	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

2nd Meeting: Geneva, CH, Jan. 29 - Feb. 1, 2002
	Document: JVT-B034

Filename: JVT-B034.doc

Generated: 2002-01-18

	Title:
	Enhanced variable-length coding

	Status:
	Input Document to JVT

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Till Halbach
	Tel.:
Fax:
Email:
	+47 - 73 59 44 88
+47 - 73 59 26 40
halbach@tele.ntnu.no

	Source:
	Norwegian University of Science and Technology (NTNU)
(Department of Telecommunications)
Trondheim, Norway

Abstract

This contribution investigates error resilience properties of two codes, UVLC and VLCD. UVLC has been used so far in H.26L standardization, and VLCD is a reversible VLC that offers error resilience/concealment possibilities which are superior to UVLC.

Intellectual Property Rights

The author is not aware of any IPRs that are connected to the proposed techniques.

Introduction

Considering error-prone environments like IP-like data transport or 3GPP-specified mobile channels, H.26L is mainly focusing on packet losses. The philosophy is that, once a disturbed packet is recognized as such, the whole packet content should be discarded because of the difficulties to locate or even correct/conceal the errors.

For treatment of residual bit/burst errors, H.26L also specifies that its algorithms have to be error-resilient. It is further not obvious which approach – packet discarding or residual errors – outperforms the other. If there are delay constraints, however, residue errors are sometimes imperative.

Error resilience is mainly addressed by the inherent self-synchronizing properties of UVLC. However, these properties are limited, and – to the author’s knowledge – no attempts have been so far to exploit the advantages UVLC offers. A new code is therefore proposed to replace UVLC as entropy code.

The document is structured as follows: It begins with a summary of the self-synchronization properties of UVLC. It then investigates the bit stream and source symbol statistics of H.26L, and finally introduces VLCD and its properties. Necessary changes of the current draft document in order to employ and exploit the proposed code are described as well.

UVLC coding and decoding

Work has already been done on this topic in [VCEG-L23]. This section summarizes previous research and adds the results of the discussion VCEG had on its email reflector.

UVLC consists of synchronization (sync) bits, zeros with a terminating 1-bit to mark the end of the code word, that are interleaved with so-called info bits xi in the form (0 x2 0 x1 0 x0 1)2. Hence, UVLC is a comma code. The info part consists of a plain binary code. The code words for the first eight indices are given in the following table.

	Code book index i
	Code symbol X

	0
	1

	1
	001

	2
	011

	3
	00001

	4
	00011

	5
	01001

	6
	01011

	7
	0000001

	…
	…

UVLC, first introduced in [VCEG-F11], is quite similar to exponential reversible Golomb Rice codes for coding of non-negative integers. It has self-synchronizing properties which are investigated in the following. To cut down complexity, only single bit errors (bit inversion) are considered.

It is noted that the code is systematic, \ie there exists a mapping rule from index to binary code word; use of a code book under encoding and decoding is thus not necessary. Further, the code book is not limited in size. From the knowledge that UVLC code words are of odd length, one would expect that only an odd number of merged code words can make a new code word. This leads also to the fact that, after bit error occurrence, sync bits become info bits, and the other way round. The existence of a sync code word (1 1)2 guarantees, i.e. is sufficient for, statistical synchronization of UVLC [Max85].

First, there is the trivial case when bit errors affect the code stream at info positions. This changes the value of a single code word but does not lead to sync loss, e.g. a bit error at position 2 in (0 0 0 0 1)2 changes the index from (3) to (5). Since UVLC is a complete code, error detection cannot be made on a bit basis but only on semantics, i.e. the index might be out of range or a decoded motion vector could point outside the corresponding picture.

If a 0-sync bit is inverted and the info bits of the affected code word are all zero, then two symbols are altered, but sync is not lost: (1 3) encoded gives (0 0 1 0 0 0 0 1)2, disturbed e.g. (1 0 1 0 0 0 0 1)2 and hereby the indices (0 11). If there is at least one 1-info in the symbol, sync is first regained after three code words: (2 1 1) encoded becomes (0 1 1 0 0 1 0 0 1)2, disturbed e.g. (0 1 0 0 0 1 0 0 1)2, which results in only one index (25). Hence, three code words are merged to a single one, and one gets a symbol assignment problem.

Finally, if a 1-sync bit is inverted, there is again the case that sync is not lost if the info bits of the following code word contain a '1': (2 5) produces the code (0 1 1 0 1 0 0 1)2 which may then be altered by a bit error to (0 1 0 0 1 0 0 1)2, which in turn gives (5 1). If the info bits contain only zeros, however, symbol splitting takes place, meaning sync loss, which is the inverse procedure of the symbol merging discussed above.

One might argue that UVLC is in addition non-instantaneously reversibly decodeable. As an example, decoding of the symbols (0 1 2 0) is considered, following the procedure below.

	Known code stream
	Description

	1 0 0 1 0 1 1 1
	Original

	x x x x x x x 1
	Parse each second bit backwards

	x x x x x 1 x 1
	Next bit to the right must be sync

	x x x x x 1 1 1
	'1' denotes code word end as usual

	x x x x 0 1 1 1
	

	x x 0 x 0 1 1 1
	Continue backwards

	1 x 0 x 0 1 1 1
	Turn again to forward decoding

	1 0 0 x 0 1 1 1
	

	1 0 0 1 0 1 1 1
	Finished

It is concluded that, given an exponential source distribution – which is shown to be a valid assumption in section on bit stream statistics – UVLC is matched very good to the source statistics. However, its resync property of UVLC is useless since the error cannot be localized, and this means that the whole bit stream between two known unique resynchronization markers has to be discarded. Backward decoding achieves no gain with respect to error resilience since it partly consists of forward decoding.

H.26L’s source symbol and code stream statistics

The following statistics show a typical test case using TML-9.0, together with the coding efficiency conditions commonly used in H.26L standardization [VCEG-N81]. Transport markers and start codes are not included in the calculations and have been removed from the bit stream beforehand. 260 pictures of the sequence Tempete in CIF format are encoded, with a frame skip of 0 and a quantization parameter 28. The distribution of code word indices is strongly exponential, which can be seen in the following figure which shows the source symbol probability over the code word index.

[image: image1.png]0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

10

The symbol with index zero occurs in 75 of 100 cases. The first 16 code words cover a probability of 97.46\%, and the accumulated probability is 99.74% for the first 128 code words in the code book. The maximum 'outlier' has the value 513, which relates to a code word length of 19 with the info being (0…010)2. The first code word (CW) never used has the index 268. It should also be mentioned that the relative occurrence of 1-sync bits is approximately 43% for 1-sync, 35% for 0-sync and 35% for info bits. Code words with all info bits equal to zero occur statistically in 11.68 of 100 cases. This allows calculation the probability of synchronization loss, given a single bit error:

Prsync loss = Pr1-sync Pr0-info + Pr0-sync Pr1-info (9.7%.

This is significantly below the probability of sync loss for e.g. a Huffman code, which is close to one. It is concluded that UVLC cuts down the probability for sync loss just by its code structure. However, the entropy – which can easily be computed because the code words are uncorrelated – of the encoded test sequence is 1.7646 bit/SS while UVLC yields an overall code rate of 2.3112 bit/SS, which means a gap of 0.5476 bit/SS.

All this leaves space for improvements since, by closing this gap and hereby increasing coding efficiency, on the average 3.4 Kbit/s in bandwidth could be saved, assuming 25 fps video transmission.

VLCD encoding and decoding

As a promising remedy to enhance error localization in the bit stream, it is proposed to replace UVLC by a reversible code, called here VLCD. This is accomplished by replacing UVLC's sync bits format by (0 x2 1 x1 1 x0 0)2, the rest is maintained. The table is shown in the following:

	Code book index i
	Code symbol X

	0
	1

	1
	000

	2
	010

	3
	00100

	4
	00110

	5
	01100

	6
	01110

	7
	0010100

	…
	…

VLCD’s sync bits are symmetric, and VLCD code words fulfill the biprefix condition, which makes the code (instantaneously) reversibly decodeable. Its advantages are that systematic code word generation is maintained, further, the code book may become infinitely large. VLCD is also used for coding motion vector data in H.263, Annex D.

VLCD has obviously the same coding efficiency like UVLC, but, as shown below, not its self-synchronizing property. In fact, sync cannot be regained after occurrence of a single bit error before the entropy decoder reaches the end of the bit stream. This information is known at the decoder side either by knowing the exact number of bits to decode or by reaching a unique long resynchronization marker. Assuming the decoder is out of sync, two cases are possible to re-establish synchronization:
a) It checks y2 as a sync bit in (… y2 y1)2 and appends a (0)2. After that, the decoder is in sync again.
b) y1 is assumed to be sync bit, then a resync symbol (z 0)2 has to be appended, where z could be chosen 0 to cover the first case as well.
However, the second zero in (0 0)2 would start decoding a new code word in a). Hence, a short resync symbol does not exist. This guarantees in turn that resync does not happen [Max85]. The decoder flags an error because some bits will remain at the end of the bit stream.

[image: image2.png]T
—&— # forw.dec.source symbols
—G- # backw.dec.source symbols
- Em.flag

25

As an example, the last Figure shows three curves for the decoding of four VLCD symbols when a single bit error has damaged the code stream, the number of source symbols counted in forward and backward direction and the error flag position over the bit position in the code stream. It is stressed that, because of the guaranty of nonresync and the symmetry of the sync bits, the error flag takes on the same values for both directions. It can be seen that the flag always detects the bit error when it hits a sync bit position. Hence, it can be used for error detection purposes.

One can further observe the tendency to decode shorter code symbols when the decoder is in out-of-sync state. The earlier the error hits, the more source symbols are produced by decoding. This effect is favoured by the statistical distribution of zeros and ones in sync and info bits. For more code words or, respectively, more bits, the tendency can be observed very clearly, see next Figure. Here, the typical UVLC code stream as introduced above is VLCD encoded. For the Figure’s plot, 512 source symbols or approximately 1200 bits are extracted.

[image: image3.png]0 200 400 600 800 1000 1200

The last observation concerning the gradient allows an estimation of where the error has hit the bit stream for possible error concealment attempts. Looking at the one of the last two Figures, it is striking that the curves that represent the number of source symbols have an almost linear increasing or decreasing gradient. The gradient is given by the difference of maximum and minimum source symbol index and the number of bits. However, the value of the gradient depends of course on the distribution of source symbols and the number of code words. It might hence be necessary to signal the gradient’s value in the header data.

[image: image4.png]T
—— Curve gradient, forward
——- Curve gradient, backward

150

200 250

300

Another surprising fact is that the gradient converges for a sufficient number of bits in the code stream. This is visualized in the last Plot, where gradient’s absolute value is plotted over the number of bits in the code stream. This means, the less bits there are in the stream, the more gradient is influenced by statistical variations. More, the gradients in forward and backward direction are equal in their absolute value. After computation of the number of decoded source symbols in one direction – assuming a single bit error and a raised error flag – the decoder is enabled to know approximately where the error position actually is. Decoding in forward and backward direction can then be terminated with a certain safety margin to the error’s location.

Also, a possible error concealment technique is proposed for data recovery after random bit error occurrence. It is a brute-force attempt and is demonstrated for a single bit error. The decoder tries to locate the error position by going bit-by-bit through the bit stream and simulating that another error has hit, i.e. it adds a bit on a certain location in mod-2 arithmetic. It then decodes e.g. forwardly and keeps track of the positions, where the error flag was zero, of the additionally added error.

Error position 01: 1
Error position 02: 0
Error position 03: [3 8]
Error position 04: 0
Error position 05: 5
Error position 06: 0
Error position 07: [7 10]
Error position 08: [3 8]
Error position 09: 0
Error position 10: [7 10]
Error position 11: 0
Error position 12: [12 20 24]
Error position 13: 0
Error position 14: [14 17 23 28 31 34 37]
Error position 15: 0
Error position 16: [16 22 26 29]
Error position 17: [14 17 23 28 31 34 37]
Error position 18: 0
Error position 19: [19 41]
Error position 20: [12 20 24]
Error position 21: 0
.
.
.

[12 20 24] means for example that the possible error positions 12, 20 and 24 have been computed. As one can see, the errors on the info bit positions are not detected, which gives a [0]. This helps for re-establishing the code word boundaries, which are detected by two neighboring estimated error sequences unequal to [0]. The true source symbol sequence can hence rebuild: (0 x 1 x 1 x 0 0 x 1 x 1 x 1 x 0 0 x 0 0 x …)2, where x denotes the respective info bits. Errors on such positions are neither detected, located or corrected by VLCD:

Impact on today’s H.26L draft model

In TML-9.0, there are mainly three data type families. Header data like e.g. the macroblock type is entropy-encoded as is, i.e. assumed memory-free. Motion vector data is differentially encoded, and the quantized and scanned transform coefficients are variable-length-encoded after prior run length coding.

VLCD can be employed easily by replacing the old index-to-CW mapping of UVLC with a mapping that orders the sync bits as shown in the table for VLCD above. The code word’s info part and its length stay the same. To be able to exploit the possibilities VLCD offers, i.e. first of all to detect and locate the error roughly and then help recover a part of the bit stream, some changes have to be made to encoding of the data types mentioned above. It is assumed subsequently that, by means of VLCD, bit errors do not propagate, but symbol errors do due to info bit errors.

Header data is most sensitive to transmission errors. Here, it would make sense to spend computation time and complexity for re-establishing the true code word boundaries by the technique shown before. Info bits can however not be saved; single source symbols may have to be discarded, which does not mean that decoding of the current picture/slice is impossible.

Run length encoded quantized and scanned transform coefficients offer by means of the EOB symbol – the code word with index 0 – a natural marker which is suited to separate the coefficients of different subblocks. A slightly changed length symbol is not very visually striking, but if a run symbol is contaminated, there will be significant error propagation throughout the whole reverse transform. Here, it might not be efficient to use the brute-force attempt as for the header data, but rather to discard all symbols between two EOB symbols. In very low-bit-rate code streams, the run length symbol sequences will not be long, and the loss in PSNR by discarding a transform is not very remarkable.

Motion vector data is probably most sensitive to errors since it is DPCM-encoded. Errors in one coefficient will thus propagate throughout the bit stream to the partition end. It is proposed to utilize the error locating capabilities of VLCD and make use of reversible DPCM coding. Reversible DPCM coding appends a single additional motion vector at the end of the existing MVD and is therefore only slightly less efficient than ordinary DPCM.

The concept is as follows: Consider the index sequence (9 2 5 0 1 3) for encoding. The sequence is filtered, i.e. delayed one symbol and added to itself: X1 = (9 2 5 0 1 3), X2 = (0 9 2 5 0 1 3), X3 = X1 + X2 = (9 11 7 5 1 4 3) which can be VLCD-encoded. Forward de-DPCM after an error-free transmission is accomplished by inverse filtering or the following procedure: Having received Y = (y1 y2 y3 y4 y5 y6 y7), the original source symbol sequence Z = (z1 …z6), is computed by means of z1 = y1, z2 = z1 – y2 and so on. The last two symbols z6 and y7 have to be equal; they can be compared to check for error occurrence. Backward de-DPCM functions accordingly: z6 = y7, z5 = y6 – z6 and so on.

If the decoder points to errors in the symbol 7 – after having received e.g. (9 11 9 5 1 4 3), two symbols can be recovered in forward, and four in backward direction. Again, it is assumed that the code word boundaries could be recovered.

Summary and outlook

This document showed some advantages when using the reversible code VLCD instead of the self-synchronizing UVLC. The position of bit errors can be determined both approximately and, with increased computational effort, with bit accuracy, as far as random bit errors are concerned. The results lead to the proposal of replacing UVLC by VLCD.

During work on this contribution, there was a thread on the email reflector that reported previous investigations in ‘error propagation of the RVLC in H.263 Annex D with transmitted over BSC (so more than single error)’. Future contributions should take these bursty conditions into account as well.

The code word number gradients are approximately equal for all testing sequences that are conform with the testing conditions. However, extensive testing involving VLCD decoding has not been done so far due to long simulation times. So, this task remains.

Also, the VLCD decoder’s decoding behavior and possibilities with regard to increased error resilience and concealment could be investigated for the case of several random bit errors. The author believes, however, that VLCD performs superior there as well.

Abbreviations

BSC

Binary symmetric channel
CW

Code word
DPCM

Differential Pulse Code Modulation
EOB

End of block
ITU

International Telecommunications Union
JVT

Joint Video Team
MVD

Motion vector data
PSNR

Peak-signal-to-noise ratio
RVLC

Reversible variable-length coding
SS

Source symbol
Sync

Synchronization
TML

Test Model Long-Term
UVLC

Universal variable-length code
VCEG

Video Coding Experts Group
VLCD

Variable-length code from H.263, Annex D
VLC

Variable-length coding/code

References

[VCEG-L23]
Louis Kerofsky. Bit errors within the UVLC. Eibsee (Germany), Jan. 9 – 12, 2001

[VCEG-F11]
Gisle Bjøntegård}. Response to Call for Proposals for H.26L. Oct. 1998

[Max85]
James C. Maxted and John P. Robinson. Error Recovery for Variable Length Codes. IEEE Trans.Inf.Theory, volume IT-31, no. 6, pp. 794-801, Nov. 1985

[VCEG-N81]
Gary Sullivan and Gisle Bjøntegård. Recommended Simulation Common Conditions for H.26L Coding Efficiency Experiments on Low-Resolution Progressive-Scan Source Material. Santa Barbara (CA, USA), Sep. 2001

File:JVT-B034
Page: 9
Date Printed: 1/19/2002

