	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

3rd Meeting: Fairfax, Virginia, USA, 6-10 May, 2002
	Document: JVT-C057
Filename: JVT-C057.doc

	Title:
	Evaluation of Adaptive Interpolation Filter for Realtime Applications

	Status:
	Input Document to JVT

	Purpose:
	Information

	Author(s) or
Contact(s):
	Arild Fuldseth
TANDBERG
Philip Pedersens v. 22, 1366 Lysaker
NORWAY
	
Tel:
Email:
	

arild.fuldseth@tandberg.no

	Source:
	Tandberg

1 Introduction
The current H.26L codec uses a 6-tap interpolation filter, (1,-5,20,20,-5,1)/32 to obtain values at half pixel positions during motion compensation with 1/4 pixel accuracy. In [1], and [2], the use of an adaptive interpolation filter was proposed. The filter coefficients were adapted once per frame, coded, and transmitted to the decoder. Coding gains up to 1.0 dB were reported at the cost of a significant increase in encoder complexity.

In this work, we have elaborated on this approach further. The motivation has been twofold:

1) Reduce the encoder complexity to allow for real-time applications.

2) Increase the coding gain further by use of a more sophisticated adaptation scheme

2 Basic Algorithm

In [1] and [2], the adaptive interpolation filter method is implemented as follows:

1) Perform motion estimation using the fixed interpolation filter, (1,-5,20,20,-5-1)/32.

2) Find the filter coefficients of the adaptive filter by minimizing a cost function. For a candidate filter, the cost function is based on the difference between the original frame and the motion-compensated reference frame. The motion vectors from step 1 are used for this.

3) Perform motion-compensated prediction by using the motion vectors from step 1 and the filter coefficients from step 2.

4) Code and transmit the filter coefficients.

3 Reduced Complexity
The increase in encoder complexity compared to using a fixed filter is mainly due to the search for the filter coefficients in step 2 above. In the basic algorithm, this search is achieved by applying a numerical algorithm, searching the entire space of valid filter coefficients. For each candidate filter, a new reference frame with 1/4 pixel resolution needs to be calculated. This is believed to dominate the complexity at the encoder, at least for typical (moderate complexity) implementations of the motion estimation.

In this work, several attempts were made to reduce the complexity of the filter coefficient search:

1) Reducing the number of candidate filters by using a small 'codebook' of candidate filters.

2) Using a 4-tap filter instead of a 6-tap filter. An additional advantage of this is reduced complexity at the decoder side.

We also wanted to evaluate the possibility of extracting good filter parameters directly from other video parameters already available, without evaluating the cost function at all.

4 Improved Adaptation Scheme

Several experiments were conducted:

1) Using different filters in (0,1/2), (1/2,0), and (1/2,1/2) positions respectively.

2) Using different filters in horizontal and vertical positions

3) Adapt the interpolation filter for each block rather than for each frame.

5 Results

We have used the software obtained from Thomas Wedi (based on TML9.0) as a reference, and have made modifications to this version. All experiments were conducted using the full set of testing conditions defined by VCEG.

Basic algorithm

As a starting point, the basic algorithm described in section 2 above was evaluated. The TML9.0 with a fixed filter was used as a reference. Depending on the sequence, the observed reductions in bit rate were in the range 0%-5%. The largest reductions were observed for Tempete and Mobile (CIF, 30 Hz).

Reduced number of candidate filters

A codebook of 128 filters was generated manually by looking at the typical distribution of filter coefficients resulting from the basic algorithm. This resulted in 0%-1% increase in bit rate, compared to the basic adaptive filter algorithm. It is believed that the size of the codebook can be reduced even further without dramatically reducing the performance, especially if the codebook is carefully designed. If the codebook is small enough, the complexity will be smaller than the original numerical search algorithm in the basic algorithm.

Using a 4-tap filter

Two experiments were conducted

1) Fixed 4-tap filter (-1,5,5,-1)/8.

2) Adaptive 4-tap filter with a codebook of 64 filters.

Previously, Telenor has reported a significant difference in performance between using fixed 4-tap and a 6-tap filters [3]. This was confirmed in our experiments as the increase in bit-rate with a fixed 4-tap filter compared to a fixed 6-tap filter was between 0% and 9%. Using an adaptive 4-tap filter made up for some of this loss (less than 3%). However, in no cases did an adaptive 4-tap filter outperform a fixed 6-tap filter. Results for fixed and adaptive filters (6-tap and 4-tap) are illustrated below for one of the test sequences.

Different filters in (0,1/2), (1/2,0), and (1/2,1/2) positions respectively

We used adaptive 4-tap filters for this experiment. In addition to updating the filter once per frame, we used different filters for the different half-pixel positions (0, ½), (1/2,0), and (1/2,1/2). This resulted in less than 1% reduction in bitrate as compared to using the same filter in all pixel positions.

Different filters in horizontal and vertical positions

We used adaptive 4-tap filters for this experiment as well. In addition to updating the filter once per frame, we used different filters for horizontal and vertical filtering. This resulted in less than 1% reduction in bitrate as compared to using the same filter in both directions.
Adapting the interpolation filter for each macroblock

A 4-tap filter was adapted for each 16x16 block rather than for each frame. The gain achieved by better prediction (as compared to adapting the filter for each frame) could not be compensated for by the increased bit rate required to code the filter for each block.

Also, little correlation was observed between the optimal filters for neighbor blocks, making spatial prediction of filters of little interest. This also makes us believe that the possibility of extracting good filter coefficients directly from other video parameters without evaluating the cost function becomes less likely.

6 Conclusions

For real-time applications, we do not recommend to include adaptive interpolation filters in the standard. This is because we believe the added encoder complexity is not justified by the moderate increase in compression efficiency.

References

[1]
T. Wedi, “Adaptive Interpolation Filter for H.26L”, ITU-T SG16/Q6, doc. VCEG-N28, Santa Barbara, Sep. 2001.

[2]
T. Wedi, “More Results on Adaptive Interpolation Filter for H.26L”, ITU-T SG16/Q6, doc. VCEG-O16, Pattaya, Dec. 2001.

[3]
G. Bjøntegaard, “Motion Compensation with ¼ Pixel Accuracy”, ITU-T SG16/Q15, Geneva, Feb., 2000 (ftp://standard.pictel.com/video-site/Telenor-filters.doc).

[image: image1.emf]02004006008001000120014001600

26

27

28

29

30

31

32

33

34

35

Tempete (CIF, 30 Hz)

bitrate [kbps]

PSNR-Y [dB]

fixed 6-tap

adaptive 6-tap

fixed 4-tap

adaptive 4-tap

File:JVT-C057.doc
Page: 3
Date Saved: 2002-04-29

