ITU-T Standardization Sector TD-12

Proposal

Q.12-14/16 Rapporteur Meeting (Sun River, Oregon 8-11 September 1997)

� DATE \@ "d MMMM, yyyy" * MERGEFORMAT �11 September, 1997�

SOURCE:	VocalTec Communications Ltd.

Intel Corporation

Lucent Technologies

	

TITLE: Proposed text for informative appendix ‘H.323 Implementation Examples’

This document describes example implementations that might be developed within the H.235 framework. These are not intended to constrain the many other possibilities available within this recommendation; rather to give more concrete examples of usage within H.323.

This section will describe an example usage of security tokens to obscure or hide destination addressing information. The example scenario is an endpoint which wishes to make a call to another endpoint utilizing its well known alias. More specifically this involves an H.323 endpoint, Gatekeeper, POTS-Gateway, and telephone as illustrated below.

�EMBED Word.Picture.6���

Currently, H.323 operates in a manner similar to a telephone network with caller-ID. This scenario will illustrate a situation in which the callee does not want to expose its physical address, while still allowing the call to complete. This is might be important in POTS-H.323 gateways, where the target phone number may need to stay private.

Assume that EPA is trying to call POTSB, and POTSB does not want to expose its E.164 phone number to EPA. (How the policy is established of whether to expose or hide a particular E.164 address is beyond this example).

EPA will send an ARQ to its Gatekeeper to resolve the address of the POTS telephone as represented by its alias/GW. The Gatekeeper would recognize this as a ‘private’ alias, knowing that in order to complete the connection it must return the POTS-gateway address. (Similar to returning the address of an H.320 Gateway if an H.320 endpoint is called by an H.323 endpoint).

In the returned ACF, the Gatekeeper returns the POTS-Gateway’s address as expected. The addressing information that is required to dial to the end telephone (i.e. the telephone number) is returned in encrypted token included with the ACF. This encrypted token contains the actual E.164 (phone number) of the telephone which cannot be deciphered nor understood by the caller. (i.e. EPA)

The endpoint issues the SETUP message to the Gateway device (whose call signaling address was returned in the ACF) including the opaque token(s) that it received with the ACF.

The Gateway upon receiving the SETUP issues its ARQ to its Gatekeeper which includes any token(s) that were received in the SETUP.

The Gatekeeper is able to decipher the token(s) and return the phone number in the ACF.

Partial ASN.1 of an example token structure is shown below, with the field contents described. Assume we utilize the cryptoEncodedGeneralToken to contain the encrypted telephone number.

An implementation might choose a tokenOID denoting this token as containing the E.164 phone number. The particular method that is used to encrypt this phone number (for example DES utilizing 56 bit keys) would be included in the ‘ENCRYPT’ definition algorithmOID.

CryptoToken::= CHOICE

{

	cryptoEncodedGeneralToken SEQUENCE -- General purpose/application specific token

{

		tokenOID OBJECT IDENTIFIER,

ENCRYPTED { EncodedGeneralToken }

	},

.

.

. [abbreviated text]

.

}

The CryptoToken would be passed in the SETUP (from EPA to GW) and the ARQ (from the GW to the Gatekeeper) messages as outlined above. After the Gatekeeper decrypted the token (the telephone number) it would pass the clear version of this in the clearToken

In this example, it is assumed that the user is a subscriber of the Gatekeeper (i.e. it will be in its zone) and has an associated subscription ID and password. The user would register with the Gatekeeper using their subscription ID (as passed in an alias - H323ID) and encrypting a challenge string presented by the Gatekeeper. This assumes that the Gatekeeper also knows the password associated with the subscription ID. The Gatekeeper will authenticate the user by verifying that the challenge string was correctly encrypted.

The example registration procedure with Gatekeeper authentication is as follows:

If the endpoint uses GRQ to discover a Gatekeeper, one of the aliases in the message would be the subscription ID (as an H323ID). The authenticationcapability would contain an AuthenticationMechanism of pwdSymEnc and the algorithmOIDs would be set to indicate the entire set of encryption algorithms supported by the endpoint. (For example one of these would be 56 bit DES in CBC mode.)

The Gatekeeper would respond with GCF (assuming it recognizes the alias) carrying (at least) a challenge in the tokens element. The challenge would contain 16 octets (To prevent replay attacks, the token should also contain a timeStamp.) The authenticationmode should be set to pwdSymEnc and the algorithmOID should be set to indicate the encryption algorithm required by the Gatekeeper (for example, 56 bit DES in CBC mode)

If the Gatekeeper does not support any of the algorithmOIDs indicated in the GRQ, then it would respond with a GRJ containing a GatekeeperRejectReason of resourceUnavailable.

The endpoint application should then attempt to register with (one of) the GK(s) that responded with a GCF by sending an RRQ containing a cryptoEPPwdEncr in the cryptoTokens. The cryptoEPPwdEncr would have the algorithmOID of the encryption algorithm agreed to in the GRQ/GCF exchange, and the encrypted challenge.

The encryption key is constructed from the user’s password using the procedure described in section 13.3.3.34 of H.235. The resulting 8 octet “string” is then used as the DES key to encrypt the challenge.

When the Gatekeeper receives the encrypted challenge in the RRQ, it would compare it to an identically generated encrypted challenge to authenticate the registering user. If the two encrypted strings to not match, the Gatekeeper should respond with an RRJ with the RegistrationRejectReason set to securityDenial. If they match, the Gatekeeper sends an RCF to the endpoint.

If the Gatekeeper receives an RRQ which does not contain an acceptable cryptoTokens element then it should respond with an RRJ with a GatekeeperRejectReason of discoveryRequired. The endpoint, upon receiving such an RRJ may perform discovery which will allow the Gatekeeper/endpoint to exchange a new challenge. Note that the GRQ message may be unicast to the Gatekeeper.

�PAGE �

�PAGE �3�

