	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

3rd Meeting: Fairfax, Virginia, USA, 6-10 March, 2002
	Document: JVT-C064
Filename: JVT-C064.doc

	Title:
	Byte Stream Format with Byte Alignment Recovery

	Status:
	Input Document to JVT

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Gary Sullivan
One Microsoft Way
Redmond, WA 98052 USA
	
Tel:
Email:
	
+1 (425) 703-5308
garysull@microsoft.com

	Source:
	Microsoft Corp.

1.
Summary

This contribution presents a modification of the prior JVT-B063 method of formatting JVT data into a byte stream with use of start codes in order to address concerns regarding byte alignment loss. The modification preserves the advantages of the prior method (low data expansion overhead for start code emulation prevention, low start code overhead, byte-oriented processing for encoding and decoding, and avoidance of conflict with MPEG-2 Systems start codes) and adds simple byte alignment recovery capability using only byte-oriented processing. The proposed method is actually simpler than the one from JVT-B063 that is in the current design.
2.
Introduction

At the Geneva JVT meeting, our proposed method was adopted for how to carry JVT video in an undifferentiated byte stream, i.e., in a format which enables determining the position of synchronization points in the data by searching for unique start codes [JVT-B063]. In order to be certain of the ability for the start codes to be unique, it is necessary to prevent accidental emulation of the start code values within the payload of the data stream between each pair of start codes. Our contribution provided such a method for start code emulation prevention. This was supported by the group with an intent to apply the emulation prevention process to all NAL payloads (even those that don’t use start codes) in order to ease cross-NAL translation operation. However, that prior contribution was designed with the assumption that byte alignment would always be preserved through the transmission process – i.e., that the data would be transmitted as a sequence of bytes in some form such that the receiver of the data would always be aware of the location of the start of each byte in the sequence of transmitted bytes. Subsequent email discussion has indicated that this assumption may not be universally valid, particularly in the case of the ITU-T Recommendation H.320 transmission environment. We present a modification of the prior method that preserves its primary advantageous attributes and adds simple byte alignment recovery capability using only byte-oriented processing in the encoder and decoder. We also present a simplification of the special-value detection process by careful selection of the numerical values of the codes. As a result, the proposed method is actually simpler than the one in the current design.
3.
Our Proposed Design

3.1
The Structure

Our proposed design for start code prefix and emulation prevention byte values is that

1. Start code prefixes for the picture level and above should be lengthened by one byte to become four bytes long (four bytes for picture level and above, three for slice level and for partitions of slices), and

2. The value of the emulation prevention byte value should be changed from 0xFF to 0x03.

The proposed encoder emulation prevention process is simplified (relative to the current JVT design) to the following single step:

1. Replace each string within the payload of N bytes of value 0x00 followed by a byte that contains zero values in its six MSBs (regardless of the LSB values) with N bytes of value 0x00 followed by a byte equal to 0x03 followed by a byte equal to the last byte of the original data string.

This process is illustrated in Table 1.

Table 1: Proposed Method

	Pattern to Replace
	Replacement Pattern

	N * 0x00, 0x00
	N * 0x00, 0x03, 0x00

	N * 0x00, 0x01
	N * 0x00, 0x03, 0x01

	N * 0x00, 0x02
	N * 0x00, 0x03, 0x02

	N * 0x00, 0x03
	N * 0x00, 0x03, 0x03

In decoder that can lose byte alignment, this process is as follows:

1. Whenever a string of N+1 or more bytes of value 0x00 is found, a start code detection is declared and byte alignment is understood to be recovered such that the first nonzero bit following this string of zeros must be the last bit of a byte-aligned start code.

2. Once byte alignment is established, whenever a string of N bytes of value 0x00 followed by 0x01 is found, a lower-level start code detection is declared.

3. Once byte alignment is established, whenever a string of N bytes of value 0x00 is followed by a byte equal to 0x03, the byte equal to 0x03 is understood to be an emulation prevention byte and is discarded.

In a decoder that cannot lose byte alignment, this process is as follows:

1. Whenever a string of N or more bytes of value 0x00 followed by a byte of value 0x01 is found, a start code detection is declared.

2. Whenever a string of N bytes of value 0x00 is followed by a byte equal to 0x03, the byte equal to 0x03 is understood to be an emulation prevention byte and is discarded.

If byte alignment cannot be lost or has not been lost, a string of N bytes of value 0x00 followed by a byte equal to 0x02 or a string of more than N bytes of value 0x00 followed by anything other than 0x01 indicates an error condition.

Note that this still allows the encoder to insert any number of zero-valued bytes just prior to any start code without harming the ability for the decoder to identify the location of the end of the data payload or the location of the next start code. In fact, any such zero-insertion will add in quicker recovery of byte alignment if the encoder chooses to insert some number of zeros (example: one zero-valued byte) prior to some lower-level start codes). Stuffing bytes prior to start codes do not require processing through the emulation prevention mechanism – only raw bytestream payload data requires such processing. The end of the RBSP can be easily identified as the last non-zero byte prior to the next start code.
3.1
Focus on N=2 (The Current Value of N)

The proposed emulation prevention process is illustrated in Table 1.

The expansion factor (assuming perfectly random input data) is approximately:

[image: image1.wmf]00000024

.

0

256

4

1

=

+

N

 for N=2 (about one byte in four million)

Although this is twice the amount of the current draft design, it is a remarkably low number.

3.2.
Focus on N=1

If we tolerate somewhat more emulation prevention expansion, we could apply the same techniques with N=1 to use a three-byte picture start code prefix and a two-byte slice start code prefix. This would probably reduce the overall total overhead because the extra expansion from emulation prevention would be unlikely to outweigh the benefit gained by shortening the start codes. The expansion factor for N=1 (assuming perfectly random input data) would be approximately:

[image: image2.wmf]000061

.

0

256

4

1

=

+

N

 for N=1 (about sixty bytes per million)

That would be a pretty nice result, as the start code overhead would actually be lower than in some prior standards, due to less overhead for start code prefixes and nearly negligible addition for the emulation prevention.

3.3
Which Value of N?

We cannot make N>2 or it would cause conflict with MPEG-2 Systems start codes. So the question is whether N should be 1 or 2.

The total overhead for the byte stream format (including both the overhead of start code prefixes and emulation prevention bytes) is likely to be significantly lower on average for N=1.

The choice of N should be made by balancing the interests of the byte stream format and the interests of the packet-based format. The intent is for the emulation prevention mechanism to operate in all environments (in order to eliminate the need for low-level data format conversion between environments), while the start code prefixes are only used in the byte stream format. We recognize the argument that the burden of emulation prevention bytes for the packet format should be minimal. However, sixty bytes per million is still a pretty low number.

We note that Lindbergh advocates selection of N=1 in JVT-C095. We concur that this value is best for the byte stream format. We think it is also acceptable for the packet-based format. However, we defer to the judgment of the group on this issue.

3.4
Additional Remarks

We note that the special value of 0x02 following N bytes of 0x00 is vacant for future use. Assigning some meaning to that value may be useful in the future.

We could also swap the treatment of 0x02 and 0x03 if that looks like a better idea. Also, rather than using the first and second bits to indicate special values, we could choose some other two (or more) bits.

4.
Background of the Design
4.1.
The Current JVT Design (From JVT-B063)
The current design uses a start code prefix that contains N bytes equal to 0x00, followed by a byte equal to 0x01, where N=2 and uses a special emulation prevention byte value S, where S = 0xFF. A packet type indicator chosen to avoid conflict with MPEG-2 Systems start codes is sent after the start code prefix. The payload data to be carried is formatted in a manner that prevents its last byte from ever being zero (to enable precise determination of the location of the end of the payload data). A start code emulation prevention method is applied to the payload data as follows:
1. Replace each string within the payload of N bytes of value 0x00 followed by a byte equal to 0x01 with N bytes of value 0x00 followed by a byte equal to S followed by 0x01.
2. Replace each string within the payload of N bytes of value 0x00 followed by a byte equal to S with N bytes of value 0x00 followed by two bytes equal to S.

This is illustrated in Table 2.

In the decoder, the process is as follows:

1. Whenever a string of N or more bytes of value 0x00 is followed by a byte equal to 0x01, a start code detection is declared.
2. Whenever a string of N or more bytes of value 0x00 is followed by a byte equal to S, the byte equal to S is understood to be an emulation prevention byte and is discarded.

Table 2: JVT-B063 Method (in which N=2 and S=0xFF)
	Pattern to Replace
	Replacement Pattern

	N * 0x00, 0x01
	N * 0x00, S, 0x01

	N * 0x00, S
	N * 0x00, S, S

The encoder can also insert any number of zero-valued bytes just prior to any start code without harming the ability for the decoder to identify the location of the end of the data payload or the location of the next start code.

The steady-state emulation prevention overhead expansion factor for the above process (assuming perfectly random input data) for the current design is approximately equal to:

[image: image3.wmf]00000012

.

0

256

2

1

=

+

N

 for N=2 (about one byte in ten million)

4.2.
Byte Alignment Loss and Quick Emulation Interruption
The current design will not function properly in the case of loss of byte alignment. One reason for this is that although the current design prevents emulation of byte-aligned start codes, it does not prevent non-aligned start code emulation.

However, the current start code prefix value has a very nice property. Recall that it consists of N bytes equal to 0x00 followed by a single byte equal to 0x01. (At the bit level, it consists of 8N+7 bits of value zero followed by a bit of value 1.) The nice property is that if the location of this start code is shifted any number of bits relative to the alignment of byte boundaries, the resulting string of bytes will still always contain at least N bytes equal to 0x00, regardless of what values of data precede or follow the start code prefix. The next byte may be equal to something other than 0x01, and perhaps there will be more than N bytes equal to 0x00, but there will always be at least N bytes in a row that are equal to 0x00.

It thus is possible to prevent emulation of all start code prefixes, whether aligned to byte boundaries or not, by ignoring the bit-level behavior and instead just interrupting every sufficiently long string of zero bytes in case the trailing zeros of the previous non-zero byte and the leading zeros in the next byte can possibly add up to the 8N+7 zeros that constitutes a non-byte-aligned start code emulation.

A byte-oriented encoder emulation prevention procedure can then operate as follows:

1. Whenever a string of N bytes of value 0x00 occur in the bitstream, the encoder replaces it with N-1 bytes of value 0x00 followed by a byte equal to S, followed by another byte equal to 0x00.
2. Whenever a string of N-1 bytes of value 0x00 followed by a byte equal to S, the encoder replaces this with N-1 bytes of value 0x00 followed by two bytes equal to S
.
This is illustrated in Table 3.

In the decoder, this process is as follows:

1. Whenever a string of N bytes of value 0x00 followed by any non-zero byte are found, a start code detection is declared and byte alignment is understood to be recovered such that the first nonzero bit must be the last bit of a byte-aligned start code.
2. Once byte alignment is established, whenever a string of N-1 bytes of value 0x00 are followed by a byte equal to S, the byte equal to S is understood to be an emulation prevention byte and is discarded.

Table 3: Quick Interruption Method
	Pattern to Replace
	Replacement Pattern

	(N-1) * 0x00, 0x00
	(N-1) * 0x00, S, 0x00

	(N-1) * 0x00, S
	(N-1) * 0x00, S

Note that this still allows the encoder to insert any number of zero-valued bytes just prior to any start code without harming the ability for the decoder to identify the location of the end of the data payload or the location of the next start code.

However, altering the process in this way would increase the emulation prevention expansion factor to about 256 times the current value, because it expands the input data whenever two patterns of length N bytes are found in the data payload rather than whenever two patterns of length N+1 are found. Thus its expansion factor (assuming perfectly random input data) would be approximately:

[image: image4.wmf]000031

.

0

256

2

=

N

 for N=2 (about thirty bytes per million)

That’s not so bad, but it is more than we hoped.
We could reduce that back to the Geneva level by increasing N – lengthening the start codes by one byte each. However, this would add overhead in another way – in fact it would probably add more overhead on average than the emulation prevention process would (possibly hundreds of bytes per picture in scenarios such as single-row slices with data partitioning in large-format pictures). We therefore propose a combination of the two techniques instead.
4.3.
A Combination Method With Reduced Overhead
Interrupting potential start code prefixes earlier in the emulation prevention process can enable byte alignment recovery, but it adds overhead. Lengthening the start codes would cut the emulation prevention overhead, but that adds another kind of overhead in the form of extra start code data. So our basic proposal is to lengthen some start codes and not others. Specifically, we lengthen the start codes at the picture level and above by one byte, so that the longer codes are the ones sent less frequently while still ensuring a sufficient frequency of long code transmission to enable synchronization recovery at the picture level and for other important data (such as parameter set data). We prevent non-aligned emulation of the longer start codes and prevent byte-aligned emulation of the shorter ones. This allows byte-alignment recovery at least once per picture, which should be sufficient to address the needs of systems that do not preserve byte alignment. Encoders are also allowed to lengthen lower-level start codes if they wish, by simply adding a stuffing byte, which can enable even faster recovery.
So start code prefixes for the picture level and above become N+1 bytes equal to 0x00 followed by a byte equal to 0x01. Start codes for the slice or slice data partition level become N bytes equal to 0x00 followed by a byte equal to 0x01.

The encoder emulation prevention process then becomes as follows:
1. Replace each string within the payload of N+1 bytes of value 0x00 with N bytes of value 0x00 followed by a byte equal to S followed by a byte equal to 0x00 (quick interruption of non-byte-aligned higher-level start codes).
2. Replace each string within the payload of N bytes of value 0x00 followed by a byte equal to 0x01 with N bytes of value 0x00 followed by a byte equal to S followed by 0x01 (normal interruption of byte-aligned lower-level start codes).
3. Replace each string within the payload of N bytes of value 0x00 followed by a byte equal to S with N bytes of value 0x00 followed by two bytes equal to S.

This is illustrated in Table 4.

In the decoder, the process is as follows:

1. Whenever a string of N+1 or more bytes of value 0x00 followed by any non-zero byte is found, a start code detection is declared and byte alignment is understood to be recovered such that the first nonzero bit must be the last bit of a byte-aligned start code.
2. Once byte alignment is established, whenever a string of N bytes of value 0x00 followed by 0x01 is found, a lower-level start code detection is declared.

3. Once byte alignment is established, whenever a string of N bytes of value 0x00 are followed by a byte equal to S, the byte equal to S is understood to be an emulation prevention byte and is discarded.

Table 4: Combination Method
	Pattern to Replace
	Replacement Pattern

	N * 0x00, 0x00
	N * 0x00, S, 0x00

	N * 0x00, 0x01
	N * 0x00, S, 0x01

	N * 0x00, S
	N * 0x00, S, S

Note that this still allows the encoder to insert any number of zero-valued bytes just prior to any start code without harming the ability for the decoder to identify the location of the end of the data payload or the location of the next start code. In fact, any such zero-insertion will add in quicker recovery of byte alignment if the encoder chooses to insert some number of zeros (example: one zero-valued byte) prior to some lower-level start codes.

The expansion factor (assuming perfectly random input data) is then approximately:

[image: image5.wmf]00000018

.

0

256

3

1

=

+

N

 for N=2 (about one byte in six million)

4.4.
A Complexity Reduction Trick
If we examine the operation in the encoder for the combination method of the previous section, its emulation prevention process will search for N zero bytes followed by three different values: 0x00, or 0x01 or S.

Similarly, the decoder will treat those values as special as well. If 0x00 occurs, it must indicate stuffing rather than ordinary data. If 0x01 occurs, it must be a start code, and if S occurs and the decoder has not lost byte alignment, it must be an emulation prevention byte.

It is therefore reasonable to envision a test in the encoder or decoder such as the following:

if(((*ptr) != S) && ((*ptr) != 0x00) && ((*ptr) != 0x01)) {

 pass through the incoming data;

}else{

 do something special;

}
Note that because two of the special values differ by the value of only one bit, a test looking for either of them can be simplified, as in:

if(((*ptr) != S) && ((*ptr) && 0xFE)) {

 pass through the incoming data;

}else{

 do something special;

}
Similarly, we may have cases where the encoder or decoder would prefer to combine the test for 0x01 and S rather than the test for 0x00 and 0x01, such as if a decoder wishes to ignore stuffing bytes and only treat start code detections and emulation prevention bytes as special. We can therefore potentially reduce the complexity of the encoder or decoder emulation processing tests if we set S to some value that differs from 0x01 by the value of only one bit.
We therefore suggest S = 0x03.

We can also reduce the complexity further if we treat the only remaining byte with data only in its two LSB’s as something special as well.

The encoder and decoder test for special values of the final byte of the string then simplifies to:

if((*ptr) & 0xFC) {

 pass through the incoming data;

}else{

 do something special;

}
Our proposal therefore uses S = 0x03.

5.
Conclusion

This proposal retains the beneficial properties of the current design while adding byte alignment recovery capability and actually simplifying the processing requirements.

(Append for Proposal Documents)

JVT Patent Disclosure Form
	International Telecommunication Union
Telecommunication Standardization Sector
	International Organization for Standardization
	International Electrotechnical Commission

	[image: image6.wmf]
	[image: image7.png]1S0
NS

	[image: image8.png]

Joint Video Coding Experts Group - Patent Disclosure Form
(Typically one per contribution and one per Standard | Recommendation)

Please send to:

JVT Rapporteur Gary Sullivan, Microsoft Corp., One Microsoft Way, Bldg. 9, Redmond WA 98052-6399, USA

Email (preferred): Gary.Sullivan@itu.int Fax: +1 425 706 7329 (+1 425 70MSFAX)

This form provides the ITU-T | ISO/IEC Joint Video Coding Experts Group (JVT) with information about the patent status of techniques used in or proposed for incorporation in a Recommendation | Standard. JVT requires that all technical contributions be accompanied with this form. Anyone with knowledge of any patent affecting the use of JVT work, of their own or of any other entity (“third parties”), is strongly encouraged to submit this form as well.

This information will be maintained in a “living list” by JVT during the progress of their work, on a best effort basis. If a given technical proposal is not incorporated in a Recommendation | Standard, the relevant patent information will be removed from the “living list”. The intent is that the JVT experts should know in advance of any patent issues with particular proposals or techniques, so that these may be addressed well before final approval.

This is not a binding legal document; it is provided to JVT for information only, on a best effort, good faith basis. Please submit corrected or updated forms if your knowledge or situation changes.

This form is not a substitute for the ITU ISO IEC Patent Statement and Licensing Declaration, which should be submitted by Patent Holders to the ITU TSB Director and ISO Secretary General before final approval.

	Submitting Organization or Person:

	Organization name
	Microsoft Corp.
	

	Mailing address
	One Microsoft Way, Redmond, Washington, 98052 USA
	

	Country
	USA
	

	Contact person
	Gary J. Sullivan
	

	Telephone
	+1 (425) 703-5308
	

	Fax
	+1 (425) 706-7329
	

	Email
	garysull@microsoft.com
	

	Place and date of submission
	May 6, 2002, JVT meeting C, Fairfax, Virginia, USA
	

	Relevant Recommendation | Standard and, if applicable, Contribution:

	Name (ex: “JVT”)
	JVT
	

	Title
	Byte Stream Format with Byte Alignment Recovery
	

	Contribution number
	JVT-C064
	

	
	
	

(Form continues on next page)

	Disclosure information – Submitting Organization/Person (choose one box)

	
	

	[image: image9.wmf]
	2.0
The submitter is not aware of having any granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

or,

	The submitter (Patent Holder) has granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution. In which case,

	[image: image10.wmf]
	2.1
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a free license to an unrestricted number of applicants on a worldwide, non-discriminatory basis to manufacture, use and/or sell implementations of the above Recommendation | Standard.

	
	

	[image: image11.wmf]
	2.2
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a license to an unrestricted number of applicants on a worldwide, non-discriminatory basis and on reasonable terms and conditions to manufacture, use and/ or sell implementations of the above Recommendation | Standard.

Such negotiations are left to the parties concerned and are performed outside the ITU | ISO/IEC.

	
	

	X
	2.2.1
The same as box 2.2 above, but in addition the Patent Holder is prepared to grant a “royalty-free” license to anyone on condition that all other patent holders do the same.

	
	

	[image: image12.wmf]
	2.3
The Patent Holder is unwilling to grant licenses according to the provisions of either 2.1, 2.2, or 2.2.1 above. In this case, the following information must be provided as part of this declaration:

· patent registration/application number;
· an indication of which portions of the Recommendation | Standard are affected.
· a description of the patent claims covering the Recommendation | Standard;

	In the case of any box other than 2.0 above, please provide the following:

	Patent number(s)/status
	
	

	Inventor(s)/Assignee(s)
	
	

	Relevance to JVT
	
	

	Any other remarks:
	
	

	(please provide attachments if more space is needed)

(form continues on next page)

Third party patent information – fill in based on your best knowledge of relevant patents granted, pending, or planned by other people or by organizations other than your own.

	Disclosure information – Third Party Patents (choose one box)

	
	

	X
	3.1
The submitter is not aware of any granted, pending, or planned patents held by third parties associated with the technical content of the Recommendation | Standard or Contribution.

	[image: image13.wmf]
	3.2
The submitter believes third parties may have granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

	For box 3.2, please provide as much information as is known (provide attachments if more space needed) - JVT will attempt to contact third parties to obtain more information:

	3rd party name(s)
	
	

	Mailing address
	
	

	Country
	
	

	Contact person
	
	

	Telephone
	
	

	Fax
	
	

	Email
	
	

	Patent number/status
	
	

	Inventor/Assignee
	
	

	Relevance to JVT
	
	

	
	
	

	Any other comments or remarks:

� Note re item 2: A lower-overhead alternative would insert here only in the case of N-1 bytes of value 0x00 followed by a byte equal to S and also followed by a byte equal to 0x00, which would reduce the overhead by approximately a factor of two, but this would complicate the design by requiring variable-length processing.

File:Document3
Page: 1
Date Saved: 2002-04-15

_1080394592.unknown

_1080394627.unknown

_1080395575.unknown

_1080394491.unknown

_1080394538.unknown

