ITU - Telecommunication Standardization Sector Temporary Document TD-XX

Study Group 16

Geneva, Switzerland, 17-27 March, 1997

Question: 	Q11/16; Q14/16

Source:		Rapporteur for Question 14/16 (G. Thom)

		Contact:	Chris Hansen

				Tel: +1 503 264 8877

 				Fax: +1 503 264 3375

				Email: chris_hansen@ccm.jf.intel.com

TITLE:	H.245 revision 3 additions in support of mobile H.324 (H.324M).

�

New Syntax for H.324 Mobile in H.245 version 3:

RequestMessage	::=CHOICE

{

	nonStandard	NonStandardMessage,

	masterSlaveDetermination	MasterSlaveDetermination,

	terminalCapabilitySet	TerminalCapabilitySet,

	openLogicalChannel	OpenLogicalChannel,

	closeLogicalChannel	CloseLogicalChannel,

	requestChannelClose	RequestChannelClose,

	multiplexEntrySend	MultiplexEntrySend,

	requestMultiplexEntry	RequestMultiplexEntry,

	requestMode	RequestMode,

	roundTripDelayRequest	RoundTripDelayRequest,

	maintenanceLoopRequest	MaintenanceLoopRequest,

	...,

	communicationModeRequest	CommunicationModeRequest,

	conferenceRequest	ConferenceRequest,

	requestMultiplexConfiguration	RequestMultiplexConfiguration

	

}

-- A ResponseMessage is the response to a request Message

ResponseMessage	::=CHOICE

{

	nonStandard	NonStandardMessage,

	masterSlaveDeterminationAck	MasterSlaveDeterminationAck,

	masterSlaveDeterminationReject	MasterSlaveDeterminationReject,

	terminalCapabilitySetAck	TerminalCapabilitySetAck,

	terminalCapabilitySetReject	TerminalCapabilitySetReject,

	openLogicalChannelAck	OpenLogicalChannelAck,

	openLogicalChannelReject	OpenLogicalChannelReject,

	closeLogicalChannelAck	CloseLogicalChannelAck,

	requestChannelCloseAck	RequestChannelCloseAck,

	requestChannelCloseReject	RequestChannelCloseReject,

	multiplexEntrySendAck	MultiplexEntrySendAck,

	multiplexEntrySendReject	MultiplexEntrySendReject,

	requestMultiplexEntryAck	RequestMultiplexEntryAck,

	requestMultiplexEntryReject	RequestMultiplexEntryReject,

	requestModeAck	RequestModeAck,

	requestModeReject	RequestModeReject,

	roundTripDelayResponse	RoundTripDelayResponse,

	maintenanceLoopAck	MaintenanceLoopAck,

	maintenanceLoopReject	MaintenanceLoopReject,

	...,

	communicationModeResponse	CommunicationModeResponse,

	conferenceResponse	ConferenceResponse,

	

	requestMultiplexConfigurationAck	RequestMultiplexConfigurationAck,

	requestMultiplexConfigurationReject	RequestMultiplexConfigurationReject

}

MultiplexCapability	::=CHOICE

{

	nonStandard	NonStandardParameter,

	h222Capability	H222Capability,

	h223Capability	H223Capability,

	v76Capability	V76Capability,

	...,

	h2250Capability	H2250Capability,

	

	h223AnnexACapability	H223AnnexACapability	-- Mobile Multiplex Capability

}

H223AnnexACapability	::=SEQUENCE

{

	transferWithI-frames	BOOLEAN,		-- I-frame transport of H.245

	videoWithAL1M	BOOLEAN,

	videoWithAL2M	BOOLEAN,

	videoWithAL3M	BOOLEAN,

	audioWithAL1M	BOOLEAN,

	audioWithAL2M	BOOLEAN,

	audioWithAL3M	BOOLEAN,

	dataWithAL1M	BOOLEAN,

	dataWithAL2M	BOOLEAN,

	dataWithAL3M	BOOLEAN,

	maximumAL2MSDUSize	INTEGER (0..65535),	-- units octets

	maximumAL3MSDUSize	INTEGER (0..65535),	-- units octets

	maximumDelayJitter 	INTEGER (0..1023),	-- units milliseconds

	reconfigurationCapability	BOOLEAN,

	h223AnnexAMultiplexTableCapability	CHOICE		-- identical to H.223

	{

		basic	NULL,

		enhanced	SEQUENCE

		{

			maximumNestingDepth	INTEGER (1..15),

			maximumElementListSize	INTEGER (2..255),

			maximumSubElementListSize	INTEGER (2..255),

			...

		},

		...

	},

	...

}

OpenLogicalChannel	::=SEQUENCE

{

	forwardLogicalChannelNumber	LogicalChannelNumber,

	forwardLogicalChannelParameters	SEQUENCE

	{

		portNumber	INTEGER (0..65535) OPTIONAL,

		dataType	DataType,

		multiplexParameters	CHOICE

		{

			h222LogicalChannelParameters	H222LogicalChannelParameters,

			h223LogicalChannelParameters	H223LogicalChannelParameters,

			v76LogicalChannelParameters V76LogicalChannelParameters,

			...,

			h2250LogicalChannelParameters H2250LogicalChannelParameters,

			h223AnnexALogicalChannelParameters H223AnnexALogicalChannelParameters

		},

		...

	},

	-- Used to specify the reverse channel for bi-directional open request

	reverseLogicalChannelParameters	SEQUENCE

	{

		dataType	DataType,

		multiplexParameters	CHOICE

		{

			-- H.222 parameters are never present in reverse direction

			h223LogicalChannelParameters	H223LogicalChannelParameters,

			v76LogicalChannelParameters	V76LogicalChannelParameters,

			...,

			h2250LogicalChannelParameters H2250LogicalChannelParameters,

			h223AnnexALogicalChannelParameters H223AnnexALogicalChannelParameters

		} OPTIONAL,	-- Not present for H.222

		...

	} OPTIONAL,	-- Not present for uni-directional channel request

	...,

	separateStack	NetworkAccessParameters OPTIONAL

				-- for Open responder to establish the stack

}

H223AnnexALogicalChannelParameters	::=SEQUENCE

{

	adaptationLayertype	CHOICE

	{

		nonStandard	NonStandardParameter,

		al1M	AL1MParameters,

		al2M	NULL,	-- al2M is without parameters

		al3M	AL3MParameters,

		...

	},

	segmentableFlag	BOOLEAN,

	...

}

ModeElement	::= SEQUENCE

{

	type		CHOICE

	{

		nonStandard	NonStandardParameter,

		videoMode	VideoMode,

		audioMode	AudioMode,

		dataMode	DataMode,

		encryptionMode	EncryptionMode,

		...

	},

	h223ModeParameters	H223ModeParameters OPTIONAL,

	...,

	v76ModeParameters	V76ModeParameters OPTIONAL,

							

	h223AnnexAModeParameters	H223AnnexAModeParameters OPTIONAL -- H.223

							-- and H.223AnnexA

							-- are exclusive

}

H223AnnexAModeParameters	::=SEQUENCE

{

	adaptationLayertype	CHOICE

	{

		nonStandard	NonStandardParameter,

		al1M	AL1MParameters,

		al2M	NULL,	-- al2M is without parameters

		al3M	AL3MParameters,

		...

 },

 segmentableFlag	BOOLEAN,

 ...

}

AL1MParameters	::=SEQUENCE

{

	transferMode	CHOICE

	{

		framed	NULL,

		unframed	NULL,

		...

	},

	crcLength	CHOICE

	{

		nil		NULL,

		eightbits	NULL,

		sixteenbits	NULL,

		thirtytwobits	NULL,

		...

	},

	fecType	CHOICE

	{

		withFEC	INTEGER (0..24),	-- RCPC code rate

		noFEC	NULL,	

		...

	},

	arqType	CHOICE

	{

		noArq	NULL,

		typeIArq	H223AnnexAAL1MArqParameters,

		typeIIArq	H223AnnexAAL1MArqParameters,

		...

	},

	...

}

H223AnnexAAL1MArqParameters	::=SEQUENCE

{

	numberOfRetransmissions	CHOICE

	{

		finite	INTEGER (0..16),

		infinite	NULL,

		...

	},

	sendBufferSize	INTEGER (0..16777215),

	...

}

AL3MParameters	::=SEQUENCE

{

	crcLength	CHOICE

	{

		nil	NULL,

		eightbits	NULL,

		sixteenbits	NULL,

		thirtytwobits	NULL,

		...

	},

	fecType	CHOICE

	{

		withFEC	INTEGER (0..24),	-- RCPC code rate

		noFEC	NULL,	

		...

	},

	arqType	CHOICE

	{

		noArq	NULL,

		typeIArq	H223AnnexAAL3MArqParameters,

		typeIIArq	H223AnnexAAL3MArqParameters,

		...

	},

	...

}

H223AnnexAAL3MArqParameters	::=SEQUENCE

{

	numberOfRetransmissions	INTEGER (0..16),

	sendBufferSize	INTEGER (0..16777215),

	...

}

-- ===

-- Multiplex Configuration Request

-- ===

RequestMultiplexConfiguration	::=SEQUENCE

{

	sequenceNumber	SequenceNumber,

	requestConfiguration	CHOICE

	{

		h223AnnexAConfiguration	H223AnnexAConfiguration,

		...

	},

	...

}

RequestMultiplexConfigurationAck	::=SEQUENCE

{

	sequenceNumber	SequenceNumber,

	...

}

RequestMultiplexConfigurationReject	::=SEQUENCE

{

	sequenceNumber	SequenceNumber,

	...

}

RequestMultiplexConfigurationRelease	::=SEQUENCE

{

	...

}

-- ===

-- H223AnnexA Configuration Request definitions

-- ===

H223AnnexAConfiguration	::=SEQUENCE

{

	synchFlagLength	CHOICE

	{

		length8	NULL,

		length15	NULL,

		length31	NULL,

		...

	},

	informationFieldSize	INTEGER (0..65535),	-- units octets

	headerFEC	H223AnnexAMuxHeaderFEC,		

	headerInterleaving 	CHOICE

	{

		bitInterleaving 	NULL,

		byteInterleaving 	NULL,

		noInterleaving 	NULL,

		duplicate	H223AnnexAMuxHeaderFEC,

		...

	},

		

	headerCRC	INTEGER (0..8),

	...

}

H223AnnexAMuxHeaderFEC	::=CHOICE

{

	rate7by63	NULL,

	rate10by63	NULL,

	rate16by63	NULL,

	rate18by63	NULL,

	rate11by31	NULL,

	rate16by31	NULL,

	rate7by15	NULL,

	rate11by15	NULL,

	...

}

Semantic descriptions for H.324 mobile for H.245 version 3:

 In section 7.2.2.4 add:

H223AnnexACapability: indicates capabilities specific to H.223 [8], when operating in the mobile mode (Annex A).

The boolean transportWithI-frames, when true, indicates that the terminal is capable of sending and receiving control channel messages using LAPM I-frames as defined in V.42 [29].

The booleans videoWithAL1M, videoWithAL2M, videoWithAL3M, audioWithAL1M, audioWithAL2M, audioWithAL3M, dataWithAL1M, dataWithAL2M and dataWithAL3M, when true, indicate the capability to receive the stated medium type (video, audio, or data) using the stated adaptation layer (AL1M, AL2M, or AL3M).

The integers maximumAl2MSDUSize and maximumAL3MSDUSize indicate the maximum number of octets in each SDU that the terminal can receive when using adaptation layer types 2 and 3, respectively.

maximumDelayJitter indicates the maximum peak-to-peak multiplexing jitter that the transmitter shall cause. It is measured in milliseconds. Multiplexing jitter is defined as the difference in time of delivery of the first octet of an audio frame when delivered in the multiplexed stream and when it would be delivered at constant bit rate without a multiplex.

The boolean ReconfigurationCapability indicates the capability to change the size of the multiplex PDU and the format of the header.

H223AnnexAMultiplexTableCapability: indicates the terminal’s ability to receive and process multiplex table entries. The parameters are identical to H223MultiplexTableCapability.

In section 7.3.1 add:�seq sub_sub_section \r 0 \h�	

H223AnnexALogicalChannelParameters: is used to indicate parameters specific to H.223 when operating in the mobile mode (H223 Annex A). It shall be present in forwardLogicalChannelParameters and reverseLogicalChannelParameters.

adaptationLayerType indicates which adaptation layer (AL) and parameters are requested. Besides the nonStandard AL, three ALs are defined:

In case of AL1M, crcLength indicates the CRC length of 0, 8, 16, or 32 bit. The channel code rate for RCPC coding is indicated by targetCodeRate, where the values from 0 to 24 indicate the code rates 8/8, 8/9, 8/10, ..., 8/32. arqType indicates the basic mode of operation, i.e., no retransmissions (noArq), ARQ type I (typeIArq) and ARQ type II (typeIIArq). numberOfRetransmissions indicates the maximum number of retransmissions and shall be ignored if arqType is noArq. finite, if present, indicates the number of retransmissions in the range from 0 (no retransmission) to 16. Otherwise infinite is present, indicating an infinite number of retransmissions. Finally, sendBufferSize indicates the size of the send buffer that will be used, the size being measured in octets.

In case of AL2M, no further parameters are available.

In case of AL3M, the same parameters are provided as in AL1M. The only difference being the maximum number of retransmissions (numberOfRetransmissions) which does not include an infinite number.

segmentableFlag, when equal to true indicates that segmentable multiplexing is requested, and when equal to false indicates that non-segmentable multiplexing is requested.

In section 7.6.1 add:

h223AnnexAModeParameters is used to indicate parameters specific to H.223 [8], when operating in the mobile mode (Annex A). h223ModeParameters and h223AnnexAModeParameters shall not be present at the same time.

adaptationLayerType indicates which adaptation layer (AL) and parameters are requested. Besides the nonStandard AL, three ALs are defined:

In case of AL1M, transferMode indicates the whether framed or unframed transfer mode of AL1M will be used. crcLength indicates the CRC length of 0, 8, 16, or 32 bit. The FEC mode is indicated by fecMode. withFEC, if present, indicates the channel code rate for RCPC coding, where the values from 0 to 24 indicate the code rates 8/8, 8/9, 8/10, ..., 8/32. Otherwise noFEC is present, indicating no RCPC coding is used. arqType indicates the basic mode of operation, i.e., no retransmissions (noArq), ARQ type I (typeIArq) and ARQ type II (typeIIArq). On their parameter, numberOfRetransmissions indicates the maximum number of retransmissions and shall be ignored if arqType is noArq. finite, if present, indicates the number of retransmissions in the range from 0 (no retransmission) to 16. Otherwise infinite is present, indicating an infinite number of retransmissions. Finally, sendBufferSize indicates the size of the send buffer that will be used, the size being measured in octets.

In case of AL2M, no further parameters are available.

In case of AL3M, the same parameters are provided as in AL1M except transferMode. The difference of the parameter definition being the maximum number of retransmissions (numberOfRetransmissions) which does not include an infinite number.

segmentableFlag, when equal to true indicates that segmentable multiplexing is requested, and when equal to false indicates that non-segmentable multiplexing is requested.

Add new section to section 7.

�seq sub_sub_section \r 0 \h�Request Multiplex Configuration messages

This set of messages is used by a terminal to initiate a reconfiguration of the H.223 multiplex. It shall only be used in the mobile mode of operation.

�seq sub_sub_sub_section \r 0 \h�Request Multiplex Configuration

This is used to request the change of transmitting multiplex configuration. It is a set of parameters to be used in the new configuration.

sequenceNumber is used to label instances of RequestMultiplexConfiguration so that the corresponding response can be identified.

H223AnnexAConfiguration: is a set of parameters of H.223 Annex A MUX-PDU configuration. It shall only be used if the receiving terminal has indicated ReconfigurationCapability. It allows adaptation to different error characteristics but should not be used frequently - perhaps only during the initialization phase. Before changing any parameters, the transmit terminal shall wait for a response message.

synchFlagLength indicates the size of the synch flag which is 8, 15 or 31 bits.

headerInterleaving indicates whether the header is located before the information field (noInterleaving) or spread through the information field in units of bits (bitInterleaving), bytes (byteInterleaving), or header duplicating (duplicate). If duplicate is selected, the additional header is placed at the end of the multiplex packet, protected with the FEC code chosen from the same set of codes as headerFEC

informationFieldSize indicates the size of the information field, and is measured in octets.

headerFEC indicates the FEC code to be used for error protection. The selection represents the BCH codes with code rates I/N = 7/63 (rate7by63), 10/63 (rate10by63), 16/63 (rate16by63), 18/63 (rate18by63), 11/31 (rate11by31), 16/31 (rate16by31), 7/15 (rate7by15) and 11/15 (rate11by15).

headerCRC indicates the CRC to be used, where the value represents the CRC length with the unit bit. headerCRC shall be set such that C is smaller or equal to I-4. The number of remaining bits H = I-4-C, are used for the header counter.

�seq sub_sub_sub_section \r 0 \h�Request Multiplex Configuration Acknowledge

This is sent to confirm that the receive terminal accept the change of multiplex configuration requested by the transmit terminal.

The sequenceNumber shall be the same as the sequenceNumber in the RequestMultiplexConfiguration for which this is the confirmation.

�seq sub_sub_sub_section \r 0 \h�Request Multiplex Configuration Reject

This is sent to reject the request by the transmit terminal.

The sequenceNumber shall be the same as the sequenceNumber in the RequestMultiplexConfiguration for which this is the confirmation.

Request Multiplex Configuration Release

This is used by the MCSE in the case of a timeout.

�

Add to section 8 (new sub-section):

�seq sub_sub_section \r 0 \h�Multiplex Configuration procedures

�seq sub_sub_sub_section \r 0 \h�Introduction

The procedures described here allow a terminal to request a remote terminal to change the configuration of multiplex (MUX-PDU) in its transmit direction. The procedures are referred to here as the Multiplex Configuration Signalling Entity (MCSE). Procedures are specified in terms of primitives and states at the interface between the MCSE and the MCSE user. Protocol information is transferred to the peer MCSE via relevant messages defined in section 6. There is an out-going MCSE and an in-coming MCSE. At each of the out-going and in-coming ends there is one instance of the MCSE per call.

A terminal that answers such a response positively, that is, by issuing the TRANSFER.response primitive, shall initiate the procedures to change the multiplex configuration, e.g. a format of MUX header, MUX-PDU size, a length of synchronization flag of MUX-PDU, etc., according to the specification in the relevant Recommendation describing the multiplexing method.

If the currently valid capabilities received from the remote terminal contain more than one multiplex capabilities, a terminal may select a set of parameters that it prefers to apply to the transmission of MUX-PDU by performing the multiplex configuration procedures. A terminal whose currently valid capabilities contain multiplex capabilities and which is in receipt of such a request, shall prepare for changing multiplex configuration in receiving direction.

A terminal which received a negative response (Reject) from the receiving terminal shall not reconfigure the multiplex, and the parameters of multiplex shall be remain unchanged.

Note: a request message from the transmitting end or the response message for the request message from the receiving end may be lost when the multiplex configuration procedure is used in a severe error-prone environment, e.g. a typical environment in which H.223 Annex A is used. When MCSE can be informed of the loss of the message by the underlying reliable transmission protocol for H.245 messages, terminals shall make sure that the Multiplex Configuration procedure fails and multiplex configuration shall remain unchanged.

The following text provides an overview of the operation of the MCSE protocol. In the case of any discrepancy between this and the formal specification, the formal specification will supersede.

Protocol overview - out-going MCSE

A multiplex configuration procedure is initiated when the TRANSFER.request primitive is issued by the user at the out-going MCSE. A RequestMultiplexConfiguration message is sent to the peer incoming MCSE, and timer T110 is started. If a RequestMultiplexConfigurationAck message is received in response to the RequestMultiplexConfiguration message then timer T110 is stopped and the user is informed with the TRANSFER.confirm primitive that the multiplex configuration procedure was successful. If however a RequestMultiplexConfigurationReject message is received in response to the RequestMultiplexConfiguration message then timer T110 is stopped and the user is informed with the REJECT.indication primitive that the peer MCSE user has refused to accept the change of multiplex configuration.

If timer T110 expires then the out-going MCSE user is informed with the REJECT.indication primitive.

A new multiplex configuration procedure shall not be initiated with the TRANSFER.request primitive by the user at the out-going MCSE before a RequestMultiplexConfigurationAck or a RequestMultiplexConfigurationReject message has been received or multiplex configuration procedure is terminated in failure (e.g. by timeout, error indication from lower layer).

Protocol overview - in-coming MCSE

When a RequestMultiplexConfiguration message is received at the in-coming MCSE, the user is informed of the multiplex configuration change with the TRANSFER.indication primitive. The in-coming MCSE user signals acceptance of the change of multiplex configuration by issuing the TRANSFER.response primitive, and a RequestMultiplexConfigurationAck message is sent to the peer out-going MCSE. The in-coming MCSE user signals rejection of the new multiplex configuration by issuing the REJECT.request primitive, and a RequestMultiplexConfigurationReject message is sent to the peer out-going MCSE.

A new RequestMultiplexConfiguration message may be received before the in-coming MCSE user has responded to an earlier RequestMultiplexConfiguration message. The in-coming MCSE user is informed with the REJECT.indication primitive, followed by the TRANSFER.indication primitive, and the in-coming MCSE user responds to the new request of the multiplex configuration.

If a RequestMultiplexConfigurationRelease message is received before the in-coming MCSE user has responded to an earlier RequestMultiplexConfiguration message, then the in-coming MCSE user is informed with the REJECT.indication, and the earlier multiplex configuration request is discarded.

Communication between MCSE and MCSE user

Primitives between MCSE and MCSE user

Communication between the MCSE and MCSE user, is performed using the primitives shown in Table �seq table TABLE_PRIMS_MCSE�1�.

TABLE �seq table�1�/H.245

Primitives and parameters

�
type�
�
generic name�
request�
indication�
response�
confirm�
�
TRANSFER�
MUX-CONF�
MUX-CONF�
- 1�
-�
�
REJECT�
-�
SOURCE�
not defined 2�
not defined�
�
Notes:

1.	“-” means no parameters

1.	“not defined” means that this primitive is not defined.

Primitive definition

The definition of these primitives is as follows:

a)	The TRANSFER primitives are used for the transfer of the multiplex configuration parameters.

b)	The REJECT primitives are used to reject a change of multiplex configuration.

Parameter definition

The definition of the primitive parameters shown in Table �seq table TABLE_PRIMS_MCSE�1� are as follows:

a)	The MUX-CONF parameter specifies a configuration of multiplex. This parameter is mapped to the requestConfiguration field of the RequestMultiplexConfiguration message and is carried transparently from the out-going MCSE user to the in-coming MCSE user. This parameter is mandatory. There shall be one and only one MUX-CONF parameter associated with the TRANSFER primitives.

b)	The SOURCE parameter indicates the source of the REJECT.indication primitive. The SOURCE parameter has the value of "USER" or "PROTOCOL". The latter case may occur as the result of a timer expiry.

 MCSE states

The following states are used to specify the allowed sequence of primitives between the MCSE and the MCSE user. The states for an out-going MCSE are:

State 0: IDLE

The MCSE is idle.

State 1: AWAITING RESPONSE

The MCSE is waiting for a response from the remote MCSE.

The states for an in-coming MCSE are:

State 0: IDLE

The MCSE is idle.

State 1: AWAITING RESPONSE

The MCSE is waiting for a response from the MCSE user.

State transition diagram

The allowed sequence of primitives between the MCSE and the MCSE user is defined here. The allowed sequences are specified separately for each of an out-going MCSE and an in-coming MCSE, as shown in Figure �seq figure FIGURE_PS_OUT_MCSE�1� and Figure �seq figure FIGURE_PS_IN_MCSE�2� respectively.

�

FIGURE �seq figure�1�/H.245

State transition diagram for sequence of primitives at MCSE out-going

�

FIGURE �seq figure�2�/H.245

State transition diagram for sequence of primitives at MCSE in-coming

 Peer to peer MCSE communication

Messages

Table �seq table TABLE_MCSE_PDUS�2� shows the MCSE messages and fields, defined in section 6, which are relevant to the MCSE protocol.

TABLE �seq table�2�/H.245

MCSE message names and fields

function�
message�
direction�
field�
�
mutiplex configuration�
RequestMultiplexConfiguration�
O -> I 1�
sequenceNumber�
�
�
�
�
requestConfiguration�
�
�
RequestMultiplexConfigurationAck�
O <- I�
sequenceNumber�
�
�
RequestMultiplexConfigurationReject�
O <- I�
sequenceNumber�
�
reset�
RequestMultiplexConfigurationRelease�
O -> I�
sequenceNumber�
�
Notes:

1.	Direction: O - out-going, I - in-coming.

 MCSE state variables

The following state variables are defined at the out-going MCSE:

out_SQ

This state variable is used to indicate the most recent RequestMultiplexConfiguration message. It is incremented by one and mapped to the RequestMultiplexConfiguration message sequenceNumber field before transmission of the RequestMultiplexConfiguration message. Arithmetic performed on out_SQ is modulo 256.

The following state variables are defined at the in-coming MCSE:

in_SQ

This state variable is used to store the value of the sequenceNumber field of the most recently received RequestMultiplexConfiguration message. The RequestMultiplexConfigurationAck and RequestMultiplexConfigurationReject messages have their sequenceNumber fields set to the value of in_SQ, before being sent to the peer MCSE.

 MCSE timers

The following timer is specified for the out-going MCSE:

T110

This timer is used during the AWAITING RESPONSE state. It specifies the maximum time during which no RequestMultiplexConfigurationAck or RequestMultiplexConfigurationReject message may be received.

MCSE procedures

Figure �seq figure FIGURE_SUM_MCSE�3� summarises the MCSE primitives and their parameters, and messages, for each of the out-going and in-coming MCSE.

�

FIGURE �seq figure�3�/H.245

Primitives and messages in the Multiplex Configuration Signalling Entity

Primitive parameter default values

Where not explicitly stated in the SDL diagrams the parameters of the indication and confirm primitives assume values as shown in Table �seq table TABLE_DEF_PAR_MCSE�3�.

TABLE �seq table�3�/H.245

Default primitive parameter values

primitive�
parameter�
default value�
�
REJECT.indication�
SOURCE�
USER�
�

Message field default values

Where not explicitly stated in the SDL diagrams the message fields assume values as shown in Table �seq table TABLE_PDU_DEF_MCSE�4�.

TABLE �seq table�4�/H.245

Default message field values

message�
field�
default value�
�
RequestMultiplex�
sequenceNumber�
out_SQ�
�
Configuration�
requestConfiguration�
TRANSFER.request(MUX-CONF)�
�
RequestMultiplex

ConfigurationAck�
sequenceNumber�
in_SQ�
�
RequestMultiplex

ConfigurationReject�
sequenceNumber�
in_SQ�
�
RequestMultiplex

ConfigurationRelease�
sequenceNumber�
out_SQ�
�

SDLs

The out-going MCSE and the in-coming MCSE procedures are expressed in SDL form in Figure �seq figure FIGURE_SDL_OUT_MCSE�4� and Figure �seq figure FIGURE_SDL_IN_MCSE�5� respectively.

�

FIGURE �seq figure�4�(i)/H.245

Out-going MCSE SDL

�

FIGURE �seq figure \c�4�(ii)/H.245

Out-going MCSE SDL (continued)

�

FIGURE �seq figure \c�4�(iii)/H.245

Out-going MCSE SDL (concluded)

�

FIGURE �seq figure�5�(i)/H.245

In-coming MCSE SDL

�

FIGURE �seq figure \c�5�(ii)/H.245

In-coming MCSE SDL (concluded)

�

�PAGE �

�PAGE �20�

 *Chris Hansen, Intel Corporation

tel: +1 503 264 8
