	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

3rd Meeting: Fairfax, Virginia, USA, 6-10 May, 2002
	Document: JVT-C038
Filename: JVT-C038.doc

	Title:
	Bounding the complexity of arithmetic decoding

	Status:
	Input Document to JVT

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Frank Bossen
DoCoMo Communications Labs USA
181 Metro Drive Suite 300
San Jose CA 95110 USA
	
Tel:
Email:
	
+1 408 451 4712
bossen@docomolabs-usa.com

	Source:
	DoCoMo Communications Laboratories USA, Inc.

1 Introduction

In the Joint Working Draft 2.0 arithmetic coding is used to increase coding efficiency. Each syntax element is converted into a sequence of binary events (bins) that are compressed by the binary arithmetic coding engine. Compression is achieved by generating less than one output bit per binary event on average. The more skewed the probability distribution of an event, the less bits will be output by the arithmetic coder, on average. When the probability distribution becomes extremely skewed the arithmetic coder can compress approximately 64 binary events into a single bit (considering the current arithmetic coding engine and a probability estimation varying between 64/65 and 126/127). The downside is that for every bit in a bit stream a high number of arithmetic decoding operations may be required. To verify this hypothesis a test pattern was generated and encoded using the available reference software. The test pattern and the encoding parameters were selected such as to maximize the number of binary events. For a test pattern of CIF size and at 30fps, a 0.911Mbps stream was generated. When decoding the obtained bit stream, the arithmetic decoder clearly became the bottleneck in the decoder. To decode 1 second of video from that stream, approximately 1.87 seconds of processing time were needed by the arithmetic decoding core on a 800MHz Mobile Pentium 3 processor. Clearly real-time decoding is not possible under these conditions. This document addresses the issue of bounding the average number of events that are compressed into a single bit in a worst case scenario such as to always guarantee real-time decoding capability. A modification to the arithmetic coder is proposed such as to limit the maximum average number of events per bit. This modification does not impact the coding efficiency in any significant way but does dramatically (by an order of magnitude) reduce the average number of events per bit in worst case scenarios.

2 Worst case analysis

In this section we analyze worst case situations for JWD2. We start by analyzing the case of a single macroblock, then extend it to an entire frame.

We define a context with extreme probability, a context in which the value of each coded event may always be the same (i.e. all ‘0’ or all ‘1’). On average such a context may require no more than 0.015652 bits per event. Note that this number of bits, as all number quoted below, was obtained by processing 100 million events with the arithmetic coding engine and averaging the number of renormalization operations over the number of events.

The table below summarizes the average number of bits per event for different maximum count values (as defined in JWD2).
	Rescale counts on
	Bits per event
	Events per bit

	50
	0.040410
	24.75

	64
	0.031483
	31.76

	100
	0.020071
	49.82

	128
	0.015652
	63.89

2.1 Macroblock level

In this section we construct a scenario that is meant to maximize the number of events per bit in a macroblock. From this case we show how to modify the parameters of the macroblock such as to meet other bit rates.

This scenario is not necessarily the true worst case, but about as bad as it can get. This analysis applies to I-frames only, but similar behavior is expected for P- and B-frames.
Luminance block level:

	Syntax element
	# events (50/100)
	# events (64/128)
	Comment

	IPRED
	8
	
	Always select the least probable (a priori) prediction mode

	COEFF_COUNT
	
	16
	Always 16 coefficients per block

	COEFF
	
	16*4
	All coefficients have value -3 (or alternatively +3)

	Sum
	8
	80
	

Luminance macroblock level:

	Syntax element
	# events (50/100)
	# events (64/128)
	Comment

	MBMODE
	1
	
	Always Intra 4x4 mode

	DQUANT
	1
	
	Always same QP

	CBPY
	4
	
	All coefficients have value -3 (or alternatively +3)

	Blocks
	16*8
	16*80
	

	Sum
	134
	1280
	

Chrominance AC block level:

	Syntax element
	# events (50/100)
	# events (64/128)
	Comment

	COEFF_COUNT
	
	15
	Always 15 coefficients per block

	COEFF
	
	15*4
	All coefficients have value -3 (or alternatively +3)

	Sum
	0
	75
	

Chrominance DC block level:

	Syntax element
	# events (50/100)
	# events (64/128)
	Comment

	COEFF_COUNT
	
	4
	Always 4 coefficients per block

	COEFF
	
	4*4
	All coefficients have value -3 (or alternatively +3)

	Sum
	0
	20
	

Chrominance macroblock level:

	Syntax element
	# events (50/100)
	# events (64/128)
	Comment

	CBPC
	2
	
	All blocks coded

	DC blocks
	
	2*20
	

	AC blocks
	
	8*75
	

	Sum
	2
	640
	

At the macroblock level luminance and chrominance are summed for a total of 136+1920 events and an average bit cost of 65.943120 for QCIF and 32.781496 for CIF.

To obtain figures for higher bit rates a slope of 26.788106 events per bit is used for QCIF and 44.454323 for CIF. Indeed any +/-3 coefficient could be replaced by a +/- 1024 coefficient.

2.2 Frame level

The table below summarizes – for a range of frame sizes, frames rates, and bit rates – the worst case average number of events per bit.

	Frame size
	Frame rate
	Bit rate
	E/B JWD2

	QCIF
	10
	64kbps
	31.27

	QCIF
	15
	128kbps
	30.15

	CIF
	15
	384kbps
	53.72

	CIF
	30
	1Mbps
	51.57

	SDTV
	30
	2Mbps
	56.58

	SDTV
	30
	4Mbps
	50.52

	HDTV
	30
	16Mbps
	53.61

Coming back to the example described in the introduction, the 0.911Mbps stream is the result of 34.066 million binary events, averaging 37.39 events per bit. This number is not so different from the estimation given above (that did not assume a real image source).

3 Constraining the arithmetic coder

In order to constrain the number of events per bit, a counter is used to keep track of the number of events and bits. The counter is initialized to -64 when the arithmetic coder is started. Then the counter is incremented every time a binary event is processed. Whenever renormalization occurs a constant value is subtracted from the counter. The range is scaled only if the counter is negative. If the counter is positive stuffing bits are generated by the arithmetic coder until the counter is negative again. The value by which the counter is decremented determines the maximum number of events per bit. In our experiments we have set this value to 4 (in general the number of events per bit tends to be below 2, so this seems pretty safe in terms of affecting coding efficiency).

Figures 1-4 show flow diagrams of a modified arithmetic decoder.
4 Results

Simulations were run using the release 1.7 of the software to detect any coding efficiency penalty resulting from the proposed changes. Results show that there is no significant difference in coding efficiency between JWD2 and this proposal.
4.1 Container QCIF, 300 frames:
Proposal:

	QP
	SNR Y
	SNR U
	SNR V
	kb/s

	16
	36.19
	40.36
	40.08
	27.22

	20
	33.61
	38.97
	38.38
	16.15

	24
	30.94
	37.25
	36.69
	10.78

	28
	28.13
	36.80
	35.60
	7.33

JM1.7:

	QP
	SNR Y
	SNR U
	SNR V
	kb/s

	16
	36.20
	40.38
	40.08
	27.54

	20
	33.61
	38.96
	38.42
	15.58

	24
	30.93
	37.30
	36.63
	9.68

	28
	28.11
	36.81
	35.61
	5.78

4.2 Foreman QCIF, 400 frames

Proposal:

	QP
	SNR Y
	SNR U
	SNR V
	kb/s

	16
	35.64
	38.87
	39.99
	110.93

	20
	33.12
	37.82
	38.55
	64.03

	24
	30.71
	36.61
	37.08
	37.37

	28
	28.30
	35.94
	36.23
	22.20

JM1.7:

	QP
	SNR Y
	SNR U
	SNR V
	kb/s

	16
	35.63
	38.85
	40.01
	110.72

	20
	33.12
	37.86
	38.57
	64.24

	24
	30.75
	36.65
	37.13
	37.33

	28
	28.29
	35.92
	36.34
	21.79

4.3 News QCIF, 300 frames
Proposal:

	QP
	SNR Y
	SNR U
	SNR V
	kb/s

	16
	36.94
	39.24
	39.69
	68.48

	20
	33.99
	37.56
	38.32
	42.91

	24
	31.15
	36.02
	36.79
	25.79

	28
	28.24
	34.76
	35.51
	15.08

JM1.7:

	QP
	SNR Y
	SNR U
	SNR V
	kb/s

	16
	36.94
	39.18
	39.62
	68.30

	20
	34.01
	37.62
	38.27
	42.95

	24
	31.13
	35.96
	36.80
	25.75

	28
	28.25
	34.74
	35.48
	14.83

4.4 Silent QCIF, 300 frames
Proposal:

	QP
	SNR Y
	SNR U
	SNR V
	kb/s

	16
	36.06
	38.37
	39.08
	76.91

	20
	33.38
	36.62
	37.97
	46.28

	24
	30.88
	35.07
	36.86
	26.22

	28
	28.34
	34.26
	36.25
	14.12

JM1.7:

	QP
	SNR Y
	SNR U
	SNR V
	kb/s

	16
	36.06
	38.37
	39.08
	76.89

	20
	33.38
	36.62
	37.97
	46.25

	24
	30.88
	35.07
	36.86
	25.98

	28
	28.35
	34.26
	36.27
	13.64

4.5 Mobile CIF, 300 frames

Proposal:

	QP
	SNR Y
	SNR U
	SNR V
	kb/s

	16
	34.07
	35.21
	35.11
	1064.83

	20
	30.96
	33.33
	33.19
	545.21

	24
	28.05
	31.42
	31.18
	267.22

	28
	25.19
	30.30
	29.95
	141.55

JM1.7:

	QP
	SNR Y
	SNR U
	SNR V
	kb/s

	16
	34.06
	35.22
	35.12
	1063.97

	20
	30.97
	33.32
	33.19
	544.37

	24
	28.05
	31.41
	31.16
	267.89

	28
	25.19
	30.30
	29.95
	141.27

4.6 Paris CIF, 1000 frames
Proposal:

	QP
	SNR Y
	SNR U
	SNR V
	kb/s

	16
	35.65
	38.34
	38.43
	343.68

	20
	32.69
	36.48
	36.81
	198.36

	24
	29.81
	34.81
	34.96
	111.35

	28
	26.87
	33.30
	33.70
	63.63

JM1.7:

	QP
	SNR Y
	SNR U
	SNR V
	kb/s

	16
	35.65
	38.35
	38.45
	343.56

	20
	32.69
	36.48
	36.81
	198.20

	24
	29.81
	34.81
	34.96
	110.84

	28
	26.87
	33.30
	33.70
	63.16

4.7 Tempete CIF, 260 frames
Proposal:

	QP
	SNR Y
	SNR U
	SNR V
	kb/s

	16
	34.99
	36.65
	38.62
	905.44

	20
	32.20
	35.28
	37.38
	448.82

	24
	29.60
	33.75
	36.03
	222.12

	28
	27.03
	32.80
	35.19
	115.63

JM1.7:

	QP
	SNR Y
	SNR U
	SNR V
	kb/s

	16
	35.00
	36.67
	38.61
	904.85

	20
	32.20
	35.28
	37.37
	449.24

	24
	29.61
	33.77
	36.05
	221.86

	28
	27.01
	32.81
	35.18
	114.94

5 Conclusion

We recommend the adoption of this proposal such as to reduce the number of arithmetic decoding operations in worst case scenarios and hence implementation complexity. In these worst case scenarios, implementation complexity remains significant, and could be further reduced by considering simpler arithmetic coding engines.

It is noted that in some cases performance is degraded by the implementation of this proposal. This however is due to poor binarization of data. Better binarization would alleviate this problem. One prime example is coding of the direct mode in B-frames. JM1.7 always codes CBP information for these macroblocks and does not seem to support the skipped mode. This has signification impact since at very low bit rates 6 events per bit are coded instead of just one.

Figure 1: Start arithmetic decode

[image: image1.emf]START

Bits



 0

V



 0

i



 0

Bits



 Bits-1

Bits < 0?

V



 2*V+(Byte&1)

Byte



 Byte>>1

i



 i+1

i = 16?

Byte



 getByte()

Bits



 Bits+8

R



 0x8000

C



 -64

END

YES

NO

NO

YES

Figure 2: Decode symbol

[image: image2.emf]START

C



 C+1

den



 denT[ctx.sum]

c0



 ctx.sum-ctx.c1

c1



 ctx.c1

rLPS



 (den*R)>>16

C0 < c1?

LPS



 0

cLPS



 c0

LPS



 1

cLPS



 c1

YES NO

rLPS



 rLPS*cLPS

rMPS



 R-rLPS

V >=

rMPS?

Bit



 LPS

V



 V-rMPS

R



 rLPS

Bit



 1-LPS

R



 rMPS

Renormaliza()

UpdateCounts()

END

YES NO

Figure 3: Renormalize

[image: image3.emf]START

R >

0x4000?

R



 2*R

C < 0?

C



 C-4

Bits



 Bits-1

Bits < 0?

Byte



 getByte()

Bits



 Bits+8

V



 2*V+(Byte&1)

Byte



 Byte>>1

END

YES

NO

NO

YES

NO

YES

Figure 4: Update counts

[image: image4.emf]START

Ctx.c1



 Ctx.c1+Bit

Ctx.sum



 Ctx.sum+1

Ctx.sum =

Ctx.max?

C0



 Ctx.sum-Ctx.c1

Ctx.c1 = (Ctx.c1+1)>>1

Ctx.sum = ((c0+1)>>1)+Ctx.c1

END

(Append for Proposal Documents)

JVT Patent Disclosure Form
	International Telecommunication Union
Telecommunication Standardization Sector
	International Organization for Standardization
	International Electrotechnical Commission

	[image: image5.wmf]
	[image: image6.png]1S0
NS

	[image: image7.png]

Joint Video Coding Experts Group - Patent Disclosure Form
(Typically one per contribution and one per Standard | Recommendation)

Please send to:

JVT Rapporteur Gary Sullivan, Microsoft Corp., One Microsoft Way, Bldg. 9, Redmond WA 98052-6399, USA

Email (preferred): Gary.Sullivan@itu.int Fax: +1 425 706 7329 (+1 425 70MSFAX)

This form provides the ITU-T | ISO/IEC Joint Video Coding Experts Group (JVT) with information about the patent status of techniques used in or proposed for incorporation in a Recommendation | Standard. JVT requires that all technical contributions be accompanied with this form. Anyone with knowledge of any patent affecting the use of JVT work, of their own or of any other entity (“third parties”), is strongly encouraged to submit this form as well.

This information will be maintained in a “living list” by JVT during the progress of their work, on a best effort basis. If a given technical proposal is not incorporated in a Recommendation | Standard, the relevant patent information will be removed from the “living list”. The intent is that the JVT experts should know in advance of any patent issues with particular proposals or techniques, so that these may be addressed well before final approval.

This is not a binding legal document; it is provided to JVT for information only, on a best effort, good faith basis. Please submit corrected or updated forms if your knowledge or situation changes.

This form is not a substitute for the ITU ISO IEC Patent Statement and Licensing Declaration, which should be submitted by Patent Holders to the ITU TSB Director and ISO Secretary General before final approval.

	Submitting Organization or Person:

	Organization name
	DoCoMo Communications Laboratories USA, Inc.
	

	Mailing address
	
	

	Country
	
	

	Contact person
	
	

	Telephone
	
	

	Fax
	
	

	Email
	
	

	Place and date of submission
	
	

	Relevant Recommendation | Standard and, if applicable, Contribution:

	Name (ex: “JVT”)
	JVT
	

	Title
	
	

	Contribution number
	JVT-B038
	

	
	
	

(Form continues on next page)

	Disclosure information – Submitting Organization/Person (choose one box)

	
	

	[image: image8.wmf]
	2.0
The submitter is not aware of having any granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

or,

	The submitter (Patent Holder) has granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution. In which case,

	[image: image9.wmf]
	2.1
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a free license to an unrestricted number of applicants on a worldwide, non-discriminatory basis to manufacture, use and/or sell implementations of the above Recommendation | Standard.

	
	

	X
	2.2
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a license to an unrestricted number of applicants on a worldwide, non-discriminatory basis and on reasonable terms and conditions to manufacture, use and/ or sell implementations of the above Recommendation | Standard.

Such negotiations are left to the parties concerned and are performed outside the ITU | ISO/IEC.

	
	

	[image: image10.wmf]
	2.2.1
The same as box 2.2 above, but in addition the Patent Holder is prepared to grant a “royalty-free” license to anyone on condition that all other patent holders do the same.

	
	

	[image: image11.wmf]
	2.3
The Patent Holder is unwilling to grant licenses according to the provisions of either 2.1, 2.2, or 2.2.1 above. In this case, the following information must be provided as part of this declaration:

· patent registration/application number;
· an indication of which portions of the Recommendation | Standard are affected.
· a description of the patent claims covering the Recommendation | Standard;

	In the case of any box other than 2.0 above, please provide the following:

	Patent number(s)/status
	
	

	Inventor(s)/Assignee(s)
	
	

	Relevance to JVT
	
	

	Any other remarks:
	
	

	(please provide attachments if more space is needed)

(form continues on next page)

Third party patent information – fill in based on your best knowledge of relevant patents granted, pending, or planned by other people or by organizations other than your own.

	Disclosure information – Third Party Patents (choose one box)

	
	

	X
	3.1
The submitter is not aware of any granted, pending, or planned patents held by third parties associated with the technical content of the Recommendation | Standard or Contribution.

	[image: image12.wmf]
	3.2
The submitter believes third parties may have granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

	For box 3.2, please provide as much information as is known (provide attachments if more space needed) - JVT will attempt to contact third parties to obtain more information:

	3rd party name(s)
	
	

	Mailing address
	
	

	Country
	
	

	Contact person
	
	

	Telephone
	
	

	Fax
	
	

	Email
	
	

	Patent number/status
	
	

	Inventor/Assignee
	
	

	Relevance to JVT
	
	

	
	
	

	Any other comments or remarks:

File:JVT-C038
Page: 3
Date Saved: 2002-04-30

_1080647307.vsd
�

�

START�

C � C+1
den � denT[ctx.sum]
c0 � ctx.sum-ctx.c1
c1 � ctx.c1
rLPS � (den*R)>>16�

C0 < c1?�

LPS � 0
cLPS � c0�

LPS � 1
cLPS � c1�

YES�

NO�

rLPS � rLPS*cLPS
rMPS � R-rLPS�

�

V >= rMPS?�

Bit � LPS
V � V-rMPS
R � rLPS�

Bit � 1-LPS
R � rMPS�

Renormaliza()�

UpdateCounts()�

END�

YES�

NO�

�

_1080650337.vsd
�

�

START�

R > 0x4000?�

R � 2*R�

C < 0?�

C � C-4
Bits � Bits-1�

Bits < 0?�

Byte � getByte()
Bits � Bits+8�

V � 2*V+(Byte&1)
Byte � Byte>>1�

END�

YES�

NO�

NO�

YES�

NO�

YES�

_1080652174.vsd
�

�

START�

Ctx.c1 � Ctx.c1+Bit
Ctx.sum � Ctx.sum+1�

Ctx.sum = Ctx.max?�

C0 � Ctx.sum-Ctx.c1
Ctx.c1 = (Ctx.c1+1)>>1
Ctx.sum = ((c0+1)>>1)+Ctx.c1�

END�

�

_1080645825.vsd
�

�

START�

Bits � 0
V � 0
i � 0�

Bits � Bits-1�

R � 0x8000
C � -64�

Bits < 0?�

V � 2*V+(Byte&1)
Byte � Byte>>1
i � i+1�

END�

i = 16?�

Byte � getByte()
Bits � Bits+8�

YES�

NO�

�

NO�

YES�

�

