ITU Telecommunication Standardization Sector 	APC-1288


Study Group 16


Q.12-14/16 Rapporteur Meeting


Sunriver 8th-12th September 1997	





Source:	Pete Cordell�BT Labs�pete.cordell@bt-sys.bt.co.uk�+44 1473 646436


Purpose: Information 





Introductory note: As many groups are interested in conversational URLs including SG16, VoIP, MMUSIC, PINT, TIPHON, URL-REG etc), it is intended to setup a new e-mail list.  This has been delayed due to internal problems, but it is hoped that these can be resolved soon.


This contribution contains the text currently proposed.  It is expected that this text will change.


Conversational URLs


Text curator: Pete Cordell, BT Labs


{Editor's comments in italics}


Abstract


The evolving technologies for real-time conversation over the Internet require URLs to provide user contact information.  As there are many protocols (including some that are not Internet based) that can be used for inter-user conversation, this document describes a two stage transaction process for obtaining a URL that can be used to initiate conversation.  The first stage involves retrieving a list of protocol specific URLs in a MIME encoded file.  The MIME type enables an appropriate application to be launched which will analyse the presented URLs and select the most appropriate one.  The second stage involves interpreting the protocol specific URL and initiating the conversation.  The protocol specific URLs are encoded in a URL form so that they can be embedded directly into HTML pages.  This allows the first stage to be omitted.  The document describes the format of the MIME encoded list of URLs, and the format of a number of protocol specific URLs.


Contents


Introduction


Internet technology allows for real-time conversation to take place.  It also provides a convenient method of obtaining user location information in the form of URLs.  (Note:  As used here, the term user can refer to a person, a machine, or any other entity a person or machine may care to have a conversation with.) These can describe Internet conversational protocols, and non-Internet based conversational mechanism such as POTS.  As there are a number of conversational protocols that can be used to contact a user, this document describes a two stage process for initiating conversation, with the first stage being optional.  The first stage retrieves a list of protocol specific URLs in a MIME encoded file.  This list is analysed and the most appropriate URL is selected.  The second stage involves interpreting the protocol specific URL.  The protocol specific URLs are in a form that can be directly embedded into HTML pages so that the first stage can be omitted.


The scheme presented here is designed to leverage as much as possible of existing infrastructure.  As other technologies become common place (such as vCard and CMA) the mechanisms presented here may lapse.


The remainder of this document describes the format of the MIME file, and the format of a number of protocol specific URLs.


The MIME file


The first stage in the contact process is to obtain a list of possible contact mechanisms.  To enable a single link to be placed in an HTML page, an indirection method is used wherein a link to a MIME encoded file is made.  The MIME type of the file is:





	APPLICATION/TALKTO





and the default extension is:





	.tlk





The MIME file should be retrieved using HTTP.  Files that contain time dependent protocol specific URLs should ensure that the files are marked as non-cacheable.


The MIME encoded file consists of ASCII text and lists a number of protocol specific URLs that can be used to contact a remote user.  The section below describes a number of protocol specific URLs, but this should not be considered an exclusive list.


Each protocol specific URL is presented on a separate line with no leading white space.  The preferred line break convention is the one used for HTTP (CRLF), but applications must be tolerant to other line break conventions so that files can be readily edited on diverse hosts.


Each protocol specific URL may be followed by some white space, a semi-colon and a comment.  The comment should be in a form that can be presented to a user as part of a manual selection process.  By default the comments are ignored.  For example:





<protocol_specific_url>    ;My home number


<protocol_specific_url>    ;My bosses number





Lines which begin with white-space or a semi-colon should be considered as comments and ignored.


The order of the URLs should be such that the most preferred URL is presented first, and the least preferred is presented last.  When interpreting the file, if a URL is unsupported, or is not understood, it should be skipped.  Endpoints are encouraged to take into account the preference order indicated by the file when selecting a URL, but this is not required.  Parsing of the file may continue if a contact attempt fails.


Note that the file does not contain any other information such as the times when specific URLs are valid.  This enables a simple file format that does not have to cope with arbitrary search sequences and the complications of time-zones.  Therefore, strictly, the file is only valid at the time it is downloaded and the HTTP cache control attributes should be used control its validity as required. 


As with any file downloaded by HTTP, it can be a static file on a server or dynamically generated by an executable.  The data for the latter may be uploaded by schemes such as the VoIP's CMA protocol.  


Validation of who is allowed to obtain various types of location information can be done using WWW-Authentication and cookies.  This document provides no additions to these HTTP mechanisms.


Example URLs for downloading the MIME file are:


	http://talkto.mycom.com/me.tlk


	http://talkto.mycom.com/cma.exe?me


{For consideration:


The above scheme is simple, but not extensible.  It may be prudent to define a basic extension sequence to cope with any future problems.  The follwing scheme is suggested for consideration.


If the line starts with a "+", then this line contains a parameter that is optional to interpret, i.e. parsing of the file can continue even if the parameter is not understood.


If the line starts with "*", then the line contains a parameter that must be understood.  The rest of the file should only be interpreted if the parameter is understood, but earlier lines can be interpreted even if the paramter is not understood.  This definition allows simple parser features and complex parser features to co-exist in the same file.  e.g. a file might contain:


h323:pete@h323.bt.com�*time=17:00-8:30�h323:home@h323.bt.com


where time is a paramter to be defined in the future.  Parsers that didn't understand the time parameter could use the first URL, but not the second}.


Protocol Specific URLs


Protocol specific URLs describe contact information for a specific protocol.  This section describes a number of these URLs, but this should not be considered an exclusive list.  Other suitable URLs include the IETF's SIP, VoIP's CMA, and Microsoft's CALLTO schemes.  Although the main intention of these URLs is to describe conversational protocols, URLs such as CHAT and MAILTO may be appropriate as a last resort.  Under certain circumstances RTSP URLs may also be useful.


This section starts with a description of some common elements.  These are then used in the protocol specific URLs.


Common URL elements


This sub-section describes common elements from which the protocol specific URLs are constructed.  A number of the elements use definitions from [1].


network = packet-network | switched-network


packet-network = "ip"  | "tls" | "udp" | "aal5"	; ip = IP connection without TLS


	; tls = IP connection made over TLS


	; udp = IP connection made over UDP -


	;	this channel may be made reliable


	;	using additional means


	; aal5 = ATM AAL5 call


switched-network = "pots" | "isdn" | "aal1"	; pots = GSTN or ISDN speech/audio call


	; isdn = ISDN data call


	; aal1 = ATM AAL1 call


address = ip-address | phone-address 





ip-address =  hostport	; hostport defined in [1]





phone-address = phone-number *[ "&" phone-number ]


phone-number = "+" number [ "x" extension ]


number = 1*( digit | pretty )	; digit is from [1]


pretty = "." | "(" | ")" | "-"


extension = 1*( digit )





param-list = param | param  param-list


param = ";" h323-param





Telephone numbers in phone-address should always be presented in a full international form, including the "+" sign.  It is the responsibility of endpoints and/or gatekeepers to convert these to location specific numbers.


H.323 URL


{Note: the format of this URL has been structured to have a basic form of h323:pete@h323.bt.com.  This is because users are familiar with this format, and it is intuitive what it means.  However, this does present problems when e-mail ids which include an @ are included in the URL.  One solution is to include the e-mail @ in its escaped form, i.e. %40.  Another option is to specify  that parsers should be tolerant of duplicate @ signs.  Yet another option is to use an alternative character to represent the @ in the basic URL form, i.e.  h323:pete/bt.com.  This appears less intuitive, and there may be many erroneous URLs generated as the number of /s at the beginning become very significant, such as in h323:/pete.bt.com which should resolve to an IP address only. }


There are two H.323 related URLs.  The first form initiates a call directly based on the information in the URL.  The second initiates a call based on information that is obtained by first issuing an LRQ.


For the first form, the scheme is:





	h323url = "h323" ":" [ "/" [ network ] "/" ] h323-address [ param-list ]





and the second form is:





	lrqurl = "lrq" "://" ip-address [ param-list ]


where:





h323-address = user-part | address | user-part address


user-part = user [ ":" type ] "@"


user = 1*alphanum	; alphanum defined in [1]


type = "e164" | "h323id" | "email" | "party"





The 'network' part of the URL need only be present if the network is not of type IP (i.e. ip is the default network).


If an ip-address is used in the 'address' field, the 'user' and 'type' fields specify the information to be placed in the destinationInfo part of ARQ and destinationAddress part of SETUP.  The 'type' field specifies the type of AliasAddress.  If the user field starts with a digit the default type is "e164", otherwise it is "h323id".  


If a 'phone-number' is used in the address field any 'user' and 'type' parts are placed in the remoteExtensionAddress part of SETUP, and the phone number is placed in the destinationInfo part of ARQ and destinationAddress part of SETUP.  It is the responsibility of the receiving H.323 over ISDN gateway to transfer the remoteExtensionAddress to the destinationInfo part of ARQ and destinationAddress part of SETUP prior to making the onward call.  {The editor may be guilty of over stepping the mark at this point!!!}


The 'type' field is placed in the position usually occupied by a password field.  This is because the password field is redundant for H.323 applications and placing it in this location allows existing parsers to be used.


To place an aliasAddress containing an @ sign in the 'user' field, the escaped form of the @ sign must be used, i.e. %40.


{Editor's note: The proposed form of ip-address is used as it allows notation like h323:pete@bt.com.  The alternative form of ip-address = [ user [ ":" type ] ] [ "/" hostport ] results in h323:pete/bt.com.  This is visually less appealing, but does have the benefit that escaping the @ is not required.  This needs to be discussed.}


If the 'address' field is of type ip-address this is placed in the destCallSignalAddress fields of both ARQ and SETUP.  


The H.323 URL may have a number of parameters associated with it.  If an endpoint does not know how to handle a parameter then it shall ignore the entire URL.  At the time of writing the valid parameters are:


h323-param = cid-param | callid-param | token-param | l2-param


cid-param = "cid" "=" UUID	; UUID is specified in [2]


callid-param = "callid" "=" UUID


token-param = "token" "=" "0x" 1* hex 


l2-param  = "l2" "=" ( "PPP" | "MPPP" | "SLIP" )	; Layer 2 format


The cid and callid parameters encode UUIDs that should be placed in the conference ID and CallIdentifier fields of the ARQ and SETUP messages respectively.  Both of these fields may appear a maximum of 1 time in the URL.  


If a conference Identifier is specified, then the conferenceGoal should be "join" in the outgoing SETUP message, otherwise it should be "create".


The token field represents a hexadecimal representation of an octet sequnce.  0, 1 or more token parameters may be included in a URL.


The 'l2' parameter allows for different packetisation schemes to be used over switched network connections.  If applicable, the default is PPP.


Note that an H.323 URL with a network type of ISDN indicates that H.323 is carried over the ISDN using something like PPP (specified by the 'l2' parameter).  It does not mean that the H.323 system should locate an H.320 gateway and use this to communicate over the ISDN.  The H.320 URL should be used to indicate this.


Example H.323 URLs are as follows:


h323:pete@h323.bt.com�	AliasAddress = pete, AliasAddress type = h323id, destCallSignalAddress = h323.bt.com.


h323://pete@h323.bt.com�	Same as above


h323:646436@h323.bt.com�	AliasAddress = 646436, AliasAddress type = e164, destCallSignalAddress = h323.bt.com.


h323:pete@	-- This form requires a gatekeeper to determine a destCallSignalAddress�	AliasAddress = pete, AliasAddress type = h323id, destCallSignalAddress = GK supplied.


h323:pete.bt.com�	destCallSignalAddress = pete.bt.com


h323:/tls/pete%40bt.com:email@bt.com;token=0x5435;token=0xcdfe;callid=f81d4fae-7dec-11d0-a765-00a0c91e6bf6;cid=f81d4fbf-7dec-11d0-a765-00a0c91e6bf6�This call should be setup over a secure TLS channel.�	AliasAddress = pete@bt.com, AliasAddress type = email-ID, �destCallSignalAddress = bt.com, Two tokens are supplied.  Call and conference IDs are also specified.


h323:/pots/+1-515-234-5645�H.323 over PPP over GSTN.  destCallSignalAddress = an address of an H.323 over POTS gateway.  This may be gatekeeper provided.  +1-515-234-5645 is placed in destinationInfo part of ARQ and destinationAddress part of SETUP {should this be PartyNumber of type publicInternational.}


lrq:pete@h323.bt.com�Causes an LRQ to be performed first.


H.324 URL


The format of the H.324 URL is:





h324url = "h324" ":" [ "/" [ switched-network ] "/" ] phone-address





The default switched-network type is "pots".  H.324i is denoted by having a switch-network type of "isdn".


An example URL is:


h324:+1-515-234-5678


or:


h324:/isdn/+1-515-234-5679&+1-515-234-5680


H.320 URL


The format of the H.320 URL is:





h320url = "h320" ":" phone-address





The network type is always "isdn".


An example is:


h320:/isdn/+1-515-234-5679&+1-515-234-5680


POTS URL


The format of the POTS URL is:





potsurl = "pots" ":" phone-address





The network type is always "pots".  This means either a GSTN or ISDN speech call can be made.


An example URL is:


pots:+1-515-234-5678


T.120 URL


The format of the T.120 URL is:





	t120url = "t120" ":" [ "/" [ network ] "/" ] address [ param-list ]





The following parameters are valid: ???????


FAX URL


Is this needed?


References


[1]	RFC1738.  (Editor's note: A new version of RFC1738 is being produced so this reference will have to be changed.)


[2]	H.225 Version 2.


Appendix 1 - Complete ABNF


all-urls = h323url | lrqurl | h324url | h320url | potsurl | t120url


h323url = "h323" ":" [ "/" [ network ] "/" ] h323-address [ param-list ]


h324url = "h324" ":" [ "/" [ switched-network ] "/" ] phone-address


h320url = "h320" ":" phone-address


potsurl = "pots" ":" phone-address


t120url = "t120" ":" [ "/" [ network ] "/" ] address [ param-list ]


network = packet-network | switched-network


packet-network = "ip"  | "tls" | "udp" | "aal5"


switched-network = "pots" | "isdn" | "aal1"





h323-address = user-part | address | user-part address


user-part = user [ ":" type ] "@"


user = 1*alphanum	; alphanum defined in [1]


type = "e164" | "h323id" | "email" | "party"





address = ip-address | phone-address 





ip-address =  hostport	; hostport defined in [1]





phone-address = phone-number *[ "&" phone-number ]


phone-number = "+" number [ "x" extension ]


number = 1*( digit | pretty )	; digit is from [1]


pretty = "." | "(" | ")" | "-"


extension = 1*( digit )





param-list = param | param  param-list


param = ";" ( h323-param | t120-param )





h323-param = cid-param | callid-param | token-param | l2-param


cid-param = "cid" "=" UUID	; UUID is specified in [2]


callid-param = "callid" "=" UUID


token-param = "token" "=" "0x" 1* hex 


l2-param  = "l2" "=" ( "PPP" | "MPPP" | "SLIP" )	; Layer 2 format


Security Considerations


Acknowledgements


Author's Address


Pete Cordell


BT Labs


MLB 4/15


Martlesham Heath


Ipswich


IP5 3RE


UK


e-mail: pete.cordell@bt-sys.bt.co.uk


