255 (0xFF), and the second of these two bytes shall be equal to the next byte of the RBSP.

ii)
Otherwise, the EBSP shall contain one next byte of data corresponding to the next byte of the RBSP.  This byte shall be equal to the next byte of the RBSP.

The format of the EBSP prevents the three-byte start code prefix (SCP) equal to 0x00, 0x00, 0x01 from occurring within an EBSP.  A decoder shall extract the RBSP from the EBSP by removing and discarding each byte having the value 255 (0xFF) which follows two bytes having the value zero (0x00) within an EBSP.  The means for determining the boundaries of an EBSP is specified by the NAL.

Note that the effect of concatenating two or more RBSP’s and then encapsulating them into an EBSP is the same as first encapsulating each individual RBPS and then concatenating the result (because the last byte of an RBSP is never zero).  This allows the association of individual EBSP’s to video data packets to depend on the NAL without affecting the content of the EBSP.  For example, high-level header data can be placed in its own EBSP and this same EBSP content can be carried in several alternative ways, depending on the particular NAL design in use, including the possibilities of:

a)
Sending it within a low-level video packet with associated lower-level data for support of independent packet decoding, or

b)
Sending it in a separate higher-level header packet, or

c)
Sending it in an external “out-of-band” reliable channel.

8.1.3
Payload type indicator byte (PTIB)

The type of data carried in a data packet is indicated by a payload type indicator byte (PTIB).  Table 8-1 contains the values defined for the PTIB.

Table 8-1 – Interpretation of PTIB

	Value
	Re-mapping Specified

	0x01
	Sequence Data:  Payload contains configuration information for sequence

	0x02
	Sequence SEI: Payload contains SEI for sequence

	0x03
	Random Access Point Data: Payload TBD

	0x04
	Random Access Point SEI: Payload contains SEI for random access point

	0x05
	Picture Data: Null payload

	0x06
	Picture SEI: Payload contains SEI for picture

	0x07
	Non-Partitioned Slice Data: Payload is one EBSP containing slice header data and non-data-partitioned video data for the slice

	0x05
	Slice Mode and MV Data: Payload is one EBSP containing slice header data and all other non-coefficient data for the slice

	0x06
	Slice Intra Coefficient Data: Payload is one EBSP containing slice header data and all intra coefficients for the slice

	0x07
	Slice Inter Coefficient Data: Payload is one EBSP containing slice header data and all non-intra coefficients for the slice

	0x08
	End of Sequence Data: Null payload

	0x09
	End of Sequence SEI: Payload contains SEI for end of sequence


[Ed. Note: Further work needed to finalize format of PTIB and define the types of data to follow.]

8.1.4
Slice mode

Tbd.  [Ed. Note: “Mode”?]

8.1.5
Data partitioning mode

Data partitioning re-arranges the symbols in a way that all symbols of one data type (e.g. DC coefficients, macroblock headers, motion vectors) that belong to a single slice are collected in one VLC coded bitstream that starts byte aligned. Decoders can process such a partitioned data streams by fetching symbols from the correct partition.  The partition to fetch from is determined through the decoder’s state machine, according to the syntax diagram discussed in subclause QQ.

Data Partitioning is implemented by concatenating all VLC coded symbols of one data type and one slice (or full picture if slices are not used).  At the moment, for a few partitions as indicated below contain data of more than one data type that are so closely related that a finer diversion seems to be fruitless.  The following data types are currently defined:

[Ed. Note: This needs work.  Also reformat the below into a table if this content to be preserved]

0
TYPE_HEADER 

Picture or Slice Headers (Note 1)

1
TYPE_MBHEADER 
Macroblock header information (Note 2)

2
TYPE_MVD

Motion Vector Data

3
TYPE_CBP

Coded Block Patterm

4
TYPE_2x2DC

2x2 DC Coefficients

5
TYPE_COEFF_Y

Luminance AC Coefficients

6
TYPE_COEFF_C

Chrominance AC Coefficients

7
TYPE_EOS

End-of-Stream Symbol

NOTE 1 – TYPE_HEADER encompasses all Picture/Slice header information

NOTE 2 – TYPE_MBHEADER encompasses The MB-Type, Intra-Prediction mode and Reference Frame ID.

8.2
Slice Layer

[Ed. Note: The slice layer needs a significant amount of work together with the NAL concept. The Picture sync and picture type codewords are present to ease the VCL development.]

The header information sent at the slice layer is coded depending on the NAL type. The coding, the order and even the presence of some header fields may differ between the different NALs. [Ed. Note: Revisit these two statements as the NAL specification matures.]

8.2.1
Temporal reference (TRType/TR)

[Ed. Note: Clarify relation to NAL, parameter sets, etc.]  Two codewords. Temporal reference type (TRType) indicates how TR is transmitted

TRType = 0:

Absolute TR

TRType <> 0: 
Error

The value of TR is formed by incrementing its value in the temporally-previous reference picture header by one plus the number of skipped or non-reference pictures at the picture clock frequency since the previously transmitted one.

8.2.2
Picture type (Ptype)

[Ed. Note: Clarify relation to NAL, parameter sets, etc.]

Code_number =0:
Inter picture with prediction from the most recent decoded picture only.

Code_number =1:
Inter picture with possibility of prediction from more than one previous decoded picture.  For this mode information reference picture for prediction must be signalled for each macroblock.

Code_number =2:
Intra picture.

Code_number =3:
B picture with prediction from the most recent previous decoded and subsequent decoded pictures only.

Code_number =4:
B picture with possibility of prediction from more than one previous decoded picture and subsequent decoded picture.  When using this mode, information reference frame for prediction must be signalled for each macroblock.

Code_number =5:
SP picture with prediction from the most recent decoded picture only.

Code_number =6:
SP picture with possibility of prediction from more than one previous decoded picture.  For this mode information reference picture for prediction must be signalled for each macroblock.

Code_number =7:
SI picture

8.2.3
Picture structure (PSTRUCT)

[Ed. Note: Clarify relation to NAL, parameter sets, etc.]

Code_number =0:
Progressive frame picture.

Code_number =1:
Top field picture.

Code_number =2:
Bottom field picture.

Code_number =3:
Interlaced frame picture, whose top field precedes its bottom field in time.

Code_number =4:
Interlaced frame picture, whose bottom field precedes its top field in time.

Note that when top field and bottom field pictures are coded for a frame, the one that is decoded first is the one that occurs first in time.

8.2.4
Size information

[Ed. Note: Clarify relation to NAL, parameter sets, etc.]

A series of up to three codewords.  The first codeword indicates a size change.  If set to zero the size is unchaged otherwise (if set to one) it is followed by two codewords containing the new width and height. 

8.2.5
Reference Picture ID

[Ed. Note: Clarify relation to NAL, parameter sets, etc.]

8.2.6
Slice Start Position (SSP)
The number of the first macroblock contained in this slice is equal to SSP x SSG.

8.2.7
Slice Difference QP (SDQP)

SDQP is used to signal the value of the Slice QP (SQP). SQP is obtained by adding the Slice Difference QP to the Sequence QP (SeQP). SDQP is decoded similarly to the DQP (see 8.4.8) using SeQP as prediction. The quantizer parameter QP used in the dequantization process shall be initialised to SQP in the beginning of each slice. The value of the QP can be updated by DQP as described in subclause 8.4.8. 
The range of quantisation value is still about the same as for H.263, 1-31.  An approximate relation between the QUANT in H.263 and QP is: QUANTH.263(QP) ( QP0(QP) = 2QP/6  .  QP0() will be used later for scaling purposes when selecting prediction modes. Negative values of QP correspond to even smaller step sizes, as described below under quantisation.

8.2.8
SP Slice Difference QP (SDQP_SP)
SDQP_SP is used to signal the value of the additional QP for SP-pictures (SPQP). It is present only if Ptype indicates an SP or an SI picture. SPQP is obtained by adding the value of SDQP_SP to the SQP. The SDQP_SP is decoded similarly to the SDQP but using the value of SQP as prediction.

8.2.9
Slice Size (SS)
SS is present for CABAC entropy coding if MAX_SS is greater than 1. The number of macroblocks in a slice is equal to (SS + 1) x SSG.
8.2.10
Picture Number (PN)

[Ed. Note: Clarify relation to NAL, parameter sets, etc.]

PN shall be incremented by 1 for each coded and transmitted picture in transmission order, in modulo MAX_PN operation, relative to the PN of the previous stored picture in transmission order.  For non-stored pictures, PN shall be incremented from the value in the most temporally recent stored picture which precedes the non-stored picture in transmission order. 

The PN serves as a unique ID for each picture stored in the multi-picture buffer within MAX_PN coded and stored pictures.  Therefore, a picture cannot be kept in the buffer after more than MAX_PN-1 subsequent coded and stored pictures unless it has been assigned a long-term picture index as specified below.  The encoder shall ensure that the bitstream shall not specify retaining any short-term picture after more than MAX_PN-1 subsequent stored pictures.  A decoder which encounters a picture number on a current picture having a value equal to the picture number of some other short-term stored picture in the multi-picture buffer should treat this condition as an error.

8.2.11
Reference picture selection layer indicator (RPSLI)

[Ed. Note: Clarify relation to NAL, parameter sets, etc.]

RPSLI indicates the presence of reference picture selection layer (RPSL).  RPSLI shall be one of the following two values:

–
Code number 0:
The RPS layer is not sent,

–
Code number 1:
The RPS layer is sent.

If RPSL is not sent, the default buffer indexing order presented in the next subsection shall be applied.  RPS layer information sent at the slice level does not affect the decoding process of any other slice.

If RPSL is sent, the buffer indexing used to decode the current slice and to manage the contents of the picture buffer is sent using the following code words.

8.2.12
Re-Mapping of Picture Numbers Indicator (RMPNI)

RMPNI is present in the RPS layer if the picture is a P or B picture.  It is not present if the picture is an I picture. It is present at least once in P pictures and at least twice in B pictures.  RMPNI indicates whether any default picture indices are to be re-mapped for forward or backward motion compensation of the current slice – and how the re-mapping of the relative indices into the multi-picture buffer is to be specified if indicated.  The interpretation of RMPNI is shown in Figure 8-2. If RMPNI indicates the presence of an ADPN or LPIR field, an additional RMPNI field immediately follows the ADPN or LPIR field.

A picture reference index parameter (ref_idx_fwd or ref_idx_bwd) is a relative index into an ordered set of reference pictures.  For the coding of a P picture, there is one such set of reference pictures, called the forward reference set.  For the coding of a B picture, there are two such sets of reference pictures, called the forward and backward reference sets.

The RMPNI, ADPN, and LPIR fields allow the order of that relative indexing into the multi-picture buffer to be temporarily altered from the default index order for the decoding of a particular slice. An RMPNI "end loop" indication indicates the end of a list of re-ordering commands for the forward or backward reference set.

8.2.12.1
Default index order for P pictures

[Ed. Note: should this go in the "decoding process" section instead of the "semantics" section?]

The default index order for forward prediction of P pictures is for the short-term pictures (i.e., pictures which have not been given a long-term index) to precede the long-term pictures in the reference indexing order.  Within the set of short-term pictures, the default order is for the pictures to be ordered starting with the most recently-transmitted reference picture and proceeding through to the reference picture in the short-term buffer that was transmitted first (i.e., in decreasing order of picture number in the absence of wrapping of the ten-bit picture number field).  Within the set of long-term pictures, the default order is for the pictures to be ordered starting with the picture with the smallest long-term index and proceeding up to the picture with long-term index equal to the most recent value of MLIP1-1.

For example, if the buffer contains three short-term pictures with short-term picture numbers 300, 302, and 303 (which were transmitted in increasing picture-number order) and two long-term pictures with long-term picture indices 0 and 3, the default index order is:

default relative index 0 refers to the short-term picture with picture number 303,

default relative index 1 refers to the short-term picture with picture number 302,

default relative index 2 refers to the short-term picture with picture number 300,

default relative index 3 refers to the long-term picture with long-term picture index 0, and

default relative index 4 refers to the long-term picture with long-term picture index 3.

8.2.12.2
Default index order for B pictures

[Ed. Note: The proper default index order should be further investigated – this should be considered only a first attempt.]

The default index order for B pictures is defined such that short-term pictures that temporally precede the B picture are distinguished from short-term pictures that temporally follow the B picture, based on the temporal reference for each reference picture.  The default order for forward prediction (subclause 8.2.13.2.1) is specified in a manner that gives a lower index order to short-term pictures that temporally precede the current picture, and the default order for backward prediction (subclause 8.2.13.2.1) is specified in a manner that ordinarily gives a lower index order to short-term pictures that temporally follow the current picture.

8.2.12.2.1
Forward prediction in B pictures

Within the set of short-term pictures, the default order for B-picture forward prediction shall be for the pictures to be ordered starting with the most recently-transmitted temporally-preceding reference picture and proceeding through to the temporally-preceding reference picture in the short-term buffer that was transmitted first.  These temporally-preceding pictures shall then be followed by the temporally-following reference pictures, starting with the most recently-transmitted temporally-following reference picture in the short-term buffer and proceeding through to the temporally-following reference picture in the short-term buffer that was transmitted first.  These pictures shall then be followed by the long-term pictures, starting with the picture with the smallest long-term index and proceeding up to the picture with long-term index equal to the most recent value of MLIP1-1.

8.2.12.2.2
Backward prediction in B pictures

The default order for B-picture backward prediction is defined in a similar manner as for forward prediction, but giving preference in the order for pictures that temporally follow the B picture and swapping the order of the first two pictures if this would result in an identical forward and backward default indexing order.

Within the set of short-term pictures, the ordinary default order for B-picture backward prediction shall be for the pictures to be ordered starting with the most recently-transmitted temporally-following reference picture and proceeding through to the temporally-following reference picture that has been in the short-term buffer the longest.  These temporally-following pictures shall then be followed by the temporally-preceding reference pictures, starting with the most recently-transmitted temporally-preceding reference picture and proceeding through to the temporally-preceding reference picture that has been in the short-term buffer the longest.  These pictures shall then be followed by the long-term pictures, starting with the picture with the smallest long-term index and proceeding up to the picture with long-term index equal to the most recent value of MLIP1-1.

The ordinary default order defined in the previous paragraph shall be used as the default index order for backward prediction unless there is more than one reference picture in the set and the ordinary default index order for backward prediction is the same as the default index order for forward prediction.  In this exceptional case, the default index order for backward prediction shall be the ordinary default index order with the order of the first two pictures switched.

8.2.12.3
Reordering of forward and backward reference sets

The first ADPN or LPIR field that is received (if any) moves a specified picture out of the default order to the relative index of zero.  The second such field moves a specified picture to the relative index of one, etc. The set of remaining pictures not moved to the front of the relative indexing order in this manner shall retain their default order amongst themselves and shall follow the pictures that have been moved to the front of the buffer in relative indexing order.

If there is not more than one forward reference picture used, no more than one ADPN or LPIR field shall be present in the same RPS layer unless the current picture is a B picture.  If the current picture is a B picture and there is not more than one backward reference picture used, no more than two ADPN or LPIR fields shall be present in the same RPS layer.

Any re-mapping of picture numbers specified for some slice shall not affect the decoding process for any other slice.

In a P picture an RMPNI “end loop” indication is followed by RPBT.  In a B picture, the first RMPNI "end loop" indication, which concludes the remapping of the forward reference set, is followed by an additional RMPNI indicator that begins the remapping operations (if any) for the backward reference set.

Within one RPS layer, RMPNI shall not specify the placement of any individual reference picture into more than one re-mapped position in relative index order.

Table 8-2 – RMPNI operations for re-mapping of reference pictures

	Code Number
	Re-mapping Specified

	0
	ADPN field is present and corresponds to a negative difference to add to a picture number prediction value

	1
	ADPN field is present and corresponds to a positive difference to add to a picture number prediction value

	2
	LPIR field is present and specifies the long-term index for a reference picture

	3
	End loop for re-mapping of reference picture set relative indexing default order


8.2.12.1
Absolute Difference of Picture Numbers (ADPN)

ADPN is present only if indicated by RMPNI. ADPN follows RMPNI when present. The code number of the UVLC corresponds to ADPN – 1. ADPN represents the absolute difference between the picture number of the currently re-mapped picture and the prediction value for that picture number. If no previous ADPN fields have been sent within the current RPS layer, the prediction value shall be the picture number of the current picture. If some previous ADPN field has been sent, the prediction value shall be the picture number of the last picture that was re-mapped using ADPN.

If the picture number prediction is denoted PNP, and the picture number in question is denoted PNQ, the decoder shall determine PNQ from PNP and ADPN in a manner mathematically equivalent to the following:

if (RMPNI == '1') {
/* a negative difference */

  if (PNP – ADPN < 0)

    PNQ = PNP – ADPN + MAX_PN;

  else

    PNQ = PNP – ADPN;

}else{




/* a positive difference */

  if (PNP + ADPN > MAX_PN-1)

    PNQ  = PNP + ADPN – MAX_PN;

  else

    PNQ  = PNP + ADPN;

}

The encoder shall control RMPNI and ADPN such that the decoded value of ADPN shall not be greater than or equal to MAX_PN.

As an example implementation, the encoder may use the following process to determine values of ADPN and RMPNI to specify a re-mapped picture number in question, PNQ:

DELTA = PNQ – PNP;

if (DELTA < 0) {

  if (DELTA < –MAX_PN/2-1)

    MDELTA = DELTA + MAX_PN;

  else

    MDELTA = DELTA;

}else{

  if (DELTA > MAX_PN/2)

    MDELTA = DELTA – MAX_PN;

  else

    MDELTA = DELTA;

}

ADPN = abs(MDELTA);

where abs() indicates an absolute value operation.  Note that the code number of the UVLC corresponds to the value of ADPN – 1, rather than the value of ADPN itself.

RMPNI would then be determined by the sign of MDELTA.

8.2.12.2
Long-term Picture Index for Re-Mapping (LPIR)

LPIR is present only if indicated by RMPNI. LPIR follows RMPNI when present. LPIR is transmitted using UVLC codewords. It represents the long-term picture index to be re-mapped. The prediction value used by any subsequent ADPN re-mappings is not affected by LPIR.

8.2.13
Reference Picture Buffering Type (RPBT)

RPBT specifies the buffering type of the currently decoded picture. It follows an RMPNI “end loop” indication when the picture is not an I picture. It is the first element of the RPS layer if the picture is an I picture. The values for RPBT are defined as follows:

Code number 0:
Sliding Window,

Code number 1:
Adaptive Memory Control.

In the “Sliding Window” buffering type, the current decoded picture shall be added to the buffer with default relative index 0, and any marking of pictures as “unused” in the buffer is performed automatically in a first-in-first-out fashion among the set of short-term pictures. In this case, if the buffer has sufficient “unused” capacity to store the current picture, no additional pictures shall be marked as “unused” in the buffer. If the buffer does not have sufficient “unused” capacity to store the current picture, the picture with the largest default relative index among the short-term pictures in the buffer shall be marked as “unused”. In the sliding window buffering type, no additional information is transmitted to control the buffer contents.

In the "Adaptive Memory Control" buffering type, the encoder explicitly specifies any addition to the buffer or marking of data as “unused” in the buffer, and may also assign long-term indices to short-term pictures. The current picture and other pictures may be explicitly marked as “unused” in the buffer, as specified by the encoder. This buffering type requires further information that is controlled by memory management control operation (MMCO) parameters.

8.2.13.1
Memory Management Control Operation (MMCO)

MMCO is present only when RPBT indicates “Adaptive Memory Control”, and may occur multiple times if present.  It specifies a control operation to be applied to manage the multi-picture buffer memory.  The MMCO parameter is followed by data necessary for the operation specified by the value of MMCO, and then an additional MMCO parameter follows – until the MMCO value indicates the end of the list of such operations.  MMCO commands do not affect the buffer contents or the decoding process for the decoding of the current picture – rather, they specify the necessary buffer status for the decoding of subsequent pictures in the bitstream.  The values and control operations associated with MMCO are defined in Table 8-3.

If MMCO is Reset, all pictures in the multi-picture buffer (but not the current picture unless specified separately) shall be marked “unused” (including both short-term and long-term pictures). 

The picture height and width shall not change within the bitstream except within a picture containing a Reset MMCO command.

A “stored picture” does not contain an MMCO command in its RPS layer which marks that (entire) picture as “unused”.  If the current picture is not a stored picture, its RPS layer shall not contain any of the following types of MMCO commands:

a)
A Reset MMCO command,

b)
Any MMCO command which marks any other picture (other than the current picture) as “unused” that has not also been marked as “unused” in the ERPS layer of a prior stored picture, or

c)
Any MMCO command which assigns a long-term index to a picture that has not also been assigned the same long-term index in the ERPS layer of a prior stored picture

Table 8-3 – Memory management control operation (MMCO) values

	Code Number
	Memory Management Control Operation
	Associated Data Fields Following

	0
	End MMCO Loop
	None (end of ERPS layer)

	1
	Mark a Short-Term Picture as “Unused”
	DPN

	2
	Mark a Long-Term Picture as “Unused”
	LPIN

	3
	Assign a Long-Term Index to a Picture
	DPN and LPIN

	4
	Specify the Maximum Long-Term Picture Index
	MLIP1

	5
	Reset
	None


8.2.13.2
Difference of Picture Numbers (DPN)

DPN is present when indicated by MMCO. DPN follows MMCO if present.  DPN is transmitted using UVLC codewords and is used to calculate the PN of a picture for a memory control operation.  It is used in order to assign a long-term index to a picture, mark a short-term picture as “unused”.  If the current decoded picture number is PNC and the decoded UVLC code number is DPN, an operation mathematically equivalent to the following equations shall be used for calculation of PNQ, the specified picture number in question:

if (PNC – DPN < 0)

  PNQ = PNC – DPN + MAX_PN;

else

  PNQ = PNC – DPN;

Similarly, the encoder may compute the DPN value to encode using the following relation:

if (PNC – PNQ < 0)

  DPN = PNC – PNQ + MAX_PN;

else

  DPN = PNC – PNQ;

For example, if the decoded value of DPN is zero and MMCO indicates marking a short-term picture as “unused”, the current decoded picture shall be marked as “unused” (thus indicating that the current picture is not a stored picture).

8.2.13.3
Long-term Picture Index (LPIN)

LPIN is present when indicated by MMCO.  LPIN specifies the long-term picture index of a picture. It follows DPN if the operation is to assign a long-term index to a picture. It follows MMCO if the operation is to mark a long-term picture as “unused”.

8.2.13.4
Maximum Long-Term Picture Index Plus 1 (MLIP1)

MLIP1 is present if indicated by MMCO.  MLIP1 follows MMCO if present.  If present, MLIP1 is used to determine the maximum index allowed for long-term reference pictures (until receipt of another value of MLIP1).  The decoder shall initially assume MLIP1 is "0" until some other value has been received.  Upon receiving an MLIP1 parameter, the decoder shall consider all long-term pictures having indices greater than the decoded value of MLIP1 – 1 as “unused” for referencing by the decoding process for subsequent pictures.  For all other pictures in the multi-picture buffer, no change of status shall be indicated by MLIP1.

8.2.14
Supplemental Enhancement Information

[Ed. Note: Clarify relation to NAL, parameter sets, etc.]

Supplemental enhancement information (SEI) is encapsulated into chunks of data separate from coded slices, for example. It is up to the network adaptation layer to specify the means to transport SEI chunks. Each SEI chunck may contain one or more SEI messages. Each SEI message shall consist of a SEI header and SEI payload. The SEI header starts at a byte-aligned position from the first byte of a SEI chunk or from the first byte after the previous SEI message. The SEI header consists of two codewords, both of which consist of one or more bytes. The first codeword indicates the SEI payload type. Values from 00 to FE shall be reserved for particular payload types, whereas value FF is an escape code to extend the value range to yet another byte as follows:

payload_type = 0;

for (;;) {

  payload_type += *byte_ptr_to_sei;

  if (*byte_ptr_to_sei < 0xFF)

    break;

  byte_ptr_to_sei++;

}

The second codeword of the SEI header indicates the SEI payload size in bytes. SEI payload size shall be coded similarly to the SEI payload type.

The SEI payload may have a SEI payload header. For example, a payload header may indicate to which picture the particular data belongs. The payload header shall be defined for each payload type separately.

8.3
Macroblock layer

Following the syntax diagram for the macroblock elements, the various elements are described.

8.3.1
Number of Skipped Macroblocks (mb_skip_run)

A macroblock is called skipped if no information is sent. In that case the reconstruction of an inter macroblock is made by copying the collocated picture material from the last decoded frame. 

If PSTRUCT indicates a frame, then the skipped macroblock is formed by copying the collocated picture material from the last decoded frame, which either was decoded from a frame picture or is the union of two decoded field pictures. If PSTRUCT indicates a field, then the skipped macroblock is formed by copying the collocated material from the last decoded field of the same parity (top or bottom), which was either decoded from a field picture or is part of the most recently decoded frame picture. 

[Editor: this needs alignment with the RPS.]

For a B macroblock skip means direct mode without coefficients. mb_skip_run indicates the number of skipped macroblocks in an inter- or B-picture before a coded macroblock.  If a picture or slice ends with one or more skipped macroblocks, they are represented by an additional mb_skip_run which counts the number of skipped macroblocks.

8.4.2
Macro block type (MB_Type)

Refer to Table QQ. There are different MB-Type tables for Intra and Inter frames.

8.4.2.1
Intra Macroblock modes

Intra 4x4
Intra coding as defined in sections QQ to QQ.

Imode, nc, AC
See definition in section QQ. These modes refer to 16x16 intra coding.

8.4.2.2
Inter Macroblock Modes

Skip
No further information about the macroblock is transmitted.  A copy of the colocated macroblock in the most recent decoded picture is used as reconstruction for the present macroblock.

NxM (eg. 16x8)
The macroblock is predicted from a past picture with block size NxM.  For the macroblock modes 16x16, 16x8, and 8x16, a motion vector is provided for each NxM block.  If N=M=8, for each 8x8 sub-partition an additional codeword is transmitted which indicates in which mode the corresponding sub-partition is coded (see subclause 8.4.3). Depending on N,M and the 8x8 sub-partition modes there may be 1 to 16 sets of motion vector data for a macroblock.

Intra 4x4
4x4 intra coding. 

Code numbers from 6 and upwards represent 16x16 intra coding.

8.4.3
8x8 sub-partition modes

NxM (eg. 8x4)
The corresponding 8x8 sub-partition is predicted from a past picture with block size NxM. A motion vector is transmitted for each NxM block. Depending on N and M, up to 4 motion vectors are coded for an 8x8 sub-partition, and thus up to 16 motion vectors are transmitted for a macroblock.

Intra
The 8x8 sub-partition is coded in intra 4x4 mode.

8.4.4
Intra Coding

Even in intra mode, prediction is always used for each sub block in a macroblock.  A 4x4 block is to be coded (samples labeled a to p below).  The samples A to Q from neighbouring blocks may already be decoded and may be used for prediction. When samples E-H are not available, whether because they have not yet been decoded, are outside the picture or outside the current slice, the sample value of D is substituted for samples E-H. When samples M-P are not available, the sample value of L is substituted for samples M-P.

[Ed. Note: For some reason, the text in the figure below disappears when I print this to paper.  Should be fixed or replaced by Visio diagram.]


[image: image1]
Figure 8-2 – Identification of samples used for intra spatial prediction

8.4.4.1
Prediction for Intra-4x4 mode for luminance blocks

For the luminance signal, there are nine intra prediction modes labeled 0 to 8.  Mode 0 is ‘DC-prediction’ (see below).  The other modes represent directions of predictions as indicated below.

[Ed. Note: Something went wrong with the figure when copying.  Needs to be fixed or preferably replaced by a Visio figure.]


[image: image2]
Figure 8-3 – Intra prediction directions

[Ed. Note: Something wrong with the location and framing of the picture.  How was this created and how can it be fixed?]

8.4.4.1.1
Mode 0: DC prediction

If all samples A, B, C, D, I, J, K, L, are within the slice, all samples are predicted by (A+B+C+D+I+J+K+L+4)>>3.  If A, B, C, and D are outside the slice and I, J, K, and L are not, all samples are predicted by (I+J+K+L+2)>>2.  If I, K, K, and L are outside the slice and A, B, C, and D are not, all samples are predicted by (A+B+C+D+2)>>2.  If all eight samples are outside the slice, the prediction for all samples in the block is 128.  A block may therefore always be predicted in this mode.

8.4.4.1.2
Mode 1: Vertical Prediction

If A, B, C, D are inside the slice, then

–
a, e, i, m are predicted by A,

–
b, f, j, n are predicted by B,

–
c, g, k, o are predicted by C,

–
d, h, l, p are predicted by D.

8.4.4.1.3
Mode 2: Horizontal prediction

If I, J, K, L are inside the slice, then

–
a, b, c, d are predicted by I, 

–
e, f, g, h are predicted by J,

–
i, j, k, l are predicted by K,

–
m, n, o, p are predicted by L.

8.4.4.1.4
Mode 3: Diagonal Down/Right prediction

This mode is used only if all A, B, C, D, I, J, K, L, Q are inside the slice.  This is a 'diagonal' prediction.

–
m is predicted by: 


(J + 2K + L + 2) >> 2

–
i, n are predicted by 


(I + 2J + K + 2) >> 2

–
e, j, o are predicted by 

(Q + 2I + J + 2) >> 2

–
a, f, k, p are predicted by 

(A + 2Q + I + 2) >> 2

–
b, g, l are predicted by 

(Q + 2A + B + 2) >> 2

–
c, h are predicted by 


(A + 2B + C + 2) >> 2

–
d is predicted by 


(B + 2C + D + 2) >> 2

8.4.4.1.5
Mode 4: Diagonal Down/Left prediction

This mode is used only if all A, B, C, D, I, J, K, L, Q are inside the slice.  This is a 'diagonal' prediction.

–
a is predicted by


(A + 2B + C + I + 2J + K + 4) >> 3

–
b, e are predicted by 


(B + 2C + D + J + 2K + L + 4) >> 3

–
c, f, i are predicted by 

(C + 2D + E + K + 2L + M + 4) >> 3

–
d, g, j, m are predicted by 

(D + 2E + F + L + 2M + N + 4) >> 3

–
h, k, n are predicted by 

(E + 2F + G + M + 2N + O + 4) >> 3

–
l, o are predicted by 


(F + 2G + H + N + 2O + P + 4) >> 3

–
p is predicted by 


(G + H + O + P + 2) >> 3

8.4.4.1.6
Mode 5: Vertical-Left prediction

This mode is used only if all A, B, C, D, I, J, K, L, Q are inside the slice.  This is a 'diagonal' prediction.

–
a, j are predicted by 


(Q + A + 1) >> 1

–
b, k are predicted by


(A + B + 1) >> 1

–
c, l are predicted by 


(B + C + 1) >> 1

–
d is predicted by 


(C + D + 1) >> 1

–
e, n are predicted by 


(I + 2Q + A + 2) >> 2

–
f, o are predicted by 


(Q + 2A + B + 2) >> 2

–
g, p are predicted by 


(A + 2B + C + 2) >> 2

–
h is predicted by 


(B + 2C + D + 2)  >> 2

–
i is predicted by 


(Q + 2I + J + 2) >> 2

–
m is predicted by 


(I + 2J + K + 2) >> 2

8.4.4.1.7
Mode 6: Vertical-Right prediction

This mode is used only if all A, B, C, D, I, J, K, L, Q are inside the slice.  This is a 'diagonal' prediction.

–
a is predicted by 


(2A + 2B + J + 2K + L + 4) >> 3

–
b, i are predicted by


(B + C + 1) >> 1

–
c, j are predicted by 


(C + D + 1) >> 1

–
d, k are predicted by 


(D + E + 1) >> 1

–
l is predicted by 


(E + F + 1) >> 1

–
e is predicted by 


(A + 2B + C + K + 2L + M + 4) >> 3

–
f, m are predicted by 

(B + 2C + D + 2) >> 2

–
g, n are predicted by 


(C + 2D + E + 2) >> 2

–
h, o are predicted by 


(D + 2E + F + 2) >> 2

–
p is predicted by 


(E + 2F + G + 2) >> 2

8.4.4.1.8
Mode 7: Horizontal-Up prediction

This mode is used only if all A, B, C, D, I, J, K, L, Q are inside the slice.  This is a 'diagonal' prediction.

–
a is predicted by 


(B + 2C + D + 2I + 2J + 4) >> 3

–
b is predicted by 


(C + 2D + E + I + 2J + K + 4) >> 3

–
c, e are predicted by 


(D + 2E + F + 2J + 2K + 4) >> 3

–
d, f are predicted by 


(E + 2F + G + J + 2K + L + 4) >> 3

–
g, i are predicted by 


(F + 2G + H + 2K + 2L + 4) >> 3

–
h, j are predicted by 


(G + 3H + K + 3L + 4) >> 3

–
l, n are predicted by 


(L + 2M + N + 2) >> 3

–
k, m are predicted by 

(G + H + L + M + 2) >> 2

–
o is predicted by 


(M + N + 1) >> 1

–
p is predicted by 


(M + 2N + O + 2) >> 2

8.4.4.1.9
Mode 8: Horizontal-Down prediction

This mode is used only if all A, B, C, D, I, J, K, L, Q are inside the slice.  This is a 'diagonal' prediction.

–
a, g are predicted by 


(Q + I + 1) >> 1

–
b, h are predicted by 


(I + 2Q + A+ 2) >> 2

–
c is predicted by 


(Q + 2A + B+ 2) >> 2

–
d is predicted by 


(A + 2B + C+ 2) >> 2

–
e, k are predicted by 


(I + J + 1) >> 1

–
f, l are predicted by 


(Q + 2I + J+ 2) >> 2

–
i, o are predicted by 


(J + K + 1) >> 1

–
j, p are predicted by 


(I + 2J + K+ 2) >> 2

–
m is predicted by 


(K + L + 1) >> 1

–
n is predicted by 


(J + 2K + L + 2) >> 2

8.4.4.2
Coding of Intra 4x4 prediction modes

Since each of the 4x4 luminance blocks is assigned a prediction mode, this will require a considerable number of bits if coded independently.  The chosen prediction of a block is highly correlated with the prediction modes of adjacent blocks.  This is illustrated in Figure 8-4.  When the prediction modes of A and B are known (including the case that A or B or both are outside the slice) an ordering of the most probable, next most probable etc. of C is given.  When an adjacent block is coded by 16x16 intra mode, prediction mode is “mode 0: DC_prediction”; when it is coded in inter mode, prediction mode is “mode 0: DC_prediction” in the usual case and “outside” in the case of constrained intra update. This ordering is listed in Table 8-3.

For each prediction mode of A and B a list of 9 numbers is given in Table 8-3.  Example: Prediction mode for A and B is 2.  The string 2 8 7 1 0 6 4 3 5 indicates that mode 2 is also the most probable mode for block C.  Mode 8 is the next most probable one etc.  In the bitstream there will for instance be information that Prob0 = 1 (see Table 9-5) indicating that the next most probable mode shall be used for block C.  In our example this means Intra prediction mode 8.  Use of '–' in the table indicates that this instance cannot occur because A or B or both are outside the slice.

For more efficient coding, information on intra prediction of two 4x4 luminance blocks are coded in one codeword (Prob0 and Prob1 in Table 9-5).  The order of the resulting eight codewords is indicated in Table 8-3.


[image: image3.wmf] 

 

 

 

 

0

 

 

 

1

 

 

 

0

 

 

 

1

 

 

 

2

 

 

 

3

 

 

 

2

 

 

 

3

 

 

 

4

 

 

 

5

 

4

 

 

 

5

 

 

 

6

 

 

 

7

 

 

 

6

 

 

 

7

 

 

 

C

 

 

 

A

 

 

 

B

 

 

 

a

 

b

 


Figure 8-4 – a) Prediction mode of block C to be established, where A and B are adjacent blocks. b) order of intra prediction information in the bitstream

Table 8-3 – Prediction mode as a function of ordering signalled in the bitstream

	Index
	B/A
	Outside
	0
	1
	2
	3

	0a
	Outside
	0--------
	01-------
	10-------
	---------
	---------

	1a
	0
	02-------
	021648573
	125630487
	021876543
	021358647

	2a
	1
	---------
	102654387
	162530487
	120657483
	102536487

	3a
	2
	20-------
	280174365
	217683504
	287106435
	281035764

	4a
	3
	---------
	201385476
	125368470
	208137546
	325814670

	5a
	4
	---------
	201467835
	162045873
	204178635
	420615837

	6a
	5
	---------
	015263847
	152638407
	201584673
	531286407

	7a
	6
	---------
	016247583
	160245738
	206147853
	160245837

	8a
	7
	---------
	270148635
	217608543
	278105463
	270154863

	9a
	8
	---------
	280173456
	127834560
	287104365
	283510764


Table 8-3 (concluded)

	Index
	B/A
	4
	5
	6
	7
	8

	0b
	Outside
	---------
	---------
	---------
	---------
	---------

	1b
	0
	206147583
	512368047
	162054378
	204761853
	208134657

	2b
	1
	162045378
	156320487
	165423078
	612047583
	120685734

	3b
	2
	287640153
	215368740
	216748530
	278016435
	287103654

	4b
	3
	421068357
	531268470
	216584307
	240831765
	832510476

	5b
	4
	426015783
	162458037
	641205783
	427061853
	204851763

	6b
	5
	125063478
	513620847
	165230487
	210856743
	210853647

	7b
	6
	640127538
	165204378
	614027538
	264170583
	216084573

	8b
	7
	274601853
	271650834
	274615083
	274086153
	278406153

	9b
	8
	287461350
	251368407
	216847350
	287410365
	283074165


8.4.4.3
Intra-16x16 mode for luminance

Assume that the block to be predicted has sample locations 0 to 15 horizontally and 0 to 15 vertically.  We use the notation P(i,j) where i,j = 0..15.  P(i,-1), i=0..15 are the neighbouring samples above the block and P(-1,j), j=0..15 are the neighbouring samples to the left of the block.  Pred(i,j)  i,j = 0..15 is the prediction for the whole Luminance macroblock.  We have 4 different prediction modes:

8.4.4.3.1
Mode 0 (vertical)

Pred(i, j) = P(i, -1), i, j=0..15

8.4.4.3.2
Mode 1 (horizontal)

Pred(i, j) = P(-1, j), i, j=0..15

8.4.4.3.3
Mode 2 (DC prediction)

Pred(i, j) = 
[image: image4.wmf]5

)

16

)))

1

,

(

)

,

1

(

(

((

15

0

>>

+

-

+

-

å

=

i

i

P

i

P

    i, j=0..15,

where only the average of 16 samples are used when the other 16 samples are outside the slice. If all 32 samples are outside the slice, the prediction for all samples in the block is 128.

8.4.4.3.4
Mode 3 (Plane prediction)

Pred(i,j) = clip1( (a + b·(i-7) + c·(j-7) +16) >> 5 ),

where:

–
a = 16·(P(-1,15) + P(15,-1))

–
b = (5*(H>>2)>>4) [Ed. Note: Correct? Why no rounding offset?]

–
c = (5*(V>>2)>>4)

and H and V are defined as:


[image: image5.wmf]å

=

-

-

-

-

+

×

=

8

1

))

1

,

7

(

)

1

,

7

(

(

i

i

P

i

P

i

H


(8-1)

[image: image6.wmf]å

=

-

-

-

+

-

×

=

8

1

))

7

,

1

(

)

7

,

1

(

(

j

j

P

j

P

j

V


(8-2)
Residual coding [Ed. Note: All The next few paragraphs are wrong and should be corrected or deleted.  Now a different transform is applied to DC and also we're not using these normalization factors anymore.]

The residual coding is based on 4x4 transform.  But similar to coding of chrominance coefficients, another 4x4 transform to the 16 DC coefficients in the macroblock are added.  In that way we end up with an overall DC for the whole MB which works well in flat areas.

Since we use the same integer transform to DC coefficients, we have to perform additional normalization to those coefficients, which implies a division by 676.  To avoid the division we performed normalization by 49/215 on the encoder side and 48/215 on the decoder side, which gives sufficient accuracy.

Only single scan is used for 16x16 intra coding.

To produce the bitstream, we first scan through the 16 ‘DC transform’ coefficients.  There is no ‘CBP’ information to indicate no coefficients on this level.  If AC = 1 (see below) ac coefficients of the 16 4x4 blocks are scanned.  There are 15 coefficients in each block since the DC coefficients are included in the level above.

Coding of mode information for Intra-16x16 mode

See Table 7. Three parameters have to be signalled.  They are all included in MB-type.

Imode:
0,1,2,3

AC:
0 means there are no ac coefficients in the 16x16 block. 1 means that there is at least one ac coefficient and all 16 blocks are scanned.

nc:
CBP for chrominance (see qq)

8.4.4.4
Prediction in intra coding of chrominance blocks

For chrominance prediction there is only one mode.  No information is therefore needed to be transmitted.  The prediction is indicated in Figure QQ.  The 8x8 chrominance block consists of 4 4x4 blocks A,B,C,D.  S0,1,2,3 are the sums of 4 neighbouring samples.

If S0, S1, S2, S3 are all inside the frame:

–
A = (S0 + S2 + 4)/8

–
B = (S1 + 2)/4

–
C = (S3 + 2)/4

–
D = (S1 + S3 + 4)/8

If only S0 and S1 are inside the frame:

–
A = (S0 + 2)/4

–
B = (S1 + 2)/4

–
C = (S0 + 2)/4

–
D = (S1 + 2)/4

If only S2 and S3 are inside the frame:

–
A = (S2 + 2)/4

–
B = (S2 + 2)/4

–
C = (S3 + 2)/4

–
D = (S3 + 2)/4

If S0, S1, S2, S3 are all outside the frame: A = B = C = D = 128

[Ed. Note: This prediction should be considered changed.  What does that last sentence mean?]

 
[image: image7.wmf] 

 

 

A

 

 

 

B

 

 

 

C

 

 

 

D

 

 

 

S1

 

 

 

S0

 

 

 

S2

 

 

 

S3

 

 

 


Figure 8-5 – Prediction of chrominance blocks

8.4.5
Reference picture (ref_idx_fwd)

If PTYPE indicates possibility of prediction from more than one previously-decoded picture, the exact picture to be used must be signalled.  This is done according to the following tables.  If PSTRUCT indicates that the current picture is a frame picture, then the reference picture is a previous frame in the forward reference buffer that was either encoded as a single frame picture or a frame that was encoded as two field pictures and has been reconstructed as a frame.   Thus for frames the following table gives the reference frame:

Code_number
Reference frame

0
The first frame in the forward reference set

1
The second frame in the forward reference set

2
The third frame in the forward reference set

..
..

The reference index parameter is transmitted for each 16x16, 16x8, or 8x16 block. If the macroblock is coded in 8x8 mode, the reference frame parameter is coded once for each 8x8 sub-partition unless the 8x8 sub-partition is transmitted in intra mode. If the UVLC is used for entropy coding and the macroblock type is indicated by codeword 4 (8x8, ref=0), no reference frame parameters are transmitted for the whole macroblock.

If PSTRUCT indicates that the current picture is a field picture, then the reference picture is either a previous field in the reference buffer that was separately encoded as a field picture or a previous field that is half of a frame that was encoded as a frame picture.  Note that for a P field picture, forward prediction from field 1 to field 2 in the same frame is allowed.  For the purpose of determining ref_idx_fwd, a unique reference field number is assigned to each reference field in the reference field (frame) buffer according to its distance from the current field, as shown in Figures 3a and 3b, modified by the fact that smaller code numbers are given to the fields of the same field parity as the current field.  Thus for fields the following table gives the reference field:

[Ed. Note: Make this into a table?]

Code_number
Reference field

0
the last decoded previous field of the same parity (2 fields back)

1
the last decoded previous field of the opposite parity (1 field back)

2
same parity field 4 fields back

3
opposite parity field 3 fields back

..
..


[image: image8.wmf]current field

0

1

2

3

4

5

Ref. Frame (field) Buf.

Ref. Field No.

......

f1

f2

f1

f2

f1

f2

f1

f2

f1

f2

f1

f2

f1

f2

6

7

8

9

10

11


Figure 8-6 - Reference picture number assignment when the current picture is the first field coded in a frame. Solid-line is for frames and dotted-line for fields. f1 stands for field 1 and f2 for field 2.  [Ed. Note: Cumbersome title]


[image: image9.wmf]current field

0

1

2

3

4

5

Ref. Frame (field) Buf.

Ref. Field No.

......

f1

f2

f1

f2

f1

f2

f1

f2

f1

f2

f1

f2

f1

f2

6

7

8

9

10

11


Figure 8-7 - Reference picture number assignment when the current picture is the second field coded in a frame. Solid-line is for frames and dotted-line for fields. f1 stands for field 1 and f2 for field 2.  [Ed. Note: Cumbersome title]

8.4.6
Motion Vector Data (MVD)

If so indicated by MB_type, vector data for 1-16 blocks are transmitted.  For every block a prediction is formed for the horizontal and vertical components of the motion vector.  MVD signals the difference between the vector component to be used and this prediction.  The order in which vector data is sent is indicated in Figure 2. Motion vectors are allowed to point to samples outside the reference frame.  If a sample outside the reference frame is referred to in the prediction process, the nearest sample belonging to the frame (an edge or corner sample) shall be used. All fractional sample positions shall be interpolated as described in subclause 9.2. If a sample referred in the interpolation process (necessarily integer accuracy) is outside of the reference frame it shall be replaced by the nearest sample belonging to the frame (an edge or corner sample). Reconstructed motion vectors shall be clipped to ±19 integer samples outside of the frame. [Ed. Note: What does that mean?  Is the encoder required not to send such out-of-bounds vectors?  Is the decoder required to implement its decoding process by clipping motion vector values?  Are the clipped or unclipped vectors used in MV prediction of subsequent MV's?]

8.4.6.1
Prediction of vector components

With exception of the 16x8 and 8x16 block shapes, "median prediction" (see subclause 8.4.6.1.1) is used.  In case the macroblock may be classified to have directional segmentation the prediction is defined in subclause 8.4.6.1.2.

8.4.6.1.1
Median prediction

In the Figure below the vector component E of the indicated block shall be predicted.  The prediction is normally formed as the median of A, B and C.  However, the prediction may be modified as described below.  Notice that it is still referred to as "median prediction"

A
The component applying to the sample to the left of the upper left sample in E

B
The component applying to the sample just above the upper left sample in E

C
The component applying to the sample above and to the right of the upper right sample in E

D
The component applying to the sample above and to the left of the upper left sample in E


[image: image10.wmf] 

 

 

D B            C

 

 

 

A

 

 

 

E

 

 

 


Figure 8-8 -Median prediction of motion vectors

A, B, C, D and E may represent motion vectors from different reference pictures.  As an example we may be seeking prediction for a motion vector for E from the last decoded picture.  A, B, C and D may represent vectors from 2, 3, 4 and 5 pictures back.  The following substitutions may be made prior to median filtering.

–
If A and D are outside the picture, their values are assumed to be zero and they are considered to have "different reference picture than E".

–
If D, B, C are outside the picture, the prediction is equal to A (equivalent to replacing B and C with A before median filtering).

–
If C is outside the picture or still not available due to the order of vector data (see Figure 2), C is replaced by D.

If any of the blocks A, B, C, D are intra coded they count as having "different reference picture”.  If one and only one of the vector components used in the median calculation (A, B, C) refer to the same reference picture as the vector component E, this one vector component is used to predict E.

8.4.6.1.2
Directional segmentation prediction

If the macroblock where the block to be predicted is coded in 16x8 or 8x16 mode, the prediction is generated as follows (refer to Figure below and the definitions of A, B, C, E above):

a)
Vector block size 8x16:

1)
Left block: A is used as prediction if it has the same reference picture as E, otherwise "median prediction" is used

2)
Right block: C is used as prediction if it has the same reference picture as E, otherwise "median prediction" is used

b)
Vector block size 16x8:

1)
Upper block: B is used as prediction if it has the same reference picture as E, otherwise "median prediction" is used

2)
Lower block: A is used as prediction if it has the same reference picture as E, otherwise "median prediction" is used

If the indicated prediction block is outside the picture, the same substitution rules are applied as in the case of median prediction.


[image: image11.wmf] 

 

 

16x8

 

8x16

 


Figure 8-9 – Directional segmentation prediction

8.4.6.2
Chrominance vectors

Chrominance vectors are derived from the luminance vectors.  Since chrominance has half resolution compared to luminance, the chrominance vectors are obtained by dividing the corresponding luminance motion vectors by two.

Due to the lower resolution of the chrominance array relative to the luminance array, a chrominance vector applies to 1/4 as many samples as the Luminance vector.  For example if the Luminance vector applies to 8x16 Luminance samples, the corresponding chrominance vector applies to 4x8 chrominance samples and if the Luminance vector applies to 4x4 Luminance samples, the corresponding chrominance vector applies to 2x2 chrominance samples.

8.4.7
Coded Block Pattern (CBP)

The CBP contains information of which 8x8 blocks - Luminance and chrominance - contain transform coefficients.  Notice that an 8x8 block contains 4 4x4 blocks meaning that the statement '8x8 block contains coefficients' means that 'one or more of the 4 4x4 blocks contain coefficients'.  The 4 least significant bits of CBP contain information on which of 4 8x8 luminance blocks in a macroblock contains nonzero coefficients.  Let us call these 4 bits CBPY. The ordering of 8x8 blocks is indicated in Figure 3.  A 0 in position n of CBP (binary representation) means that the corresponding 8x8 block has no coefficients whereas a 1 means that the 8x8 block has one or more non-zero coefficients.  

For chrominance we define 3 possibilities:

nc=0:
no chrominance coefficients at all.

nc=1
There are nonzero 2x2 transform coefficients.  All chrominance AC coefficients = 0.  Therefore we do not send any EOB for chrominance AC coefficients.

nc=2
There may be 2x2 nonzero coefficients and there is at least one nonzero chrominance AC coefficient present.  In this case we need to send 10 EOBs (2 for DC coefficients and 2x4=8 for the 8 4x4 blocks) for chrominance in a macroblock.

The total CBP for a macroblock is:  CBP = CBPY + 16xnc

The CBP is signalled with a different codeword for Inter macroblocks and Intra macroblocks since the statistics of CBP values are different in the two cases.

8.4.8
Change of Quantiser Value (DQP)

DQP contains the possibility of changing QP on the macroblock level.  It does not need to be present for macroblocks without nonzero transform coefficients.  More specifically DQP is present for non-skipped macroblocks:

–
If CBP indicates that there are nonzero transform coefficients in the MB or

–
If the MB is 16x16 based intra coded

Code numbers for the DQP are mapped starting from zero corresponding to no change in QP and increasing as the absolute value of the difference increases, not allocating code numbers for difference values leading to overflowing or underflowing QP. The new QP parameter is calculated as follows:

QPnew = QPold + delta_qp

The delta_qp parameter is calculated from the DQP using min_delta_qp =  -12-QPold, max_delta_qp = 39-QPold and sym_delta_qp that is equal to the smaller of the absolute values of min_delta_qp and max_delta_qp:

[image: image12.wmf]î

í

ì

>

-

£

>>

+

=

qp

delta

sym

DQP

qp

delta

sym

DQP

DQP

msign

qp

delta

sym

DQP

DQP

odd

DQP

DQP

isign

qp

delta

_

_

2

),

_

_

)(

(

_

_

2

),

1

))

(

)((

(

_


(8-3)
where isign(DQP) is 1 if DQP is odd and -1 if DQP is even, odd(DQP) is 1 if DQP is odd and 0 if DQP is even, and msign(DQP) is 1 if max_delta_qp has larger absolute value than min_delta_qp and -1 otherwise.


7





6










































































































































































5





4





3





2





1





8














20
Error! No text of specified style in document.



Error! No text of specified style in document.
1

_1079777728.unknown

_1079875024.doc


 







0







 







1







 







0







 







1







 







2







 







3







 







2







 







3







 







4







 







5







 







4







 







5







 







6







 







7







 







6







 







7







 







C







 







A







 







B







 







a







b












_1081259372.unknown

_1079777757.unknown

_1074513116.vsd
current field�

0�

1�

2�

3�

4�

5�

Ref. Frame (field) Buf.�

Ref. Field No.�

6�

......�

f1�

7�

f2�

f1�

f2�

f1�

f2�

f1�

f2�

f1�

f2�

f1�

f2�

f1�

f2�

8�

9�

10�

11�


_1075901918.doc


 







16x8















8x16




































_1079641624.unknown

_1075102298.vsd
current field�

0�

1�

2�

3�

4�

5�

Ref. Frame (field) Buf.�

Ref. Field No.�

6�

......�

f1�

7�

f2�

f1�

f2�

f1�

f2�

f1�

f2�

f1�

f2�

f1�

f2�

f1�

f2�

8�

9�

10�

11�


_1068374912.doc


 







A







 







B







 







C







 







D







 







S1







 







S0







 







S2







 







S3







 












_1070305342.doc


 







D B            C







 







A







 







E







 












