	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

2nd Meeting: Geneva, CH, Jan. 29 - Feb. 1, 2002
	Document: JVT-B038
Filename: JVT-B038.doc

Generated: 2002-01-14

	Title:
	Low Complexity Transform and Quantization – Part I: Basic Implementation

	Status:
	Input Document to JVT

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Antti Hallapuro, Marta Karczewicz
Nokia Research Center
Tampere, Finland

Henrique Malvar
Microsoft Research
Redmond, WA, USA
	Tel:
Email:

Tel:
Email:
	+358718035390
antti.hallapuro@nokia.com
+1(425)706-2978
malvar@microsoft.com

	Source:
	Nokia Corporation and Microsoft Corporation

1 Summary

We propose an alternative set of transforms that have significantly lower computational complexity than those in the current TML draft standard [1]. While the transforms in the draft call for 32-bit arithmetic, the transforms presented here can be computed in 16-bit arithmetic, for 9-bit residual input data. Furthermore, the proposed transforms are multiplier-free; they require only additions and a minimum number of shifts. This document also proposes a simplified quantization structure, which reduces the size of the quantization tables. Impact on performance due to these changes is negligible – typically less than 0.02 dB distance between the R/D curves for TML and the transform/quantization proposed here. In fact, for a typical set of video sequences, the modifications proposed here led to a slight PSNR gain (~0.02 dB) when compared to the current TML.

This document is a revised version of [2], and it includes also some material from [3]. Here, we restrict the discussion to 9-bit residual, present rate-distortion distance data, and discuss some implementation issues. A companion document [4] extends the algorithms of this proposal to include additional features: processing of higher bit-depth pixel data; minor transform modifications that allow for exact inverse transform computation without divisions, in the absence of quantization (thus allowing for lossless encoding); extended quantization tables for finer granularity; and support for transform-domain weighting matrices.

2 Preliminary Considerations

It has been noted that the DCT-like transform and quantization currently employed in TML require 32-bit multiplications. It would be desirable if only 16-bit multiplications were required, since many processors cannot perform 32-bit multiplications with a single instruction. In the following sections we describe how we significantly reduce the computational complexity of the transforms without a performance penalty, using only 16-bit arithmetic.

2.1 Simplified DCT

A 4x4 forward DCT transform can be calculated as follows [5]:

[image: image1.wmf]11121314

21222324

31323334

41424344

T

xxxx

aaaaabac

xxxx

bccbacab

YAXA

xxxx

aaaaacab

xxxx

cbbcabac

éù

éùéù

êú

êúêú

êú

êúêú

==

êú

êúêú

êú

êúêú

êúêú

êú

ëûëû

ëû

where A is the transform matrix whose entries are

[image: image2.wmf](

)

(

)

p

p

=

=×

=×

12

12cos8

12cos38

a

b

c

Considering that A is orthogonal, i.e.
[image: image3.wmf]I

A

A

T

=

, the corresponding inverse transform (IDCT) is

[image: image4.wmf]T

XAYA

=

A butterfly-based factorization of the transform matrix A leads to the following representation of forward transform:

[image: image5.wmf]11121314

21222324

31323334

41424344

0001111111000

00011111000

0001111111000

00011111000

T

YBCXCB

xxxx

ada

xxxx

bdddb

xxxx

ada

xxxx

bdddb

==

éù

éùéùéùéù

êú

êúêúêúêú

êú

êúêúêúêú

êú

êúêúêúê

êú

êúêúêúê

êúêúêúê

êú

ëûëûëûëû

ëû

ú

ú

ú

where
[image: image6.wmf]b

c

d

=

. Since B is a diagonal matrix, one can write above equation as:

[image: image7.wmf](

)

22

11121314

22

21222324

22

31323334

22

41424344

1111111

11111

1111111

11111

T

YCXCE

aabaab

xxxx

d

xxxx

dddabbabb

xxxx

d

aabaab

xxxx

ddd

abbabb

=Ä=

éù

æö

éù

éùéù

êú

ç÷

êú

êúêú

ê

ç÷

êú

êúêú

Ä

ê

ç÷

êú

êúêú

ê

ç÷

êú

êúêú

ç÷

ê

êúêú

êú

ëûëû

ëû

èø

ëû

ú

ú

ú

ú

where (denotes element-by-element multiplication instead of normal matrix multiplication. Since multiplying with elements of matrix E consists of simply scaling the output with constants, this scaling can be combined with the quantization tables at the encoder, and with de-quantization tables at the decoder. Note that there are three distinct values in the elements of the matrix E. Thus, as we discuss later, there are three quantization and de-quantization tables; we choose the one appropriate for the transform coefficient being processed.

The inverse transform for the previously presented DCT can be calculated accordingly as

[image: image8.wmf](

)

T

XCYEC

=Ä

.

The nontrivial coefficient
[image: image9.wmf]210.414213...

d

=-=

 in the transform matrix C is not a rational number, and therefore cannot be implemented exactly using binary arithmetic. We therefore propose that d be approximated by a value that allows for the matrix multiplication to be computed with fixed-point arithmetic. Possible choices include d = 7/16, 3/8, and 1/2, and we propose the simplest choice d = 1/2, since there is virtually no loss in transform coding gain, as discussed in [3].

To maintain orthogonality of the matrix A, that is for
[image: image10.wmf]I

A

A

T

=

, we need to modify b accordingly. Solving for b, we obtain:

[image: image11.wmf]2

1

25

2(1)

b

d

==

+

where, as before, a = 1/2 and
[image: image12.wmf]cdb

=

. So,
[image: image13.wmf]1/10

c

=

.

2.2 Forward Transform Precision

Using the proposed substitution d = 1/2, the forward transform equation becomes

[image: image14.wmf]22

1

2

00010203

11

1

22

22

10111213

2

1

22

20212223

2

11

1

22

30313233

22

2

111

1111

11

111

1111

111

11

111

aabaab

xxxx

xxxx

abbabb

Y

xxxx

aabaab

xxxx

abbabb

æö

é

éù

éù

éù

ç÷

ê

êú

êú

êú

--

--

ç÷

ê

êú

êú

êú

=Ä

ç÷

ê

êú

êú

êú

--

--

ç÷

ê

êú

êú

êú

ç÷

ê

êú

--

êú

ç÷

êú

--

ëû

ëû

ëû

ë

èø

ù

ú

ú

ú

ú

ú

û

Multiplication by a coefficient 1/2 can be implemented using a right shift, but that introduces a truncation error. We avoid that by scaling by two every other row of the first coefficient matrix and every other column of the second coefficient matrix. The forward transform then becomes

[image: image15.wmf](

)

22

2

22

22

00010203

2424

10111213

22

20212223

22

30313233

24

11111211

21121112

11111112

12211211

T

forw

abab

abbabb

abab

abb

YCXCE

aa

xxxx

xxxx

xxxx

aa

xxxx

=Ä=

æö

éù

éùéù

ç÷

êú

êúêú

ç÷

êú

êúêú

Ä

ç÷

êú

êúêú

ç÷

êú

êúêú

ç÷

êúêú

êú

ëûëû

ëû

èø

2

24

abb

éù

êú

êú

êú

êú

êú

êú

ëû

Note that no actual multiplications are necessary to compute the transform, since the transform matrix elements are all equal to ± 1 or ± 2 (a multiplication by two can be implemented as an addition or a left shift), and the final scaling is absorbed by the quantization step. Therefore, we call our proposed transform multiplier-free.

2.3 Dynamic Range

For the forward transform matrix above, if the input values are bound by x < U, then it’s easy to see that the elements of Y prior to multiplication by E are bounded by
[image: image16.wmf]2

gU

, where g is the maximum value for the sum of the absolute values of any row. Since
[image: image17.wmf]2

log365.17

@

, the output coefficients after the 2-D transform above will span 6 more bits than the input. Therefore, for 9-bit input (U = 255) the transform coefficients have a dynamic range of 15 bits. Thus, the 2-D forward transform can be computed with 16-bit arithmetic, without risk of overflow. For the inverse transform, the dynamic range depends on the de-quantization scaling factors. The design presented in the following Section keeps the inverse transform dynamic range at 16 bits, for minimum rounding error without overflow. In TML, both the forward and inverse transforms require 32-bit arithmetic, including many multiplications with 32-bit inputs.

2.4 Inverse Transform Precision

For the inverse transform we use our original construction for d = 1/2, that is

[image: image18.wmf](

)

1

22

2

00010203

11

1

22

22

10111213

2

1

22

20212223

2

1

1

22

30313233

2

2

111

1111

11

111

1111

111

111

T

inv

YCXEC

aabaab

yyyy

yyyy

abbabb

yyyy

aabaab

yyyy

abbabb

=Ä=

æö

éù

éù

éù

ç÷

êú

êú

êú

--

--

ç÷

êú

êú

êú

Ä

ç÷

êú

êú

êú

--

--

ç÷

êú

êú

êú

ç÷

êú

êú

-

êú

ç÷

ëû

--

êú

ëû

ëû

èø

1

2

11

éù

êú

êú

êú

êú

-

êú

ëû

We do not scale the coefficients to avoid the factors equal to 1/2, as we did with the forward transform. Instead, we implement them as right shifts. The small errors introduced are compensated by a larger dynamic range for the data at the input of the inverse transform.

2.5 Quantization

In TML quantization is performed at the encoder by a simple scale-and-shift formula. For each transform coefficient with value K, a quantized coefficient L is computed by

[image: image19.wmf]2020

()2/2

LKAQPf

éù

=´+´

ëû

where |f| typically is in the range [0-0.5] and f has the same sign as K, and QP is the quantization parameter, which varies from 0 to 31. The division can be clearly implemented via a shift operation. Also according to TML, de-quantization is performed at the decoder via a simple scaling, via the formula

[image: image20.wmf]()

KLBQP

¢

=´

where K΄ is the value of the reconstructed transform coefficient. Note that both quantization and de-quantization formulas require 32-bit multiplications.

In TML the QP-dependent scaling factors A(QP) and B(QP) are specified by two tables with 32 entries each [1]. They satisfy A(QP)(B(QP)(6762 (240. Also, they satisfy B(QP+6) (2B(QP), with equality for most cases. In the next section we propose modified quantization tables that absorb the scaling factors from the E matrices and use the periodicity in B(QP+6) = 2B(QP).

3 Proposed Transform and Quantization Steps

In this section we present a step-by-step description of the proposed algorithms for transform and quantization. Familiarity with TML [1] is assumed. The symbol // denotes division with rounding to the nearest integer:

[image: image21.wmf](

)

-

éù

=´+>>

ëû

1

//2sign()abs()2

bb

aaab

3.1 4x4 luma and chroma transform and quantization

Forward transform

We recall that our proposed 2-D transform is defined by:

[image: image22.wmf]00010203

10111213

20212223

30313233

11111211

21121112

11111112

12211211

xxxx

xxxx

Y

xxxx

xxxx

éù

éùéù

êú

êúêú

êú

êúêú

=

êú

êúêú

êú

êúêú

êúêú

êú

ëûëû

ëû

Quantization

As we mentioned before, we implement a periodic quantization table, because the scaling factors change by a factor of two for every increment of six in QP. Thus, our indices into quantization coefficient tables depend only on QP%6, and the quantization and de-quantization formulas depend both on QP%6 and QP/6.

Quantization is performed according to the following equation

[image: image23.wmf](

)

(

)

(

)

17/6

,,%6,,/2,, = 0,,3

QP

Q

YijYijQQPijfij

+

éù

=×+

ëû

K

,

where Y are the transformed coefficients, YQ are the corresponding quantized values, Q are the quantization coefficients, and f is equal to 217+QP/6/3 for intra and 217+QP/6/6 for inter frames, with f having the same sign as the coefficient that is being quantized. The quantization coefficients Q are given in the Appendix. Note that while the intermediate value inside square brackets in the equation above has a 32-bit range, the final value YQ is guaranteed to fit in 16 bits.

De-quantization

De-quantization of coefficients is performed by the equation

[image: image24.wmf](

)

(

)

(

)

,,%6,,,, = 0,,3

Q

YijYijRQPijij

=×

K

,

where YQ are the quantized transform coefficients and R are the de-quantization coefficients. Values of R are given in the Appendix.

Inverse transform

Our proposed 2-D inverse transform is defined by

[image: image25.wmf]1

2

00010203

11

1

22

10111213

2

1

20212223

2

11

1

30313233

22

2

111

1111

11

111

1111

111

11

111

yyyy

yyyy

X

yyyy

yyyy

éù

éù

éù

êú

êú

êú

--

--

êú

êú

êú

=

êú

êú

êú

--

--

êú

êú

êú

êú

--

êú

êú

--

ëû

ëû

ëû

Finally, the inverse transformed coefficients are normalized with

[image: image26.wmf](

)

(

)

(

)

(

)

5

,,26/6

XijXijQP

=+>>-

3.2 4x4 luma DC transform and quantization

The luma DC coefficients of a 16(16 block are grouped into a 4(4 block and further transformed, for intra frames, to improve compression.

Forward transform

The input matrix XD is formed by picking out DC coefficients from the 16 transformed 4(4 blocks. DC coefficients are then transformed using a symmetric Hadamard transform (since it leads to essentially the same performance as the DCT-like transform in TML), in the form:

[image: image27.wmf]00010203

10111213

20212223

30313233

11111111

11111111

//2

11111111

11111111

DDDD

DDDD

D

DDDD

DDDD

xxxx

xxxx

Y

xxxx

xxxx

æö

éù

éùéù

ç÷

êú

êúêú

ç÷

êú

êúêú

=

ç÷

êú

êúêú

ç÷

êú

êúêú

ç÷

êúêú

êú

ëûëû

ëû

èø

We note that each of the 1-D row or column transforms above can be computed by a butterfly structure that uses 8 additions per row or column.

Quantization

Quantization is performed using the following equation

[image: image28.wmf](

)

(

)

(

)

18/6

,,%6,0,02/2,, = 0,,3

QP

QDD

YijYijQQPfij

+

éù

=×+×

ëû

K

,

where f is defined as before.

Inverse transform

An inverse Hadamard transform must be used, since the forward transform was a Hadamard. If YQD are the quantized luma DC coefficients then the inverse transform is defined by

[image: image29.wmf]00010203

10111213

20212223

30313233

11111111

11111111

11111111

11111111

QDQDQDQD

QDQDQDQD

QD

QDQDQDQD

QDQDQDQD

yyyy

yyyy

X

yyyy

yyyy

éù

éùéù

êú

êúêú

êú

êúêú

=

êú

êúêú

êú

êúêú

êúêú

êú

ëûëû

ëû

De-quantization

De-quantization of coefficients is computed by the equation

[image: image30.wmf](

)

(

)

(

)

,,%6,0,0//4,, = 0,,3

DQD

XijXijRQPij

éù

=×

ëû

K

,

Note that the order of inverse transform and de-quantization of DC coefficients is changed. It does not influence the results as long as scaling is done after both of them, i.e. Y = (AT(X*k)A)/4 is equal to Y = ((ATXA)*k)/4. However, it is better to do inverse transform first, to achieve the best possible dynamic range during inverse transform computations.

3.3 2x2 chroma DC transform and quantization

Forward transform

Chroma DC transform is added on top of chroma transform. Input matrix is formed by picking out DC coefficients from the 4 transformed 4x4 blocks. If these coefficients are denoted as XD then transform is computed as

[image: image31.wmf]0001

1011

1111

1111

DD

D

DD

xx

Y

xx

éù

éùéù

=

êú

êúêú

--

ëûëû

ëû

Quantization

Quantization is performed using the following equation

[image: image32.wmf](

)

(

)

(

)

18/6

,,%6,0,02/2,, = 0,1

QP

QDD

YijYijQQPfij

+

éù

=×+×

ëû

,

where f is defined as before.

Inverse transform

Chroma DC inverse transform is computed in the same way as in TML-9, except that scaling by ½ is moved to de-quantization:

[image: image33.wmf]ú

û

ù

ê

ë

é

-

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

-

=

1

1

1

1

1

1

1

1

11

10

01

00

QD

QD

QD

QD

QD

Y

Y

Y

Y

X

De-quantization

De-quantization of chroma DC coefficients is based on the equation

[image: image34.wmf](

)

(

)

(

)

,,%6,0,0//2,, = 0,1

DQD

XijXijRQPij

éù

=×

ëû

,

Also for chroma the order of inverse transform and de-quantization of DC coefficients is changed.

3.4 Decoder conformance

Since the de-quantization and inverse transform specified in the previous subsections all employ integer arithmetic, all conformant decoders should produce exactly the same decoded residuals, for all valid input quantized transform data. We define as valid quantized transform data any combination of quantized transform coefficients that results in no value outside the range of a 16-bit signed integer [–32768 to 32767] at any stage of the inverse transform process, for any step size. In particular, quantized transform data produced by the recommended steps in the previous subsections are valid.

4 Complexity

The proposed transform can be implemented using only additions and shifts, and thus multiplications are only used during quantization and de-quantization. Tables 1 and 2 show the number of operations required by the encoder and the decoder, respectively. The numbers of operations are computed for the fastest possible implementations of the transform and inverse transform which will be shown in the butterfly structures of Subsection 6.2. We see from Table 1 that all the quantization and de-quantization can be computed with 16-bit multiplications, since input values for these operations never exceed 16 bits. Thus, the proposed method can be implemented fully with 16-bit arithmetic, for 9-bit residual input data. Table 3 compares the complexity of both forward and inverse transforms in the proposed method to that of TML. The quantization and de-quantization complexity of the proposed method and TML are comparable.

Table 1 – Encoder operations

	4x4 transform for 24 4x4 luminace and chrominance blocks

	Process
	Operation
	Number per block

	4x4 forward transform
	+
	64

	
	<<
	16

	4x4 transform for one 4x4 luminace DC block

	Process
	Operation
	Number per block

	4x4 forward transform
	+
	64

	
	//
	16

	2x2 transform for two 2x2 Chrominace DC blocks

	Process
	Operation
	Number per block

	4x4 forward transform
	+
	8

	quantization for coefficient

	Process
	Operation
	Number per coefficient

	Quantization
	*
	1

	
	//
	1

Table 2 – Decoder operations

	4x4 inverse transform and dequantization for 24 4x4 luminace and chrominance blocks

	Process
	Operation
	Number per block

	Dequantization
	*
	16

	4x4 inverse transform
	+
	64

	
	>>
	16

	Normalization
	+
	16

	
	>>
	16

	4x4 inverse transform and dequantization for one 4x4 luminace DC block

	Process
	Operation
	Number per block

	4x4 inverse transform
	+
	64

	Dequantization
	*
	16

	
	//
	16

	2x2 inverse transform and dequantization for two 2x2 Chrominace DC blocks

	Process
	Operation
	Number per block

	2x2 inverse transform
	+
	8

	Dequantization
	*
	4

	
	//
	4

Table 3 – Number of operations for transform
	Operation
	Number of operations

	
	Proposed
	TML
	TML, multiplier-less

	Additions
	64
	64
	128

	Multiplications
	0
	48
	0

	Shifts
	16
	0
	64

5 Experimental Results

We have modified the TML 8.5 software to compute the transform and quantization as specified in Section 3, with no changes in the other parts of encoder and decoder. Several sequences were processed, for several values of QP, and the resulting peak SNR (PSNR) and bit rates are listed in [2], where we see that the rate-distortion (R/D) curves are nearly identical. Those R/D curves were then compared, and their distances computed according to the method in [6]. Table 3 shows the results.

Table 3 – PSNR gains for the proposed method (dB)

	Sequence
	PSNR, Y
	PSNR, U
	PSNR, V

	News
	0.018
	-0.026
	0.053

	Container
	-0.002
	-0.044
	-0.068

	Silent
	0.024
	0.043
	0.073

	Paris
	0.031
	0.004
	0.020

	Mobile
	0.039
	0.046
	0.046

	Tempete
	0.014
	0.010
	0.022

	Average
	0.021
	0.006
	0.024

We see that the average PSNR gain for the proposed 16-bit transform/quantization algorithm, with respect to the original 32-bit TML code is slightly positive, indicating that for that data set our proposed transform produces a slightly better average PSNR (over all frames of those sequences, for all QP specified in [6]) . We also computed the average PSNR gain for the first intra frames of each sequence, since intra frames have significantly different statistics, and the average gains for Y, U, and V were 0.046, 0.010, and 0.038 dB, respectively. Again, the PSNR results were slightly better for our proposed transform/quantization.

Given the relatively small data set that we processed, average PSNR differences of around 0.02 dB are not statistically significantly different from zero. Therefore, we can state that our proposed transform/quantization method achieves the same R/D performance as that of the current TML.

6 Implementation Issues and Other Considerations

In this Section we discuss some alternative implementations of the transform and quantization equations. The best option depends on specifics of the implementation, such as target processor architecture.

6.1 Computing quantization indices

In Section 3 we saw that we need to compute QP%6 and QP/6. Those values need to be computed only once per macroblock, so the division operations won’t add significant complexity. Still, those divisions by 6 can be avoided, if so desired, by noting that QP/6 = (43(QP)>> 8 for all QP in [0...130].

6.2 Transforms via butterflies

The 2-D forward transform of Section 3 can be computed as 1-D row transforms followed by 1-D column transforms. Each of these 1-D transforms is computed by the equations below:

 M0 = X0 + X3;

 M3 = X0 - X3;

 M1 = X1 + X2;

 M2 = X1 – X2;

 Y0 = M0 + M1;

 Y2 = M0 – M1;

 Y1 = M2 + (M3 << 1);

 Y3 = M3 - (M2 << 1);
The 2-D inverse transform can also be computed as 1-D row transforms followed by 1-D column transforms. Each of these 1-D transforms is computed by the equations below:

 M0 = Y0 + Y2;

 M1 = Y0 - Y2;

 M2 = (Y1 >> 1) - Y3;

 M3 = Y1 + (Y3 >> 1);

 X0 = M0 + M3;

 X3 = M0 - M3;

 X1 = M1 + M2;

 X2 = M1 - M2;

6.3 Transforms via matrix multiplications

In some processor architectures, special instructions for matrix multiplication for length-4 vectors of 16-bit entries may be available. Thus, let us consider the computation of the transforms when matrix multiplication is available

Forward transform

Let us focus on the 1-D transform of either rows or columns. The original definition of the 1-D forward transform is

[image: image35.wmf]Y01111X0

Y12112X1

Y21111X2

Y31221X3

éùéùéù

êúêúêú

--

êúêúêú

=

êúêúêú

--

êúêúêú

--

êúêúêú

ëûëûëû

It’s clear that we can use one 16-bit matrix multiplication to compute the forward transform.

Inverse transform

We recall that the definition of our proposed 1-D inverse transform is

[image: image36.wmf]1

2

1

2

1

2

1

2

111

X0Y0

111

X1Y1

X2Y2

111

X3Y3

111

éù

éùéù

êú

êúêú

--

êú

êúêú

=

êú

êúêú

--

êú

êúêú

êú

êúêú

ëûëû

--

ëû

Here we’re faced with the problem that the matrices above have noninteger elements. Furthermore, an alternative implementation must produce the same rounding errors as the butterfly implementation of Subsection 3.1. Fortunately it is possible to build an exact direct matrix multiply by carefully taking care of rounding of values before bit shifts. Thus, the 1-D inverse transform can alternatively be computed by:

 X0 = (2*Y0 + 2*Y1 + 2*Y2 + 1*Y3) >> 1

 X1 = (2*Y0 + 1*Y1 - 2*Y2 - 2*Y3) >> 1

 X2 = (2*Y0 - 1*Y1 - 2*Y2 + 2*Y3 + 1) >> 1

 X3 = (2*Y0 - 2*Y1 + 2*Y2 - 1*Y3 + 1) >> 1

Note that the correction “+ 1” in the equations for X2 and X3 comes from the fact that –(Y >> 1) = (–Y +1) >> 1.

An alternative approach is to use the following steps:

 M = (Y1 >> 1) - Y3;

 Y3 = Y1 + (Y3 >> 1);

 Y1 = M;

followed by the matrix multiplication

[image: image37.wmf]X01011Y0

X11110Y1

X21110Y2

X31011Y3

éùéùéù

êúêúêú

-

êúêúêú

=

êúêúêú

--

êúêúêú

-

êúêúêú

ëûëûëû

.

That is, we first implement one butterfly and then perform one 16-bit matrix multiply.

6.4 Quantization tables – memory requirements

Our proposed quantization is performed using several quantization tables, whereas the current TML uses only two tables (one for quantization and the other for de-quantization). Our tables would take up to 32(16(2 = 1024 bytes of memory if they were stored fully for each of the QP values. Since we have implemented a periodic quantization table, however, the number of unique quantization matrices is reduced to 6, thus reducing the memory requirement to 6(16(2 = 192 bytes. For de-quantization matrices we need only one byte per matrix element, and so the required memory is 6(16(1 = 96 bytes. TML requires 64 bytes for the quantization table, and 128 bytes for the de-quantization table. Therefore, our total memory footprint for such tables is just 64 bytes more than that of TML.

There can be a concern regarding additional memory access required for loading values of quantization matrix from memory during quantization. It should be noted that we do not use a full quantization matrix, but rather three different quantization values that can be conveniently presented in a quantization matrix form:

[image: image38.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

c

b

c

b

b

a

b

a

c

b

c

b

b

a

b

a

k

Q

)

(

where k = QP%6. Because the matrix above has only three unique values and a regular structure, the number of memory accesses for the quantization matrix can be easily reduced to a minimum of three accesses. In custom ASIC design, it is possible to individually choose one value out of three for each of the 16 coefficients.

In the most straightforward (and inefficient) software implementation of quantization, there is one loop that runs 16 times, once per coefficient, using the quantization values in Q(k). In a more efficient implementation we can load just the values ak, bk, and ck to three processor registers. Then we unroll the loop, i.e. we convert the loop into 16 consecutive code blocks each quantizing one coefficient using one of the three variables. The resulting small increase in code memory size is negligible in view of the entire code for the encoder or decoder.

Another option for implementing the quantization is to write a loop that runs 8 times, once per two coefficients. The first of the two coefficients is read from the first row and first column, and the second from the third row and first column. Afterwards, the associated pointers are incremented in raster-scan order. Since the quantization factors (ak, bk, or ck) are the same for each coefficient pair, we would need to store only the first two rows of the quantization matrix. This not only reduces memory access for quantization tables by half, but it also cuts the quantization and de-quantization matrix storage requirement by half, to 96 and 48 bytes, respectively. If a further reduction is needed, an 8-byte indexing table could be used to pick which quantization factor (ak, bk, or ck) is to be used. That way, for the cost of one more 1-byte memory access per coefficient, one could reduce the table sizes to 6(3(2 = 36 bytes for the quantization tables and 6(3(1 = 18 bytes for the de-quantization tables. Adding to that the 8 bytes for the index, we would have a minimum quantization table footprint of 36+18+8 = 62 bytes. That’s about 1/3rd of TML’s 192-byte quantization table memory size.

7 Conclusion

We presented a new structure for computation of the transforms, inverse transforms, quantization, and de-quantization in H.26L. This new structure can replace those in the current TML coder, with no changes in the other parts of the system. The TML transform and quantization structures require 32-bit arithmetic and several multiplications within the 4(4 transforms. Our proposed structures require only 16-bit arithmetic, and the transforms require no multiplications.

Therefore, we conclude that our proposed method achieves a significant reduction in complexity for the transform and quantization procedures. It can be implemented exactly and efficiently in different kinds of processor architectures. The complexity savings come with no penalty in the rate/distortion performance.

References

[1] T. Wiegand, “H.26L Test Model Long-Term Number 9 (TML-9) draft0”, ITU-T Q.6/SG16 Document TML9.doc (VCEG-N83d1), December 2001.

[2] A. Hallapuro, M. Karczewicz, “Low Complexity (I)DCT”, ITU-T Q.6/SG16 Document VCEG-O52, November, 2001. See accompanying file “VCEG-O25.xls”.

[3] H. S. Malvar, “Low-Complexity Length-4 Transform and Quantization with 16-Bit Arithmetic,” ITU-T Q.6/SG16 Document VCEG-N44, September, 2001.

[4] A. Hallapuro, M. Karczewicz, and H. Malvar, “Low Complexity Transform and Quantization – Part II: Extensions,” ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6 Document JVT-B039, January 2002.

[5] K. R. Rao and P. Yip. Discrete Cosine Transform: Algorithms, Advantages, Applications. Boston: Academic Press, 1990, Chapter 4.

[6] G. Bjontegaard, “Calculation of average PSNR differences between RD-curves,” ITU-T Q.6/SG16 Document VCEG-M33, March 2001.

Appendix - Quantization coefficients

Q[QP%6][i][j] = quantMat[QP%6][0] for (i,j) = {(0,0),(0,2),(2,0),(2,2)},

Q[QP%6][i][j] = quantMat[QP%6][1] for (i,j) = {(1,1),(1,3),(3,1),(3,3)},

Q[QP%6][i][j] = quantMat[QP%6][2] otherwise.

R[QP%6][i][j] = dequantMat[QP%6][0] for (i,j) = {(0,0),(0,2),(2,0),(2,2)},

R[QP%6][i][j] = dequantMat[QP%6][1] for (i,j) = {(1,1),(1,3),(3,1),(3,3)},

R[QP%6][i][j] = dequantMat[QP%6][2] otherwise.

quantMat[6][3] = {{13107, 5243, 8224}, {11651, 4660, 7358}, {10486, 4143, 6554}, {9198, 3687, 5825}, {8322, 3290, 5243}, {7384, 2943, 4660}};

dequantMat[6][3] = {{40, 64, 51}, {45, 72, 57}, {50, 81, 64}, {57, 91, 72}, {63, 102, 80}, {71, 114, 90}};

	International Telecommunication Union
Telecommunication Standardization Sector
	International Organization for Standardization
	International Electrotechnical Commission

	[image: image39.wmf]
	[image: image40.png]1S0
NS

	[image: image41.png]

Video Coding Experts Group - Patent Disclosure Form
(Typically one per contribution and one per Recommendation/Standard/Draft)

Please send to:

Q.6/16 Rapporteur Gary Sullivan, Microsoft Corp., One Microsoft Way, Redmond WA 98052-6399, USA

Email (preferred): garysull@microsoft.com Fax: +1 425 936 7329

This form provides the Video Coding Experts Group (VCEG) with information about the patent status of techniques used in or proposed for incorporation in a Recommendation/Standard. VCEG requires that all technical contributions be accompanied with this form. Anyone with knowledge of any patent affecting the use of VCEG work, of their own or of any other entity (“third parties”), is strongly encouraged to submit this form as well.

This information will be maintained in a “living list” by VCEG during the progress of their work. If a given technical proposal is not incorporated in a Recommendation/Standard, the relevant patent information will be removed from the “living list”. The intent is that the VCEG experts should know in advance of any patent issues with particular proposals or techniques, so that these may be addressed well before final approval.

This is not a binding legal document; it is provided to VCEG for information only, on a best effort, good faith basis. Please submit corrected or updated forms if your knowledge or situation changes.

This form is not a substitute for the ITU-T Patent Statement and Licensing Declaration, which should be submitted by Patent Holders to the TSB Director before final approval of any Recommendation/Standard.

	Submitting Organization or Person:

	Organization name
	Nokia
	

	Mailing address

	6000 Connection Drive
Irving, TX 75039
	

	Country
	USA
	

	Contact person
	Marta Karczewicz
	

	Telephone
	+1 214 763 1314
	

	Fax
	
	

	Email
	marta.karczewicz@nokia.com
	

	Place and date of submission
	01/23/02
	

	Relevant Recommendation/Standard/Draft/Contribution:

	Number (ex: “H.26L”)
	H.26L
	

	Title
	Low Complexity Transform and Quantization – Part I
	

	Contribution number
	JVT-B038
	

	
	
	

(Form continues on next page)

	1. Disclosure information – Submitting Organization/Person (choose one box)

	
	

	[image: image42.wmf]
	2.0 The submitter is not aware of any granted, pending, or planned patents associated with the technical content of the Recommendation/Standard/Draft/Contribution.

or,

	The submitter (Patent Holder) has granted, pending, or planned patents associated with the technical content of the Recommendation/Standard/Draft/Contribution. In which case,

	[image: image43.wmf]
	2.1 The Patent Holder is prepared to grant – on the basis of reciprocity for the above ITU-T Recommendation | ISO/IEC International Standard – a free license to an unrestricted number of applicants on a worldwide, non‑discriminatory basis to manufacture, use and/or sell implementations of the above ITU-T Recommendation | ISO/IEC International Standard.

	
	

	[image: image44.wmf]
	2.2
The Patent Holder is prepared to grant – on the basis of reciprocity for the above ITU-T Recommendation | ISO/IEC International Standard – a license to an unrestricted number of applicants on a worldwide, non‑discriminatory basis and on reasonable terms and conditions to manufacture, use and/ or sell implementations of the above ITU-T Recommendation | ISO/IEC International Standard. Such negotiations are left to the parties concerned and are performed outside the ITU-T | ISO/IEC.

	
	

	X
	2.2.1
The same as box 2.2 above, but in addition the Patent Holder is prepared to grant a “royalty-free” license to anyone on condition that other patent holders do the same.

	
	

	[image: image45.wmf]
	2.3
The Patent Holder is unwilling to grant licenses according to the provisions of either 2.1 or 2.2 above. In this case, the following information should be provided as part of this disclosure:

· patent registration/application number;
· an indication of which portions of the ITU-T Recommendation | ISO/IEC International Standard are affected.
· a description of the patent claims covering the ITU-T Recommendation | ISO/IEC International Standard;

	In the case of box 2.1, 2.2, or 2.3 above, please provide the following:

	Patent number/status
	
	

	Inventor/Assignee
	
	

	Relevance to VCEG
	
	

(form continues on next page)

Third party patent information – please fill in based on your best knowledge of relevant patents granted, pending, or planned by other people or by organizations other than your own.

	2. Disclosure information – Third Party Patents (choose one box)

	
	

	X
	3.1
The submitter is not aware of any granted, pending, or planned patents held by third parties associated with the technical content of the Recommendation/Standard/Draft/Contribution.

	[image: image46.wmf]
	3.2
The submitter believes third parties may have granted, pending, or planned patents associated with the technical content of the Recommendation/Standard/Draft/Contribution.

	For box 3.2, please provide as much information as is known (provide attachments if more space needed) - VCEG will attempt to contact third parties to obtain more information:

	3rd party name(s)
	
	

	Mailing address

	
	

	Country
	
	

	Contact person
	
	

	Telephone
	
	

	Fax
	
	

	Email
	
	

	Patent number/status
	
	

	Inventor/Assignee
	
	

	Relevance to VCEG
	
	

	
	
	

	Any other comments or remarks:

[end]

	International Telecommunication Union
Telecommunication Standardization Sector
	International Organization for Standardization
	International Electrotechnical Commission

	[image: image47.wmf]
	[image: image48.png]1S0
NS

	[image: image49.png]

Video Coding Experts Group - Patent Disclosure Form
(Typically one per contribution and one per Recommendation/Standard/Draft)

Please send to:

Q.6/16 Rapporteur Gary Sullivan, Microsoft Corp., One Microsoft Way, Redmond WA 98052-6399, USA

Email (preferred): garysull@microsoft.com Fax: +1 425 936 7329

This form provides the Video Coding Experts Group (VCEG) with information about the patent status of techniques used in or proposed for incorporation in a Recommendation/Standard. VCEG requires that all technical contributions be accompanied with this form. Anyone with knowledge of any patent affecting the use of VCEG work, of their own or of any other entity (“third parties”), is strongly encouraged to submit this form as well.

This information will be maintained in a “living list” by VCEG during the progress of their work. If a given technical proposal is not incorporated in a Recommendation/Standard, the relevant patent information will be removed from the “living list”. The intent is that the VCEG experts should know in advance of any patent issues with particular proposals or techniques, so that these may be addressed well before final approval.

This is not a binding legal document; it is provided to VCEG for information only, on a best effort, good faith basis. Please submit corrected or updated forms if your knowledge or situation changes.

This form is not a substitute for the ITU-T Patent Statement and Licensing Declaration, which should be submitted by Patent Holders to the TSB Director before final approval of any Recommendation/Standard.

	Submitting Organization or Person:

	Organization name
	Microsoft
	

	Mailing address

	One Microsoft Way,
Redmond, WA 98052
	

	Country
	USA
	

	Contact person
	Henrique Malvar
	

	Telephone
	+1 425 706 2978
	

	Fax
	
	

	Email
	malvar@microsoft.com
	

	Place and date of submission
	01/23/02
	

	Relevant Recommendation/Standard/Draft/Contribution:

	Number (ex: “H.26L”)
	H.26L
	

	Title
	Low Complexity Transform and Quantization – Part I
	

	Contribution number
	JVT-B038
	

	
	
	

(Form continues on next page)

	1. Disclosure information – Submitting Organization/Person (choose one box)

	
	

	[image: image50.wmf]
	2.0 The submitter is not aware of any granted, pending, or planned patents associated with the technical content of the Recommendation/Standard/Draft/Contribution.

or,

	The submitter (Patent Holder) has granted, pending, or planned patents associated with the technical content of the Recommendation/Standard/Draft/Contribution. In which case,

	[image: image51.wmf]
	2.2 The Patent Holder is prepared to grant – on the basis of reciprocity for the above ITU-T Recommendation | ISO/IEC International Standard – a free license to an unrestricted number of applicants on a worldwide, non‑discriminatory basis to manufacture, use and/or sell implementations of the above ITU-T Recommendation | ISO/IEC International Standard.

	
	

	[image: image52.wmf]
	2.2
The Patent Holder is prepared to grant – on the basis of reciprocity for the above ITU-T Recommendation | ISO/IEC International Standard – a license to an unrestricted number of applicants on a worldwide, non‑discriminatory basis and on reasonable terms and conditions to manufacture, use and/ or sell implementations of the above ITU-T Recommendation | ISO/IEC International Standard. Such negotiations are left to the parties concerned and are performed outside the ITU-T | ISO/IEC.

	
	

	X
	2.2.1
The same as box 2.2 above, but in addition the Patent Holder is prepared to grant a “royalty-free” license to anyone on condition that other patent holders do the same.

	
	

	[image: image53.wmf]
	2.3
The Patent Holder is unwilling to grant licenses according to the provisions of either 2.1 or 2.2 above. In this case, the following information should be provided as part of this disclosure:

· patent registration/application number;
· an indication of which portions of the ITU-T Recommendation | ISO/IEC International Standard are affected.
· a description of the patent claims covering the ITU-T Recommendation | ISO/IEC International Standard;

	In the case of box 2.1, 2.2, or 2.3 above, please provide the following:

	Patent number/status
	
	

	Inventor/Assignee
	
	

	Relevance to VCEG
	
	

(form continues on next page)

Third party patent information – please fill in based on your best knowledge of relevant patents granted, pending, or planned by other people or by organizations other than your own.

	2. Disclosure information – Third Party Patents (choose one box)

	
	

	X
	3.1
The submitter is not aware of any granted, pending, or planned patents held by third parties associated with the technical content of the Recommendation/Standard/Draft/Contribution.

	[image: image54.wmf]
	3.2
The submitter believes third parties may have granted, pending, or planned patents associated with the technical content of the Recommendation/Standard/Draft/Contribution.

	For box 3.2, please provide as much information as is known (provide attachments if more space needed) - VCEG will attempt to contact third parties to obtain more information:

	3rd party name(s)
	
	

	Mailing address

	
	

	Country
	
	

	Contact person
	
	

	Telephone
	
	

	Fax
	
	

	Email
	
	

	Patent number/status
	
	

	Inventor/Assignee
	
	

	Relevance to VCEG
	
	

	
	
	

	Any other comments or remarks:

[end]

Y3

Y1

Y2

Y0

M3

M2

M1

M0

-

-

-2

2

X1

X2

X3

X0

-

1/2

M3

M2

M1

M0

Y3

Y1

Y2

Y0

1/2

-

-

X3

X2

X1

-

X0

-

File:JVT-B038.doc
Page: 1
Date Printed: 1/26/2002

_1072822978.unknown

_1072823202.unknown

_1073241373.unknown

_1073392628.unknown

_1073513009.unknown

_1073513010.unknown

_1073513008.unknown

_1073512036.unknown

_1073244248.unknown

_1073244368.unknown

_1073241405.unknown

_1072823386.unknown

_1072979266.unknown

_1073115199.unknown

_1072825533.unknown

_1072823229.unknown

_1072823385.unknown

_1072823384.unknown

_1072823228.unknown

_1072823044.unknown

_1072823119.unknown

_1072823145.unknown

_1072823076.unknown

_1072823004.unknown

_1072823017.unknown

_1072822993.unknown

_1072822856.unknown

_1072822904.unknown

_1072822950.unknown

_1072822886.unknown

_1072560740.unknown

_1072698725.unknown

_1072822791.unknown

_1072563023.unknown

_1063466623.unknown

_1066064038.unknown

_1063463104.unknown

