	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

3rd Meeting: Fairfax, Virginia, USA, 6-10 May, 2002
	Document:  JVT-C24
Filename: JVT-C24.doc


	Title:
	Notes on JVT IDCT

	Status:
	Input Document to JVT

	Purpose:
	Information

	Author(s) or
Contact(s):
	Louis Kerofsky
5750 NW Pacific Rim Blvd.
CAMAS WA 98607
	
Tel:
Email:
	
(360) 817-7644
lkerofsky@sharplabs.com

	Source:
	Sharp Labs of America


_____________________________
In Geneva, a 16-bit IDCT definition and associated quantization structure were adopted.  The IDCT calculation is normative.  During the development of a 16-bit IDCT, several issues arose and were addressed.  Our purpose is to document these issues and the solutions within the IDCT/quantization design.  The major issues are:

· Equivalent shift/add and separable matrix multiply implementations

· IDCT dynamic range 

· Rounding calculations in second level IDCT
· Compression ratio for fine quantization

· Calculation of QP/6 and QP%6

Equivalent shift/add and separable matrix multiply implementations
We examine the details of equivalent IDCT implementations based on JVT draft standard [1].  The definition of the IDCT is given in version three uses a matrix with entries of +-1 and +-½.  The values of ½ require a definition of rounding.  This definition has been clarified in recent versions i.e. draft seven.  We use the shift-add implementations in the reference code, [3], and present an equivalent matrix multiply calculation.  Software verifying the equivalence of these implementations is provided.

Shift Add implementation.

The test model code gives a shift/add implementation of the IDCT.  Pseudo code for 1D IDCT as given in [3] is repeated below.

.   

// shift add idct implementation M5 to M7

M6[0] = M5[0]+M5[2];

M6[1] = M5[0]-M5[2];

M6[2] = (M5[1]>>1)-M5[3];

M6[3] = M5[1]+(M5[3]>>1);

M7[0] = M6[0]+M6[3];

M7[1] = M6[1]+M6[2];

M7[2] = M6[1]-M6[2];

M7[3] = M6[0]-M6[3];

This calculation precisely defines the rounding requirements at the decoder.  We use this as the definition of the inverse transform.
Seperable matrix multiply implementation

As mentioned in Geneva, an equivalent separable matrix multiply implementation exists.   The pseudo code below gives an implementation with the same result as that above.  Observe that the results of each matrix calculation must be divided by two with correct rounding to give a result equal to that of the shift add implementation shown above.
// Seperable matrix idct implementation M5 to M7

short Tinv[4][4] = {{2,2,2,1},{2,1,-2,-2},{2,-1,-2,2},{2,-2,2,-1}};

for(i=0;i<4;i++)

{

  sum=0;

  for(k=0;k<4;k++)

    sum+=Tinv[i][k]*M5[k];

  // rounding offset

  if(i>1)

    sum+=1;

  // rounding

  M7[i] = sum>>1;

}
Issues

Rounding must be normatively defined.  Due to the rounding following the first separable transform calculation, an equivalent two dimensional filtering implementation does not exist.  Similarly, the order of the 1-D IDCTs must be normatively defined.

IDCT Dynamic Range

We examine the dynamic range required during the IDCT and dequantization operations as defined in [1].  We verify that all multiplication operations and memory accesses can be completed in 16-bits.  Note intermediate results are allowed to exceed 16-bits if the data is scaled before storage.  

First level transform

The residual signal X is a 4x4 matrix of 9-bit signed integers.  The DCT/IDCT calculations are described below.  Six relevant quantities are identified in the equations below.  The dynamic range of these quantities was determined.

Equation 1 DCT/IDCT expressions

[image: image1.wmf]6

2

//

)

'

(

"

'

'

'

'

)

(

'

)

(

X

X

S

Y

X

Z

S

Y

C

dquant

Z

Z

quant

C

T

Y

Z

X

T

Y

T

T

=

·

=

·

=

=

=

·

=

·

=


Specifics about the DCT and IDCT calculations taken from [1] are provided below.


[image: image2.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

=

2

1

2

1

2

1

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

1

1

1

1

1

2

1

1

2

1

1

1

1

S

T



[image: image3.wmf]6

/

)

12

(

15

2

/

)

]

,

,

6

)%

12

[(

]

,

[

(

)

,

(

+

+

+

+

·

=

qp

f

j

i

qp

Q

j

i

Z

qp

Z

quant


d
[image: image4.wmf])

6

/

)

12

((

])

,

,

6

)%

12

[(

]

,

[

(

)

,

(

+

<<

+

·

=

qp

j

i

qp

R

j

i

C

qp

C

quant


Note that the set of input X values forms a 16 dimensional cube [-255,255]16.  A series of matrix operations will map a cube in to a series of parallelepipeds, Figure 1.  The dynamic range is determined by the vertices of this parallelepiped which are the images of the vertices of the input parallelepiped.  Thus it is sufficient to examine the dynamic range required to support operation of each vertex of the domain set.  This significantly reduces the set of values that must be studied.  

[image: image5.wmf]X

Y

Z


Figure 1 Parallelepipeds

For each QP value -12 to 39, the dynamic range of these quantities was determined.  Values of our dynamic range test for QP = -12 to 39 are shown in the table below.  All values lie within 16-bits including sign.

Table 1 Dynamic range of first level DCT/IDCT

	Value
	Minimum
	Maximum

	X
	-255
	255

	Y
	-1530
	1530

	Z
	-9180
	9180

	C
	-1632
	1632

	CDC
	-1632
	1632

	Z’
	-25600
	25600

	Z’DC
	-17920
	17920

	Y’
	-26624
	26624

	X’
	-31360
	31360

	X”
	-490
	490


The dynamic range of X” is significantly larger than the expected 255.  This is a result of extreme quantization error before the IDCT.  For small to moderate QP, the largest X” value is near 255.

Second level IDCT

The second level transform increase the dynamic range of the DC components.  The 2x2 Chroma DC transform increases the DC level by on bit and the 4x4 Luma DC transform increases the DC level by 2 bits.  

Table 2 Dynamic range of second level 2x2 DCT/IDCT

	Value
	Minimum
	Maximum

	Input
	-1632
	1632

	Level
	-3264
	3264

	iLevel
	-35840
	35840


Table 3 Dynamic range of second level 4x4 DCT/IDCT

	Value
	Minimum
	Maximum

	Input
	-1632
	1632

	Level
	-6528
	6528

	iLevel
	-71680
	71680


We see that the traditional order of dequantization before IDCT results in values that exceed 16 bits.  There are two solutions.  First, intermediates can be held in 32-bit registers.  For the 2x2 Chroma DC IDCT four 32-bit registers are required which is reasonable.  A second solution is to use the alternate implementation where the IDCT is calculated on levels prior to dequantization.  This avoids the dynamic range issue and gives an identical result.
Rounding Definitions in 2nd Level IDCT [1] sections 9.3.3.1 and 9.3.3.2
Rounding is used in the dequantization following the second level IDCT on levels. For simplicity we consider the rounding used with the 2x2 Chroma IDCT.  Results are similar for the 4x4 Intra Luma DC.   As we illustrate, the specific rounding rule adopted is not relevant to coding performance

The rounding following the 2x2 IDCT is defined by [1] section 9.3.3.2:
After the inverse transform, inverse quantization is performed according to the following.

a)
If QP is greater than or equal to –6, then the inverse quantized result shall be calculated as

[image: image6.wmf]3

,...,

0

,

],

1

6

/

)

12

[(

)]

0

,

0

,

6

)%

12

((

)

,

(

[

)

,

(

=

-

+

<<

+

×

=

j

i

QP

QP

R

j

i

X

j

i

X

QD

D


(9-9)
b)
If QP is less than –6, then the inverse quantized results shall be calculated by

1)
First, computing


[image: image7.wmf]3

,...,

0

,

),

0

,

0

,

6

)%

12

((

)

,

(

)

,

(

=

+

×

=

j

i

QP

R

j

i

X

j

i

X

QD

FB


(9-10)

2)
Then, computing


[image: image8.wmf]î

í

ì

³

=

otherwise

j

i

X

if

j

i

F

QD

rank

0

0

)

,

(

1

)

,

(



(9-11)
3)
Then, computing


[image: image9.wmf]1

))

,

(

)

,

(

(

)

,

(

>>

+

=

j

i

F

j

i

X

j

i

X

rank

FB

D


(9-12)

The issue is how to round XFB when dividing by 2 when QP<-6.  Note that for QP=-12,-9,-8,-7, R((QP+12)%6,0,0) is even so the rounding used is irrelevant.  In the remaining cases, QP=-11 and -10, different rounding rules are possible but differ only in how values of exactly ½ are rounded.  The results will differ by at most one.
Consider two different rounding rules 1 and 2 giving 2x2 DC Chroma values that differ by one.  We will follow the notation on [1] section 9.3.3.2 and 9.3.3.3.  Following rounding, the inputs to the first level IDCT differ by one in the DC coefficient only. 

Equation 2 Rounding difference following 2x2 Chroma DC IDCT

[image: image10.wmf]1

)

0

,

0

(

'

)

0

,

0

(

'

)

0

,

0

(

)

,

(

)

,

(

'

)

,

(

'

2

1

2

1

=

-

¹

=

Y

Y

j

i

for

j

i

Y

j

i

Y


With this difference, the results following the first level IDCT will differ by at most one.  
Equation 3 Difference following first level IDCT


[image: image11.wmf]1

)

,

(

'

)

,

(

'

2

1

£

-

j

i

X

j

i

X


The final reconstructed sample residual values shall be obtained as:

Equation 4 Final sample residual values


[image: image12.wmf](

)

6

2

)

,

(

'

)

,

(

'

'

5

>>

+

=

j

i

X

j

i

X


From this formula we see that the difference in the rounding rules gives a difference in 1/26 before rounding to the nearest integer.  Even in the few cases where the rounding definitions differ, QP = -11 and -10, the final reconstructed sample residual values are frequently identical.  
Analysis of rounding with the 4x4 Luma DC has similar results.  Rounding differs only for QP = -12, -11, -10, -8, -6, -4, and -3.  The difference in final reconstructed sample residual values is the same.

The rounding definition is normative eliminating the issue of prediction drift.  The specific rounding choice is not relevant.  The reference code uses integer division which rounds toward zero.

Compression performance at fine QP

We evaluate the compression ratio of the test model code [3] for fine quantization QP<0.  For this evaluation we the coding description of the common test conditions VCEG-N81 with two differences, QP values less than zero are used and CABAC is enabled as the entropy coder.
Calculation of QP/6 and QP%6

Quantization and dequantization use a periodic structure of period 6.  Calculation of QP/6 and QP%6 are essential.  Division by six can be avoided by observing the equalities given in Equation 5 for X in [0,130].  

Equation 5 For X in [0,130]


[image: image13.wmf](

)

(

)

6

6

6

%

8

43

6

X

X

X

X

X

×

-

=

>>

×

=


Conclusions

· With appropriate rounding, equivalent shift/add and separable matrix multiply implementations have been verified.

· Identified equivalent definitions/implementations of the second level Hadamard IDCT and dequant.  Improvements in the description were suggested.

· Sixteen bits of precision is sufficient to implement the IDCT and dequantization for QP in [-12, 39].

· The second level IDCT can be computed within 16-bits if dequantization is done following the second level IDCT.

· The compression ratio at fine quantization has been examined.
· Efficient means for calculating division by six in the range of interest has been presented. 

References

[1] T.Wiegand G.Sullivan, “Working Draft Number 2, Revision 3 (WD-2r3)”, JVT-B118r3.doc, Apr. 11, 2002.

[2] T.Wiegand G.Sullivan, “Working Draft Number 2, Revision 4 (WD-2 rev 5)”, JVT-B118r7.doc, Apr. 11, 2002.

[3] JVT reference code JM1.7.
APPENDIX Source code segments

4x4 DC IDCT from ldecod/src/block.c

/*!

 ***********************************************************************

 * \brief

 *    invers  transform

 ***********************************************************************

 */

void itrans_2(

   struct img_par *img) //!< image parameters

{

  int i,j,i1,j1;

  int M5[4];

  int M6[4];

  int qp_per = (img->qp-MIN_QP)/6;

  int qp_rem = (img->qp-MIN_QP)%6;

  // horizontal

  for (j=0;j<4;j++)

  {

    for (i=0;i<4;i++)

      M5[i]=img->cof[i][j][0][0];

    M6[0]=M5[0]+M5[2];

    M6[1]=M5[0]-M5[2];

    M6[2]=M5[1]-M5[3];

    M6[3]=M5[1]+M5[3];

    for (i=0;i<2;i++)

    {

      i1=3-i;

      img->cof[i ][j][0][0]= M6[i]+M6[i1];

      img->cof[i1][j][0][0]=M6[i]-M6[i1];

    }

  }

  // vertical

  for (i=0;i<4;i++)

  {

    for (j=0;j<4;j++)

      M5[j]=img->cof[i][j][0][0];

    M6[0]=M5[0]+M5[2];

    M6[1]=M5[0]-M5[2];

    M6[2]=M5[1]-M5[3];

    M6[3]=M5[1]+M5[3];

    for (j=0;j<2;j++)

    {

      j1=3-j;

      img->cof[i][j][0][0] = ((M6[j]+M6[j1])*dequant_coef[qp_rem][0][0]<<qp_per)/4;

      img->cof[i][j1][0][0]= ((M6[j]-M6[j1])*dequant_coef[qp_rem][0][0]<<qp_per)/4;

    }

  }

}

2x2 Chroma DC IDCT from ldecod\src\macroblock.c
  // chroma 2x2 DC coeff

  if(cbp>15)

  {

    for (ll=0;ll<3;ll+=2)

    {

      for (i=0;i<4;i++)

        img->cofu[i]=0;

      coef_ctr=-1;

      level=1;

      for(k=0;(k<5)&&(level!=0);k++)

      {

        if (IS_INTRA (currMB))

        {

          currSE.context = 6; // for choosing context model

          currSE.type  = SE_CHR_DC_INTRA;

        }

        else

        {

          currSE.context = 5; // for choosing context model

          currSE.type  = SE_CHR_DC_INTER;

        }





currSE.k = ll; //coeff_count ctx

#if TRACE

        snprintf(currSE.tracestring, TRACESTRING_SIZE, " 2x2 DC Chroma ");

#endif

        if(img->type == B_IMG_1 || img->type == B_IMG_MULT)

          dP = &(currSlice->partArr[partMap[SE_BFRAME]]);

        else

          dP = &(currSlice->partArr[partMap[currSE.type]]);

        if (inp->symbol_mode == UVLC || dP->bitstream->ei_flag)

          currSE.mapping = linfo_levrun_c2x2;

        else

          currSE.reading = readRunLevelFromBuffer_CABAC;

        dP->readSyntaxElement(&currSE,img,inp,dP);

        level = currSE.value1;

        run = currSE.value2;

        len = currSE.len;

        if (level != 0)

        {

          currMB->cbp_blk |= 0xf0000 << (ll<<1) ;

          coef_ctr=coef_ctr+run+1;

          // Bug: img->cofu has only 4 entries, hence coef_ctr MUST be <4 (which is

          // caught by the assert().  If it is bigger than 4, it starts patching the

          // img->predmode pointer, which leads to bugs later on.

          //

          // This assert() should be left in the code, because it captures a very likely

          // bug early when testing in error prone environments (or when testing NAL

          // functionality).

          assert (coef_ctr < 4);

          img->cofu[coef_ctr]=level*dequant_coef[qp_rem_uv][0][0]<<qp_per_uv;

        }

      }

      if (((img->type==SP_IMG_1 || img->type==SP_IMG_MULT) && IS_INTER (currMB)))

      {

        img->cof[0+ll][4][0][0]=(img->cofu[0]>>qp_per_uv)/dequant_coef[qp_rem_uv][0][0];

        img->cof[1+ll][4][0][0]=(img->cofu[1]>>qp_per_uv)/dequant_coef[qp_rem_uv][0][0];

        img->cof[0+ll][5][0][0]=(img->cofu[2]>>qp_per_uv)/dequant_coef[qp_rem_uv][0][0];

        img->cof[1+ll][5][0][0]=(img->cofu[3]>>qp_per_uv)/dequant_coef[qp_rem_uv][0][0];

      }

      else

      {

        img->cof[0+ll][4][0][0]=(img->cofu[0]+img->cofu[1]+img->cofu[2]+img->cofu[3])/2;

        img->cof[1+ll][4][0][0]=(img->cofu[0]-img->cofu[1]+img->cofu[2]-img->cofu[3])/2;

        img->cof[0+ll][5][0][0]=(img->cofu[0]+img->cofu[1]-img->cofu[2]-img->cofu[3])/2;

        img->cof[1+ll][5][0][0]=(img->cofu[0]-img->cofu[1]-img->cofu[2]+img->cofu[3])/2;

      }

    }

  }






File:JVT-C24
Page: 4
Date Saved: 2002-04-29

_1080054607.unknown

_1080054964.unknown

_1080628726.unknown

_1080645957.unknown

_1080628747.unknown

_1080628641.unknown

_1080054922.unknown

_1078147207.unknown

_1079985660.unknown

_1079856049.unknown

_1078063554.unknown

_1078063662.unknown

