ITU Telecommunication Standardization Sector					Document APC-1221

Study Group 16

Q.12-14/16 Rapporteur Meeting

Hertzliya, 10 - 13 June 1997

SOURCE: Glen Freundlich, Lucent Technologies

		email:	ggf@lucent.com

		voice:	+1 303 538 2899

TITLE:	Comments on H.323 version 2

PURPOSE:	proposal

Determining the Status of Endpoints and Gatekeepers

H.225.0 currently defines a pair of status messages (IRQ, IRR) which allow a gatekeeper to determine the status of an endpoint, where the gatekeeper can send an IRQ to the endpoint and the endpoint responds with IRR. In addition, the ACF may currently specify a frequency that the endpoint should periodically send the IRR unsolicited by an IRQ. However, it is desirable to allow a gatekeeper to request an endpoint to periodically send its status even when the endpoint is not active on a call. This would allow the gatekeeper to determine that an endpoint is not available (e.g., out of service) before actually trying to facilitate a call to that endpoint, perhaps choosing a backup endpoint to receive the call. The IRR message would be formed as if the gatekeeper had just polled the endpoint.

GatekeeperConfirm ::= SEQUENCE --(GCF)

{

	requestSeqNum		RequestSeqNum,

	protocolIdentifier	ProtocolIdentifier,

	nonStandardData	NonStandardParameter OPTIONAL,

	gatekeeperIdentifier	GatekeeperIdentifier OPTIONAL,

	rasAddress		TransportAddress,

	...,

	alternateGatekeeper	SEQUENCE OF AlternateGK OPTIONAL,

	tokens			SEQUENCE OF Token OPTIONAL,

	integrity		SEQUENCE OF IdIntegrityAlgorithm OPTIONAL,

	irrFrequency		INTEGER (1..65535) OPTIONAL

}

In addition, it would be useful for an endpoint to determine the status of its gatekeeper. For example, an endpoint could re-register in cases where it has determined that its gatekeeper has gone out of service (e.g., rebooted) and lost registration status. This is currently possible if an endpoint sends RRQ with the same information from the originally accepted request. However, an exchange of very small messages may be present an approach easier to process. So, the following messages could be added to RAS:

GatekeeperStatusQuery ::= SEQUENCE -- (GSQ)

{

	requestSeqNum		RequestSeqNum,

	protocolIdentifier	ProtocolIdentifier,

	nonStandardData	NonStandardParameter OPTIONAL,

	endpointIdentifier	EndpointIdentifier,

	...

}

GatekeeperStatusResponse ::= SEQUENCE -- (GSR)

{

	requestSeqNum		RequestSeqNum,

	protocolIdentifier	ProtocolIdentifier,

	timeToLive		TimeToLive,

	...

}

Logical Channel Control

There exist useful features which are strictly plumbing-based features rather than call signaling-based features. For one example, when a multipoint conference degrades to a point-to-point call, the MC could instruct the remaining endpoints to close existing channels to an MP and reopen new channels directly between the endpoints, thus conserving MP resources. For another example, one “call” could result in the sequential creation and destruction of logical channels, such as when a call might first reach a recorded announcement before being routed to the final destination party.

These features can be supported with a specification of CommunicationModeCommand semantics and an addition to the RequestChannelClose message. The CommunicationModeCommand can be used to instruct endpoints in a conference (or a point-to-point call) to change modes (by indicating a new mode with the mediaChannel already used) or to transmit to a new address (by indicating the mode currently in use, but with new mediaChannel). Similarly, an endpoint that receives a CommunicationModeCommand indicating the mode currently in use and no mediaChannel should close the appropriate channel and the attempt to reopen using the OpenLogicalChannel - OpenLogicalChannelAck sequence, where the OpenLogicalChannelAck contains the address to which the endpoint will send the medium.

The H.245 RequestChannelClose can be used in a similar manner, given an additional field. In this case, receipt of the RequestChannelClose message with a reason of “reopen” instructs the endpoint to close the particular channel and then re-open using the OpenLogicalChannel - OpenLogicalChannelAck sequence.

RequestChannelClose ::= SEQUENCE

{

	forwardLogicalChannelNumber	LogicalChannelNumber,

	...,

	reason	CHOICE

	{

		unknown	NULL,

		reopen	NULL,

		...

	}

}

CloseLogicalChannel ::= SEQUENCE

{

	forwardLogicalChannel	LogicalChannelNumber,

	source	CHOICE

	{

		user	NULL,

		lcse	NULL

	},

	...,

	reason	CHOICE

	{

		unknown	NULL,

		reopen		NULL,

		...

	}

}

Modification to UserInputIndication

Consider a 3-party conference, where 1 party is an H.323 terminal and the other 2 parties are in the SCN reached through a gateway. There will exist cases where it is desirable that a tone (e.g., DTMF) be played to one of the SCN parties, but not the other (e.g., one of the SCN parties is a speech-response unit, the other SCN party is an audio bridge). There should exist some way to specify the destination of the UserInputIndication. The proposal here is to include a new “destination” field to indicate the destination of the UserInputIndication message. Furthermore, if the “destination” field is not present the MC should forward the UserInputIndication message to all other parties.

UserInputIndication	::=CHOICE

{

	nonStandard	NonStandardParameter,

	alphanumeric	GeneralString,

	...,

	userInputSupportIndication	CHOICE

	{

		nonStandard 	NonStandardParameter,

		basicString	NULL,

		iA5String	NULL,

		generalString	NULL,

		...

	},

	destination	TerminalLabel OPTIONAL,

	duration	INTEGER(1..65535) OPTIONAL

}

Also notice the new “duration” field. This indicates the desired duration of the tone, expressed in milliseconds. If no “duration” field is present, the gateway’s default tone duration is used.

		Page � PAGE �3�

