	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

3rd Meeting: Fairfax, Virginia, USA, 6-10 May, 2002
	Document: JVT-C029

Filename: JVT-C029.doc

	Title:
	Low-Complexity Arithmetic Coding for CABAC

	Status:
	Input Document to JVT

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	René J. van der Vleuten
Philips Research Laboratories
Prof. Holstlaan 4 (WO-01)

5656 AA Eindhoven

The Netherlands
	
Tel:
Email:
	
+31 402742941
rene.van.der.vleuten@philips.com

	Source:
	Koninklijke Philips Electronics N.V.

1 Introduction

Arithmetic coding is an efficient entropy coding method. However, a straightforward implementation of this method has a high complexity. At the previous JVT meeting in Geneva, the arithmetic coding complexity was slightly reduced by adopting the “CACM+” method. In order to further reduce its complexity, especially when implemented in hardware, we propose an implementation of arithmetic coding that has been optimized to provide a very good trade-off between implementation complexity and compression efficiency. Our proposal significantly reduces the arithmetic coding implementation complexity, while it has a negligible influence on the compression efficiency. The proposal satisfies all the requirements that were set by the CABAC-AHG. A hardware implementation is particularly relevant for high-end applications for which a CPU may not be fast enough, such as e.g. real-time decoding of HDTV, and for low-power mobile applications, because a dedicated implementation has a much higher power efficiency than a CPU.

Experimental results (including software execution speed) are given in Section 2. The proposed method is then described in detail in Section 3, that describes the engine, and in Section 4, that describes the probability model. The engine and model are described separately to improve the clarity of the presentation; in a final implementation, the model and engine can be integrated to minimize the implementation complexity. Whereas Section 2 (except Section 2.2) can be understood without any knowledge of arithmetic coding, in Section 3 and Section 4 it is assumed that the reader is familiar with the principles of arithmetic coding implementation and application.

2 Experimental results

2.1 Common test conditions

The proposed low-complexity arithmetic coding solution for CABAC was evaluated in JM2.0. Both the original JM and the JM modified according to the proposal were run with the same test conditions, as described in VCEG-M75 and more specifically with the following additional settings (following VCEG-N81d1 where applicable): Hadamard transform used, 1 data partition, bit stream file format, R-D optimization enabled, motion vector search range +/- 32, motion vector resolution ¼ pixel, no search range restrictions, 5 ref. frames used in P and B pred., B pictures en/disabled according to the following table:

	Skipped/B pictures
	2 (I..P..P)
	2 (IBBPBBP)
	1 (I.P.P)
	1 (IBPBP)
	0 (IPPP)

	Sequences
	Container, QCIF,300

News, QCIF,300

Foreman, QCIF,300
	Container, QCIF,300

	Paris, CIF,300

Silent Voice, QCIF,300

	Paris, CIF,300

	Mobile CIF 300

Tempete CIF 260

2.2 Arithmetic coding settings

2.2.1 Initialization

The arithmetic coding probability model (see Section 4) was initialized to the same initial probabilities as used in JM2.0. Thus the initial probability of a 1 is set to ini_count_1/(ini_count_1+ini_count_0). The initial value for count (see Section 4, Figure 8) was set to (ini_count_0+ini_count_1) and the initial update speed was set accordingly.

2.2.2 Termination

Usually, the arithmetic encoder will write exactly the same number of bits as are read by the arithmetic decoder. However, when the encoded sequence is terminated, some of the last bits written are redundant.

As discussed on the CABAC-AHG E-mail reflector, efficient termination of the arithmetic encoder is considered important. Therefore, as a good compromise between implementation complexity and compression efficiency, we remove 10 redundant bits, so the decoder always reads 10 more bits than were written by the encoder. In some cases an additional termination bit could be saved, but the complexity of having a variable number of terminating bits does not justify the savings. The savings are possible since the encoded stream is padded to the next byte boundary; the padding bits can be chosen such that a terminating bit can be saved. Similarly, the very first bit output by the encoder is always a 0 and is ignored by the decoder. Hence, one more bit could be saved, but again the complexity is such that this is probably not worth doing.

2.3 Compression results

The detailed bit rate and PSNR results (tables and plots) are given in the included Excel file:

[image: image1.wmf]JVT-C029.xls

As a summary, the Bjontegaard metrics are given also in the following table. As can be observed, the differences are negligible.

	
	Container
	Container+2B
	News
	Foreman
	Paris
	Paris+B
	Silent
	Mobile
	Tempete

	percentage
	0.31
	-2.11
	0.85
	0.85
	0.38
	0.14
	0.98
	0.28
	0.08

	Delta SNR
	-0.016
	0.122
	-0.047
	-0.043
	-0.018
	-0.006
	-0.044
	-0.013
	-0.003

2.4 Software execution speed

To get an impression of execution speed compared to the original JM2.0, the proposed method, as described in Section 3 and Section 4, has been directly implemented in software without any execution-speed optimizations. Thus, the obtained results are a lower limit of what can be achieved in an optimized implementation. Furthermore, the savings in hardware complexity are considerably larger than the savings in software complexity (since the CPU already has complex multiplication and division circuits onboard that can be completely omitted in a hardware design). The decoding time for the function biari_decode_symbol() (including called functions, i.e. rescale_cum_freq() for JM2.0) for decompression of the Mobile CIF sequence (QP=16; other conditions the same as given in Section 2.1) was determined on an SGI IRIX64 IP27 machine on a MIPS R12000 CPU at 300MHz clock frequency using SpeedShop ‘ssrun –ideal’ profiling. The results are given in the following table. The table shows that a speedup by a factor of 1.21 is achieved.

	
	#cycles
	#bits (#calls)
	#cycles/bit
	Time/bit
	Relative time

	JM2.0
	844062542
	16955007
	49.78
	166 ns
	121 %

	Proposed
	696995278
	16979042
	40.99
	137 ns
	100 %

3 Multiplication- and division-free arithmetic coding engine

3.1 Description

The proposed implementation of arithmetic coding uses two finite-size registers, which are called C and A. In the encoder, the C register points to the bottom of the encoding range, the size of which is stored in A. For each new bit to be encoded, the interval is split into two sub-intervals, one of which is selected, according to the value of the bit. The size of each sub-interval corresponds to the probability of the associated bit value. The C register is adjusted to point to the bottom of the sub-interval corresponding to the value of the bit and the A register is set to the size of the selected subinterval. The A register (as well as C) is then normalized (left-shifted), before the next bit is encoded. In the decoder, the C register is filled with bits from the compressed stream and indicates a point inside the interval, rather than the bottom. Depending on the sub-interval pointed to by the C register, either a 0 or a 1 bit is decoded. The use of the A register in the decoder is identical to that of the encoder.

We now give a detailed description of the decoder. The decoder flow diagram is shown in Figure 1. The “Decode bit . . . ” procedure is shown in Figure 2. The implementation always uses a 0 to represent the most-probable bit (MPB) and a 1 to represent the least probable bit (LPB). Thus, the probability of a 1, denoted by p is always less than or equal to ½ (the probability value is represented by an 8-bit integer, i.e. it is scaled by a factor of 256 compared to the mathematical probability that always lies between 0 and 1). Always mapping the MPB to 0 allows for a more efficient hardware implementation; it simplifies, for example, fast decoding of multiple bits in a single step. Since for the true data to be encoded the MPS will not always be 0, the input data is inverted before encoding when necessary, i.e. when the probability P(1)>P(0). The decoder also compares P(1) and P(0) and inverts the decoded bit when it was inverted in the encoder. The process of mapping the MPS to and from 0 can be performed either in the arithmetic coding engine or in the model, or in between the two.

The decoder initialization is shown in Figure 3. The C register is filled by reading 13 bits from the stream. The first bit read is a “dummy” since the size of the C register in the decoder is only 12 bits, one less than in the encoder. There is no special termination in the decoder (the “Terminate” procedure in Figure 1 is empty). The re-normalization in the decoder (the “Renormalize . . . ” procedure in Figure 1) is shown in Figure 4.

3.2 Complexity analysis

To ease the complexity analysis, we provide more details by the pseudo-C code for the relevant decoder parts in Figure 5, Figure 6, and Figure 7. First, Figure 5 shows the size of the A and C registers to be 12 bits and the accuracy of the probability value to be 8 bits. The initialization further consists of filling C with bits from the stream. Since no arithmetic is performed and the initialization is carried out only once, it does not contribute to the complexity. Next, as shown in Figure 7, the renormalization is also performed without arithmetic: it only uses constant shifts and logical operations which have a negligible complexity. The remaining relevant complexity-determining part is thus given in Figure 6.

In the decoding procedure shown in Figure 6, first, the value of A is approximated by a 4-bit number, which is multiplied by p to obtain Z. This (4x8) multiplication can trivially be carried out by at most three (8+8) additions, two of which may be performed in parallel. Alternatively, since the approximation of A can take on only the binary values of 1000…1111, the multiplication can always be implemented using at most two additions or subtractions. In software, performing the multiplication may be faster than decomposing it into additions and/or subtractions, depending on the CPU on which the software is executed. After the value for Z has been obtained, only two additional (12-12) subtractions need to be performed: first A-Z is computed and then C-(A-Z). The output bit and corresponding updates of A and C are then determined by simple logical operations, i.e. at negligible complexity.

Finally, as mentioned in Section 3.1, the most probable bit is always mapped to zero. Determining the most probable bit can be performed using simple logic operations on the most significant bits of the probability values P(0) and P(1), since it is known that their sum P(0)+P(1) always equals 256. In case the model only provides one of the two probabilities, as is the case for our model of Section 4, the other probability value is computed as the 2’s-complement, which is comparable in complexity to an (8+1) addition.

In summary, the total arithmetic coding engine complexity per decoded bit is at most three (8+8) additions, two (12-12) subtractions and one (8+1) addition, or a total of 6 additions/subtractions.

4 Multiplication- and division-free probability model

4.1 Description

The proposed model is based on a low-complexity recursive update of the estimated true probability. Its probability representation matches perfectly with that of the arithmetic coding engine of Section 3. The model uses an adaptive probability update rate designed to match the update rate of the current CABAC probability model. Initially, when not many bits have been en/decoded, the update speed is high so the estimated probability can quickly converge to the true probability. As more bits are en/decoded, the update speed is gradually reduced in order to increase the accuracy of the estimated probability.

The initialization and update of the model are shown in pseudo-C code in Figure 8 and Figure 9, respectively. The probability model operates independently for each individual context. The context-dependency has not been shown in the code in order to clarify the presentation. The value of MV determines the lowest update speed. It can be a constant, as shown in Figure 8, or it can have a different value for each context. The probability estimate is stored in pr1, which has a range of 0 … 2^12 that is a linearly scaled true probability value (i.e. the real-number probability in [0,1] is scaled by a factor of 2^12).

4.2 Complexity analysis

The initialization, shown in Figure 8, is carried out only at the start of a new sequence. Since it also does not contain complex operations, its complexity can be ignored.

The probability update, shown in Figure 9, is performed for each en/decoded bit. The update first requires a subtraction of accuracy less than (13-13) (depending on the initial value of cwr) and a variable shift of at most 6 positions (typically implemented in hardware using a “barrel shifter”). Then, in case the decoded bit was non-zero, an addition of accuracy at most (7+1) (depending on cwl) is required, as well as a variable shift of at most 6 positions (the constant part of the shift can be ignored). In an optimized implementation, the probability model update would be integrated with the encoding engine, so the addition would only be performed in the branch for b=1; for clarity of presentation, we have not done this in the code shown in this proposal.

When the final lowest update speed has not yet been reached, a counter (max value 64) is updated and whenever it reaches the next power of 2, the update speed is halved. The counter is updated at most 64 times after initialization. The weight updates occur at most 6 times. Hence, unless the sequence is very short, the complexity of these updates may be ignored in a software implementation. In hardware, the counters always need to be present of course, but here too, the complexity of the single 6-bit counter and the two 3-bit counters is negligible.

In summary, the total probability update complexity is approximately one addition and one subtraction.

[image: image2.wmf]N

Initialize

Read probability

information

Decode bit

Update A and C

Renormalize

 A

Adjust C

Read bits

End of input?

Terminate

End

Start

Y

Figure 1: Flow diagram of decoder.

[image: image3.wmf]Compute approximate

multiplication:

Z

»

A

·

p

C

³

 A-Z ?

b=0

A=A-Z

b=1

C=C-(A-Z)

A=Z

Start

End

N

Y

Figure 2: Flow diagram for decoder procedure “Decode bit …”. The probability of a 1 is p and the value of the decoded bit is put in b.

[image: image4.wmf]A=0.1…1

C=0.0…0

Start

End

Input next bit b

C=2·C+b

Is C filled ?

N

Y

Figure 3: Flow diagram of decoder “Initialize” procedure.

[image: image5.wmf]Start

End

A < 0.10…0 ?

N

Y

Input next bit b

A=2·A

C=2·C+b

Figure 4: Flow diagram of decoder “Renormalize …” procedure.

#define NP
8

#define NX
4

#define NA
(NP + NX)

#define One
(1 << NA)

#define Half
(1 << (NA - 1))

static unsigned int C, A;

/* Initialize */

{int i;

A = One - 1;

C = 0;

for (i = 0; i <= NA; i++)

 C = (C << 1) | input_bit();

}

Figure 5: Code for Initialization (Figure 3). The procedure input_bit() returns the value of the next bit in the compressed input stream.

/* Renormalize ... */

while (!(A & Half))

 {A <<= 1;

 C = (C << 1) | input_bit();

 }
Figure 6: Code for decoding a bit (Figure 2).

Figure 7: Code for renormalization (Figure 4). The procedure input_bit() returns the value of the next bit in the compressed input stream.

Figure 8: Code to initialize the probability model.

Figure 9: Code to update the probability model for each new bit. The new value of pr1 is the probability used by the arithmetic coding engine to en/decode the next bit (for the engine of Section 3, the 4 least significant bits of pr1 are discarded).

JVT Patent Disclosure Form

	International Telecommunication Union
Telecommunication Standardization Sector
	International Organization for Standardization
	International Electrotechnical Commission

	[image: image6.wmf]
	[image: image7.png]1S0
NS

	[image: image8.png]

Joint Video Coding Experts Group - Patent Disclosure Form
(Typically one per contribution and one per Standard | Recommendation)

Please send to:

JVT Rapporteur Gary Sullivan, Microsoft Corp., One Microsoft Way, Bldg. 9, Redmond WA 98052-6399, USA

Email (preferred): Gary.Sullivan@itu.int Fax: +1 425 706 7329 (+1 425 70MSFAX)

This form provides the ITU-T | ISO/IEC Joint Video Coding Experts Group (JVT) with information about the patent status of techniques used in or proposed for incorporation in a Recommendation | Standard. JVT requires that all technical contributions be accompanied with this form. Anyone with knowledge of any patent affecting the use of JVT work, of their own or of any other entity (“third parties”), is strongly encouraged to submit this form as well.

This information will be maintained in a “living list” by JVT during the progress of their work, on a best effort basis. If a given technical proposal is not incorporated in a Recommendation | Standard, the relevant patent information will be removed from the “living list”. The intent is that the JVT experts should know in advance of any patent issues with particular proposals or techniques, so that these may be addressed well before final approval.

This is not a binding legal document; it is provided to JVT for information only, on a best effort, good faith basis. Please submit corrected or updated forms if your knowledge or situation changes.

This form is not a substitute for the ITU ISO IEC Patent Statement and Licensing Declaration, which should be submitted by Patent Holders to the ITU TSB Director and ISO Secretary General before final approval.

	Submitting Organization or Person:

	Organization name
	Koninklijke Philips Electronics N.V.
	

	Mailing address
	
	

	Country
	
	

	Contact person
	
	

	Telephone
	
	

	Fax
	
	

	Email
	
	

	Place and date of submission
	
	

	Relevant Recommendation | Standard and, if applicable, Contribution:

	Name (ex: “JVT”)
	JVT
	

	Title
	Low-Complexity Arithmetic Coding for CABAC
	

	Contribution number
	JVT-C029
	

	
	
	

(Form continues on next page)

	Disclosure information – Submitting Organization/Person (choose one box)

	
	

	[image: image9.wmf]
	2.0
The submitter is not aware of having any granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

or,

	The submitter (Patent Holder) has granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution. In which case,

	[image: image10.wmf]
	2.1 The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a free license to an unrestricted number of applicants on a worldwide, non-discriminatory basis to manufacture, use and/or sell implementations of the above Recommendation | Standard.

	
	

	
[image: image11.wmf]X

	2.2
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a license to an unrestricted number of applicants on a worldwide, non-discriminatory basis and on reasonable terms and conditions to manufacture, use and/ or sell implementations of the above Recommendation | Standard.

Such negotiations are left to the parties concerned and are performed outside the ITU | ISO/IEC.

	
	

	[image: image12.wmf]
	2.2.1
The same as box 2.2 above, but in addition the Patent Holder is prepared to grant a “royalty-free” license to anyone on condition that all other patent holders do the same.

	
	

	[image: image13.wmf]
	2.3
The Patent Holder is unwilling to grant licenses according to the provisions of either 2.1, 2.2, or 2.2.1 above. In this case, the following information must be provided as part of this declaration:

· patent registration/application number;
· an indication of which portions of the Recommendation | Standard are affected.
· a description of the patent claims covering the Recommendation | Standard;

	In the case of any box other than 2.0 above, please provide the following:

	Patent number(s)/status
	
	

	Inventor(s)/Assignee(s)
	
	

	Relevance to JVT
	
	

	Any other remarks:
	
	

	(please provide attachments if more space is needed)

(form continues on next page)

Third party patent information – fill in based on your best knowledge of relevant patents granted, pending, or planned by other people or by organizations other than your own.

	Disclosure information – Third Party Patents (choose one box)

	
	

	
[image: image14.wmf]
	3.1
The submitter is not aware of any granted, pending, or planned patents held by third parties associated with the technical content of the Recommendation | Standard or Contribution.

	[image: image15.wmf]
	3.2
The submitter believes third parties may have granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

	For box 3.2, please provide as much information as is known (provide attachments if more space needed) - JVT will attempt to contact third parties to obtain more information:

	3rd party name(s)
	
	

	Mailing address
	
	

	Country
	
	

	Contact person
	
	

	Telephone
	
	

	Fax
	
	

	Email
	
	

	Patent number/status
	
	

	Inventor/Assignee
	
	

	Relevance to JVT
	
	

	
	
	

	Any other comments or remarks:

#define MW		6	/* lowest/final update weight/speed */

#define MWV	(1 << (MW+1))

static unsigned int pr1, cwr, cwl, cwv, count;

/* Initialize model */

pr1 = … ;	/* initial probability of a 1 */

		/* pr1 = P(1) * 2^(2*MW), so for e.g. P(1)=1/2: */

		/* pr1 = 1 << (2*MW -1); */

cwr = … ;	/* initial update weight/speed */

/* typically 1 or 2; can be 0…MW */

cwl = 2*MW – cwr;

cwv = 1 << (cwr + 1);

count = 1 << cwr;

/* Decode bit ... */

{unsigned int b, p, Z;

/* Input: p is provided by the "Read probability ..." procedure */

Z = ((A >> NP) | ((A >> (NP - 1)) & 1)) * p;

if (C >= A - Z)

 {b = 1;

 C -= A - Z;

 A = Z;

 }

else

 {b = 0;

 A = A - Z;

 }

/* Output: b is the decoded bit */

}

/* update probability after en/decoding the latest bit */

{unsigned int b; /* latest bit {0,1} that has been en/decoded */

pr1 -= pr1 >> cwr;

pr1 += b << cwl;

if (!(MWV & cwv))	/* final update weight/speed reached? */

 {count++;

 if (count & cwv)

 {cwr++;

 cwl--;

 cwv <<= 1;

 }

 }

}

File:JVT-C029.doc
Page: 13
Date Printed: 26-04-02

_1072877558.ppt

Compute approximate

multiplication:

Z A·p

C  A-Z ?

b=0

A=A-Z

b=1

C=C-(A-Z)

A=Z

Start

End

N

Y

_1081160440.unknown

_1072877245.ppt

Start

End

A < 0.10…0 ?

N

Y

Input next bit b

A=2·A

C=2·C+b

_1072877434.ppt

A=0.1…1

C=0.0…0

Start

End

Input next bit b

C=2·C+b

Is C filled ?

N

Y

_1072869220.doc

_1072874476.ppt

N

Initialize

Read probability

information

Decode bit

Update A and C

Renormalize A

Adjust C

Read bits

End of input?

Terminate

End

Start

Y

_1072869137.doc

XsssX

XX

