ITU - Telecommunication Standardization Sector    Temporary Document      TD-30  (PLEN)



STUDY GROUP 16						Original: English

____________________________ 



Geneva 17-27 March 1997



Question : 12,13,14/16



SOURCE :	Rapporteur for Q.14/16 (G. Thom) 

TITLE : 	Draft Recommendation H.Secure 





This document provides a text for draft of Recommendation H.Secure (TD-37) which has been produced based on the discussions at three interregnum Rapporteurs meetings and discussions during the March 1997 SG16  meeting. SG16 is requested to review and determine it. 



Editor:		Jim Toga	

		Intel

		+1 503 264 8816 (voice)

		+1 503 264 3485 (fax)

		jtoga@ibeam.intel.com





�Telecommunication Standardization                                	AVC-1124r32

Sector 	                							



Original: English







 

STUDY GROUP 16

Q.2&3 Rapporteur Meeting

CONTRIBUTION 





Source:  Jim Toga (Editor)

	     +1 503 264 8816 (voice)

	     +1 503 264 3485 (fax)

	     jtoga@ibeam.intel.com





Title: Security and Encryption for H Series (H.323 and other H.245 based) multimedia terminals.(Draft H.Secure)



Date: 2110 March, 1997



Summary:  This document is the current draft of H.Secure. This version started from Jim Toga’s  AVC-1018 submission which was entered for discussion at the September 1996 Rapporteur’s meeting in Eibsee Germany.



Notes on reading:  



{Editors notes are generally in braces and italics}  New  text is indicated in blue.  The deleted text has strikethrough font. 

‘???’ indicates a reference or constant value that shall be supplied in the final document.



�

��

INTERNATIONAL  TELECOMMUNICATION  UNION��





ITU-T	DRAFT H.Secure

TELECOMMUNICATION	(March 1997)�STANDARDIZATION  SECTOR	�OF  ITU













LINE  TRANSMISSION  OF  NON-TELEPHONE�SIGNALS

�





Security and Encryption for H Series (H.323 and other H.245 based) multimedia terminals.

(Draft H.Secure)



��

DRAFT  ITU-T  Recommendation  H.Secure

		











FOREWORD



The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the International Tele�com�munication Union.  The ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.



The World Telecommunication Standardization Conference (WTSC), which meets every four years, established the topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.



ITU-T Recommendation H.Secure was prepared by the ITU-T Study Group 16 (199x-199x) and was approved by the WTSC (Place, Month xx-xx, 199x).

___________________











ã  ITU  199x

All rights reserved.  No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

�SUMMARY



This recommendation describes enhancements within the framework of the ITU H.3(XX) specification series, to incorporate security services such as Authentication and Privacy (data encryption). The proposed scheme is applicable to both simple point-to-point and multi-point conferences for any terminals which utilize H.245 as a control protocol.



In particular, H.323 systems operate over Local Area Networks (LAN) which do not provide a guaranteed Quality of Service.  In general these are shared media, packet based networks.  For the same technical reasons that the base network does not provide QOS, the network does not provide a secure service. Secure real-time communication over insecure networks generally involves two major areas of concern – authentication and privacy.



Authentication is the verification that the entity with whom someone is communicating is, in fact, the entity that was intended.



Privacy indicates the desire to keep anyone except the intended recipient(s) from being able to interpret any data that is exchanged between two or more parties.  Accomplishing this usually involves some type of data encryption/decryption, otherwise known as cryptography.



This Recommendation describes the security infrastructure and specific privacy techniques to be employed by the H.3(XX) series of multimedia terminals. This document will cover areas of concern for interactive conferencing.  These areas include, but are not strictly limited to authentication, privacy and integrity of all real-time media streams that are exchanged in the conference. This Recommendation describes the protocol and algorithms needed between the H.323 entities. It is expected that wherever possible other H.series terminals may interoperate and directly utilize the methods described in this document. This document will not initially provide for complete implementation in all areas, and will specifically highlight media privacy.







This Recommendation utilizes the general facilities supported in H.245 and as such, any standard which operates in conjunction with this control protocol may use this security mechanism.



This recommendation includes the ability to negotiate services and functionality in a generic manner, and to be selective concerning cryptographic techniques and capabilities utilized. The specific manner in which they are used,  relates to systems capabilities, application requirements and specific security policy constraints. This recommendation supports varied cryptographic algorithms, with varied options appropriate for different purposes; e.g. key lengths.  Certain cryptographic algorithms may be allocated to specific security services (e.g. one for fast media stream encryption and another for signaling encryption). It should also be noted that some of the available cryptographic algorithms may be reserved for export or other national issues (e.g. with restricted key lengths).  The recommendation supports signaling of well-known algorithms in addition to signaling non-standardized or proprietary cryptographic algorithms. 

�� TOC \o "1-3" \t "Heading,1" �

1. SUMMARY	� GOTOBUTTON _Toc379886093  � PAGEREF _Toc379886093 �iviv��

2. SCOPE	� GOTOBUTTON _Toc379886094  � PAGEREF _Toc379886094 �88��

3. NORMATIVE REFERENCES	� GOTOBUTTON _Toc379886095  � PAGEREF _Toc379886095 �99��

4. DEFINITIONS	� GOTOBUTTON _Toc379886096  � PAGEREF _Toc379886096 �99��

5. SYMBOLS AND ABBREVIATIONS	� GOTOBUTTON _Toc379886097  � PAGEREF _Toc379886097 �1111��

6. CONVENTIONS	� GOTOBUTTON _Toc379886098  � PAGEREF _Toc379886098 �1212��

7. SYSTEM INTRODUCTION	� GOTOBUTTON _Toc379886099  � PAGEREF _Toc379886099 �1313��

7.1 Background	� GOTOBUTTON _Toc379886100  � PAGEREF _Toc379886100 �1313��

7.1.1 Authentication	� GOTOBUTTON _Toc379886101  � PAGEREF _Toc379886101 �1313��

7.1.2 Media Privacy	� GOTOBUTTON _Toc379886102  � PAGEREF _Toc379886102 �1313��

7.1.3 Control Privacy	� GOTOBUTTON _Toc379886103  � PAGEREF _Toc379886103 �1313��

7.2 Authentication	� GOTOBUTTON _Toc379886104  � PAGEREF _Toc379886104 �1414��

7.2.1 Certificates	� GOTOBUTTON _Toc379886105  � PAGEREF _Toc379886105 �1414��

7.3 Call Establishment Security	� GOTOBUTTON _Toc379886106  � PAGEREF _Toc379886106 �1414��

7.4 Media Stream Privacy	� GOTOBUTTON _Toc379886107  � PAGEREF _Toc379886107 �1515��

7.5 Trusted Elements	� GOTOBUTTON _Toc379886108  � PAGEREF _Toc379886108 �1515��

7.5.1 Specific Elements	� GOTOBUTTON _Toc379886109  � PAGEREF _Toc379886109 �1515��

7.5.2 Other Standards Specific Elements	� GOTOBUTTON _Toc379886110  � PAGEREF _Toc379886110 �1515��

8. CONNECTION ESTABLISHMENT PROCEDURES	� GOTOBUTTON _Toc379886111  � PAGEREF _Toc379886111 �1616��

8.1 Introduction	� GOTOBUTTON _Toc379886112  � PAGEREF _Toc379886112 �1616��

8.2 Messages	� GOTOBUTTON _Toc379886113  � PAGEREF _Toc379886113 �1616��

8.3 Signaling  and Procedures	� GOTOBUTTON _Toc379886114  � PAGEREF _Toc379886114 �1818��

8.3.1 Revision 1 Compatibility	� GOTOBUTTON _Toc379886115  � PAGEREF _Toc379886115 �1919��

9. H245 SIGNALING AND PROCEDURES	� GOTOBUTTON _Toc379886116  � PAGEREF _Toc379886116 �1919��

9.1 Secure Channel Operation	� GOTOBUTTON _Toc379886117  � PAGEREF _Toc379886117 �1919��

9.1.1 Secure Channel Operation	� GOTOBUTTON _Toc379886118  � PAGEREF _Toc379886118 �1919��

9.1.2 Other H Series Secure Channel Operation	� GOTOBUTTON _Toc379886119  � PAGEREF _Toc379886119 �1919��

9.2 Messages	� GOTOBUTTON _Toc379886120  � PAGEREF _Toc379886120 �1919��

9.3 Capability Exchange	� GOTOBUTTON _Toc379886121  � PAGEREF _Toc379886121 �2927��

9.4 Master role	� GOTOBUTTON _Toc379886122  � PAGEREF _Toc379886122 �2927��

9.5 Logical Channel Signaling	� GOTOBUTTON _Toc379886123  � PAGEREF _Toc379886123 �2927��

10. MULTIPOINT PROCEDURES	� GOTOBUTTON _Toc379886124  � PAGEREF _Toc379886124 �3028��

10.1 Authentication	� GOTOBUTTON _Toc379886125  � PAGEREF _Toc379886125 �3028��

10.2 Privacy	� GOTOBUTTON _Toc379886126  � PAGEREF _Toc379886126 �3028��

11. MEDIA STREAM ENCRYPTION PROCEDURES	� GOTOBUTTON _Toc379886127  � PAGEREF _Toc379886127 �3028��

11.1 Background	� GOTOBUTTON _Toc379886128  � PAGEREF _Toc379886128 �3028��

11.2 New Keys	� GOTOBUTTON _Toc379886129  � PAGEREF _Toc379886129 �3129��

11.3 Codec Procedures	� GOTOBUTTON _Toc379886130  � PAGEREF _Toc379886130 �3230��

11.4 Mandated Algorithms	� GOTOBUTTON _Toc379886131  � PAGEREF _Toc379886131 �3733��

12. SECURITY ERROR RECOVERY	� GOTOBUTTON _Toc379886132  � PAGEREF _Toc379886132 �3733��

12.1 Breach of Secure Call Connection channel	� GOTOBUTTON _Toc379886133  � PAGEREF _Toc379886133 �3733��

12.2 Breach of Secure call control (H.245) channel	� GOTOBUTTON _Toc379886134  � PAGEREF _Toc379886134 �3733��

12.3 Loss of Privacy	� GOTOBUTTON _Toc379886135  � PAGEREF _Toc379886135 �3733��

13. SPECIFIC TOPICS	� GOTOBUTTON _Toc379886136  � PAGEREF _Toc379886136 �3734��

13.1 Background	� GOTOBUTTON _Toc379886137  � PAGEREF _Toc379886137 �3734��

13.2 RTP/RTCP Issues	� GOTOBUTTON _Toc379886138  � PAGEREF _Toc379886138 �3834��

13.2.1 RTP Stream	� GOTOBUTTON _Toc379886139  � PAGEREF _Toc379886139 �3835��

13.2.2 RTCP Channel	� GOTOBUTTON _Toc379886140  � PAGEREF _Toc379886140 �3935��

13.3 RAS Signaling and Procedures	� GOTOBUTTON _Toc379886141  � PAGEREF _Toc379886141 �3935��

13.3.1 Introduction	� GOTOBUTTON _Toc379886142  � PAGEREF _Toc379886142 �3935��

13.3.2 Gatekeeper-Endpoint Associations	� GOTOBUTTON _Toc379886143  � PAGEREF _Toc379886143 �3935��

13.3.3 Endpoint Registrations	� GOTOBUTTON _Toc379886144  � PAGEREF _Toc379886144 �4036��

13.3.4 Non-registration RAS signaling	� GOTOBUTTON _Toc379886145  � PAGEREF _Toc379886145 �4036��

13.3.5 Data Structure Changes	� GOTOBUTTON _Toc379886146  � PAGEREF _Toc379886146 �4036��

13.4 Non-terminal Interactions	� GOTOBUTTON _Toc379886147  � PAGEREF _Toc379886147 �4238��

13.4.1 Gatekeeper	� GOTOBUTTON _Toc379886148  � PAGEREF _Toc379886148 �4238��

13.4.2 Gateway	� GOTOBUTTON _Toc379886149  � PAGEREF _Toc379886149 �4238��

14. SPECIFIC TOPICS	� GOTOBUTTON _Toc379886150  � PAGEREF _Toc379886150 �4238��

APPENDIX A: TLS OVERVIEW	� GOTOBUTTON _Toc379886152  � PAGEREF _Toc379886152 �4444��

APPENDIX B:  H.323 IMPLEMENTATION DETAILS	� GOTOBUTTON _Toc379886153  � PAGEREF _Toc379886153 �4746��

APPENDIX C:  H.324 IMPLEMENTATION DETAILS	� GOTOBUTTON _Toc379886154  � PAGEREF _Toc379886154 �4948��

APPENDIX D:  OTHER H SERIES IMPLEMENTATION DETAILS	� GOTOBUTTON _Toc379886155  � PAGEREF _Toc379886155 �4948��

APPENDIX E: THREAT ANALYSIS	� GOTOBUTTON _Toc379886156  � PAGEREF _Toc379886156 �5049��

APPENDIX F: REFERENCES	� GOTOBUTTON _Toc379886157  � PAGEREF _Toc379886157 �5252��

���Scope



The  primary purpose of this Recommendation is to provide for privacy, and the ability for authentication and integrity within the current H series protocol framework.  The current text of this document (1998) provides details on implementation with H.323.  This framework is expected to operate in conjunction with other H series protocols that utilize H.245 as their control protocol.





Additional goals in this recommendation include:



Security architecture should be developed as an extensible and flexible framework for implementing a security system for H series terminals. This will be provided through flexible and independent services and the functionality that they supply. This includes the ability to negotiate and be selective concerning cryptographic techniques utilized, and the manner in which they are used.

Provide security for all communications occurring as a result of H.3xx protocol usage.  This includes aspects of connection establishment, call control, and media exchange between all entities. This requirement includes the use of confidential communication (privacy), and may exploit functions for peer authentication as well as protection of the user’s environment from attacks.

This recommendation should not preclude integration of other security functions in H.3xx entities which may protect them against attacks from the network.The intent of this recommendation is to potentially highlight or provide guidelines concerning H.3xx entity weaknesses, independent of actual protocol communications.

This recommendation should not limit the ability for any H.3xx series to scale as appropriate. This may include both the number of secured users and the levels of security provided. This recommendation should not preclude the use of any of the native calling scenarios that a specific H.3xx series recommendation allows.

This recommendation should not limit the ability for any H.3xx series to scale as appropriate.  This may include both the number of secured users and the levels of security provided.

Where appropriate all mechanisms and facilities shouldwill be provided independent of any underlying transport or topologies. Network independence of the security architecture cannot counter weaknesses inherent to the underlying network.  Other means that are outside the scope of H.Secure may be required to counter such threats.

Provisions will be made for operation in a mixed environment (secured and unsecured entities)

This recommendation should provide facilities for distributing session keys associated with cryptographyic  utilized. This does not imply that public-key based certificate management be part of H.Secure.





The security structure, described in this Recommendation, does not assume that the  participants are familiar with each other. It does however assume that appropriate precautions have been taken to physically secure the H series endpoints. The principal security threat to communications, therefore, is assumed to be eavesdropping on the network or some other method of diverting media streams. 



The 1996 H.323 standard provides the means to conduct an audio, video and data conference between two or more parties, but does not provide the mechanism to allow each participant to authenticate the identity of the other participants, nor provide the means to make the communications private. (i.e., encrypt the streams).



H.323, H.324, H.310, H.324M make use of the logical channel signaling procedures of Recommendation H.245, in which the content of each logical channel is described when the channel is opened.  Procedures are provided for expression of receiver and transmitter capabilities, transmissions are limited to what receivers can decode, and receivers may request a particular desired mode from transmitters.  The security capabilities of each endpoint will be communicated in the same manner as any other communication capability. 



Some H series (H.323) terminals may be used in multipoint configurations. The security mechanism described in this document will allow for secure operation in these environments including both centralized and decentralized MCU operation.





Normative references



The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation.  At the time of publication, the editions indicated were valid.  All Recommendations and other references are subject to revision;  all users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below.  A list of the currently valid ITU-T Recommendations is regularly published.



[1]	ITU-T Recommendation H.323 (1998): “Visual Telephony Systems and Equipment for Local Area Networks which provide a non-guaranteed Quality of Service”

[2]	ITU-T Recommendation H.225.0 (1998): " Media Stream Packetization and Synchronization for Visual Telephone Systems on Non-Guaranteed Quality of Service LANs ".

[3]	ITU-T Recommendation H.245 (1998): "Control of communications between Visual Telephone Systems and Terminal Equipment".

[4]	ITU-T Recommendation G.711 (1988): "Pulse Code Modulation (PCM) of Voice Frequencies".

[5]	ITU-T Recommendation G.723.1 (1995): "Dual Rate Speech codec for multimedia telecommunications transmitting at 6.4 and 5.3 kbit/s".

[6]       	ITU-T  Recommendation H.261 (1993):  "Video CODEC for audiovisual services at p X 64 kbit/s"

[7]	ITU-T Recommendation H.263 (1995???):  "Video CODEC for narrow telecommunications channels at < 64 kbit/s"

[8]	ITU-T Recommendation Q.931 (1993): "Digital Subscriber Signalling System No.  1 (DSS 1) - ISDN User-Network Interface Layer 3 Specification for Basic Call Control".

[9]	ITU-T Recommendation X.509: “The directory-authentication framework”

 [10]   	Internet Engineering Task Force, 1996 “RTP: A Transport Protocol for Real-Time Applications,” RFC 1889,  H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson

[11]	CCITT Recommendation X.800 (1991), Security Architecture for Open Systems Interconnection for CCITT applications.

(ISO 7498�2:1989, Information processing systems – Open Systems Interconnection – Basic Reference Model – Part 2: Security Architecture.)

[12]	ITU-T Recommendation X.803 (1994) | ISO/IEC 10745:1995, Information technology – Open Systems Interconnection – Upper layers security model.

[13]	ITU-T Recommendation X.810 (1995) | ISO/IEC 10181-1:1996, Information technology – Open Systems Interconnection – Security frameworks for open systems: Overview.

[14]	ITU-T Recommendation X.811 (1995) | ISO/IEC 10181-2:1996, Information technology – Open Systems Interconnection – Security frameworks for open systems: Authentication framework.

[15]   	Internet Engineering Task Force, 1997 “The TLS Protocol Version 1.0”  draft-ietf-tls-protocol-01.txt,  T. Dieks, C. Allen



�Definitions

For the purposes of this Recommendation the definitions given in Clause 3 of both H.225.0 [1] and H.245 [2] apply along with those in this section. Some of the following terms are used as defined in CCITT Rec. X.800 | ISO 7498-2 and X.803, X.810 and X.811:

access control: The prevention of unauthorized use of a resource, including the prevention of use of a resource in an unauthorized manner (X.800).

authentication: The provision of assurance of the claimed identity of an entity (X.811).�

attack: Intruders or attackers turn a threat into an attack. By a direct attack on a system they exploit deficiencies in the underlying algo�rithms, principles, or properties of a security mechanism. Indirect attacks are performed when they bypass the mechanism, or when they make the system use the mechanism incorrectly.

certificate: A set of security-relevant data issued by a security authority or trusted third party, together with security information which is used to provide the integrity and data origin authentication services for the data (X.810).  In this recommendation the  term refers to ‘public key’ certificates which are values that represent an owners public key (and other optional information) as verified and signed by a trusted authority in an unforgeable format.

Cipher: A cryptographic algorithm, usually a mathematical transform.

confidentiality: The property that information is not made available or disclosed to unauthorized individuals, entities, or processes (X.800).

cryptographic algorithm: Mathematical function that computes a result from one or several input values using a secret parameter (e.g. a key).

encipherment : Encipherment (encryption) is the process of making data unreadable to unauthorized entities by applying a cryptographic algorithm (an encryption algorithm). Decipherment (decryption) is the reverse operation by which the ciphertext is transformed to the plaintext.

integrity: The property that data has not been altered or destroyed in an unauthorized manner (X.800).

key management: The generation, storage, distribution, deletion, archiving and application of keys in accordance with a security policy (X.800).

media stream: A media steam can be of type audio, video or data or a combination of any of them. Media stream data conveys user or application data (payload) but no control data.

Privacy:  A mode of communication in which only the explicitly enabled parties can interpret the communication.  This is typically achieved by encryption and shared key(s) for the cipher.

Private channel:  For this document, a private channel is one that is a result of prior negotiation on a secure channel.  In this context it will be used to handle media streams.

Public Key: An encryption system utilizing asymmetric keys (for encryption/decrytion) in which the keys have a mathematical relationship to each other - which cannot be reasonably calculated.

repudiation: Denial by one of the entities involved in a communication of having participated in all or part of the communication (X.800).

symmetric (secret-key based) cryptographic algorithm: An algorithm for performing encipherment or the corresponding algorithm for performing decipherment in which the same key is required for both encipherment and decipherment (X.810).

threat: A potential violation of security (X.800).



Symbols and abbreviations



For the purposes of this Recommendation, the following symbols and abbreviations apply.



TBA:	To be added

QOS:	Quality of  Service

TLS: 	Transport Level Security 

RSA:	Rivest, Shamir and Adleman (public key algorithm)

DSS:	Digital Signature Standard

SDU: 	Service Data Unit

�Conventions



In this document the following conventions are used:

"Shall" indicates a mandatory requirement.

"Should" indicates a suggested but optional course of action.

"May" indicates an optional course of action rather than a recommendation that something take place.



References to Sections, Paragraphs, Annexes, and Appendices refer to those items within this Recommendation unless another document is explicitly listed.  For example, Section 1.4 refers to section 1.4 of this Recommendation; H.245 Section 6.4 refers to section 6.4 in H.245.



{ To be refined for this recommendation - This Recommendation describes the use of “n” different message types: H.245, RAS, Q.931, etc. To distinguish between the different message types the following convention is followed. H.245 message and parameter names consist of multiple concatenated words highlighted in bold typeface (maximumDelayJitter).  RAS message names are represented by three letter abbreviations (ARQ). Q.931 message names consist of one or two words with the first letters capitalized (Call Proceeding).}





�

System Introduction

Background

The basis for this security framework is to separate the authentication mechanism from the techniques used to achieve media privacy. Media privacy is attained by two related mechanisms, performed in a sequential manner.  If call connection communications is separate from call control communications, these channels may also be made secure.  

Authentication 

Authentication may be accomplished by the exchange of  public key based Certificates.  This Recommendation describes the protocol for exchanging the certificates, but does not specify the criteria by which they are mutually verified and accepted.  In general, certificates give some assurance to the verifier that the presenter of the certificate is who he says he is. The intent behind the certificate exchange is to authenticate the user of the endpoint, not simply the physical device (although they may be permanently, and irrevocably, associated)

Media Privacy

The first step in media privacy is to create a secure channel; the second step is to use the secure channel to pass encryption keys.  The initial secure channel is employed in order to exchange shared, secret keys used with the algorithm (and to provide for private algorithm negotiation).  This secure channel can be operated with different characteristics from the private media channel(s) as long as it provides a mutually acceptable level of privacy.  This allows for the security mechanisms protecting media streams and any control channels to operate in a completely independent manner, providing completely different levels of strength and complexity. 



This Recommendation describes media privacy for uni-directional media streams carried on non-guaranteed QOS transports.  These channels are uni-directional with respect to H.245 logical channel characterizations.  The channels are  not required to be uni-directional on a physical or transport level. 



Control Privacy

The H.245 channel shall be secured using any negotiated privacy mechanism. H.245 messages are utilized to signal encryption algorithms and encryption keys used in the shared, private, media channels.   The ability to do this, on a channel by channel basis, allows different media channels to be encrypted by different mechanisms.  In centralized multipoint conferences,  different keys may be used for streams to each endpoint.  This would allow media streams to be made private for each endpoint in the conference.  In order to utilize the H.245 messages in a secure manner  the entire H.245 channel (logical channel 0) will be opened in a negotiated secure manner. 



The mechanism by which H.245 is made secure is dependent on the H series terminals involved.  The only requirement on all systems that utilize this security structure is that each  shall have some manner in which to negotiate and/or signal that the H.245 channel is to be operated in a particular secured manner before it is actually initiated.  Additionally various H series protocols may provide for a negotiated mechanism or algorithm, by which the H.245 channel is secured.    For example, H.323 will utilize the H.225.0 connection signaling messages to accomplish this, one of  the currently acceptable privacy mechanisms is TLS as shown in section � REF _Ref381145909 \n �8.28.2�. {V.8bis may be used in H.324}





Authentication

As previously stated, the process of authentication verifies that the respondents are, in fact, who they say they are. Using Digital Certificates, an authentication protocol proves that the respondents possess the private keys corresponding to the public keys contained in the certificates. This authentication protects against man-in-the-middle attacks, but does not prove who the respondents are. To do this normally requires that there be some policy regarding the other contents of the certificates. For authorization certificates, for example, the certificate would normally contain the Service-Provider’s identification along with some form of user account identification prescribed by the Service Provider.



However, for person-to-person identification, currently there is  no universal, formal policy (for example, there is no such policy for paper business cards). A user will designate a certificate which contains information most likely to provide acceptable identification. Implementations of the authentication mechanism may require specific certificate policies. Pursuing the business card analogy, the card is always may always  be accompanied by more important personal identification (visual identification, voice recognition, question & answer, code-words, etc.) depending on how sensitive the information is, and how familiar the two people are to each other.



The same is true for audio/video conferencing. A user will have a preferred identification certificate (maybe, depending on who is being called), and may go through an inter-personal protocol of identification.



The authentication framework in this document does not prescribe the contents of certificates (i.e., does not specify a certificate policy) beyond that required by the authentication protocol. However, an application using this framework may impose high-level policy requirements such as presenting the certificate to the user for approval.  This higher level policy may either be automated within the application or require human interaction.



Certificates



The Certificates used for authentication shall conform to  those prescribed by the TLS protocol (all based on the X.509v3 standard). The currently allowed certificate types are RSA and DSS signing certificates, RSA and DSS key-exchange certificates (with either fixed or ephemeral Diffie-Hellman parameters).



The standardization of certificates, including their generation, administration and distribution is outside the scope of this document. A Certification Authority produces the certificate for a user by signing a collection of information, including the user’s distinguished name and public key, as well as (possibly) additional information about the user. It should be noted that for H.Secure authentication  utilizing public key certificates,  endpoints should provide a digital signature using the associated private key value.  The exchange of public key certificates alone does not protect against man in the middle attacks.  





However, even if the types of certificates allowed are all X.509 based, it cannot be assumed that they contain X.500-conformant Distinguished Names. 



No further constraints are placed on the Certificates used in the handshake protocol.



Call Establishment Security

There are two reasons for wanting to secure the call establishment channel.  The first is for simple authentication, before accepting the call.  The second reason is to allow for call authorization.  If this functionality is desired in the H Series terminal, a secure mode of communication shall be used (such as TLS for H.323) before the exchange of call connection messages.

Media Stream Privacy

The first step in attaining media privacy is the provision of  a private control channel on which to set up the logical channels which will carry the encrypted media streams.  For this purpose, when operating in a secure conference, any participating  endpoints shall utilize an encrypted H.245 channel. In this manner, cryptographic algorithm selection and encryption keys as passed in the H.245 OpenLogicalChannel command will be protected.  



The privacy (encryption) of  data carried in logical channels shall be in the form specified by the OpenLogicalChannel.  Transport specific header information shall not be encrypted.  The privacy of data is to be based upon end-to-end encryption.  Link layer encryption may be utilized by the underlying transport system, but this is beyond the scope of this document.



Trusted Elements

The basis for authentication (trust) and privacy is defined by the terminals of the communications channel.  For a connection establishment channel, this may be between the caller and a hosting network component.  For example, a telephone ‘trusts’ that the network switch will connect it with the telephone whose number has been dialed. For this reason, any  entity which terminates a call control channel  (H.245) shall be considered a trusted element of the connection. The result of trusting an element, is the confidence to reveal the privacy mechanism (algorithm and key) to that element.



Given the above, it is incumbent upon participants in the communications path to authenticate any and all ‘trusted’ elements.  This will normally be done by certificate exchange as would occur for the ‘standard’ end to end authentication.    This recommendation will not require any specific level of authentication, other than to suggest that it be acceptable to all entities using the trusted element. Details of a trust model and certificate policy are for further study.



Specific Elements

In general MC(U)s, Gateways and Gatekeepers (if implementing the gatekeeper-routed model) are trusted with respect to the privacy of the control channel.  If the connections establishment channel (H.225.0) is secured and routed through the Gatekeeper, it must also be trusted. If any of these H.323 components must operate on the media streams (i.e. mixing, transcoding) then by definition, they shall also be trusted for the media privacy. 



Firewall Proxies (though not H.323-specific elements) must also be trusted, since they terminate connections, and may well  have to manipulate the messages and media streams.



Privacy can be assured between the two endpoints only if connections between trusted elements are proof against ‘man in the middle’ attacks.



Other Standards Specific Elements

FFS.



NonRepudiation

FFS.�

Connection Establishment Procedures

 Introduction

As stated in the � REF _Ref379881422 \* MERGEFORMAT �System IntroductionSystem Introduction� section, both the call connection channel (H.225.0 for H.323 series) and  call control (H.245) channel shall operate in a secured or unsecured mode starting with the first exchange.  For the call connection channel, this will be done a priori (for H.323 a secure/insecure TSAP will be utilized). For the call control channel, security  mode is determined by information  passed in the initial connection setup protocol in use by the H series terminal.



If a terminal receiving a connection indication (i.e. the called terminal) determines the presence of a security level indication it shall respond with the corresponding, acceptable values in the appropriate response. In the cases in which there are no overlapping capabilities, the called terminal may refuse the connection. The error returned should convey no information about any security mis-match and the calling terminal will have to determine the problem by some other means.  In cases where the calling terminal receives a connect acknowledgment message without sufficient security capabilities, it may terminate the call.



If the calling and called terminals have compatible security capabilities, it shall be assumed by both sides that the H.245 channel shall operate in the secure mode negotiated.  Failure to set up the H.245 in the secure mode determined here shouldwill be considered a protocol error and the connection terminated.

Messages  

The paragraphs below show the changes needed to support the security mechanism within H.323.  The additional message fields are highlighted in bold text.



{These structures should be included in the H.225.0 document}



SecurityServiceMode   ::=CHOICE 

   	{

        		nonStandard             	NonStandardParameterNULL,

        		nNone			NULL,

		dDefault			NULL,

		...                               	-- can be extended with other specific modes

}



SecurityCapabilities     ::=SEQUENCE 

   	{

        		nonStandard             	NonStandardParameter OPTIONAL,

        		eEncryption		SecurityServiceMode,

		aAuthenticaton		SecurityServiceMode,

		iIntegrity		SecurityServiceMode,

        		...                               	

}



H245Security		::=CHOICE 

{

	nonStandard		NonStandardParameter,

	nNO_SECURITY		NULL,

	tlsTLS			SecurityCapabilities,

	sslSSL			SecurityCapabilites,

	…

}









Setup-UUIE				::=SEQUENCE

{

	protocolIdentifier			ProtocolIdentifier,				

	h245Address			TransportAddress OPTIONAL,

	sourceAddress			SEQUENCE OF AliasAddress OPTIONAL,

	sourceInfo			EndpointType,						destinationAddress		SEQUENCE OF AliasAddress OPTIONAL,	

	destCallSignalAddress		TransportAddress OPTIONAL,

	destExtraCallInfo			SEQUENCE OF AliasAddress OPTIONAL, 

	destExtraCRV			SEQUENCE OF CallReferenceValue OPTIONAL

	activeMC			BOOLEAN,					

	conferenceID			ConferenceIdentifier,				

	conferenceGoal		CHOICE					

	{

		create			NULL,

		join			NULL,

		invite			NULL,

		...

	},

	callServices			QseriesOptions  OPTIONAL,

	callType				CallType,

	...,

transportCapability		TransportCapability OPTIONAL,

h245SecurityCapability		SEQUENCE OF H245Security OPTIONAL

}



Connect-UUIE			::=SEQUENCE

{

	protocolIdentifier		ProtocolIdentifier,				

	h245Address			TransportAddress OPTIONAL,				

	destinationInfo		EndpointType,					

	conferenceID			ConferenceIdentifier,				

	...,

transportCapability		TransportCapability OPTIONAL,

h245SecurityMode		H245Security OPTIONAL

}



CallProceeding-UUIE			::=SEQUENCE

{

	protocolIdentifier		ProtocolIdentifier,				

	destinationInfo		EndpointType,					

	h245Address			TransportAddress OPTIONAL,		

	...,

	h245SecurityMode		H245Security OPTIONAL

}





Alerting-UUIE			::=SEQUENCE

{

	protocolIdentifier		ProtocolIdentifier,		

	destinationInfo		EndpointType,			

	h245Address		TransportAddress OPTIONAL,		

	...,

	h245SecurityMode	H245Security OPTIONAL

}



ReleaseCompleteReason		::=CHOICE

{

noBandwidth		NULL,

gatekeeperResources	NULL,		

unreachableDestination	NULL	

destinationRejection	NULL,

invalidRevision		NULL,

noPermission		NULL,

unreachableGatekeeper	NULL,	

gatewayResources	NULL,

badFormatAddress	NULL,

adaptiveBusy		NULL,

	inConf			NULL,	

	undefinedReason		NULL,

...,

	securityDenied		NULL		-- incompatible security settings

}	



Signaling  and Procedures

The H.225.0 channel shall operate in the same manner with or without security enabled endpoints.   The procedures outlined in H.323, Section 8 - Call Signaling Procedures, shall be followed.  The H.323 endpoints shall have the ability to encode and recognize the presence (or absence) of security requirements (for the H.245 channel) signaled in the H.225.0 messages.



In the case where the H.225.0 channel itself is to be secured, the same procedures in H.323, Section 8 shall be followed.  The difference in operation will be that the communications shall only occur after connecting to the secure TSAP identifier and using  the predetermined security modes (such as TLS).   Due to the fact that the H.225.0 messages are the first exchanged when establishing H.323 communications, there can be no security negotiations ‘in band’ for H.225.0.  In other words, both parties must know a priori that they will be using a particular security mode.  For H.323 on IP, an alternative Well Known Port (tbd) will be utilized for TLS secured communications.



The sole purpose of  H.225.0 exchanges as they relate to H.323 security, is to provide a mechanism to set up the secure H.245 channel.  



An  H.323 endpoint that receives a Setup message with the h245SecurityCapability set  shall respond with the corresponding, acceptable h245SecurityMode in the Connect message.  In the cases in which there are no overlapping capabilities, the called terminal may refuse the connection by sending a Release Complete with the reason code set to SecurityDenied. This error is intended to convey no information about any security mis-match and the calling terminal will have to determine the problem by some other means.  In cases where the calling terminal receives a Connect message without sufficient or an acceptable security mode, it may terminate the call with a Release Complete with SecurityDenied. In cases where the calling terminal receives a Connect message without any security capabilities, it may terminate the call with a Release Complete with undefinedReason.



If the calling terminal receives an acceptable h245Security, it shall open and operate the H.245 channel in the indicated secure mode.  Failure to set up the H.245 in the secure mode determined here shouldwill be considered a protocol error and the connection terminated.

  

Revision 1 Compatibility 



A security capable endpoint shall not return any security related fields, indications or status to the non-security capable endpoint.  If a callee receives a Setup message that does not contain the H245Security it may return a ReleaseComplete to refuse the connection; but it shall use the reason code of UndefinedReason in this case.  In a corresponding manner, if a caller receives a Connect message without an H245SecurityMode having sent a Setup message with H245Security it may also terminate the connection by issuing a ReleaseComplete with a reason code of UndefinedReason.



H245 Signaling AND PROCEDURES

Secure Channel Operation

Assuming that the connection procedures in the previous section  (� REF _Ref379881553 \* MERGEFORMAT �Connection Establishment ProceduresConnection Establishment Procedures�) indicate a secure mode of operation, handshake and authentication shall occur on the H.245 channel before any other H.245 messages are exchanged  The exchange of certificates shall occur using any mechanism appropriate for the H series terminal(s).  After completing the securing of the H.245 channel, the terminals use the H.245 protocol in the same manner that they would in an insecure mode.



In general, the privacy aspects of media channels are controlled in the same manner as any other encoding parameter; each terminal indicates its capabilities, the source of the data selects a format to use and  the receiver acknowledges or denies the mode.   All transport independent aspects of the mechanism such as algorithm selection and stream scope are indicated in generic logical channel elements.  Transport specifics such as key/encryption algorithm synchronization will be passed in transport specific structures.

H.323 Secure Channel Operation

H.323 shall use the method as mutually negotiated in H245Security element for securing H.245.

Other H Series Secure Channel Operation

{TLS in between H.245 and SRP in H.324 ?}



FFS

Messages

The encryption algorithms supported and the possible scope of encryption for the media logical channels, appear as part of the media capability structure. (H263VideoCapability is shown below as an example).  Taking this as an example, many H263VideoCapability structures may appear in the TerminalCapabilityTable, showing the various encryption algorithms supported, and the varying degrees to which the stream can be encrypted. The same media capability structure may also appear in OpenLogicalChannel and CommunicationsModeCommand.  Any capabilities that do not include the EncryptCapability element will imply a “no encryption” capability. 







encryptionAlgorithmMode	 ::=CHOICE 

	{

		nonStandard			NonStanardParameterNULL,

		mode_CBC			NULL,

		mode_CFB			NULL,

		mode_OFB			NULL,

		mode_ECB			NULL,

		…

	}

encryptionAlgorithmParams	::= SEQUENCE

{	

nonStandard            		NonStandardParameter OPTIONAL,

blockSize			INTEGER (0..65535) OPTIONAL,

maxRounds			INTEGER (0..255) OPTIONAL,

keyLength			INTEGER (0..65535) OPTIONAL,

notCommonKey			NULL OPTIONAL, --present, if key is not common  in multipoint

…

}



   	nonIsoMediaEncryptionAlgorithm	 ::=CHOICE 

	{

nonStandard            	NonStandardParameter,

rc5RC5			NULL,

bBLOWFISH		NULL,  

des-3-WAY_ECB		NULL, 

…

}

	mediaEncryptionAlgorithm	 ::=CHOICE 

	{

nonStandard            	NonStandardParameter,

isoAlgorithm		OBJECT IDENTIFIERINTEGER,   -- defined in ISO/IEC 9979

nonIsoAlgorithm		nonIsoMediaEncryptionAlgorithm,

…

}



EncryptionCapability		::=SEQUENCE

{

	scopeOfEncryption		::=CHOICE 

    	{

       		all  			NULL,

       		some_Standard		INTEGER (0..7),

		some_NonStandard	INTEGER (8..15),

       		…

   	},

	algorithm		mediaEncryptionAlgorithm.

	mode			encryptionAlgorithmMode OPTIONAL,

	parameters		encryptionAlgorithmParams OPTIONAL,

	…

}



EncryptionKey      		BIT STRING (SIZE(1..65535) )



EncryptionSync		::=SEQUENCE  -- used to supply new key and synchronization point

{

nonStandard            		NonStandardParameter OPTIONAL,

synchFlag			INTEGER(0..255) ,  -- may need to be larger for H.324, etc

-- This shall be the Dynamic Payload# for H.323 

mediaKeys      		SEQUENCE SIZE (1..16) OF EncryptionKey

…

}



AuthenticationCapability		::=SEQUENCE

{

nonStandard            		NonStandardParameter OPTIONAL,

	…

}



IntegrityCapability		::=SEQUENCE

{

nonStandard            		NonStandardParameter OPTIONAL,

	…

}



H263VideoCapability			::=SEQUENCE

{

sqcifMPI			INTEGER (1..32) OPTIONAL,

	qcifMPI			INTEGER (1..32) OPTIONAL,

	cifMPI				INTEGER (1..32) OPTIONAL,

	cif4MPI			INTEGER (1..32) OPTIONAL,

	cif16MPI			INTEGER (1..32) OPTIONAL,

	maxBitRate			INTEGER (1..192400),

	unrestrictedVector		BOOLEAN,

	arithmeticCoding		BOOLEAN,

	advancedPrediction		BOOLEAN,

	pbFrames			BOOLEAN,

	temporalSpatialTradeOffCapability	BOOLEAN,

	hrd-B				INTEGER (0..524287) OPTIONAL,

	bppMaxKb			INTEGER (0..65535) OPTIONAL,

	...,

slowSqcifMPI			INTEGER (1..3600) OPTIONAL,

	slowQcifMPI			INTEGER (1..3600) OPTIONAL,

	slowCifMPI			INTEGER (1..3600) OPTIONAL,

	slowCif4MPI			INTEGER (1..3600) OPTIONAL,

	slowCif16MPI			INTEGER (1..3600) OPTIONAL,

	errorCompensation		BOOLEAN,

encryptCaps			EncryptionCapability OPTIONAL,

authenticationCaps		AuthenticationCapability OPTIONAL,

iIntegrityCaps			IntegrityCapability OPTIONAL		

}   

 



The mode specifications in the RequestMode command are extended with the requested scope of encryption and media encryption algorithm. The following is an example.



H263VideoMode			::=SEQUENCE

{

resolution			CHOICE

{

sqcif			NULL,	

qcif			NULL,

cif			NULL,

cif4			NULL,

cif16			NULL,

...

},

bitRate				INTEGER (1..19200),

unrestrictedVector		BOOLEAN,

arithmeticCoding			BOOLEAN,

advancedPrediction		BOOLEAN

pbFrames			BOOLEAN,

...,



	errorCompensation		BOOLEAN,

encryptCaps			EncryptionCapability OPTIONAL,

authenticationCaps		AuthenticationCapability OPTIONAL,

iIntegrityCaps			IntegrityCapability OPTIONAL		

}



AudioCapability	::=CHOICE

{

	nonStandard	NonStandardParameter,

	g711Alaw64k	INTEGER (1..256),

	g711Alaw56k	INTEGER (1..256),

	g711Ulaw64k	INTEGER (1..256),

	g711Ulaw56k	INTEGER (1..256),

	g722-64k	INTEGER (1..256),

	g722-56k	INTEGER (1..256),

	g722-48k	INTEGER (1..256),

	g7231		SEQUENCE

	{

		maxAl-sduAudioFrames	INTEGER (1..256),

		silenceSuppression	BOOLEAN

	},

	g728		INTEGER (1..256),

	g729		INTEGER (1..256),

	g729AnnexA	INTEGER (1..256),

	is11172AudioCapability	IS11172AudioCapability,

	is13818AudioCapability	IS13818AudioCapability,

...,

      g729AnnexAwSilenceSuppression   INTEGER(1..256),

      g711Alaw64kExtended     G711Extended,

      g711Alaw56kExtended     G711Extended,

      g711Ulaw64kExtended     G711Extended,

      g711Ulaw56kExtended     G711Extended,

      g722-64kExtended        G722Extended,

      g722-56kExtended        G722Extended,

      g722-48kExtended        G722Extended,

      g7231Extended           G7231Extended,

      g728Extended            G728Extended,

      g729Extended            G729Extended,

      g729AnnexAExtended      G729Extended,

      g729AnnexAwSilenceSuppressionExtended   G729Extended



}



IS11172AudioCapability	::=SEQUENCE

{

	audioLayer1	BOOLEAN,

	audioLayer2	BOOLEAN,

	audioLayer3	BOOLEAN,

	audioSampling32k	BOOLEAN,

	audioSampling44k1	BOOLEAN,

	audioSampling48k	BOOLEAN,

	singleChannel	BOOLEAN,

	twoChannels	BOOLEAN,

	bitRate	INTEGER (1..448),	-- units kbit/s

      ...,

      encryptCaps             EncryptionCapability OPTIONAL,

authenticationCaps		AuthenticationCapability OPTIONAL,

integrityCaps			IntegrityCapability OPTIONAL		

}



IS13818AudioCapability	::=SEQUENCE

{

	audioLayer1	BOOLEAN,

	audioLayer2	BOOLEAN,

	audioLayer3	BOOLEAN,

	audioSampling16k	BOOLEAN,

	audioSampling22k05	BOOLEAN,

	audioSampling24k	BOOLEAN,

	audioSampling32k	BOOLEAN,

	audioSampling44k1	BOOLEAN,

	audioSampling48k	BOOLEAN,

	singleChannel	BOOLEAN,

	twoChannels	BOOLEAN,

	threeChannels2-1	BOOLEAN,

	threeChannels3-0	BOOLEAN,

	fourChannels2-0-2-0	BOOLEAN,

	fourChannels2-2	BOOLEAN,

	fourChannels3-1	BOOLEAN,

	fiveChannels3-0-2-0	BOOLEAN,

	fiveChannels3-2	BOOLEAN,

	lowFrequencyEnhancement	BOOLEAN,

	multilingual	BOOLEAN,

	bitRate	INTEGER (1..1130),	-- units kbit/s

      ...,

      encryptCaps             EncryptionCapability OPTIONAL,

authenticationCaps		AuthenticationCapability OPTIONAL,

integrityCaps			IntegrityCapability OPTIONAL		

}



G711Extended  ::=SEQUENCE

{

      maxAl-sduAudioFrames    INTEGER (1..256),

      encryptCaps             EncryptionCapability OPTIONAL,

authenticationCaps		AuthenticationCapability OPTIONAL,

integrityCaps			IntegrityCapability OPTIONAL,		

        ...

}



G722Extended  ::=SEQUENCE

{

      maxAl-sduAudioFrames    INTEGER (1..256),

      encryptCaps             EncryptionCapability OPTIONAL,

authenticationCaps		AuthenticationCapability OPTIONAL,

integrityCaps			IntegrityCapability OPTIONAL,		

      ...

}



G7231Extended  ::=SEQUENCE

{

      maxAl-sduAudioFrames    INTEGER (1..256),

      silenceSuppression      BOOLEAN,

      encryptCaps             EncryptionCapability OPTIONAL,

authenticationCaps		AuthenticationCapability OPTIONAL,

integrityCaps			IntegrityCapability OPTIONAL		

        ...

}



G728Extended  ::=SEQUENCE

{

      maxAl-sduAudioFrames    INTEGER (1..256),

      encryptCaps             EncryptionCapability OPTIONAL,

authenticationCaps		AuthenticationCapability OPTIONAL,

integrityCaps			IntegrityCapability OPTIONAL,		

      ...

}



G729Extended  ::=SEQUENCE

{

      maxAl-sduAudioFrames    INTEGER (1..256),

      encryptCaps             EncryptionCapability OPTIONAL,

authenticationCaps		AuthenticationCapability OPTIONAL,

integrityCaps			IntegrityCapability OPTIONAL,		

     ...

}





OpenLogicalChannel	::=SEQUENCE

{

	forwardLogicalChannelNumber	LogicalChannelNumber,



	forwardLogicalChannelParameters	SEQUENCE

	{

		portNumber	INTEGER (0..65535) OPTIONAL,

		dataType	DataType,

		multiplexParameters	CHOICE

		{

			h222LogicalChannelParameters	H222LogicalChannelParameters,

			h223LogicalChannelParameters	H223LogicalChannelParameters,

			v76LogicalChannelParameters V76LogicalChannelParameters,

			...,

			h2250LogicalChannelParameters H2250LogicalChannelParameters,

						

			h223AnnexALogicalChannelParameters H223AnnexALogicalChannelParameters

		},

		...

	},



	-- Used to specify the reverse channel for bi-directional open request



	reverseLogicalChannelParameters	SEQUENCE

	{

		dataType	DataType,

		multiplexParameters	CHOICE

		{

			-- H.222 parameters are never present in reverse direction

			h223LogicalChannelParameters	H223LogicalChannelParameters,

			v76LogicalChannelParameters	V76LogicalChannelParameters,

			...,

			h2250LogicalChannelParameters H2250LogicalChannelParameters,

						

			h223AnnexALogicalChannelParameters H223AnnexALogicalChannelParameters



		} OPTIONAL,	-- Not present for H.222

		...

	} OPTIONAL,	-- Not present for uni-directional channel request

	...,

	separateStack	NetworkAccessParameters OPTIONAL, 

				-- for Open responder to establish the stack

mediaKeys      		SEQUENCE SIZE (1..16) OF EncryptionKey OPTIONAL,

       encryptionSync			EncryptionSync OPTIONAL, 

							-- only used by the Master



}

OpenLogicalChannelAck	::=SEQUENCE

{

	forwardLogicalChannelNumber	LogicalChannelNumber,



	reverseLogicalChannelParameters	SEQUENCE

	{

		reverseLogicalChannelNumber	LogicalChannelNumber,

		portNumber	INTEGER (0..65535) OPTIONAL,

		multiplexParameters	CHOICE

		{

			h222LogicalChannelParameters	H222LogicalChannelParameters,

			-- H.223 parameters are never present in reverse direction

			...,

			h2250LogicalChannelParameters H2250LogicalChannelParameters



		} OPTIONAL,	-- Not present for H.223

		...



	} OPTIONAL,	-- Not present for uni-directional channel request

	...,

	separateStack	NetworkAccessParameters OPTIONAL, 

				-- for Open requester to establish the stack

	forwardMultiplexAckParameters	CHOICE

	{

		-- H.222 parameters are never present in the Ack

		-- H.223 parameters are never present in the Ack

		--V.76 parameters are never present in the Ack

		h2250LogicalChannelAckParameters H2250LogicalChannelAckParameters,

		...

	} OPTIONAL,

mediaKeys      		SEQUENCE SIZE (1..16) OF EncryptionKey OPTIONAL

        encryptionSync		EncryptionSync OPTIONAL, 

					-- only used by the Master



}

















Two new MiscellaneousCommands are defined. The first, to allow the Master to distribute a new media encryption key (along with the corresponding synchronization indicator) for a particular LogicalChannelNumber.  The second command allows a receiver to request new encryption key be generated.  Thus:



   MiscellaneousCommand			::=SEQUENCE

   {

       logicalChannelNumber		LogicalChannelNumber,

       type					CHOICE

       {

           equaliseDelay			NULL,

           zeroDelay				NULL,

           multipointModeCommand		NULL,

           cancelMultipointModeCommand	NULL,

           videoFreezePicture			NULL,

           videoFastUpdatePicture		NULL,



           videoFastUpdateGOB		SEQUENCE

           {

	 firstGOB			INTEGER (0..17),

	 numberOfGOBs			INTEGER (1..18)

           },

           videoTemporalSpatialTradeOff	INTEGER (0..31),

           videoSendSyncEveryGOB		NULL,

           videoSendSyncEveryGOBCancel	NULL,

           ...,

videoFastUpdateMB		SEQUENCE

            {

	 firstGOB			INTEGER (0..255) OPTIONAL,	

	 firstMB	INTEGER (1..8192) 	OPTIONAL,

	 numberOfMBs			INTEGER (1..8192),

	  ...

           },

encryptionUpdate		EncryptionSync, 

	encryptionUpdateRequest	NULL,

       },

       ...

   }

ChallengeString		OCTET STRING (SIZE(8..16))





A new conference request/response is defined, which allows an endpoint to obtain the digital certificate for the user at a particular terminal.

ConferenceRequest			::=CHOICE

{

	

	terminalListRequest		NULL,

	makeMeChair			NULL,

	cancelMakeMeChair		NULL,

	dropTerminal			TerminalLabel,

	requestTerminalID		TerminalLabel,

	enterH243Password		NULL,

	enterH243TerminalID		NULL,

	enterH243ConferenceID	NULL,

	...,

	requestTerminalCertificate 	SEQUENCE

{

terminalLabel 	TerminalLabel OPTIONAL,

		requestorsTerminalCertificate   	OCTET STRING (SIZE(1..65535)) OPTIONAL,

		challenge		ChallengeString OPTIONAL,	-- encrypted using associated Private key from certificate and algorithm that the key pair is based upon.	

		…



	}

}



ConferenceResponse			::=CHOICE

{

	mCTerminalIDResponse	

	{

		terminalLabel		TerminalLabel,

		terminalID		TerminalID,

		...

	},

	terminalIDResponse		SEQUENCE

{

		terminalLabel		TerminalLabel,

		terminalID		TerminalID,

		...

	},

	conferenceIDResponse	SEQUENCE

	{

		terminalLabel		TerminalLabel,

		conferenceID		ConferenceID,

		...

	},



	passwordResponse		SEQUENCE

	{

		terminalLabel		TerminalLabel,

		password		Password,

		...

	},

	terminalListResponse		SET SIZE (1..256) OF TerminalLabel,

	videoCommandReject		NULL,	

	terminalDropReject		NULL,	

	makeMeChairResponse	CHOICE

	{

		grantedChairToken	NULL,	

		deniedChairToken	NULL,

		...

	},

	...,

	terminalCertificateResponse  	SEQUENCE

	{

       		terminalLabel           	TerminalLabel OPTIONAL,

       		certificateResponse           	CHOICE

       		{

           			terminalCertificate   	OCTET STRING (SIZE(1..65535))

           			errorResponse         	NULL

       		}

		response	ChallengeString OPTIONAL	-- encrypted using associated Private key from certificate and algorithm that the key pair is based upon.

		…

   	},

	…

}



�

Capability Exchange

Following the procedures in H.245 Section 8.3 - Capability Exchange Procedures, and the appropriate H series System Recommendation, endpoints exchange capabilities using H.245 messages.  These capability sets may now contain codec definitions which indicated encryption parameters.  For example, an endpoint might provide capabilities to send and receive H.261 video.  It may also signal the ability to send and receive encrypted H.261 video.



Each encryption algorithm that is utilized in conjunction with a particular media codec, implies a new capability definition.  As with any other capability, endpoints may supply both inclusive and exclusive encrypted codes in their exchange.  This will allow endpoints to scale their security capabilities based upon overhead and resources available.



The encryption component of the codec capability is defined in two parts.  The first part is the particular algorithm that will be used with this capability.  The second part of the encryption component is the scope, or areas of encryption computation, on the bit stream created by the base codec; this is indicated in the scopeOfEncryption. The intermediate scopes may be defined as part of each codec capability. The absence of the encryption field of the capability indicates that  no encryption will be used.



After capability exchange has been completed, endpoints may open secure logical channels for media in the same manner that they would in an insecure manner.

Master role

The H.245 master-slave is used to establish the master entity for the purpose of bi-directional channel operation and other conflict resolution.   This role of master is also utilized in the security mechanism.  Although the security mode(s) of a media stream is set by the source (in deference to the capabilities of the receiver), the master is the endpoint which generates the encryption key.   This generation of the encryption key is done, regardless of whether the master is the receiver or the source of the encrypted media. {In order to allow for multicast channel operation with shared keys, the MC (also the master) should generate the keys}

Logical Channel Signaling

Endpoints open secure logical channels in the same manner that they open insecure logical channels.  Each channel may operate in a completely independent manner from other channels - in particular where this pertains to security. The particular mode shall be defined in the OpenLogicalChannel  dataType field.   The initial encryption key shall be passed in either the OpenLogicalChannel or OpenLogicalChannalAck depending on the master/slave relationship of the originator of the OpenLogicalChannel. 



The OpenLogicalChannelAck shall act as confirmation of the encryption mode.  If the openLogicalChannel is unacceptable to the recipient either dataTypeNotSupported or dataTypeNotAvailable (transient condition) shall be returned in the cause field of the OpenLogicalChannelReject.



During the protocol exchange that establishes the logical channel, the encryption key shall be passed from the Master to the slave (regardless of who initiated the OpenLogicalChannel). For media channels opened by an endpoint (other than the Master), the Master shall return the initial encryption key and the initial synchronization point in the OpenLogicalChannelAck (in the encryptionSync field). For Media Channels opened by the Master the OpenLogicalChannel  shall include the initial encryption key and the synchronization point in the encryptionSync field.



Multipoint Procedures

Authentication

Authentication shall occur between an endpoint and the MC(U) in the same manner that it would in a point to point conference.   The MC(U) shall set the policy concerning level and stringency of authentication.  As stated in section � REF _Ref379881675 \n �7.57.5� the MC(U) is trusted; existing endpoints in a conference shall be limited by the authentication level employed by the MC(U).  New ConferenceRequest/ConferenceResponse commands, allow endpoints to obtain the certificates of other participants in the conference from the MC(U).

Privacy

MC(U) shall win all  master/slave exchanges and as such shall supply encryption key(s) to participants in a multipoint conference.  Privacy for individual sources within a common session (assuming multicast) may be achieved with individual or common keys.  These two modes may be arbitrarily chosen by the MC(U) and shall not be controllable from any particular endpoint except in modes allowed by MC(U) policy.  In other words, a common key may be used across multiple logical channels as opened from different sources.

Media Stream Encryption Procedures

Background

Media streams shall be encoded using the algorithm and key as presented in the H.245 channel.  The following figures show the general flow.  Note that the transport header is prepended to the transport SDU after the SDU has been encrypted.  The opaque segments indicate privacy.  As new keys are received by the transmitter and used in the encryption, the SDU header shall indicate in some manner to the receiver that the new key is now in use.  For example, in H.323 the RTP header (SDU) will change its payload type to indicate the switch to the new key.  {h.324 can use the multiplex table numbers to synchronize this }



�EMBED PowerPoint.Slide.7���

Encryption of Media

�EMBED PowerPoint.Slide.7���

Decryption of Media



New Keys 

If a session lasts long enough, new keys should be generated before 2^{b/2} blocks have been transmitted (where b is the length of the encryption block, in bits). [Note that, with 64-bit blocks and full stream encryption, at 200Kb/sec., this would be about 1.85 days. Note also that re-keying before an "excessive" amount of plaintext material is available is "good practice", but a failure to do this will rarely result in any "real" threat to the system.]



The  procedures outlined in H.323 section 8.5 are completed by an MC to eject a participant from a conference. The  Master may generate new encryption keys for the logical channels (and not distribute them to the ejected party); this may be used to keep the ejected party from monitoring the media streams. 



At any point in a conference, a receiver (or transmitter) may request a new key (encryptionUpdateRequest).  One reason it might do this is if it suspects that it has lost synchronization of one of the logical channels.  The Master receiving this request shall generate new key(s) in response to this command.  



After receiving an encryptionUpdateRequest, a Master shall send out encryptionUpdate.  If the conference is a multipoint one, the MC (also the master) should distribute the new key to all receivers before it gives this key to the transmitter.  The transmitter of the data on the logical channel shall utilize the new key at the earliest possible time after receiving the message.



A transmitter (assuming it is not the master) may also request a new key.  If the transmitter is part of a multipoint conference the procedure shall be as follows: 

the transmitter should send the encryptionUpateRequest to the MC (master)

the MC should generate a new key(s) and send an encryptionUpdate message to all conference participants except the transmitter.

After distributing the new keys to all other participants the MC shall send the encryptionUpdate to the transmitter.  The transmitter shall then utilize the new key. 







Codec Procedures





There are a number of issues involved in how an encryption algorithm may be applied to an audio or video stream:

Allowing for lost (or out-of-sequence) packets

Padding packets to an appropriate multiple of octets.

Performance at each end.



It is assumed (as stated in section � REF _Ref379883848 \n �13.2.113.2.1�) that encryption is applied just to the payload in each RTP packet; the RTP headers remaining in the clear. It is assumed that all RTP packets must be a multiple of whole octets. How the RTP packets are encapsulated at the transport or network layer is not relevant to this discussion.



Since packets can be lost, deciphering the stream must be stateless; each packet being decipherable on its own merits. The cases to consider (as identified in ISO/IEC 9979: 1991) are:

Block Algorithms



Initialization vectors

Most block modes involve some “chaining”. That is, each encryption cycle depends in some way on the output of the previous cycle. Therefore, at the beginning of a packet, some initial block value (usually called an Initialization Vector - IV) must be provided in order to start the encryption process. Independent of how many stream octets are processed on each encryption cycle, the length of the IV is always equal to the length of a block. All modes except Electronic Code Book (ECB) mode require an IV.  The IV may be sourced from a portion of a shared secret (i.e. Diffe-Hellman).  If this method is used, the bits used shall start with bit zero (0) and use up to n-1 bits as required by the IV length needed. It should be noted that the IV generated in this manner may produce a key pattern that is considered ‘weak’ for a particular algorithm. In all cases, an IV shall be constructed from the first B octets of: (Seq# + Timestamp + Seq#). 



Padding

ECB and CBC modes always process the input stream a block at a time, and, while CFB and OFB can process the input in any number of octets, N (<=B), it is recommended that N=B. [This recommendation is for security reasons in OFB mode (see Schneier, 2nd edition, p205), and for performance].



Two methods are proposed to handle packets whose payload is not a multiple of blocks.

Ciphertext Stealing [1] for ECB and CBC; Zero pad for CFB and OFB

Padding in the manner prescribed by RTP (RFC 1889 section 5.1)



There is a description of Ciphertext Stealing in Schneier’s 2nd edition, p191, p196. The diagrams that follow illustrate the technique.



RFC 1889 (RTP) section 5.1 describes a method of padding in which the payload is padded to a multiple of blocks, the last octet set with the number of padding octets (including the last), and the P bit set in the header. The value of the pad should be determined by the normal convention of the cipher algorithm..



It is recommended that all H.Secure implementations must support both schemes. The scheme in use can be deduced as follows: If the P bit is set, then the packet is padded; if the packet is not a multiple of B and the P bit is not set, then Ciphertext Stealing applies, else the packet is a multiple of B, and padding does not apply.

Assume that the block mode cipher encrypts B octets (a block) at a time, but the stream is processed N octets at a time. This means that special processing is required for all packets that are not multiples of N octets. For ECB and CBC modes, N always equals B, and for security reasons, it is also recommended that N=B in OFB mode. Of the cases enumerated in ISO/IEC 9979, only in CFB mode is it reasonable that N<B. Based on a scheme from Schneier (illustrated below), padding is only needed for packets less than N octets. Therefore, for streams with very small packets (where, predominantly, packets are less than B bytes), it is recommended that CFB mode with N=1 be used. [This case may not actually exist.] However, if a packet is less than N octets, and N>1, it should be padded to N octets before encryption in the manner prescribed by RTP (c.f., RFC 1889 section 5.1). Except for the last octet (which indicates the length of the padding), the padding shall be constructed from the initial octets of the packet. 



Implementations that cannot do the necessary look-ahead required by the recommended scheme, may also pad long packets as described for short packets (see second diagram). Padded packets will have the P-bit set in the RTP header.



If both these schemes are allowed, the choice may need to be negotiated.



Stream Algorithms

Stream algorithms depend on being able to generate identical keystreams at each end, and XORing each data stream bit with the same key stream bit at each end. Therefore, if packets are lost or re-ordered, the algorithm can get out of synchronization. However, if, for each packet, it were possible to determine the number of preceding bits in the stream, the decryption operation would be able to re-sync. (Packets that are out-of-order by the time they reach the decryption algorithm would have to be discarded). In order to determine the number of preceding bits in the stream, the first 8 bytes of the payload shall contain the number of preceding octets in the stream. {Note: there seems to be no way to overload the Sequence number field to provide some of this information. Sequence numbers start with a random value, and cycle every 64K packets.}







Partial encryption is allowed for in case full encryption has unacceptable performance. Partial encryption adds complexity to an implementation, and if the performance problem is not deemed to be exist, it should not be included.



How much (or little) of a stream needs to be encrypted to provide a sufficient amount of confidentiality, is very much a function of the codec. The codec and transport handler are already in collusion on how and where the stream should be segmented into RTP packets. A further degree of collusion would be needed to decide which sections of the stream should be encrypted. The real problem arises at the receiver, which needs to know what parts of the payload in a particular RTP packet have been encrypted. It may be necessary to insert information in the transport-specific header to accomplish this. However, padding within the payload should not be necessary; it should always be possible to encrypt multiples of N octets sufficient to cover what needs to be encrypted.  An IV (exactly as for full payload encryption) is required. The details of partial encryption are left for further study should the need arise.



Reference:

[1]  J. Daemon, “Cipher and Hash function design”, Ph.D. Thesis, Katholieke Universiteit Leuven, Mar 95.



�















�













�







�





�











�



�













Mandated Algorithms

There are no specifically mandated algorithms, however it is strongly suggested that endpoints support as many of the applicable algorithms as possible in order to achieve interoperability. 





Security Error Recovery



This document does not specify or recommend any methods by which endpoints may monitor their absolute  privacy. It does however recommend actions to be taken when privacy loss is detected.

Breach of Secure Call Connection channel

If either endpoint detects a breach in the security of the call connection channel (e.g. H.225.0 for H.323), it should immediately close the connection following the protocol procedures appropriate to the particular endpoint  [for H.323 section 8.5 with the exception of step 5].  



At the discretion of the MC(U), a breach on an individual call connection channel may cause the connections to be closed on all of the conference endpoints - thus ending the conference.















Breach of Secure call control (H.245) channel

If either endpoint detects a breach in the security of the H.245 channel, it should immediately close the connection following the protocol procedures appropriate to the particular endpoint  [for H.323 section 8.5 with the exception of step 5].  



At the discretion of the MC(U), a breach on an individual H.245 channel may cause the connections to be closed on all of the conference endpoints - thus ending the conference.

Loss of Privacy 

If any endpoint detects a loss of privacy on one of the logical channels it should immediately request a new key  (encryptionUpdateRequest) and/or close the logical channel.  



At the discretion of the MC(U), a loss of privacy on one logical channel may cause all other logical channels to be closed and/or re-keyed at the discretion of the MC(U).  MC(U) shall forward encryptionUpdateRequest, encryptionUpdate to any and all endpoints affected.





H.323 Specific Topics

Background

The securing of  the H.245 channel in H.323 will operate with the support of Transport Layer Security (TLS) as defined in  [TLS].  This end to end protocol is defined to work only on reliable transports, but is transport independent. A TLS connection provides a private, optionally authenticated end to end channel between two parties. 



As stated in section  � REF _Ref379881781 \n �8.38.3�, a separate Well-known Port (WKP) will be utilized for H.225.0 channel when authentication and privacy of Q.931 channel is desired.  TLS will be utilized on the well known port; other security mechanisms are for further study.



TLS assumes that the connecting entities both know (by other means) that TLS will be used on a particular connection from the start of the initial exchange.  For this reason, and that of backward compatibility, TLS will only be used on the separate, secure  H.225.0 WKPbetween H.323 entities.



For H.323 the signaling of TLS usage on the H.245 shall occur on the secured  or unsecured H.225.0 channel during the initial Q.931 message exchange.



See Annex A for a description of TLS.



Shown below is a diagram giving an overview of the H.Secure scope within the H.323 recommendation.



� EMBED Word.Picture.6  ���

RTP/RTCP Issues

RTP headers shall not be encrypted. Both encryption key refresh and RTP header compression, rely on clear text headers.  

RTP Stream

The use of encryption on the RTP stream will follow the general methodology recommended in the document referenced in [11].  The encryption of the media shall occur in an independent, packet by packet basis�. The RTP header (including the payload header) shall not be encrypted.   Synchronization of new keys and encrypted text will be based upon dynamic payload type.



Initial encryption key will be presented by the master in conjunction with the dynamic payload number (via mediaKeysEncryptSync in H.245).  The receiver(s) of the media stream shall start initial use of the key upon receipt of this payload number in the RTP header.  New key(s) may be distributed at any time by the master endpoint.  The synchronization of the newer key with the media stream shall be indicated by the changing of the payload type to a new dynamic value.  Note that the specific values don’t matter, as long as they change for every new key that is distributed.  



Integrity and replay protection of the RTP stream is for further study.

RTCP Channel



Application of cryptographic techniques to RTCP elements is for further study.







RAS Signaling and Procedures

Introduction

Security is relevant between endpoint-to-gatekeeper interactions in the same manner as with endpoint-to-endpoint interactions. However, authentication and privacy do not need to be as strict in the former as in the latter.  This recommendation will not provide full, mutual authentication between the gatekeeper and endpoints.  It will however, provide one-sided (terminal to gatekeeper) authentication.  Currently this recommendation will not provide any form of message privacy between gatekeepers and endpoints.



The first asset that should be protected is the registration address; incorrect or masqueraded values will at a minimum cause denial of service, maximally this can lead to a privacy breach.  The intent (as stated in section  � REF _Ref379881901 \n �7.27.2�) is to not provide absolute, user-level authentication.   Until standard contents of certificates are established that are relevant to H.323 (and other H series systems)  the protocol assisted authentication will be limited in scope.



The scope of this authentication will not encompass identity but will cover instance.  In other words, the first registration of an endpoint should not be considered to be absolutely genuine, but all subsequent registrations (or unregistrations) shall be authenticated as being from the same entity as the first registration.  It should be noted that the definition of  instance does not need to be tied to the location from which the registration was issued.   The same instance may register from one endpoint and a later time re-register from another endpoint in a completely different location.

Gatekeeper-Endpoint Associations



The establishment of the instance identity occurs when the terminal issues the GRQ as outlined in H.323 section 7.2.1.   During this exchange a Diffie-Hellman exchange shall occur in conjunction with the GRQ and GCF messages.  At the end of this exchange both the endpoint that has completed the exchange, and the Gatekeeper will possess a shared secret key.  This shared secret shall now be used on any subsequent RRQ/URQ from the terminal to the gatekeeper.



If a Gatekeeper operates in a secure mode and receives a GRQ without a DHsethalfkey value it shall return a securityDenial reason code in the DRJ.



{need fence post picture here}



Endpoint Registrations

As stated in � REF _Ref379881985 \n �13.3.213.3.2�, the shared secret as created during  the GRQ/GCF exchange shall be used for  authentication  on subsequent RRQ/URQ messages.   The following procedures shall be used to complete the authentication.



Terminal (RRQ):

The terminal shall provide all of the information in the message as described in H.225.0 section 7.9.

The terminal shall encrypt the GatekeeperIdentifier (as returned in the GCF) using the shared secret that was negotiated.

Gatekeeper (RCF/RRJ)

Gatekeeper shall encrypt its GatekeeperIdentifier with the shared secret associated with the endpoint alias and compare this to the value in the RRQ

Gatekeeper shall return RRJ if the two encrypted values do not match.

If GatekeeperIdentifier matches Gatekeeper shall apply any local logic and respond with RCF or RRJ.



The gatekeeper knows what shared secret to use to decipher the Gatekeeper identifier by the Alias name in the message.

Non-registration RAS signaling 

For all endpoint generated messages other than RRQ, the endpoint shall provide its endpointIdentifier (as returned in the RCF) encrypted with the shared secret.   The encryption algorithm to be utilized will be a result of the value passed back in the GCF.  A terminal may request a particular algorithm by setting the selection in the GRQ. The endpointIdentifier shall have the requestSeqNum XOR’d with it prior to encryption.  This will provide a per message randomization. 

The 16 bits of the requestSeqNum shall be XOR’d with each 16 bits of  the endpointIdentifier.  If the endpointIdentifier does not end on an even 16 boundary, the last 8 bits of the endpointIdentifier shall be XOR’d with the least significant octet of the requestSeqNum.  The endpointIdentifier shall be encrypted using the selected algorithm in the GCF (integrity)  and utilizing the entire shared secret.

The URQ, BRQ, ARQ, DRQ, and IRR shall all contain this encrypted value (when in secure mode). 



The gatekeeper upon receiving any of these messages shall reverse the procedure, to authenticate the sender.

Data Structure Changes



AccessToken ::= NonStandardParameter 

ChallengeString		OCTET STRING (SIZE(8..16))



DHset ::= SEQUENCE

{

	halfkey		BIT  STRING (SIZE(0..2048)), -- = g^x mod n

	modSize		BIT STRING (SIZE(0..2048)), --  n

	generator	BIT STRING (SIZE(0..2048)), -- g

	…

}





Token		::=Choice

{	

		accesstoken		AccessToken  OPTIONAL,

		dhkey			DHset,

		challenge		ChallengString,

nonStandard            	NonStandardParameter OPTIONAL,

…

}



	nonIsoIdAlgorithm	 ::=CHOICE 

	{

rRC5			NULL,

bBLOWFISH		NULL,  

3-WAY_ECB		NULL, 

…

}

	idIntegrityAlgorithm	 ::=CHOICE 

	{

nonStandard            	NonStandardParameter,

isoAlgorithm		INTEGER,   -- defined in ISO/IEC 9979

nonIsoAlgorithm		nonIsoIdAlgorithm,

…

}



GatekeeperRequest		::=SEQUENCE --(GRQ)

{

	requestSeqNum	RequestSeqNum,			

	protocolIdentifier	ProtocolIdentifier,			

	nonStandardData	NonStandardParameter OPTIONAL,	

rasAddress		TransportAddress,			

endpointType		EndpointType,				

	gatekeeperIdentifier	GatekeeperIdentifier OPTIONAL,

	callServices		QseriesOptions  OPTIONAL, 

	endpointAlias		SEQUENCE OF AliasAddress OPTIONAL,

	...,

	tokens			SEQUENCE OF Token OPTIONAL,

	integrity			SEQUENCE OF idIntegrityAlgorithm OPTIONAL,

}



GatekeeperConfirm	::=SEQUENCE --(GCF)

{

	requestSeqNum	RequestSeqNum,

	protocolIdentifier	ProtocolIdentifier,			

	nonStandardData	NonStandardParameter OPTIONAL,

	gatekeeperIdentifier	GatekeeperIdentifier  OPTIONAL,

	rasAddress		TransportAddress,

	...,

	tokens			SEQUENCE OF Token OPTIONAL,

	integrity			idIntegrityAlgorithm OPTIONAL,

}



GatekeeperRejectReason		::=CHOICE

{

	resourceUnavailable		NULL,

	terminalExcluded		NULL,	-- permission failure, not a resource failure

	invalidRevision			NULL,

	undefinedReason		NULL,

	...,

	securityDenial		NULL

}



UnregistrationRequest		::=SEQUENCE --(URQ)

{

	requestSeqNum	RequestSeqNum,			

	callSignalAddress	SEQUENCE OF TransportAddress,	

	endpointAlias		SEQUENCE OF AliasAddress OPTIONAL,		

	nonStandardData	NonStandardParameter OPTIONAL,

	endpointIdentifier	EndpointIdentifier OPTIONAL,

	...,

	endpointIdSecure 	EndpointIdentifier OPTIONAL – encrypted version with seqnum

}



BRQ, ARQ, DRQ, and IRR shall all have the additional field endpointIdSecure added as in URQ.



RegistrationRejectReason, UnregRejectReasonm, AdmissionRejectReason, BandRejectReason, and DisengageRejectReason shall all  have a securityDenial reason code.

Non-terminal Interactions

Gatekeeper



As stated in section � REF _Ref379882051 \n �7.57.5�, an H.323 Gatekeeper shall be considered a trusted element.  Beyond the interactions outlined in � REF _Ref379882088 \* MERGEFORMAT �RAS Signaling and ProceduresRAS Signaling and Procedures�, there are currently no other issues defined.

Gateway



As stated in section � REF _Ref379882131 \n �7.57.5�, an H.323 Gateway shall be considered a trusted element.  This includes protocol gateways (H.323-H.320 etc.…) and security gateways (proxy/firewalls).  The media privacy can be assured between the communicating endpoint and the gateway device; but what occurs on the far side of the gateway shall be considered insecure by default.



Authentication and related certificate passing may be provided via the same manner as outlined in section � REF _Ref379882197 \n �13.313.3�.

H.324 Specific Topics



{V.8bis is used to signal secure H.324Secure (H.245) mode}



{current thoughts are to create ‘secure’ adaptation layers to sit on the H.223 MUX layer}



{The only needed changes would be to provide a synchronization method similar to payload type in H.323. One possibility is to add a single byte value to the start of the AL SDU for all of the secure modes.}



� Appendix A: TLS Overview



TLS provides the means to establish multiple secure sessions between a Client entity and a Server entity, in which each session may have multiple secure connections.[The terms Client, Server, Session and Connection are all used in the TLSv1.0 specification. The Client is the entity that initiates the connection; the Server is the other party; there are no other implications with respect to H.323 operation].



Each TLS connection must start with an TLS handshake, which can establish either the first connection of a new session or a new connection in a previously established session. The TLSv1.0 handshake protocol allows the Server to specify the Distinguished Names of acceptable Certificate Authorities when requesting a certificate from the Client.



A session setup handshake performs the following:



Negotiates the ciphersuite that will be used by all connections in the session. 

         (this does not imply that these ciphers must be used for media channels)

Optionally, authenticates the parties involved using public-key certificates. 

Optionally, through key exchange, establishes a suitable Master Secret-key from which the keys (both bulk cipher and MAC) for each connection can be generated.



A connection setup handshake merely selects what session it is a part of (thus inheriting the session’s security state), and allows the client and server to exchange new 32-octet random values which, together with the session master secret, will be used to generate keys for the connection. 



The important components of the session state are the bulk cipher algorithm��, and the message authentication code (MAC) algorithm�. The method of encoding these components in the handshake protocol allows for easy extensibility to new algorithms. The currently defined values are:



Bulk Cipher:  Null, 

                      RC4_40, RC4_128 (stream), 

                      RC2_40, DES_40, 3DES, DES, (Block ciphers, all in CRC mode)

MAC:            Null, MD5, SHA

�

Session setup handshake 



In the following protocol, the ClientHello and the ServerHello messages are used to negotiate SSL Protocol Version, Cipher Suite, Compression Method, and to exchange 32-octet random values (these are not the encryption keys, but part of the encryption key from which the keys will be created).



�

Session Setup Handshake

Connection setup handshake



In the following protocol, the ClientHello and the ServerHello messages are used to negotiate that the connection uses the Security State established in an existing session, and also to exchange new 32-octet random values, which, together with the Master Secret in the session state, will be used to generate the keys for the connection. The SSL session ID to be used is encoded in the ClientHello message. The Server manages session states, and will indicate whether its re-use is acceptable.





�



Connection setup handshake

TLS Record Protocol



TLS is actually  a transport layer on top of the “standard” reliable transport, in that it fragments the data stream into its own “records” with TLS headers.  This record protocol transports the higher-level messages, which consist of:

the handshake messages

the change_cipher_spec message

the TLS alert messages (which basically provide error responses to TLS messages)

the Application Protocol



This record fragmentation does not necessarily preserve these message boundaries on the wire, but the protocol reconstitutes them at the receiving end.  The data in the messages are encrypted according to the current cipher spec and keys.



TLS and WinSock 2



The TLS protocol support one or more secure sessions between a pair of communicating parties. Parties may also create multiple simultaneous TLS sessions. Setting up a communication session includes negotiation of  the TLS cipher-suite. The cipher-suite defines the level of security provided for all connections created within the TLS session. It also defines which Cryptographic Service Providers (CSPs) should be used to support connection authentication, encryption, and  message authentication. The communicating parties must use the same negotiated CSPs to support the client and server actions for each function. The cipher suite may be re-negotiated during the TLS session. Authentication is performed transparent to the application and independently for each connection within the TLS session.



Once a connection is established, the communicating application processes begin to exchange messages of application-specific content.  TLS takes each application created message, breaks the message content into blocks, compresses the content, applies an authentication hash code, encrypts the content and sends it to the destination system and process. At the receiving system, the received block is decrypted, the identity of the sender is verified, and content is decompressed, and the new content block is placed in a reassembly buffer for deliver when all the message components have arrived at the destination system. 



All detected errors in the TLS protocol such as failure to authenticate, decrypt or decompress result in termination of the effected connection. Other connections within the TLS session containing the failed connection may continue, but the session is constrained such that new connections can not be created in that session.





Appendix B:  H.323 Implementation Details



The H.225.0 channel remains an open channel (not private). TLS is used to secure only H.245 channels. The H.225.0 Setup message is extended to specify the H245SecurityCapabilites  supported by the caller, and the Connect message extended to respond with the H245SecurityMode selected by callee. Any  Setup response by the callee, that contains an H.245 address would also specify the H245SecurityMode. 



If the caller does not support security (or does not want a secure call), it would not provide H245SecurityCapabilites. If the callee does not support a common H245SecurityCapabilites, it will respond with no H245SecurityMode.



The H.245 channel would be the one and only secured connection in an SSL session between the two endpoints; (A) and (B). [Assume for the scenarios that A is the slave and B is the master, and becomes the active MC]. All the H.245 messages would thus be transmitted on a secure channel. 



Since the H.225.0 channel is clear, the risk is that an eavesdropper could learn information about the secure conference: what telephone number(s) were called; call forwarding information; call duration, etc.. Also, a man-in-the-middle could alter the negotiation to prevent a Secure Call. (A denial-of-service attack is possible in all the alternatives considered). However,  the results of the negotiation should be presented to the users, who would then see that their intentions were thwarted.  The H.245 port number would not do an eavesdropper much good, since the H.245 channel is encrypted.



To be “secure”, it is strongly recommended that the client and server mutually authenticate, since this prevents a man-in-the-middle attack on the H.245 channel.



Once the secure H.245 channel has been established, it is used to negotiate the security characteristics, and perform the necessary key distribution, for the RTP sessions. (See following figures).



�EMBED Word.Picture.6���

Negotiating Secure Multipoint 

�EMBED Word.Picture.6���Negotiating Secure Multipoint�

Appendix C:  H.324 Implementation Details



{This is under development - see section 14 }



Appendix D:  Other H series Implementation Details



TBD

�

APPENDIX E: Threat Analysis 





Within  the context of multimedia communications, three broad assets might be categorized:  call setup, call control, media content.  Call setup includes, addressing and resource authorization in addition to any other authentication and privacy mechanisms.  

There are a number of security services that may be utilized to defend against threats to the system.  Each of the services may be supplied through the use of various mechanisms, which are distinct algorithms or techniques.  The following definitions give the possible scope of these services; following this section is an assessment as to which services are currently relevant to this recommendation.



Access control Service - protects against unauthorized use of systems and their resources. In general this is not covered by this recommendation.  Access control to the particular H series terminal is either covered in the specific system document or outside the scope.



Authentication Service may provide both authentication of endpoints (and/or the users they represent), and optionally the service may authenticate the origin of the data.  In this recommendation, the functionality of an Authentication Service will be facilitated by the use of certificates in both RAS and H.245 signaling.  Data origin within the control channel will be implicit from TLS/SSL in use.



Confidentiality  Service may be both connection oriented and connection-less in its privacy.  In this recommendation the use of encryption will be implicit in the TLS/SSL and explicitly on the RTP streams via H.245 signaling.



Integrity Service provides the ability to both protect/detect data transmission manipulation, and optionally to be able to recover from any ‘damage’ to the data.  The data integrity service will be utilized within the control channel security, and is not seen as a threat within the RTP stream.



Non-Repudiation  Service may be provided for both the transmission of some data and for the receiving of the data.  For this recommendation this service is for further study.



Key Management Service provide integrated key management for the session based keys.  Additionally this service should provide for re-synchronization within a cipher stream for new keys.  This service will be provided by utilizing the confidential control channel to distribute keys.  The keys will be synchronized with their cipher streams (RTP) with in-band signaling elements.



Security Management Service is the configuration, administration and supervising of the above security services.  This may include local or remote policy administration.  This service is beyond the scope of the current recommendation.





The details of this explanation will revolve around the H.323 framework, although many of the implications will apply to other environments. There are a number of entities that can be involved in a conference both in an active or passive mode.  For the sake of this description, the term participants will be given to those endpoint and network elements (i.e. Gatekeeper, Gateway, MCU)  that are known and/or permitted to interact in some phase of the communications.  The term bystanders will be used to indicate endpoint or network elements that may potentially eavesdrop, interrupt, or otherwise perturb the communications. There are a number of environmental factors that constrain the effectiveness of any H.323 security system.  Given that the communications occur on a packet based, shared-media transport, denial of service attacks are always possible via the physical media.  Additionally, traffic analysis may also occur at the IP layer to determine which parties are communicating; although the attacker may not be able to tell specific H.323 exchanges.



Listed below are the potential security services for a H.323 call:



Addressing/Status (RAS)

Authentication

Confidentiality

Integrity

Access Control

Initial connection setup (H.225.0)

Access Control - permission to complete the call

Authentication - mutual caller/callee 

Confidentiality - bystanders not allowed to ‘see’ participants

Integrity

Non-Repudiation

Call Control  (H.245)

Authentication - mutual caller/callee

Confidentiality - bystanders not allowed to ‘see’ participant controls

Integrity - controls cannot be tampered with by bystanders

Non-Repudiation 

Media Stream (RTP/RTCP)

Authentication

Confidentiality

Integrity

Non-Repudiation

Assuming the previous outline, the possible threats are:



1a)  Spoofing of a ‘user’ to accept or make calls using their identity, denial of service by registering an invalid address. As specified in � REF _Ref379884024 \n �13.3.113.3.1�, an initial invalid address registration will not be protected against.  After an initial registration - spoofing attacks will be protected.  In addition, the detection of the spoof registration, can be detected during registration of the valid user.  Once the user is registered, Call establishment messages (ARQ/BRQ/DRQ) will be authenticated as outlined in  � REF _Ref379882190 \n �13.3.413.3.4�.

1b) Traffic analysis to determine who is registered and where they are registered.  Monitoring of call traffic to see who is communicating.  Some of the RAS messages are multicast by definition, and as such is would be impractical to make confidential.  Call establishment messages are currently carried on UDP (unreliable) transport Possible solutions for further study are to enable a parallel and secure, RAS channel or to deploy a connection-less confidentiality service.

1c) RAS messages could be modified, inserted, deleted and or spoofed by bystanders.  This would result in loss of integrity or in a denial of service attack.  H.Secure provides for replay protection of RAS messages by using a “per-message randomization” in section � REF _Ref379882190 \* MERGEFORMAT �Non-registration RAS signalingNon-registration RAS signaling�� REF _Ref379882190 \n �13.3.413.3.4�.

1d) Endpoints may masquerade and obtain unauthorized access to resources.  Authenticated registration and authorization for access, may counter this threat.

2a) Denial of service attacks by bystanders making calls through a limited resource (Gateway). Denial of service attack by tying up callee resources.  Assuming that call establishment messages have the authentication mechanism in place, this should not be a threat.

2b) Spoofed caller/callee for initial connection. Leads to same problems as in 2a.   Possible man-in-middle attacks for call control security negotiation.  The impact of this threat will be contained if strong authentication occurs on the call control channel.  This is considered a minor threat at this point.

2c) Traffic analysis on communicating parties.   IP level communications can be analyzed in any case - this is considered a minor threat.

2d) Unauthorized modification, deletion and insertion of H.225.0 call signaling messages.  TLS may provide integrity and relplay protiection of the H.225.0 call signaling messages.

2e) Either entity denies having initiiated or received the call.  Non-repudiation services are for futher study.

3a) Man-in-middle attack for all control messages.  Leads to a breach of 3b,3c and 3d. This threat can be countered by certificate based authentication as provide in TLS/SSL.

3b) Bystanders able to snoop media encryption algorithms and keys exchanged by participants loss of 4b, 4c and 4d.  This threat is also countered by the negotiated algorithm as described in  � REF _Ref379883882 \n �9.19.1�.

3c) No threat assuming 3 is achieved through adequate security service which supplies integrity.

3d) Non-repudiation services are for further study..

4a) Denial of service attack by ‘flooding’ RTP channel.  Due to the fact that the RTP is carried on UDP (potentially multicast), ‘jamming’ with replayed  RTP packets may occur.  This is not seen as a threat worth protecting against.  

4b) If encryption scheme negotiated in 3 is ‘broken’ - bystanders will access confidential data.  Threat is minimized by using appropriate strength algorithm-key combination. Note that RTCP is not encrypted and therefore source/destination analysis may occur.

4c) Denial of service attack if bystanders, ‘scramble’ data. This attack can only reasonably be accomplished by a network element that ‘passes on’ media data.  Independent bystanders can always ‘flood’ the multicast address on the shared, packet media.  Not a reasonable service for real-time communications in a lossy environment. Integrity servies for media data is for further study.

4d) Not a large threat assuming 4b is achieved through strong encryption.  This applies to the sender of the data.  Non repudiation of receipt of data is not considered a threat. (or practical in real-time multimedia communications). Non-repudiation of media stream data is for further study.



APPENDIX F: BIBLIOGRAPHY



[Schneier]

Applied Cryptography, Second Edition Protocols, Algorithms, and Source Code in C, Bruce Schneier: John Wiley & Sones, Inc., 1996



security architecture: A set of rules, security services, security mechanisms and security features used to protect a (specific) architecture or system against threats satisfying the security requirements. A security architecture can be restricted to a specific system or can be generic covering several systems (see security framework). 

security function: A capability of an open system to perform security-related processing (X.803)

security mechanism: Means by which a security service can be realized or implemented.

security negotiation: The process by which a secure environment is initiated, established or denied between two entities. Security negotiation may include exchange of security capabilities prior to secured communication. 

security management: OSI security management is concerned with the management of OSI security services and mechanisms. Such management requires distribution of management information to these services and mechanisms as well as the collection of information concerning the operation of these services and mechanisms. Examples are the distribution of cryptographic keys, the setting of administratively-imposed security selection parameters, the reporting of both normal and abnormal security events (audit trails), and service activation and deactivation. Security management does not address the passing of security-relevant information in protocols which call up specific security services (e.g., in parameters in connection requests) (X.800). Security management encompass activities for system security management, for security service management and for security mechanism management.



� If RTP packet size is larger than MTU size, partial loss (of fragment) will cause the whole RTP packet to be indecipherable.

� All the bulk cipher algorithms are secret-key algorithms.



� A MAC is a signed hash of the message, where the hash (derived from the content of the message) is generated by the specified algorithm (i.e., the message includes the hash value encrypted with the sender’s private key). The signature allows the receiver to verify origin and to check whether the content  has been tampered with.





DRAFT H.Secure, 07 Feb 1997



Page �PAGE�45� 





�PAGE \# "'Page: '#'�'"  ��






