	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

2nd Meeting: Geneva, CH, Jan. 29 - Feb. 1, 2002
	Document: JVT-B108
Filename: JVT-B108.doc

Generated: 2002-01-31

	Title:
	Profile and Levels Framework

	Status:
	Output Document

	Purpose:
	Internal “living” JVT document

	Contact:
	Dave Lindbergh
Polycom, Inc.
100 Minuteman Road
Andover, MA 01810 USA

Ajay Luthra
Motorola
6420 Sequence Dr.
San Diego, CA 92121
	
Tel:
Email:

Email:
	
+1 978 292 4351
David.Lindbergh@ties.itu.int

aluthra@gi.com

	Source:
	Dave Lindbergh, Ajay Luthra

Contents

11
Introduction

22
Profiles

43
Levels

84
Issues list

10Annex A - On the Equivalence of BERs and Packet Loss Rates

16Annex B – General rules regarding Profiles and Levels

18Appendix 1 – Effect of Levels on Frame Rates

1
Introduction
This document is the “living” JVT framework for definition of the JVT codec Profiles and Levels. It is expected that this document will be updated at each JVT meeting.

The high-level goals for the framework include (but are not limited to; see Annex B):

1. There should be as few Profiles (interoperability points) as possible; they should be significantly different from each other, even at the expense of some optimization for particular applications.

2. Levels should be defined by a few simple parameters relating to decoder processing and memory capability.

3. Profiles define decoder requirements only, but should be designed with encoder complexity and memory requirements in mind.

4. Profiles should be defined only when their requirements are well-understood, and not in anticipation of “what if” scenarios. We can always add more Profiles later if necessary.

5. Within a given set of algorithmic tools defined by a Profile, an encoder should be able to omit using those tools it finds inappropriate for the situation. Decoders must support the entire set of tools defined for the Profile
NOTE: In this document, the words “pixel” and “pixels” refer to luminance pixels.

2
Profiles
Table 1 below, together with the column heading descriptions, gives the formal definition of the proposed Profiles. Note that, depending on the nature of the algorithmic tools (see discussion below), it is conceivable that no Profiles other than the Baseline Profile may be necessary.

Support of the “Baseline” Profile (at Level 1) is required of all the JVT codec implementations; all other Profiles and Levels above Level 1 are optional.

Table 1 – Profile Requirements

	Profile Name
	Encoder complexity (JVT goal only!)
	Decoder complexity
	Latency
	Levels supported
	Applications (examples only!)

	Baseline:

 Low complexity

 Low latency
	Baseline
	Baseline
	Minimal
	All
	H.320 conv.,

3GPP conv.,

SIP conv.

	High-Performance:

High complexity

Low latency
	Very approx.

2+ times

Baseline
	Very Approx.

2+ times

Baseline
	Minimal
	All
	H.320 conv.,

SIP conv.

	Broadcast/

Streaming/Storage:

 Hi/Lo complexity

 High latency
	No limit
	Baseline

[We may want higher for some apps]
	No limit
	All
	3GPP strmg.,

Strmg (genl),

Entert./DVD

· All Profiles are intended to include support for error-resilience tools at the decoder, as the computational and memory requirements to implement these have not been seen as burdensome, and the encoder can choose to omit use of these tools (saving bits) when the application does not require them. (Maybe not - to be discussed)
Note that the “Encoder complexity” figures in Table 1 are goals for the JVT to use in determining which algorithmic tools belong in each Profile. The Profile itself is a requirement on the decoder only.

A major work item for the JVT must be to propose specific algorithmic features to be included in each Profile. This contribution does not attempt to do so.

2.1
Baseline Profile

The Baseline profile is low complexity and low latency, and at least minimally supports all expected applications, including real-time encoding, so that it can be used as a general-purpose codec and common mode for full interoperability.

· Note that, although Table 1 shows both Encoder and Decoder complexity as “Baseline”, the definitions imply a 4:1 ratio of Encode:Decode cycles. The JVT should consider if this is appropriate.

At a minimum, the Baseline Profile should match previous generation codec performance for the same number of cycles. This Profile is intended to be a widely-used, high-performing codec, not merely a “crippled” least-common-denominator mode.

2.2
High-Performance Profile

The High-Performance Profile is high-complexity and low latency, and is meant to support applications where considerably more codec complexity is acceptable to achieve improved compression performance. Some (but probably not all) of the more complex JVT codec features can be included. However, this must still run in real-time, so complexity is still limited.

· Note that it may be possible to eliminate this Profile completely if support in the decoder of algorithmic tools which require high complexity only in the encoder does not significantly add to decoder complexity.

On the other hand, if support for some performance-improving tools requires considerable extra complexity in the decoder, then this Profile may be necessary.

2.3
Broadcast/Streaming/Storage Profile

This supports applications in which encoding does not have to be performed in real-time. (Note that real-time encoding could still happen, for example a very sophisticated encoder, or an encoder that chooses to not use some of the more complex tools.)

For this Profile, latency is unbounded, and it is assumed that encoding complexity can rise without limit. Decoding complexity should be modest (to enable real-time playback), yet sufficient to allow decoding of the most complex encoder features and have high coding gain.

The intent is that video quality in this low complexity decoder can benefit from considerable additional complexity in the encoder.

· If it can be shown that support of high-latency features (B-frames, etc.) in decoders does not inherently require an additional latency burden when these features are not used by encoders, it is possible that this profile could be merged with the High-Performance Profile.

(More work is needed to determine if B-frame support in fact requires the decoder to add buffering even if B-frames are not used by encoder.)

2.3
Multiple reference pictures

When decoder support for multiple reference pictures is required by a given Profile, the required decoder buffer space for this purpose should be specified in the Profile, in units of pictures at the maximum picture size for each Level. Therefore the buffer required at each Level is a simple function of the maximum picture size (Height * Width, in pixels) for each Level.

Within a given Level, for a given actual picture size (vs. maximum picture size), the actual number of reference pictures supported by the decoder should be specified as a function of the actual picture size in use (H * W, in pixels):

of reference pictures = floor(# specified in Profile * (Max Picture Size / Actual Picture Size))

This should make the best use of available decoder buffer memory.

We’ve agreed to specify some upper bound on total # of ref. pictures, within the formula above.

3
Levels

The definition of support for a given Level is that any picture format/frame rate combination can be decoded where the:

1. Pixel processing rate (in pixels/second) is <= the Level limit given, and,

2. Picture size (Height * Width, in pixels) is <= the Level limit given, and,

3. Both picture Height and picture Width (in pixels) are <= sqrt(LevelLimitPictureSize * 8).

The reasons behind each rule are discussed below.

Table 2, below, gives these limiting values for each Level.

Table 2 – Level Requirements (for decoder)

	Level number
	Peak Processing (pixels/second)
	Max Picture Size (total pixels)
	Progressive support?
	Interlace support?

	1
	380,160
	25,344
	Yes
	No

	2
	760,320
	101,376
	Yes
	No

	3
	1,520,640
	101,376
	Yes
	No

	4
	3,041,280
	101,376
	Yes
	No

	5
	6,082,560
	405,504
	Yes
	Yes

	6
	12,165,120
	786,432
	Yes
	Yes

	7
	22,118,400
	921,600
	Yes
	Yes

	8
	55,296,000
	2,097,152
	Yes
	Yes

	9
	62,208,000
	4,915,200
	Yes
	Yes

	10
	125,829,120
	4,915,200
	Yes
	Yes

	11
	125,829,120
	12,582,912
	Yes
	Yes

	12
	301,989,888
	12,582,912
	Yes
	Yes

Appendix 1 of this contribution shows the effect of these Levels regarding support for commonly encountered picture formats.

These levels span a factor of 1000 in processing rate, and also 1000 in picture size; this is a much larger range than any previous video codec standard has covered in Levels. Therefore more Levels are present, although the spacing between them is not unusual. For any given individual application, only 2 or 3 Levels are likely to be sensible.

Since this Level system is purely a function of Peak Processing rates and Maximum Picture Size, this same system of Levels will be used with all Profiles.

Note that Level 1 is the baseline Level, which must be supported by all implementations of a given Profile.

3.1
Rule 1 – Computational complexity limits

Rule 1 above limits the decoder’s computational ability requirement.

This pixel processing rate limit implies a frame rate limit inversely proportional to the picture size (Height * Width, in pixels) in use. Note that display of decoded video is outside the scope of the JVT codec standard
; some decoder implementations will not include displays at all (video recorders), and display limitations need not cause interoperability failures.

3.2
Rules 2 and 3 – Memory limits

The second and third rules together limit the required decoder buffer memory. “Picture size” means total pixels in the complete picture (both even and odd fields if interlaced).

The third rule limits the additional buffer memory needed around the edges of the picture (in some implementations) to that which would be needed for a picture using an 8:1 Height:Width ratio (in pixels) at the maximum picture size. At the same time, it permits any aspect ratio within this memory limitation. (Note that this is distinct from the “Picture” or “Pixel” aspect ratios, which take pixel shape into account.)

For example, a Level offering a maximum picture size of 101,376 pixels would permit a CIF (352x288) picture (101,376 pixels), or any other format within the picture size limit with a maximum picture dimension of sqrt(101,376*8), or 900 pixels. The widest possible picture would be 900 pixels wide, by anywhere from 1 to 112 pixels high (900x112 = 100,800 pixels).

This rule implies an additional decoder memory requirement of less than 10% at CIF or greater resolution, and less than 5% at SVGA or better resolution, assuming a 16-pixel buffer around all picture edges. For example:

Suppose a Level with a limit of 480,000 pixels. This supports SVGA (800x600 = 480,000). With 16-pixel buffers around all edges, 800x600 requires a total buffer of 832x632, or 525,824 pixels.

The picture height limit is sqrt(480,000*8), or 1959 pixels. The maximum width for a 1959 pixel high picture is (480,000/1959) or 245 pixels. Adding the 16-pixel buffer yields a buffer of 277x1991, or 551,507 pixels. This is 4.9% larger than the SVGA buffer.

3.2
Units and Memory

With regard to Levels, note that the intent is that display picture sizes are in increments of one pixel.

All other picture sizes referenced here are to be rounded up to a whole number of macroblocks (currently 16x16 pixels). (For interlace, this implies 1 macroblock/field, or 2 macroblocks/picture.) [The final specification will be either in units of macroblocks, or in units of pixels which have values equivalent to whole numbers of macroblocks.]

Note that in the Level definitions, pixel count units are used as a proxy for memory (normally specified in units of bits or octets). The reason for this are several:

· Different machine architectures will use different amounts of memory for each pixel (ex: 24, 32, or 64 bits/pixel)

· Different implementations will use more or less memory, depending on algorithms used to implement the standard, tradeoffs between speed and memory size, etc.

· The total amount of memory needed to support a given Level depends on which tools (which Profile) are in use. Some tools may require extra buffers to implement.

Therefore implementers must calculate their own memory requirements to implement each Profile/Level combination, based on their own architecture.

4
Issues list

The following is a “living list” of issues that require further discussion among the JVT experts.

4.1
Tentatively Closed issues

1. Should additional frame rate limits be imposed, beyond those implied by the maximum pixel processing rate (in the Level) and the picture size in use?

a. Yes. The overall limit is 172 Hz, and it applies to all Profiles and Levels. This comes from 2x86 Hz, for use by stereoscopic (alternating left/right) video streams at 86 Hz, the highest refresh rate in common use today. (Note that in most cases the Level-based pixel processing rate limit will impose a much lower maximum frame rate.) [Geneva, 2002-01]

4.2
Open issues

1. For Profiles which use Multiple Reference Frames, how many reference frames (of the maximum picture size for each Level) is the decoder required to support?

2. How should error resilience requirements be specified?

a. [Geneva, 2002-01]: See Annex A to this document.

2. What should be the upper limit on the number of reference frames decoders must support (see section 2.3)?

3. What minimum vector block size (e.g. >=8x8 for baseline) should be specified for each Profile? For each Level?

4. For each Profile, what restrictions, if any, should there be on the maximum vector range inside the picture? Should this vary for each Profile?

a. It was suggested this should be limited somehow, in order to limit memory requirements when implementing the JVT decoder on multiple parallel processors. A limit was proposed of 1/10 of the maximum(Height, Width) of the picture size, in pixels, but no conclusion reached.

b. This should be specified in as a fraction of picture height or width, so it scales with Level.

c. There is a limit now that MVs can’t point more than 19 pixels off the edge of the picture (not quite the same issue).

4. For each Profile, what limits should there be on maximum packet length, VBV buffer size?

a. Email comment:

“First, understand that packet size is something else than the number of bits in a slice, for example when data partitioning is used. So I speak about Slice Size.

A reasonable maximum for a Slice Size for IP transport could be 3 kbyte. This would allow to take advantage from Data Partitioning in environments with an MTU size of 1500 bytes, such as most IP networks.

It may not make sense to reduce the max Slice Size with the transmission bit rate. Yes, modem PPP links have MTU sizes of 500 bytes or less, and wireless may only have 100 bytes or so. But as soon as you go to ISDN (64 kbit/s per channel), the normal MTU size is already 1500 bytes, so that here the 3 kbyte limit would already be advisable.”

b. We need more input on values

c. We think probably this SHOULD NOT scale with Level. Probably they WILL change by NAL.

3. What to do regarding deblocking filtering (complexity scalable)?

4. Should formats other than YCbCr 4:2:0 be considered?

a. Not in version 1. [Geneva, 2002-01]

5. We need proposals for which tools belong in which profiles. We are looking for inputs from our parent organizations (ITU, WG-11) as well as from JVT participants and other interested parties. It is requested that contributions on requirements, Profiles, Levels, complexity, and system interaction be submitted to the parent organizations as well as to JVT.
[end main body text]
Annex A - On the Equivalence of BERs and Packet Loss Rates

Summary

This document proposes a (better) definition “Error Limits” section of a profile/level framework document, as made available in the Pattaya ad hoc report on Profile and Level Definitions. It tries to lay common ground for the discussion of error resilience features in the profile/level contents, based on the general understanding of the JVT group on the issue. Theoretical thoughts lead to formula for the conversion of packet loss rates to bit error rates. Based on the analysis of current error resilience tools and their properties known from H.263 based research, a definition for the Error Limit column of the table in VCEG-O07 is developed. Finally, higher packet lossy error rates are proposed – however, the bit error rates would have to be reduced according to the formula.

Error Resilience in JVT, Common Ground

This section tries to summarize the common understanding of the error resilience principles in video coding.

Here are a number of statements, in no particular order:

· Profiles are used to assign a set of tools to an application. Their main purpose is to facilitate capability negotiation/announcement, and hence to boost interoperability.

· Profiles specify only the decoder capabilities, and not the use of the tools by the encoder

· Many, if not all, error resilience tools are very scalable to adapt to error rates. This adaptation is called the error resilience strength of a tool. A typical example for the strength of the error resilience tool intra refresh is the number of intra MBs used per inter slice.

· A well-designed encoder will adjust the use of tools and their strength according to the network conditions. If no real-time knowledge of the network conditions are available, worst case or average estimations of such conditions will be used. A typical example: in a conversational IP/UDP/RTP based application, well designed encoders adjust the Intra macroblock refresh rate to the loss situation as reported in RTCP receiver reports. Stupid encoders may assume 5% loss rate, and hope for favorable network conditions – or select 20%, and yield equally horrible looking pictures under pretty much all network conditions. In pre-coded environments such as streaming there is not much choice but the second option.

· It is often possible to replace one error resilience tool with others, and gain similar picture quality at the same error rate. However, it seems that only a well chosen set of tools with appropriate strength levels offers the best R/D performance at a given error characteristic.

· There are error resilience tools that work for bit error and packet lossy environments, and others which work only in one of the two environments. (The author honestly hopes that the standardization process will sort out any error resilience tool that does not work for both -- a task, the academic reviewing process is unfortunately not able to fulfill ;-)

· To make things a bit more tricky, there are tools outside the JVT scope that are known to be more efficient than source coding based error resilience. One example may be packet re-transmission (ARQ) or packet based FEC (RFC2733). Most of these apply only for high delay applications. Note: link layer ARQ, as available in some wireless environments, is transparent to the application and not discussed here at all.

· When compared to (end-to-end) transport-based tools, source coding-based error resilience tools tend to be inefficient in terms of bit rate, but beneficial in terms of latency. Hence, source coding based error resilience seems to be the more important the tighter the latency requirements are.

· Finally, and this may be a bit controversial, I have not yet seen any source coding based error resilience tool that needs, in an erasure environment and on average, less than at least three times the number of redundant bits that were lost. Anything more efficient seems to increase the latency to levels unacceptable for conversational applications, or require feedback (or both).

Packet losses and bit errors: the relationship

In academia, and also sometimes in the standardization, there are still a few people that believe that error resilient video coding for bit error prone networks is conceptually different from the coding for packet lossy networks. Clearly, there are a handful of tools that do not help in erasure environments, most of which have to do with syntactic re-synchronization after bit errors, and the detection of the bit error location. Although the author does not at all believe in the efficiency of those tools, he doesn’t want to make a religious statement here, and acknowledges that other opinions exist.

However, the goal of standardization is inter-operability and nothing else, and, hence, a minimum of profiles should be the goal of the profile/level definition process. For this reason, the author would strongly oppose any ideas of creating specific profiles just for the bit error prone world. Hence, it is necessary to come up with a common understanding of the severeness of errors for both bit error prone and packet lossy networks. This sections tries to lay the groundwork for such a comparison, which will, when accepted, allow us in the future to reference just a packet loss rate.

For the purpose of this discussion lets assume that a video packet consists of a number of bits between to synch markers, i.e. a single slice, a single data partition, or a single picture.

Decoder reaction to errors

When a bit error hits a video packet, the normal reaction of a video decoder is to discard all bits after the detection point until the next synchronization marker is reached. Well designed decoders will also discard a number of bits before the detection point, because, due to the low redundancy of coded video, the error detection will often report problems considerably later than the actual error position. There are papers out that describe syntax-based repair mechanisms, however, those do not work well with long error bursts as common in most wireless environments. To make the discussion easier, lets assume that only half of the bits in a video packet that is hit by one or more bit errors are useful for reconstruction – the rest will either increase the error, or will be discarded.

In packet lossy environments, a packet loss means the loss of all the information of the video packet. Please note that all bit error prone transport environments the author is aware of are carrying some form of checksum, so that they can be treated as packet lossy environments as well – at a typically penalty of twice the number of lost video bits, as discussed in the previous paragraph.

MTU Size

The smaller the packets in a wireless environment are chosen, the less likely they are corrupted by bit errors. However, they cannot be chosen extremely small, because in this case the overhead/payload relationship grows to unreasonable numbers. This is true regardless of the way how packetization is achieved – a segment of video bits between synchronization markers is a packet in this sense as well. The MTU size in a wireless environment is typically considered as being relatively small – 100 bytes seems to be a useful number. This number is true regardless of the employed protocol stack, IP or H.324. Please note that the MTU size in satellite based broadcast systems is considerably larger, but the error rates there really do not mandate any form of error resilient video coding, and, hence, they are ignored here. If the author discusses wireless, he means wireless in a 3GPP or similar environment.

In wireline environments, the MTU size is generally chosen one order of a magnitude bigger, because of overhead/payload overhead considerations, and the bit error free nature of most of those networks. In the following, an MTU size of 1000 bytes is assumed.

Error burst length in wireless environments

The average error burst length in wireless environments depends on many factors including the modem type, the strength of link-layer error protection i.e. by forward error correction, and environmental influences such as signal strength and Doppler effect influences. For the sake of simplicity, here a (fixed) error burst length of 20 bits is assumed. Refinement of the following calculation with more accurate data certainly makes sense and is left as a homework for any wireless expert :-)

Please note that it is unreasonable to assume a burst length of 1, which is the case in many of the academic publications concerned with bit error prone environments.

Packet loss rate versus bit error rate: A simple relationship?

Using the assumptions made above, it is easy to calculate, for a given bit error rate, the resulting packet loss rate. The author believes that the numbers below are not too far off the reality, but would certainly welcome more competent research on the topic.

BER: bit error rate, i.e. 10E-3

BurstLen: Bit Error Burst Length, i.e. 20 bits

MTU: MTU Size

[image: image1.wmf]obability

Errors

PacketWith

obability

PacketLoss

rrors

ceBetweenE

Dis

MTU

obability

hErrors

PacketsWit

BER

BurstLen

s

rrorsInBit

ceBetweenE

Dis

Pr

5

.

0

Pr

tan

8

Pr

tan

=

=

=

Here are, for a few BERs, the corresponding packet loss rates

	BER
	Ploss @ 100MTU
	Ploss @ 1000MTU

	1E-2
	20%
	100% (every packet has errors)

	5E-3
	10%
	100%

	1E-3
	2%
	20%

	5E-4
	1%
	10%

	1E-4
	0.2%
	2%

	5E-5
	0.1%
	1%

When the receiver strategy is to discard any video packet containing bit errors – as it is in the current common condition documents do, for good reasons outlined there – then the loss rate has to be doubled.

When looking at the results obtained in the H.263 world, the relationship discussed above doesn’t seem to be too far off the reality. Even when working with very high error resilience strength, packet loss rates of 10% and BERs of 5E-3 show annoying artifacts. The author certainly wouldn’t go so far to call this a reality check, but it is assuring that the obtained numbers seem to have some relationship with the real world of video coding. Again, more precise analysis is certainly desirable.

Overhead necessary for error resilient video coding

Information theory suggests that the minimum amount of redundancy necessary for reconstruction is the same as the loss rate. A typical example for this is the working of re-transmission algorithms, where, on the forward channel, only such information is re-transmitted that got lost.

When operating in a simplex, real-time environment, many of the efficient transport-based mechanisms are inappropriate, because they add delay. Hence, one has to fall back to source coding based error resilience mechanisms. Such mechanisms can be roughly divided into those, which try to limit the impact of errors (e.g. Slices, Data Partitioning) and such, which try to re-establish the reference picture integrity (intra refresh, reference picture selection, SP slices/frames). In the following discussion, the first type is ignored, and an appropriate use of these tools is assumed. Of all the mechanisms of the second type, only intra refresh is a universally useful tool, and, hence it is assumed being the only available tool (the others should IMHO make it into some profiles as well, but for sake of simplicity are not discussed further).

An intra MB is typically at least three times bigger than an inter coded MB. Assuming that we don’t want to see temporal error propagation make an already corrupted picture really annoying, macroblocks should be intra refreshed according to the loss rate. Research done for the H.263 TMN suggested that the intra refresh rate should be roughly the same as the macroblock loss probability, i.e. at 10% loss rate, 10% of the MBs of a picture should be intra coded. When using a loss-aware R/D optimization scheme and checking the bit streams, many simulation conditions yield a intra rate very close to the above mentioned relationship, but high motion environments yield more. Setting the intra refresh rate to the same as the loss rate can, therefore, be reasonably seen as a lower bound. (The author does not want to dive into the problem of the optimal placement strategy – a lot of papers have been published on the topic, but the R/D optimization, by definition, yields the best results).

Encoder settings with respect to the error resilience strength

Considering an intra MB being at least three times as big as an inter MB, and taking into account the number of necessary intra MBs, one can easily calculate that the percentage of bits that have to be spent in intra mode. In a 10% lossy environment, at least 30% of the bits have to be spent for intra, in a 5% environment at least 15%, and so forth. When the link is bandwidth limited (as it is normally the case), the rate control has to be adjusted accordingly to use quantizer levels numerically high enough to allow for the target bit rate.

Finally: Target Error Limit Definition and proposed Error Limits

With the information provided above, it is finally possible to come up with a reasonable definition for a profile performance in an error prone environment.

The following language for the Error Limit definition is proposed:

The Profile contains tools that enable source coding based error resilience for the operation over packet lossy networks with the error limit as specified in the table, and over bit error prone networks with comparable error resilience needs – see [this document] for this the relationship as defined by JVT.

The profile targets an error resilience strong enough so that it is possible to have a PSNR drop of less than 2dB over the average of all pictures of all sequences of the common conditions relevant for the target applications, relative to an error free environment.

The tests have to run under the following conditions:

· For both error prone and error free tests an identical set of error resilience tools at identical strength setting (i.e. same number and same position of intra coded macroblocks, same slice shapes etc.) must be used.

· For each picture, the total amount of bits spend for error resilience, when compared to the coding method specified in the current Test Model for an error free environment within the complexity constraints of that profile, must not be bigger than 6 times the number of lost bits (or the corresponding number in bit error prone environments).

· The MTU size has to be chosen according to the target application.

Please note that the above conditions are inappropriate for feedback-based error resilience tools.

Based on this definition, the author would strongly recommend that there either be a fifth profile for store/forward applications, or the error resilience strengths of the High Complexity, High Latency profile be reduced to 1% or even less. For all other profiles, the author deems it necessary to increase the error resilience strength to at least 10%.

A final note: With the current error resilience tools it is almost impossible to achieve the profile performance for error rates higher than 5%, as specified above.

Annex B – General rules regarding Profiles and Levels

(this was agreed by JVT, Jan 2002)

Number of Interoperability points as low as possible

Profiles@ Levels are interoperability points. The more different Profiles, the less interoperability there will be. Lessons from the past learn that Profiles that are defined based on speculation rather than actual market needs often go unused. Multitudes of unused but still legitimate Profiles harms the credibility of the standard and, again, puts interoperability at risk.

1. There should be as few profiles as possible;

2. Profiles should be significantly different from one another (Note: this may even come even at the expense of some optimization for particular applications.)

3. Within each Profile, there should be as few levels as possible

4. Profiles should be defined only when their requirements are well-understood

5. Profiles (and, to a lesser extent, Levels) should not be standardized in anticipation of "what if" scenarios. We can always add more Profiles later if necessary.

6. Profiles shall only be defined when there is solid support for the Profile, expressed as deployment commitments from multiple companies (Note that there is no need for a profile to establish interoperability within a single company)

· JVT shall not require companies and participants to disclose business plans

7. Profiles shall only be defined if adequate Level definitions are available (Note: these do not necessarily need to be complete; new, notably higher Levels can always be added)

8. Profiles shall only be defined if some conformance bitstreams are available for each of the Levels that use different tools. If possible, these should be successfully exchanged between multiple independent implementations, and successfully passed these tests.

9. It is not necessary that Profiles be defined in any hierarchy, or that support of one Profile necessarily requires support for any other Profile (aside from Baseline Level 1).

Simple and Flexible Definition of Levels

The philosophy should be to keep level definitions as simple as possible, and to allow maximum flexibility in using decoder resources.

1. Levels should be defined by as few and as simple parameters as possible. Ideally these parameters relate to universally present resources like decoder memory requirements and decoder processing capability.

· Parameters that allow the encoding party to make trade-offs (e.g. between frame rate and image size) are preferred

2. When necessary, tools may be specified as only for use at or above, or at or below, a given Level.

Encoders and Decoders

The JVT Coding Standard | Recommendation only defines syntax, semantics, constraints on the syntax, and the decoder, and leaves the encoder to the implementers. In that spirit, Profiles and Levels will only be defined for decoders. However, while profile/level combinations give minimum requirements for decoders, they imply upper bounds on encoders and bitstream complexity.

1. Interoperability points (Profiles and Levels) define decoder requirements only.

2. They should, however, be designed with consideration of encoder complexity and memory requirements.

3. There must not be any individually selectable "options" at the decoder, as this creates non-interoperability.

4. Encoders can always decide to switch off certain tools, while continuing to operate within a conformance point. Only when such tools impose a significant burden on the decoder will there be a reason for a different Profile, according to the rules established under above.

· Example: the encoder can decide to not use bi-directional prediction to lower the delay.

· Example: Error protection can be switched off when no risk of errors exists

Tools must be in Profiles

1. Tools not ultimately included in any Profile at time of FDIS or preparation for Consent will be dropped or deferred to a later phase of work.

· If there is no desire to include a tool in a Profile, then the tool is not required.

· It can always be introduced at a later stage, when the demand does become apparent.

2. There should be no "kitchen sink" profile that contains all tools, solely for that purpose. Profiles should be aimed at practical applications. Any Profile should comply with the rules established above.

Appendix 1 – Effect of Levels on Frame Rates

The following table shows the effective maximum frame rates for each proposed Level, for a variety of commonly encountered picture formats. The blue (shaded) cells are the limit values given in Table 2, the rest are simple calculations.

The frame rates given are Frames Per Second in the context of both Progressive and Interlaced scanning. “30.0” therefore means 30 Frames Per Second for Progressive scanning, and if in interlace mode, it implies 60 Fields per Second, each with one-half the lines of the total picture size.

This contribution does not suggest that only these formats should be supported; this table is merely given as a reference for common picture formats.
	
	Level number:
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	
	Max pixels per second:
	380,160
	760,320
	1,520,640
	3,041,280
	6,082,560
	12,165,120
	22,118,400
	55,296,000
	62,208,000
	125,829,120
	125,829,120
	301,989,888

	
	Max picture size (pixels):
	25,344
	101,376
	101,376
	101,376
	405,504
	786,432
	921,600
	2,097,152
	4.915.200
	4,915,200
	12,582,912
	12,582,912

	Format
	Width
	Height
	Pixels
	
	
	
	
	
	
	
	
	
	
	
	

	SQCIF
	128
	96
	12,288
	30.9
	61.9
	123.8
	172.0
	172.0
	172.0
	172.0
	172.0
	172.0
	172.0
	172.0
	172.0

	QCIF
	176
	144
	25,344
	15
	30.0
	60.0
	120.0
	172.0
	172.0
	172.0
	172.0
	172.0
	172.0
	172.0
	172.0

	QVGA
	320
	240
	76,800
	-
	9.9
	19.8
	39.6
	79.2
	158.4
	172.0
	172.0
	172.0
	172.0
	172.0
	172.0

	SIF
	352
	240
	84,480
	-
	9.0
	18.0
	36.0
	72.0
	144.0
	172.0
	172.0
	172.0
	172.0
	172.0
	172.0

	CIF
	352
	288
	101,376
	-
	7.5
	15.0
	30.0
	60.0
	120.0
	172.0
	172.0
	172.0
	172.0
	172.0
	172.0

	VGA
	640
	480
	307,200
	-
	-
	-
	-
	19.8
	39.6
	72.0
	172.0
	172.0
	172.0
	172.0
	172.0

	4SIF
	704
	480
	337,920
	-
	-
	-
	-
	18.0
	36.0
	65.5
	163.6
	172.0
	172.0
	172.0
	172.0

	4CIF
	704
	576
	405,504
	-
	-
	-
	-
	15.0
	30.0
	54.5
	136.4
	153.4
	172.0
	172.0
	172.0

	SVGA
	800
	600
	480,000
	-
	-
	-
	-
	-
	25.3
	46.1
	115.2
	129.6
	172.0
	172.0
	172.0

	XGA
	1024
	768
	786,432
	-
	-
	-
	-
	-
	15.5
	28.1
	70.3
	79.1
	160.0
	160.0
	172.0

	720p
	1280
	720
	921,600
	-
	-
	-
	-
	-
	-
	24.0
	60.0
	67.5
	136.5
	136.5
	172.0

	4VGA
	1280
	960
	1,228,800
	-
	-
	-
	-
	-
	-
	-
	45.0
	50.6
	102.4
	102.4
	172.0

	SXGA
	1280
	1024
	1,310,720
	-
	-
	-
	-
	-
	-
	-
	42.2
	47.5
	96.0
	96.0
	172.0

	16SIF
	1408
	960
	1,351,680
	-
	-
	-
	-
	-
	-
	-
	40.9
	46.0
	93.1
	93.1
	172.0

	16CIF
	1408
	1152
	1,622,016
	-
	-
	-
	-
	-
	-
	-
	34.1
	38.4
	77.6
	77.6
	172.0

	4SVGA
	1600
	1200
	1,920,000
	-
	-
	-
	-
	-
	-
	-
	28.8
	32.4
	65.5
	65.5
	157.3

	1080i
	1920
	1080
	2,073,600
	-
	-
	-
	-
	-
	-
	-
	26.7
	30.0
	60.7
	60.7
	145.6

	2Kx1K
	2048
	1024
	2,097,152
	-
	-
	-
	-
	-
	-
	-
	26.4
	29.7
	60.0
	60.0
	144.0

	4XGA
	2048
	1536
	3,145,728
	-
	-
	-
	-
	-
	-
	-
	-
	19.8
	40.0
	40.0
	96.0

	16VGA
	2560
	1920
	4,915,200
	-
	-
	-
	-
	-
	-
	-
	-
	12.7
	25.6
	25.6
	61.4

	16SVGA
	3200
	2400
	7,680,000
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	16.4
	39.3

	16XGA
	4096
	3072
	12,582,912
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	10.0
	24.0

Note: XGA is also known as (aka) XVGA; 4SVGA aka UXGA; 16XGA aka 4Kx3

� “Baseline” Encoder Complexity means ~ 180 instructions/pixel (this is guessed to be roughly equivalent to 45 TriMedia cycles/pixel or, 125 Pentium4 cycles/pixel)

“Baseline” Decoder Complexity means ¼ of encoder complexity

“Minimal” Latency means minimal practical latency (no worse than the lowest latency mode of H.263++)

� Display of video may indeed be within the scope of a systems standard.

File: JVT-B108.doc

Page 15 of 18

_1070488344.unknown

