	ITU - Telecommunications Standardization Sector

STUDY GROUP 16 Question 6

Video Coding Experts Group (VCEG)

15th Meeting: Pattaya, Thailand, 3-7 December, 2001
	Document VCEG-O58

 Appendix A
Filename: VCEG-O58- AppendixA.doc

Generated: 28 Nov ’01
Revised: 6 Dec ‘01

	
	

	Question:
	Q.6/SG16 (VCEG)

	Source:
	Miska M. Hannuksela,
Nokia Mobile Phones
P.O. Box 68
33721 Tampere
Finland

	Tel:
Fax:
Email:

	+358 40 5212845
+358 3 3183605

miska.hannuksela@nokia.com

	Title:
	Interim JVT File Format

	Purpose:
	Output

1. Summary

This document specifies the interim JVT file format. The main body of document VCEG-O58 summarizes the changes compared to the input document VCEG-O44. You can also see the changes compared to the VCEG-O44, if you turn on “Highlight changes on screen”.
As a response to proposal VCEG-N65, VCEG decided to add a goal to the H.26L project goal list to define or find a file format with definition of how to encapsulate H.26L streams within that format for purposes such as simple stream interchange, HTTP streaming service, random access, and support of multiple streams with transitions (e.g. using SP pictures between streams). This specification fulfils the given requirements.

JVT encoders and decoders capable of video file output and input shall use the specified file format.

Section 2 discusses why existing a file formats are not suitable for the JVT codec and justifies the major design decisions of the specified file format. Sections 3 and 4 define the specified file format. Section 6 (Appendix A) lists how the specification responds to the requirements listed in VCEG-N65. Section 7 (Appendix B) gives some example file structures.

Table of Contents

11.
Summary

32.
Design Decisions

32.1
Study of Existing Formats

32.2
Justification for Major Design Decisions

43.
File Organization

43.1
General

43.2
File Identification

53.3
Clump

53.4
Clump Order

64.
Clump Definitions

64.1
File Type Clump

74.2
File Header Clump

84.3
Content Info Clump

94.4
Alternate Track Info Clump

104.5
Parameter Set Clump

124.6
Segment Clump

124.7
Alternate Track Header Clump

144.8
Alternate Track Media Clump

144.9
Switch Picture Clump

165.
JVT Patent Disclosure Form

196.
Appendix A. Response to Requirements

217.
Appendix B. Examples

217.1
Simple File

227.2
Multiple Slices per Picture

2. Design Decisions

2.1 Study of Existing Formats

When contribution VCEG-N65 was discussed in the Santa Barbara meeting, it was noted that the existing file formats should be studied and re-used if possible. We examined the ISO media file format (the basis of the MP4 file format specified in ISO/IEC 14496-1) that is closely related to the QuickTime file format. In addition, we took a look at the AVI file format (see vfw.h in Microsoft Developer Studio).

The following complications and shortcomings were identified in the ISO media file format when it was considered to be the elementary file format for the JVT codec:

· The format is versatile. Thus, implementing a parser requires relatively large amount of source code and binary size. For example, the source code size of the publicly available MP4 reference library is around 700 kbytes and the size of the compiled library is around 160 kbytes.

· There are relatively many headers resulting into remarkable bit-rate overhead. The header overhead is a crucial issue when progressively downloading (streaming) a file from a web server. The meta-data overhead is normally between 10-25% of the file size in an MP4 file. An exact number is tricky to give, since it also depends on the efficiency and intelligence of the MP4 composer.

· The minimum addressable unit is a sample, which corresponds to a frame in video coding. Consequently, slices or data partitions cannot be identified without in-band slice and data partition headers and markers. (Hint tracks can address slices and data partitions without in-band markers, but hint tracks are not used for decoding and playback purposes but rather for encapsulation to transport packets.)

· As boxes and media data can be located relatively freely in a file, it is possible that an MP4 file cannot be progressively downloaded (streamed from a web server). It cannot be explicitly indicated if an MP4 file is progressively downloadable.

The following complications and shortcomings were identified in the AVI file format when it was considered to be the elementary file format for the JVT codec:

· The format is picture based. Slices or data partitions cannot be identified without in-band slice and data partition headers and markers.

· Pictures are not associated with any transport related information. Thus, encapsulation to transmission packets is not straightforward.

We think that these observations justify the design of a dedicated file format for the JVT codec.

2.2 Justification for Major Design Decisions

Slices and data partitions are selected as the minimum units that can be addressed. Streaming servers can easily combine multiple slices and data partitions to the same transport packet if that is considered beneficial.

Meta-data for slices and data partitions for a particular picture is grouped. This allows streaming servers easily decide how many and which slices and data partitions are encapsulated into the same packet. Parsing interleaved meta- and media data would not be as straightforward as that.

Meta-data for several pictures can be grouped. This makes accessing the media data at a random position easier.

The file can be divided into periods of time each of which corresponds to an independent segment in the file. Segments can represent a scene, for example. Segments can be easily discarded or inserted. They can also serve as random access and indexing points.

A progressive downloading system, such as web cam system, may consist of a real-time media encoder, a server, and a number of clients. The real-time media encoder encodes media tracks and encapsulates them in a streaming file, which is transmitted in real-time to the server. The server copies the file to each client over HTTP/TCP/IP protocol. Preferably, no modifications to the file shall be done in the server. New clients may join the session at any moment. As side-information, such as all the required parameter sets, may not be transmitted off-line, the information resides in the file and is repeated regularly to allow accessing the file at any position.

As we felt that MP4 is used successfully for many applications, we wanted to mimic its strengths and avoid its weaknesses. In particular, we adopted the object-based design of the MP4 file format, but limited the number and order of objects to keep the parser implementation simple.

3. File Organization

3.1 General

A file is self-contained.

A file consists of clumps, which are object-like entities and similar to boxes of ISO/IEC 14496-1:2001 (ISO media file format). Name ‘clump’ was chosen to differentiate them from MPEG-4’s boxes, chunks, and objects as well as from QuickTime’s atoms. Note: In fact, the definition of a clump is the same as the definition of a box except for the extended type mechanism of a box. Thus, in order to emphasize the common definition of a clump and a box, it might be appropriate to refer to a box instead of a clump in this document. However, as this was not agreed in the Pattaya meeting, this change was not done yet.
A clump may contain other clumps. A clump may have member attributes. If a clump contains attributes and other clumps, clumps shall follow the attribute values.

The attribute values in the clumps are stored with the most significant byte first, commonly known as network byte order or big-endian format.

A number of clumps contain index values into sequences in other clumps. These indexes start with the value 0 (0 is the first entry in the sequence).

The Syntactic Description Language (SDL) of ISO/IEC 14496-1:2001 is used to define the file format. In addition to the existing basic data types, the UVLC elementary data type is defined in this document. It shall be used to carry variable-length bit-fields that follow the JVT UVLC design.
Unrecognized clumps should be skipped and ignored.
3.2 File Identification

The File Type Clump is the first clump of the file. JVT files shall be identified from a majorBrand field equal to ‘jvt ’.

The preferred file extension is ‘.jvt’.

3.3 Clump

3.3.1 Definition

Clumps start with a header, which gives both size and type. The header permits compact or extended size (32 or 64 bits). Most clumps will use the compact (32-bit) size. The size is the entire size of the clump, including the size and type header, fields, and all contained clumps. This facilitates general parsing of the file.

3.3.2 Syntax

aligned(8) class clump (unsigned int(32) clumpType)

unsigned int(32) size;

unsigned int(32) type = clumpType;

if (size==1) {

unsigned int(64) largesize;

} else if (size==0) {

// clump extends to end of file

}
}

3.3.3 Semantics

size is an integer that specifies the number of bytes in this clump, including all its fields and contained clumps; if size is 1 then the actual size is in the field largesize; if size is 0, then this clump is the last one in the file, and its contents extend to the end of the file (normally only used for an Alternate Track Media Clump)

type identifies the clump type; standard clumps use a compact type, which is normally four printable characters, to permit ease of identification, and is shown so in the clumps below.

3.4 Clump Order

An overall view of the normal encapsulation structure is provided in the following table.

The table shows those clumps that may occur at the top-level in the left-most column; indentation is used to show possible containment. Thus, for example, an Alternate Track Header Clump (atrh) is found in a Segment Clump (segm).

Not all clumps need be used in all files; the mandatory clumps are marked with an asterisk (*). See the description of the individual clumps for a discussion of what must be assumed if the optional clumps are not present.

There are restrictions in which order the clumps shall appear in a file. See the clump definitions for these restrictions.

	ftyp
	
	*
	4.1
	File Type Clump, identifies the file format

	jvth
	
	*
	4.2
	File Header Clump, file-level meta-data

	cinf
	
	
	4.3
	Content Info Clump, describes file contents

	atin
	
	*
	4.4
	Alternate Track Info Clump, describes characteristics of tracks

	prms
	
	*
	4.5
	Parameter Set Clump, enumerated set of frequently changing coding parameters

	segm
	
	*
	4.6
	Segment Clump, contains meta- and media data for a defined period of time

	
	atrh
	*
	4.7
	Alternate Track Header Clump, meta-data for a track

	
	swpc
	
	4.9
	Switch Picture Clump, identifies pictures that can be used to switch between tracks.

	
	atrm
	*
	4.8
	Alternate Track Media Clump, media data for a track

4. Clump Definitions

4.1 File Type Clump

4.1.1 Definition

Clump Type:
`ftyp’
Container:
File
Mandatory:
Yes
Quantity:
Exactly one
A media-file structured according to the ISO media file format specification may be compatible with more than one detailed specification, and it is therefore not always possible to speak of a single ‘type’ or ‘brand’ for the file. This clump identifies a JVT file in a similar fashion without claiming compatibility with the ISO format. However, it enables other file readers to identify the JVT file type. It must be placed first in the file.
4.1.2 Syntax

aligned(8) class FileTypeClump aligned(8) extends clump(‘ftyp’) {

unsigned int(32) majorBrand = ‘jvt ’;

unsigned int(16) jmMajorVersion;

unsigned int(16) jmMinorVersion;

unsigned int(32) compatibleBrands[];
// to end of the clump
}

4.1.3 Semantics

This clump identifies the specification to which this file complies.

majorBrand is a brand identifier for the interim JVT file format. Only ‘jvt ’ shall be used for majorBrand, as the file format is not compatible with any other format.

jmMajorVersion and jmMinorVersion define the version of the standard working draft the file complies with. For example, JM-1 files shall have jmMajorVersion equal to 1 and jmMinorVersion equal to 0.

compatibleBrands is a list, to the end of the clump, of brands. Should only include the entry ‘jvt ’.

Note: As the interim JVT file format is based on the ISO media file format, it might be appropriate to allow a combination of many ISO media file format based file types into the same file. In such a case, the majorBrand might not be equal to ‘jvt ‘ but ‘jvt ‘ should be one of the compatibleBrands. As this option was not discussed in the Pattaya meeting, it is not reflected in the current specification of the interim JVT file format (this document).

4.2 File Header Clump

4.2.1 Definition

Clump Type:
`jvth’
Container:
File
Mandatory:
Yes
Quantity:
One or more
This clump must be placed as the second clump of the file.
The clump can be repeated at any position of the file when no container clump is open. A File Header Clump identifies a random access point to the file. In other words, no data prior to a selected File Header Clump is required to parse any of the succeeding data. Furthermore, any segment can be parsed without a forward reference to any of the data succeeding the particular segment.

4.2.2 Syntax

aligned(8) class fileHeaderClump extends clump(‘jvth’) {

unsigned int(8) majorVersion = 0x00;

unsigned int(8) minorVersion = 0x00;

unsigned int(32) timescale;

unsigned int(32) numUnitsInTick;

unsigned int(64) duration;

unsigned int(16) pixAspectRatioX;

unsigned int(16) pixAspectRatioY;

unsigned int(16) maxPicId;

unsigned int(8) numAlternateTracks;

unsigned int(2) numBytesInPayloadCountMinusOne;

unsigned int(2) numBytesInPictureOffsetMinusTwo;

unsigned int(2) numBytesInPictureDisplayTimeMinusOne;

unsigned int(2) numBytesInPictureCountMinusOne;

unsigned int(2) numBytesInPayloadSizeMinusOne;

}

4.2.3 Semantics

majorVersion and minorVersion indicate the version of the file format. This specification defines the format for version 0.0 (majorVersion.minorVersion).
Version numbering is independent of working draft document and joint model software as well as the version of the standard | recommendation. This allows parsers interpret the high-level syntax of the files, even if decoding of a file according to the indicated joint model or standard version was not supported.

timescale is the number of time units which pass in one second. For example, a time coordinate system that measures time in sixtieths of a second has a time scale of 60.

numUnitsInTick is the number of time units according to timescale that correspond to one clock tick. A clock tick is the minimum unit of time that can be presented in the file. For example, if the clock frequency of a video signal is (30 000) / 1001 Hz, timescale should be 30 000 and numUnitsInTick should be 1001.

duration is an integer that declares length of the file (in the indicated timescale). Value zero indicates that no duration information is available.

pixAspectRatioX and pixAspectRatioY define the pixel geometry, calculated by pixAspectRatioX / pixAspectRatioY. Value zero in either or both of the attributes indicate an unspecified pixel aspect ratio.

maxPicId gives the maximum value for the picture identifier.

numAlternateTracks gives the number of alternative encodings of the same source. Typically each encoding is targeted for different bit-rate. Each file shall contain at least one track.

numBytesInPayloadCountMinusOne indicates the number of bytes that are needed to signal the maximum number of payloads in any picture. For example, numBytesInPayloadCountMinusOne equal to zero indicates that one byte is needed to signal the number of payloads, and the maximum number of payloads is 255.

numBytesInPictureOffsetMinusTwo indicates the number of bytes that are needed to signal picture offsets. For example, numBytesInPictureOffsetMinusTwo equal to zero indicates that the offsets are two-byte integer values with a range of –32768 to 32767.

numBytesInPictureDisplayTimeMinusOne indicates the number of bytes that are needed to signal picture display time offsets.

numBytesInPictureCountMinusOne indicates the number of bytes that are needed to signal the maximum number of pictures in a segment.

numBytesInPayloadSizeMinusOne indicates the number of bytes to signal the maximum payload size in bytes.

4.3 Content Info Clump

4.3.1 Definition

Clump Type:
`cinf´
Container:
File
Mandatory:
No
Quantity:
Zero or more
This clump gives information about the content of the file.

The clump can be repeated at any position of the file when no container clump is open.

4.3.2 Syntax

aligned(8) class contentInfoClump extends clump(‘cinf’) {

unsigned int(64) creationTime;

unsigned int(64) modificationTime;

unsigned int(8) titleNumBytes;

if (titleNumBytes)

unsigned int(8)[titleNumBytes] title;

unsigned int(8) authorNumBytes;

if (authorNumBytes)

unsigned int(8)[authorNumBytes] author;

unsigned int(8) copyrightNumBytes;

if (copyrightNumBytes)

unsigned int(8)[copyrightNumBytes] copyright;

unsigned int(16) descriptionNumBytes;

if (descriptionNumBytes)

unsigned int(8)[descriptionNumBytes] description;

unsigned int(16) URINumBytes;

if (URINumBytes)

unsigned int(8)[URINumBytes] URI;

}

4.3.3 Semantics

creationTime is an integer that declares the creation time of the presentation (in seconds since midnight, Jan. 1, 1904).

modificationTime is an integer that declares the most recent time the presentation was modified (in seconds since midnight, Jan. 1, 1904.

titleNumBytes gives the number of bytes in title.

title, if present, contains the title of the file coded according to ISO/IEC 10646-1 UTF-8.

authorNumBytes gives the number of bytes in author.

author, if present, contains the author of the source or the encoded representation in the file coded according to ISO/IEC 10646-1 UTF-8.

copyrightNumBytes gives the number of bytes in copyright.

copyright shall be used only to convey intellectual property information regarding the source or the encoded representation in the file. copyright is coded according to ISO/IEC 10646-1 UTF-8.

descriptionNumBytes gives the number of bytes in description.

description shall be used only to convey descriptive information associated with the information contents of the file. description is coded according to ISO/IEC 10646-1 UTF-8.

URINumBytes gives the number of bytes in URI.

URI contains a uniform resource identifier (URI), as defined in IETF RFC 2396. URI is coded according to ISO/IEC 10646-1 UTF-8. URI shall be used to convey any related information to the file.

4.4 Alternate Track Info Clump

4.4.1 Definition

Clump Type:
‘atin’
Container:
File
Mandatory:
Yes
Quantity:
One or more.

This clump specifies the characteristics of alternate tracks. The clump shall precede the first Segment Clump. The clump can be repeated at any position of the file when no container clump is open.

4.4.2 Syntax

aligned(8) class alternateTrackInfo {

unsigned int(16) displayWindowWidth;

unsigned int(16) displayWindowHeight;

unsigned int(16) maxSDUSize;

unsigned int(16) avgSDUSize;

unsigned int(32) avgBitRate;

}

aligned(8) class alternateTrackInfoClump

extends clump(‘atin’) {

(class alternateTrackInfo) trackInfo[numAlternateTracks];

}

4.4.3 Semantics

displayWindowWidth and displayWindowHeight declare the preferred size of the rectangular area on which video images are displayed. The values are interpreted as amount of pixels.

An SDU is defined as the payload and the payload header. maxSDUSize gives the size in bytes of the largest SDU of the track. avgSDUSize gives the average size of the SDU over the entire track. Value zero in either attribute indicates that no information is available.

avgBitRate gives the average bit-rate in bits/second over the entire track. Payloads and payload headers taken into account in the calculation.

4.5 Parameter Set Clump

4.5.1 Definition

Clump Type:
‘prms’
Container:
File
Mandatory:
Yes
Quantity:
One or more

This clump specifies a parameter set.

Parameter sets can be repeated in the file to allow random access. A parameter set is uniquely identified within a file based on parameterSetID. Decoders can infer a repetition of a parameter set if a set with the same parameterSetID has already appeared in a file. A redundant copy of a parameter set can safely be ignored.

4.5.2 Syntax

aligned(8) class parameterSetClump

extends clump(‘prms’) {

unsigned int(16) parameterSetID;

unsigned int(8) profile;

unsigned int(8) level;

unsigned int(8) version;

unsigned int(16) pictureWidthInMBs;

unsigned int(16) pictureHeightInMBs;

unsigned int(16) displayRectangleOffsetTop;

unsigned int(16) displayRectangleOffsetLeft;

unsigned int(16) displayRectangleOffsetBottom;

unsigned int(16) displayRectangleOffsetRight;

unsigned int(8) displayMode;

unsigned int(16) displayRectangleOffsetFromWindowTop;

unsigned int(16) displayRectangleOffsetFromWindowLeftBorder;

unsigned int(8) entropyCoding;

unsigned int(8) motionResolution;

unsigned int(8) partitioningType;

unsigned int(8) intraPredictionType;

};

4.5.3 Semantics

parameterSetId gives the identifier of the parameter set. The identifier shall be unique within a file.

profile defines the coding profile in use.

level defines the level in use within the profile.

version defines the version in use within the profile and the level.

pictureWidthInMBs and pictureHeightInMBs define the extents of the coded picture in macroblocks.

displayRectangleOffsetTop, displayRectangleOffsetLeft, displayRectangleOffsetBottom, and displayRectangleOffsetRight define the rectangle to be displayed from the coded picture. Pixel units are used.

displayMode defines the preferred displaying mode. Value zero indicates that the display rectangle shall be rescaled to fit onto the display window. No scaling algorithm is defined. Image shall be as large as possible, no clipping shall be applied, image aspect ratio shall be maintained, and image shall be centered in the display window. Value one indicates that the display rectangle shall be located as indicated in displayRectangleOffsetFromWindowTop and displayRectangleFromWindowLeftBorder. No scaling shall be done and clipping shall be applied to areas outside the display window. No fill pattern is defined for areas in the display window that are not covered by the display rectangle.

displayRectangleOffsetFromWindowTop and displayWindowOffsetFromWindowLeftBorder indicate the location of the top-left corner of the display rectangle within the display window. The values are given in pixels. The values are valid only if displayMode is one.

Figure 1 clarifies the relation of different display rectangle and window related attributes. The dashed rectangle of in the decoded picture represents the display rectangle, which is indicated by displayRectangleOffsetTop, displayRectangleOffsetLeft, displayRectangleOffsetBottom, and displayRectangleOffsetRight.

entropyCoding equal to zero stands for UVLC, whereas value one stands for CABAC.

motionResolution equal to zero stands for full-pixel motion resolution, one stands for half-pixel motion resolution, two stands for ¼-pixel motion resolution, and three stands for 1/8-pixel motion resolution.

partitioningType equal to zero stands for the single slice mode and one stands for the data partitioning mode.

[image: image13.wmf]displayWindowWidth

pictureWidthInMBs

pictureHeightInMBs

Decoded picture

Displayed picture

displayWindowHeight

displayRectangleOffsetFromWindowTop

displayRectangleOffsetFromWindowLeftBorder

intraPredictionType equal to zero stands for normal INTRA prediction, whereas one stands for the constrained INTRA prediction.

Figure 1. Relation of display window and rectangle attributes.

4.6 Segment Clump

4.6.1 Definition

Clump Type:
`segm’
Container:
File
Mandatory:
Yes
Quantity:
One or more
A segment clump contains data from a certain period of time. Segments shall not overlap in time. Segments shall appear in ascending order of time in the file. A segment clump is a container clump for several other clumps.

4.6.2 Syntax

aligned(8) class SegmentClump extends Clump(‘segm’) {

unsigned int(64) fileSize;

unsigned int(64) startTick;

unsigned int(64) segmentDuration;

}

4.6.3 Semantics

fileSize indicates the number of bytes from the beginning of the Segment Clump to the end of the file. Value zero indicates that no size information is available. When downloading a file to a device with limited storage capabilities, fileSize can be used to determine if a file fits into the available storage space. In a progressive downloading service, fileSize, startTick, and duration (in the File Header Clump) can be used to estimate the average bit-rate of the file including meta-data. This estimation can then be used to decide how much initial buffering is needed before starting the playback.

startTick indicates the absolute time of the beginning of the segment since the beginning of the presentation (time zero). Any time offsets within the segment are relative to startTick.

segmentDuration indicates the duration of the segment. Value zero indicates that no duration information is available.

4.7 Alternate Track Header Clump

4.7.1 Definition

Clump Type:
‘atrh’
Container:
Segment Clump (‘segm’)
Mandatory:
Yes
Quantity:
One or more

An alternate track represents an independent encoding of the same source as for the other alternate tracks. The Alternate Track Header Clump contains meta-data for an alternate track. The clumps shall appear in the same order in all Segment Clumps and they can be indexed starting from zero. Each succeeding clump is associated with an index one greater than the previous one. The index can be used to associate the clump with a particular track and with the information given in the Alternate Track Info Clump.

The clump contains an indication of the number of the pictures in the alternate track in this segment. In addition, the clump contains picture information for each of these pictures. Picture information shall appear in ascending order of picture identifiers (in modulo arithmetic). In other words, picture information shall appear in coding/decoding order of pictures.

A picture information block contains a pointer to the coded representation of the picture. A picture is associated with a display time and with a number of so-called payloads.

A payload refers to a slice, a data partition, or a piece of supplemental enhancement information. A payload header refers to an equivalent definition as in VCEG-N72R1. For example, a payload header of a single slice includes the “first byte”, an indication of the parameter set in use, and the slice header.

4.7.2 Syntax

aligned(8) class payloadInfo {

unsigned int((numBytesInPayloadSizeMinusOne + 1) * 8) payloadSize;

unsigned int(8) headerSize;

unsigned int(4) payloadType;

unsigned int(1) errorIndication;

unsigned int(3) reserved = 0;

if (payloadType == 0) { // single slice

UVLC parameterSet;

sliceHeader;

else if (payloadType == 1) { // partition A

UVLC parameterSet;

sliceHeader;

UVLC sliceID;

}

else if (payloadType == 2 || partitionType == 3) { // Partition B or C

UVLC pictureID;

UVLC sliceID;

}

else if (payloadType == 5) { // Supplemental enhancement information

// no additional codewords

}

}

aligned(8) class pictureInfo {

bit intraPictureFlag;

aligned(8) int((numBytesInPictureOffsetMinusTwo + 2) * 8) pictureOffset;

int((numBytesInPictureDisplayTimeMinusOne + 1) * 8) pictureDisplayTime;

unsigned int((numBytesInPayloadCountMinusOne + 1) * 8) numPayloads;

(class payloadInfo) payloadData[numPayloads];

}

aligned(8) class AlternateTrackHeaderClump extends Clump(‘atrh’) {

unsigned int((numBytesInPictureCountMinusOne + 1) * 8) numPictures;

(class pictureInfo) pictureData[numPictures];

}

4.7.3 Semantics

payloadInfo gives information related to a payload. payloadSize indicates the number of bytes in the payload (excluding the payload header). The value of headerSize is the number of bytes in the payload header, i.e., the number of bytes remaining in the structure. The rest of the data is defined in VCEG-N72R1.

pictureInfo gives information related to a picture.

intraPictureFlag is set to one, when the picture is an INTRA picture. The flag is zero otherwise.

A picture pointer is maintained to point to the beginning of the latest picture in the corresponding Alternate Track Media Clump. The pointer is relative to the beginning of the Alternate Track Media Clump. pictureOffset gives the increment or the decrement (in bytes) for the picture pointer to obtain the coded data for the picture. Initially, before updating the pointer for the first picture of the alternate track in a segment, the picture pointer shall be zero.

pictureDisplayTime gives the time when the picture is to be displayed. It is assumed that the picture remains visible until the next picture is to be displayed. The value is relative to the corresponding value of the previous picture.

numPayloads indicates the number of payloads in the picture. payloadData is an array of payloadInfo structures signaling the characteristics of the payloads.

numPictures indicates the number of pictures in the track during the period of the segment. pictureData is an array of pictureInfo structures signaling the meta-data of the pictures.

4.8 Alternate Track Media Clump

4.8.1 Definition

Clump Type:
‘atrm’
Container:
Segment Clump (‘segm’)
Mandatory:
Yes
Quantity:
One or more

An alternate track represents an independent encoding of the same source as for the other alternate tracks. The Alternate Track Media Clump contains the media-data for an alternate track and for the duration of the segment. The clumps shall appear in the same order in all Segment Clumps and they can be indexed starting from zero. Each succeeding clump is associated with an index one greater than the previous one. The index can be used to associate the clump with a particular track and with the information given in other track-related clumps.

Pictures can appear in the clump in any order. This ensures that disposable pictures, such as conventional B pictures, can be located flexibly. Data for different pictures shall not overlap. Data for a picture consists of payloads, i.e., slices, data partitions, and pieces of supplemental enhancement information. Payloads shall appear in successive bytes, and the order of payloads shall be the same as in the Alternate Track Header Clump.

4.8.2 Syntax

aligned(8) class AlternateTrackMediaClump extends Clump(‘atrm’) {

}

4.9 Switch Picture Clump

4.9.1 Definition

Clump Type:
‘swpc’
Container:
Segment Clump (‘segm’)
Mandatory:
No
Quantity:
Zero or one

This clump defines which pictures can be used to switch from an alternate track to another. Typically these pictures are SP pictures.

4.9.2 Syntax

aligned(8) class uniquePicture {

unsigned int(8) alternateTrackIndex;

unsigned int((numBytesInPictureCountMinusOne + 1) * 8) pictureIndex;

}

aligned(8) class switchPictureSet {

unsigned int(8) numSyncPictures;

(class uniquePicture) syncPicture[numSyncPictures];

}

aligned(8) class switchPictureClump extends Clump(‘swpc’) {

unsigned int((numBytesInPictureCountMinusOne + 1) * 8) numSwitchPictures;

(class switchPictureSet) switchPicture[numSwitchPictures];

}

4.9.3 Semantics

uniquePicture uniquely identifies a picture within this segment. It contains two attributes: alternateTrackIndex and pictureIndex. alternateTrackIndex identifies the alternate track where the picture lies, and pictureIndex gives the picture index in coding order.

switchPictureSet gives a set of pictures that represent the same picture contents and can be used to replace any picture in the set as a reference picture for motion compensation. numSyncPictures gives the number of pictures in the set. syncPicture is an array of uniquePicture structures indicating which pictures belong to the set.

numSwitchPictures indicates the number of picture positions that have multiple interchangeable representations. switchPicture is an array of switchPictureSet structures indicating the set of pictures that can be used interchangeably for each picture position.

5. JVT Patent Disclosure Form

	International Telecommunication Union
Telecommunication Standardization Sector
	International Organization for Standardization
	International Electrotechnical Commission

	[image: image1.wmf]
	[image: image2.png]1S0
NS

	[image: image3.png]

Joint Video Coding Experts Group - Patent Disclosure Form
(Typically one per contribution and one per Standard | Recommendation)

Please send to:

JVT Rapporteur Gary Sullivan, Microsoft Corp., One Microsoft Way, Bldg. 9, Redmond WA 98052-6399, USA

Email (preferred): Gary.Sullivan@itu.int Fax: +1 425 706 7329 (+1 425 70MSFAX)

This form provides the ITU-T | ISO/IEC Joint Video Coding Experts Group (JVT) with information about the patent status of techniques used in or proposed for incorporation in a Recommendation | Standard. JVT requires that all technical contributions be accompanied with this form. Anyone with knowledge of any patent affecting the use of JVT work, of their own or of any other entity (“third parties”), is strongly encouraged to submit this form as well.

This information will be maintained in a “living list” by JVT during the progress of their work, on a best effort basis. If a given technical proposal is not incorporated in a Recommendation | Standard, the relevant patent information will be removed from the “living list”. The intent is that the JVT experts should know in advance of any patent issues with particular proposals or techniques, so that these may be addressed well before final approval.

This is not a binding legal document; it is provided to JVT for information only, on a best effort, good faith basis. Please submit corrected or updated forms if your knowledge or situation changes.

This form is not a substitute for the ITU ISO IEC Patent Statement and Licensing Declaration, which should be submitted by Patent Holders to the ITU TSB Director and ISO Secretary General before final approval.

	Submitting Organization or Person:

	Organization name
	Nokia Corporation
	

	Mailing address
	
	

	Country
	
	

	Contact person
	
	

	Telephone
	
	

	Fax
	
	

	Email
	
	

	Place and date of submission
	Pattaya, Thailand, 6-Dec-2001
	

	Relevant Recommendation | Standard and, if applicable, Contribution:

	Name (ex: “JVT”)
	JVT
	

	Title
	Interim JVT File Format
	

	Contribution number
	VCEG-O58-AppendixA
	

	
	
	

(Form continues on next page)

	Disclosure information – Submitting Organization/Person (choose one box)

	
	

	[image: image4.wmf]
	2.0
The submitter is not aware of having any granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

or,

	The submitter (Patent Holder) has granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution. In which case,

	[image: image5.wmf]
	2.1 The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a free license to an unrestricted number of applicants on a worldwide, non-discriminatory basis to manufacture, use and/or sell implementations of the above Recommendation | Standard.

	
	

	[image: image6.wmf]
	2.2
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a license to an unrestricted number of applicants on a worldwide, non-discriminatory basis and on reasonable terms and conditions to manufacture, use and/ or sell implementations of the above Recommendation | Standard.

Such negotiations are left to the parties concerned and are performed outside the ITU | ISO/IEC.

	
	

	X
	2.2.1
The same as box 2.2 above, but in addition the Patent Holder is prepared to grant a “royalty-free” license to anyone on condition that all other patent holders do the same.

	
	

	[image: image7.wmf]
	2.3
The Patent Holder is unwilling to grant licenses according to the provisions of either 2.1, 2.2, or 2.2.1 above. In this case, the following information must be provided as part of this declaration:

· patent registration/application number;
· an indication of which portions of the Recommendation | Standard are affected.
· a description of the patent claims covering the Recommendation | Standard;

	In the case of any box other than 2.0 above, please provide the following:

	Patent number(s)/status
	
	

	Inventor(s)/Assignee(s)
	
	

	Relevance to JVT
	
	

	Any other remarks:
	
	

	(please provide attachments if more space is needed)

(form continues on next page)

Third party patent information – fill in based on your best knowledge of relevant patents granted, pending, or planned by other people or by organizations other than your own.

	Disclosure information – Third Party Patents (choose one box)

	
	

	X
	3.1
The submitter is not aware of any granted, pending, or planned patents held by third parties associated with the technical content of the Recommendation | Standard or Contribution.

	[image: image8.wmf]
	3.2
The submitter believes third parties may have granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

	For box 3.2, please provide as much information as is known (provide attachments if more space needed) - JVT will attempt to contact third parties to obtain more information:

	3rd party name(s)
	
	

	Mailing address
	
	

	Country
	
	

	Contact person
	
	

	Telephone
	
	

	Fax
	
	

	Email
	
	

	Patent number/status
	
	

	Inventor/Assignee
	
	

	Relevance to JVT
	
	

	
	
	

	Any other comments or remarks:

	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	

	
	
	

	
	
	

	
	
	

	
	
	

	

	
	

	
	

	

	
	2.2

	
	

	
	

	
	

	
	

	
	

	
	
·
·
·

	

	
	
	

	
	
	

	
	
	

6. Appendix A. Response to Requirements

VCEG-N65 proposed a set of requirements for the file format, which were adopted as working assumptions. This section reprints the requirements and comments how they are fulfilled. Comments are printed in italics below.

1. The file format shall be the interchange format between H.26L-aware processing elements, such as an H.26L encoder, an H.26L decoder, and a multimedia file generator/parser. For example, a multimedia file generator may receive elementary media files from a number of encoders (including an H.26L encoder) in a non-real-time manner. Consequently, clearly specified file formats for each elementary file type are needed.

2. Each H.26L video encoding or decoding system capable of file output shall support the file format.

3. The file format is not supposed to replace any existing multimedia file format, such as QuickTime, MP4, ASF, or AVI.

The defined format is clearly targeted for the JVT codec only, as it does not provide means to add any other media types and contains elements and attributes that are specific to the JVT codec.

4. The file format shall provide means to identify all sequence headers, picture headers, slices, data partitions, and supplemental enhancement information.

The defined clumps and structures enable identification of all the meta- and media data.

5. The file format shall support multiple encodings of the same content (each of which is targeted for different bit-rate, for example). Furthermore, the file format shall indicate preferred switch locations between bit-streams.

Alternate tracks are used to carry independent encodings of the same content. The Switch Picture Clump indicates preferred switch locations.

6. The file format shall not require decoding for access to data.

Media data is separated from meta-data, and all media data can be accessed without decoding.

7. The file format shall be extensible. It shall easily allow new syntax elements and new versions of its structures.

The majorVersion and minorVersion attributes in the File Header Clump can be used to indicate successive versions of the file format. Clumps contain clump size and clump type. Thus, new clumps can easily be added and parsers can ignore clumps they do not recognize.

8. The file format shall be byte-oriented.

All clumps are byte-oriented. Most attributes within clumps are byte-oriented.

9. The file format should enable random access, fast forward, and fast backward operations.

The file can be easily seeked segment by segment. As the meta-data for each segment precedes the media data, it can be used for random accessing the media data of the segment. Segment meta-data includes indication of INTRA pictures, which are typically used for random access, fast forward, and fast backward.

The file can also be read from an arbitrary position if it contains repetitions of the File Header Clump. This enables usage of an HTTP GET message with a byte range to access a file randomly or to fast-forward a file when the file is streamed from a web server.

10. The file format should be self-contained. In other words, no links to any other files or URIs should be used.

The file format is self-contained. The Content Info Clump may contain a URI to additional information related to the file, but it can be safely ignored and does not affect parsing of the file.

11. The code size required implementing a file composer and parser should be minimal.

The aim of the design was to limit the number and order of clumps to simplify composer and parser implementations.

12. The file format should be easily streamable. In other words, the file format should provide means for a streaming server to encapsulate H.26L data to transport packets in a straightforward manner.

The smallest unit of data that can be identified is a slice or a data partition, which are referred to as a payload. Each payload is associated with a payload header whose format is the same as the proposed RTP packetization format (VCEG-N72R1). Thus, encapsulation to RTP packets is straightforward. As no other encapsulation formats (such as encapsulation to H.223 AL-SDU) have been designed so far, we cannot comment on have well the file format suits them. However, we expect that the defined file format is flexible enough for any encapsulation format.

13. The file format should suit HTTP-based streaming from a web server. (This feature might be handy for web camera applications, for example.)

We tried to minimize the header overhead of the format for HTTP-based streaming services. A file can be segmented to avoid an excessive amount of meta-data at the beginning of the file. Thus, the initial buffering period is shorter than in a non-segmented file. Repetition of vital meta-data clumps, such as parameter sets, enables usage of an HTTP GET message with a byte range to access a file randomly or to fast-forward a file.

14. When recording a file in real-time, the memory buffer size required to generate a section of the file should be controllable. For example, it should be able to create a file so that each coded frame is written to a file immediately after it is generated.

Segment Clumps enable recording of a file in suitable chunks from one picture to the entire sequence.

15. When parsing a file, the required memory buffer size should be signaled in the file.

This requirement relates to the hypothetical reference decoder, which has not been specified yet. Thus, no buffer control attributes are included in the file at this stage.

7. Appendix B. Examples

7.1 Simple File

The sequences is captured at a rate of 30000/1001 Hz. Every other frame is coded. The sequence lasts ten seconds. There is one slice per picture. All pictures reside in the same segment.
aligned(8) class FileTypeClump aligned(8) extends clump(‘ftyp’) {

unsigned int(32) majorBrand = ‘jvt ’;

unsigned int(16) jmMajorVersion = 1;

unsigned int(16) jmMinorVersion = 0;

unsigned int(32) compatibleBrands = ‘jvt ‘;
}
aligned(8) class fileHeaderClump extends clump(‘jvth’) {

unsigned int(32) timescale = 30000;

unsigned int(32) numUnitsInTick = 1001;

unsigned int(64) duration = 300; // 10 seconds

unsigned int(16) pixAspectRatioX = 0; // unspecified

unsigned int(16) pixAspectRatioY = 0;

unsigned int(16) maxPicId = 31;

unsigned int(8) numAlternateTracks = 1;

unsigned int(2) numBytesInPayloadCountMinusOne = 0;

unsigned int(2) numBytesInPictureOffsetMinusTwo = 0;

unsigned int(2) numBytesInPictureDisplayTimeMinusOne = 0;

unsigned int(2)
numBytesInPictureCountMinusOne = 0;

unsigned int(2) numBytesInPayloadSizeMinusOne = 1;

}

aligned(8) class alternateTrackInfoClump

extends clump(‘atin’) {

unsigned int(16) displayWindowWidth = 176;

unsigned int(16) displayWindowHeight = 144;

unsigned int(16) maxSDUSize = 0; // not available

unsigned int(16) avgSDUSize = 0; // not available

unsigned int(32) avgBitRate = 64000;

}

aligned(8) class parameterSetClump

extends clump(‘prms’) {

unsigned int(16) parameterSetID = 0;

unsigned int(8) profile = A;

unsigned int(8) level = B;

unsigned int(8) version = C;

unsigned int(16) pictureWidthInMBs = 11;

unsigned int(16) pictureHeightInMBs = 9;

unsigned int(16) displayRectangleOffsetTop = 0;

unsigned int(16) displayRectangleOffsetLeft = 0;

unsigned int(16) displayRectangleOffsetBottom = 0;

unsigned int(16) displayRectangleOffsetRight = 0;

unsigned int(8) displayMode = 1;

unsigned int(16) displayRectangleOffsetFromWindowTop = 0;

unsigned int(16) displayRectangleOffsetFromWindowLeftBorder = 0;

unsigned int(8) entropyCoding = 0; // UVLC

unsigned int(8) motionResolution = 2; // 1/4 pixel resolution

unsigned int(8) partitioningType = 0; // single slice mode

unsigned int(8) intraPredictionType = 1; // constrained INTRA prediction

};

aligned(8) class SegmentClump extends Clump(‘segm’) {

bit independentSegment;

unsigned int(64) fileSize = 0;

unsigned int(64) startTick = 0;

unsigned int(64) segmentDuration = 300;

aligned(8) class AlternateTrackHeaderClump extends Clump(‘atrh’) {

unsigned int(8) numPictures = 150;

pictureData[0] {

bit intraPictureFlag = 1;

aligned(8) int(16) pictureOffset = 8;

int(8) pictureDisplayTime = 0;

unsigned int(8) numPayloads = 1;

payloadData[0] {

unsigned int(16) payloadSize = 2133;

unsigned int(8) headerSize = X;

unsigned int(4) payloadType = 0; // single slice

unsigned int(1) errorIndication = 0;

unsigned int(3) reserved = 0;

UVLC parameterSet = 0;

sliceHeader;

}

}

pictureData[1] {

bit intraPictureFlag = 0;

aligned(8) int(16) pictureOffset = 2133;

int(8) pictureDisplayTime = 2;

...

}

...

pictureData[149] {

bit intraPictureFlag = 0;

aligned(8)
int(16) pictureOffset = 479;

int(8) pictureDisplayTime = 2;

unsigned int(8) numPayloads = 1;

payloadData[0] {

unsigned int(16) payloadSize = 356;

unsigned int(8) headerSize = X;

unsigned int(4) payloadType = 0; // single slice

unsigned int(1) errorIndication = 0;

unsigned int(3) reserved = 0;

UVLC parameterSet = 0;

sliceHeader;

}

}

}

aligned(8) class AlternateTrackMediaClump extends Clump(‘atrm’) {

// coded data

}

}

7.2 Multiple Slices per Picture

The same sequence as in the previous section is assumed. This time each picture contains more than one slice. The contents of the file as similar to the previous case except for the Segment Clump shown below:

aligned(8) class SegmentClump extends Clump(‘segm’) {

bit independentSegment;

unsigned int(64) fileSize = 0;

unsigned int(64) startTick = 0;

unsigned int(64) segmentDuration = 300;

aligned(8) class AlternateTrackHeaderClump extends Clump(‘atrh’) {

unsigned int(8) numPictures = 150;

pictureData[0] {

bit intraPictureFlag = 1;

aligned(8)
int(16) pictureOffset = 8;

int(8) pictureDisplayTime = 0;

unsigned int(8) numPayloads = 3;

payloadData[0] {

unsigned int(16) payloadSize = 754;

unsigned int(8) headerSize = X;

unsigned int(4) payloadType = 0; // single slice

unsigned int(1) errorIndication = 0;

unsigned int(3) reserved = 0;

UVLC parameterSet = 0;

sliceHeader;

}

payloadData[1] {

unsigned int(16) payloadSize = 812;

unsigned int(8) headerSize = X;

unsigned int(4) payloadType = 0; // single slice

unsigned int(1) errorIndication = 0;

unsigned int(3) reserved = 0;

UVLC parameterSet = 0;

sliceHeader;

}

payloadData[2] {

unsigned int(16) payloadSize = 779;

unsigned int(8) headerSize = X;

unsigned int(4) payloadType = 0; // single slice

unsigned int(1) errorIndication = 0;

unsigned int(3) reserved = 0;

UVLC parameterSet = 0;

sliceHeader;

}

}

pictureData[1] {

bit intraPictureFlag = 0;

aligned(8)
int(16) pictureOffset = 2345; // 754 + 812 + 779

int(8) pictureDisplayTime = 2;

...

}

...

pictureData[149] {

bit intraPictureFlag = 0;

aligned(8)
int(16) pictureOffset = 479;

int(8) pictureDisplayTime = 2;

unsigned int(8) numPayloads = 2;

payloadData[0] {

unsigned int(16) payloadSize = 222;

unsigned int(8) headerSize = X;

unsigned int(4) payloadType = 0; // single slice

unsigned int(1) errorIndication = 0;

unsigned int(3) reserved = 0;

UVLC parameterSet = 0;

sliceHeader;

}

payloadData[1] {

unsigned int(16) payloadSize = 233;

unsigned int(8) headerSize = X;

unsigned int(4) payloadType = 0; // single slice

unsigned int(1) errorIndication = 0;

unsigned int(3) reserved = 0;

UVLC parameterSet = 0;

sliceHeader;

}

}

}

