- 24 -

UIT - Secteur de la normalisation des télécommunications

ITU - Telecommunication Standardization Sector

UIT - Sector de Normalización de las Telecomunicaciones

Study Period 1997-2000

eq \b\rc\}(\a\al(Commission d'études ;Study Group;Comisión de Estudio)) 16
eq \b\rc\}(\a\al(Contribution tardive;Delayed Contribution ;Contribución tardía)) D.xxx

Geneva, 7-18 February 2000

eq \b\rc\}(\a\al(Texte disponible seulement en ;Text available only in;Texto disponible solamente en)) E
Question(s):
Q.13/16

SOURCE*:
Rapporteur for Q.13/16 (Dale Skran)

TITLE:
Draft H.323 Annex L Stimulus Protocol

ABSTRACT: This contribution contains the text for determination.

0 Changes

· incorporated changes suggested by TD-07 (Red Bank, Oct 1999)

· conference call (15/12/99) participants felt that display management was unnecessarily complex, resulting in the elimination of escape sequences for scrolling, cursor movement, deletion, display attributes, and pre-loaded strings

· re-introduced support for simple feature key management as described in APC-1597 including removal of feature access codes in favour of simpler Feature Activation mechanism

· all indicator support relegated to feature key management using generic status attributes

· added support for negociated use of Unicode in Display and Keypad information elements (or where mutually declared as supported – required in FS and optional in endpoint)

Introduction

The essential requirement for an H.323 based stimulus protocol is to provide a set of capabilities which allow supporting endpoints access to a potentially unlimited set of supplementary services. There are many benefits to such a protocol, such as allowing endpoints to remain relatively lightweight, and providing a degree of isolation from the effects of new feature introduction. These services themselves are typically controlled by a Gatekeeper, a proxy, or other network entity. This document uses the term “Feature Server” to generically designate any network entity providing configuration or stimulus control of endpoints according to the protocol described.

The goals of the protocol described in this document are:

· support for arbitrary (standard and non-standard) supplementary services

· interoperability of these services between Feature Server and endpoint

· backwards compatibility with endpoints using early versions of H.323

In many cases, even when pure standards-based signalling is used, interoperability is hindered by ignorance of specific capabilities of an endpoint. This often prevents a Feature Server from determining whether an endpoint provides adequate support for a feature until it is initiated, when the the Feature Server must depend on mechanisms such as time-outs, message or function not understood indications, and other failures before it can indicate that the particular feature is unavailable or perhaps try an alternative approach. Therefore capabilities declaration and a capabilities query/response mechanism form a fundamental part of the protocol described in this document.

The protocol allows a Feature Server to control various user interface elements of a compliant terminal, such as:

· write to a text display

· provide hardware-independent indications to the endpoint, from which the endpoint may control its own indicators, such as message waiting or line lamps

· receive user input such as digits, text, special keys (such as hookswitch and function keys)

· assign functions to soft keys and into an endpoint resident directory

· request application of specific tones

· specify tones dynamically

Annex L terminals may have additional capabilities which are related to those described in this document. For example, an endpoint may support an HTML or WML based user interface. Such capabilities may be standards based (for example, using H.323 Annex K for HTTP based control). A Feature Server recognizing such support by an endpoint may use such additional capabilities to augment the capabilities of Annex L.

This document presents the protocol in two main sections. The first, Stimulus Control describes the control aspects of the protocol, that is, how the display information is conveyed from the Feature Server to the endpoint, how user input is conveyed to from the endpoint to a Feature Server, and how a Feature Server requests tones to be applied by the endpoint (media manipulation procedures are described in H.245 and H.323 and so are not repeated here). The second, Stimulus Management, is split into two subsections, describing stimulus capabilities declarations by endpoints and configuration of endpoints by Feature Servers respectively.

Use of the protocol described in this annex is suggested for, but is not restricted to H.323 Annex F Simple Endpoint Types.

1 Overview

The general philosophy used to define this protocol is to avoid introduction of new fields where existing fields provide similar functionality, even though those fields may not be in widespread use. As a result, all of the “control” aspects of the protocol operate through existing message fields. This is especially important in limiting the proliferation of multiple means of signalling the same thing (e.g. user input). In addition, use of existing fields simplifies implementation for backwards compatibility.

Considering that the only H.323 signalling that all entities must support is H.225.0 (Q.931) Call Signalling, it is the most appropriate transport for the stimulus protocol. This allows a Feature Server to be co-located with a Gatekeeper or any type of H.323 endpoint. Where a Gatekeeper/proxy is providing access to certain call-independent services, it may be appropriate to allow the stimulus protocol to also use H.225.0 RAS messaging for transport, but this is an unnecessary extension of RAS as call-independent Q.931 signalling between an endpoint and a Gatekeeper/proxy provides the same functionality.

1.1 Protocol Signalling

The result is that this annex requires that all visual information for the user be provided via the Q.931 Display information element, audible information be provided via the Q.931 Signal information element, and user input be sent from the endpoint to the Feature Server via the Q.931 Keypad Facility information element.
 Feature invocations and status updates may also use these information elements, or may use Q.932 Feature Activation and Feature Indication information elements.

The Display and Keypad Facility information elements are specified to carry IA5 encoded text. This annex also provides for Unicode character encoding to be used between Feature Server and endpoint where mutually supported. This annex provides for enhanced display and user input information based on standard ECMA-48 (ANSI compatible) escape sequences
, which are fully compatible with such text encodings. These escape sequences are used for such actions as Feature Server controlled cursor movement and text attribute specification. In addition, several extensions to the escape sequences are required to provide enhanced terminal support, for example to support indicator control by a Feature Server. These extensions utilize the Private Use 1 (PU1) code space specified by ECMA-48. Endpoints may support additional ECMA-48 escape sequences not required by this specification.

Management actions, such as an endpoint’s declaration of, or response to a query of, stimulus capabilities, as well as a Feature Server’s configuration of an endpoint, are performed via Q.931 signalling, but may become overly complex for representation in a simple text form. In addition, at the point of initial contact, it is unsafe to use the Display and Keypad IEs for any nonstandard purpose until capabilities are mutually understood. Consequently, stimulus management will be signalled in the nonStandardControl field in the H323-UU-PDU as described in sections 4 and 4.2.
1.2 Summary of Operations

All control operations use existing Q.931 Information Elements: Display for visual information, Keypad Facility for user input, and Signal for application of tones. Feature Servers may choose to also support H.245 UserInputIndication for user input on non-Annex L endpoints.

All capabilities declarations, capabilities query and response are signalled in the Q.931 User-User field. Capabilities may be queried and responded to at any point in a Q.931 connection. A Feature Server can send configuration information, or query an endpoint’s Annex L capabilities or current configuration at any point in a Q.931 connection. An Annex L endpoint queried for its Annex L capabilities shall respond in the next message it sends. Call associated and non-call associated signalling are supported.

Feature invocations and control are via Q.932 Feature Activation and Feature Indication information element respectively. An alternative method of transmitting the contents of these elements is provided for endpoints which do not support FA and FI.

Endpoints may be requested to apply any of a predefined series of tones specified by a Q.931 Signal Value codepoint in the Signal IE. A range of codepoints is reserved for dynamic tones which may be downloaded by a Feature Server for future use.

Manipulation of media streams is done using procedures described in H.245, H.323, and its Annexes. Support for specific procedures is indicated by an endpoint in its stimulus capabilities declarations.

1.3 Procedures

Annex L entities comply with the signalling procedures described by the H.323 family of recommendations. Signalling procedures specific to Annex L are described in this section.

Both call-related and call independent signalling may be used by Annex L entities. Without feature-specific knowledge, endpoints may be unable to determine which form of signalling to use for a given feature request. Therefore, function assignment by the Feature Server includes an indication of the type of connection required.

1.3.1 Call Related Procedures

For call related services where no call exists, the H.225.0 Setup-UUIE conferenceGoal shall be specified as create, and the Q.931 call reference and the H.225.0 conferenceId shall be chosen according to the rules of H.225.0

For call related services for an existing call, the H.225.0 call signalling messages shall use the Q.931 call reference of that call.

1.3.2 Call Independent Procedures

Call-independent Q.931 signalling may be used for exchange of Annex L control and configuration information. In such cases, the H.225.0 Setup UUIE conferenceGoal shall be specified as capability-negociation for capability declaration and configuration exchanges, and to callIndependentSupplementaryService for feature invocation and status updates. In addition, the Q.931 call reference shall be set to the NULL value. [EDITOR: and this would be??]

1.3.3 Interactions with other H.323 signalling entities

For complete control of an Annex L endpoint, it is essential that the Feature Server be included in the H.323 signalling path between the endpoint and any remote endpoint. If the Feature Server is co-located with a Gatekeeper, this necessity can be easily satisfied by the use of Gatekeeper-routed signalling. However, Feature Servers can be located elsewhere, so the following rules may be used.

For outgoing calls from the Annex L endpoint:

· In a Gatekeeper manages zone, the ACF returns a destCallSignalAddress for the FS. If the FS is colocated with the GK, then Gatekeeper routed signalling may be indicated.

· In the absence of a Gatekeeper, the endpoint should be configured to send all outgoing signalling messages to its Feature Server.

For incoming calls to the Annex L endpoint:

· In a Gatekeeper manages zone, the ACF indicates the Gatekeeper routed model. If not colocated, the Gatekeeper relays any incoming messages to the Feature Server.

· In the absence of a Gatekeeper, the endpoint should be configured with a call signalling transport address for its Feature Server. Any incoming Setup messages should be forwarded to its FS, which sends a Facility message specifying its address and a facility reason of callForwarded to the Setup originator. [yeesh]

2 Stimulus Control

2.1 User Interface

A Feature Server and Annex L endpoint may exchange text based information for a variety of purposes, typically for display on a terminal’s screen, or to relay user input from the terminal to the Feature Server. As described in following sections, such text information may vary from the definitions provided in Q.931. Such variations are indicated by special control sequences that may be present at the beginning of the actual character data in the information element. Where several such sequences are required, they may be present in any order.

2.1.1 Text Encoding

Text information exchanged between Feature Server and Annex L compliant endpoints is IA5 text by default (using Display and Keypad Facility information elements), but may be Unicode UTF-8 if the endpoint indicates support for that option. Encoding of UTF-8 is defined in Reference [13]. An Annex L entity supporting Unicode shall support values U+0000 to U+00FF, and may optionally support other Unicode pages (which shall be declared).

An Annex L compliant Feature Server shall support IA5 and shall support UTF-8. Annex L compliant endpoints shall support IA5 as required by Q.931, and may optionally support Unicode UTF-8.

Use of Unicode encoding in Display or Keypad Facility information elements shall be indicated by the presence of the control sequence in Table 1 prior to any displayable or user entered character. Note that this sequence may itself be preceded by other control sequences (such a Display continuation code).

	Escape Sequence
	Name
	Description

	ESC Q <???>
	Unicode encoded
	Specifies the contents of the Display or Keypad Facility information element to be UTF-8 encoded

Table 1 - Unicode

Encoding of Function labels (see Section 4.1.2.2) and of the Feature Server Identifier (see Section 4.1) may similarly begin with the Unicode encoded control sequence if the endpoint is known to support Unicode.

2.1.2 Text Presentation

Endpoints may provide Feature Servers access to a local text display. Information presented by a Feature Server is presented to the user on this display.

All textual information from an FS to an end-user shall be signalled via the Q.931 Display information element. This IE is available in Alerting, CallProceeding, Connect, Information, Notify, Progress, ReleaseComplete, Setup, SetupAcknowledge, Status, StatusEnquiry, Facility. Usage of this IE follows Q.931 which specifies a maximum of 80 octets of display data.
Endpoints complying with the requirements of Annex L shall indicate the size of their display to a Feature Server as a number of lines and number of columns. An endpoint may indicate dimensions which are larger than the physical display if it provides a local means by which the user may access the full range of information which may be received – typically a scrolling mechanism.

Upon reception of a correctly encoded Display information element, an Annex L compliant endpoint shall, with the exception of the escape mechanism described below, replace the current contents of the display screen with the contents of the Display I.E. Character attributes, such as colour and font selection, are outside the scope of this document, and may, for example, be local matter for the endpoint, or may controlled by an FS using some proprietary mechanism. Carriage return (code value 0/13) is supported in-string, and moves subsequent text to the beginning of the next line, leaving the rest of the current line blank. Thus padding is not required.

To allow Feature Servers full access to displays which are larger than 80 characters, a Display information element may begin with an escape sequence which indicates that the text contained in the IE is to be appended to the text received in the previous Display IE. If the first Display IE in a call contains this escape sequence, the escape sequence shall be ignored and the rest of the text displayed.

After displaying the information in the received Display IE, an Annex L compliant endpoint positions the cursor at the next character position. If this next position is beyond the end of the line, the cursor is automatically positioned at the first position on the subsequent line (line wrapping). If the next position is beyond the end of the line on the last line of the display the cursor is returned to the home position and any subsequent text from the current Display IE, and all following Display IEs marked for appendage, shall be discarded.

If an endpoint is able to provide local echo of user input on the same screen as used for FS information display, such input shall not overwrite information provided by the FS.

Information received in a Display information element shall be presented until it is replaced by a subsequent Display information element, or until the end of the call, whichever comes first. An endpoint may provide multiple display buffers, for example, to capture the history of FS supplied information, however this is outside the scope of this document.

2.1.2.1 Display Persistence

An endpoint may provide a mechanism by which a Feature Server is able to provide persistent display information while the endpoint is idle. This can be used, for example, to display a system name. Annex L management signalling is used to provide this type of display information. Such display information shall be replaced on the screen by any text received in Display information elements during a call, and shall be redisplayed upon termination of a call. Persistent display information is presented when received, except when it is received during a call which has presented information using the Display IE.

Persistent display information is indicated by the presence of the control sequence in Table 2. All display information following that sequence is persistent. If the Display information element recieved after a persistent Display has a prefix which indicates it is a continuation, then its contents shall also be considered as persistent.

	Escape Sequence
	Name
	Description

	ESC Q <???>
	Persistent display
	Specifies that the contents of the Display information element shall be considered as persistent.

Table 2 – Persistent Display
It is not possible to combine persistent and temporary display contents.

An Annex L endpoint which does not support this form of persistence should ignore all Display information elements which are flagged as persistent.

2.1.2.2 Interactions with Local Display

An endpoint may provide local information for display. Interactions between local display information, and display information provided by a Feature Server is an implementation matter. [EDITOR: do we need a “refresh display” request?]
2.1.3 User Text Input

An Annex L compliant endpoint shall signal user input to a Feature Servervia the Q.931 Keypad Facility information element. This IE is available in Setup and Information. Usage of this IE follows Q.931 which specifies a maximum of 32 octets of input data.
Endpoints not explicitly supporting the Annex L protocol may signal user input using the H.245 UserInputIndication message. Feature Servers should support this alternative. The escape sequences defined in this section shall not be signalled using the H.245 UserInputIndication message.

Normally keypresses are indicated to a Feature Server without consideration of their duration. However, an endpoint may indicate such a duration by preceding the key indication by one of the sequences in Table 3.
	Escape Sequence
	Name
	Description

	ESC Q p
	Key Press
	Indicates that the key whose description immediately follow the sequence has just been pressed.

	ESC Q Pn r
	Key Release
	Indicates that the key whose description immediately follows has just been released, after having been pressed for the number of tens of milliseconds indicated by Pn (default is 0).

Table 3 - Key Press Duration Sequences

Endpoints supporting Annex L and transmitting multi-octet sequences defined in Annex L shall not split such sequences across multiple messages.

2.2 Feature Key Management

Feature Key Management is used for invocation of supplementary services. It is closely based on the mechanism of the same name described in Q.932 (03/93).

This part of the Annex L protocol is based on the use of two information elements: Feature Activation, which is signalled by endpoints to invoke services, and Feature Indication, which Feature Servers use to provide information concerning the state of a service to endpoints. Presentation of the information conveyed by the the FI is an implementation issue, and outside of the scope of this document.

[EDITOR: support for FA and FI should be explicitly added to H.225.0 sections 7.2.2 and as optional IEs to appropriate messages in section 7.3]

2.2.1 Encoding

Encoding of the Feature Activation and Feature Indication information elements is described in Q.932.

The feature identifiers in Table 4 are predefined for use by Annex L compliant entities.

	Feature Identifier
	Description

	0
	<reserved>

	1
	Message Waiting

	2
	Conference

	3
	Ringer/Alerter

	4
	Hookswitch

	5
	Flash

	6
	Forward

	7
	Transfer

	8
	Recall

	9-1023
	<reserved>

	1024-2047
	Group <n>

	2048-3071
	Line Key <n>

	3072-4095
	<reserved>

	4096-8191
	Function <n>

	8192-12297
	<reserved>

	12298-16383
	non-standard <n>

Table 4 – Feature Identifiers

Annex L compliant endpoints shall declare which feature identifiers they support.

Feature types which may have multiple instances on an endpoint are assigned ranges of identifiers; Annex L endpoints shall declare the number of instances of each such feature type they support. Feature identifiers within a range are contiguous starting from the lowest value.

Status values to be used in the Feature Indication are listed in Table 5. The precise meaning of any of these generic values is dependent on the associated feature. Codepoints 0 through 3 are compatible with Table 8-12/Q.932.

	Feature Status Indicator
	Description

	0
	Deactivated

	1
	Activated

	2
	Prompt

	3
	Pending

	4
	Denied

	5-15
	<reserved>

Table 5 – Feature Indication status values

Support for these two information elements is not explicitly required by H.225.0. In addition, even if both the Feature Server and controlled endpoint implement support for these IEs, it is possible that intermediate entities which do not support them will discard them. This presents a limitation on backwards compatibility. The control sequences in Table 6 provide a Annex L compliant entities with a backwards compatible mechanism for transmission of these IEs via Display and Keypad Facility.
	Escape Sequence
	Name
	Description

	ESC Q Pn F
	Feature

Activation
	Activation of feature whose feature identifier value is Pn (up to 16383)

	ESC Q Pn ; Ps F
	Feature

Indication
	Indication of the status (Ps) of the feature whose identifier is Pn

Table 6 – Feature Key protocol encoding

Feature Servers supporting FA reception and/or FI transmission should support both Q.932 information elements as well as the text encoded forms listed in Table 6.

2.2.2 Feature Assignment

Endpoints may support softkeys, which are keys that are programmable by a Feature Server. Typically this consists of allowing the FS to dynamically assign a displayable label to the key, which is associated with a particular feature identifier. Feature Servers program softkeys using the configuration mechanism of Annex L stimulus management. When a softkey is activated by the user, the endpoint sends a Feature Activation containing the associated feature identifier to the FS.

Endpoints may support feature directories, which are typically lists of features that may be selected by a user. If an endpoint allows a Feature Server to add entries to such a directory, the endpoint declares this capability as if the directory consists of a number of softkeys with no physical location. Thus a Feature Server interacts with a local directory in the same was as it does with softkeys.

Annex L endpoints may be able to prompt and acquire feature related parameters from the user prior to transmitting an associated Feature Activation. This capability is indicated by the endpoint. Prompts and parameter types and sizes are specified by a Feature Server when assigning the function. Parameters are displayed to the user, and returned to the Feature Server in the order in which they are specified by the Server.

After an endpoint has acquired parameter values from the user in response to the provided prompts, these values are sent to the Feature Server in a Keypad Facility information element in the message that contains the Feature Activation. If the Feature Activation itself is being transmitted in the Keypad Facility, it shall precede the feature parameters. The Parameter Delimiter escape sequence in Table 7 is used to separate the first parameter from the access code, and also to terminate each parameter. The entire sequence, including access code, escape sequences used for delimiting parameters, and parameter values themselves, must be sent in a single message.
	Escape Sequence
	Name
	Description

	ESC Q X
	Parameter Delimiter
	Used to separate feature access code from first parameter, and to terminate each parameter.

	ESC Q Z
	Last Parameter
	Used to indicate a premature end of the parameter list.

Table 7 - Parameter Delimiters

An endpoint may choose to send fewer parameter values than specified by the Feature Server, or none at all. The Last Parameter escape sequence is used in such cases, following the Parameter Delimiter escape sequence for the last included parameter, or following the access code itself if none of the parameters have been included. An endpoint which indicated that it does not support parameter input shall not use the escape sequences in Table 7.

2.2.3 Procedures

The Feature Activation information element may be sent in Setup and Information message. Control sequence encoded FA, as described in Table 6, may be sent in any message that allows a Keypad Facility information element. Messages shall not contain multiple FAs. Feature Servers shall not originate Feature Activations.

The Feature Indication information element may be sent in Setup, Connect, CallProceeding, Alerting, Information, and ReleaseComplete messages. Control sequence encoded FI, as described in Table 6, may be sent in any message that allows a Display information element. Messages may contain multiple FIs. Annex L compliant endpoints shall not originate Feature Indications.

2.2.3.1 Supplementary Service Invocation and Deactivation

A user may request a supplementary service by sending a Feature Activation information element or sequence in an appropriate message. This FA will specify the feature using a specific feature identifier value. Several predefined values are listed in Table 4. The protocol described in this document provides a mechanism allowing Feature Servers to assign feature identifiers to other supplementary services.

Parameters to the invoked feature may be encoded in the Keypad Facility information element if the endpoint supports the local prompting mechanism described in Section 3.2.2.

If the service being invoked is call-associated, then the call reference and signalling channels associated with that call shall be used for the request. If the service is non-call associated, then the request may use an existing call reference and signalling channel if one exists to the Feature Server, else it shall use the dummy call reference on a signalling channel to the Feature Server.

A feature may be explicitly deactivated by a user in two ways:

· sending a Feature Activation request with the same feature identifier for features that support a toggle (on/off) capability

· sending a Feature Activation request with a different feature identifier which has been explicitly defined as the deactivator for that particular service

2.2.3.2 Feature Server Responses

A Feature Server may send a Feature Indication information element or sequence at any time after it has determined that the specified feature identifier is supported on the destination endpoint. If the Feature Server is assigning the feature identifier, as described in Section 3.2.2, the Feature Server can indicate the initial status of the feature.

A Feature Indication need not be sent in response to a Feature Activation. Depending on the specifics of the supplementary service, a Feature Server may

· respond with one or more Feature Indications containing the same or a different feature identifier (all Feature Indications in a single message shall contain different feature identifiers)

· respond either immediately or after a period of time or not at all

· send asynchronous Feature Indications

2.2.3.3 Error Conditions

If a parameter list is sent in a Keypad Facility information element in a message without a Feature Activation, the Feature Server shall ignore the parameter list. If a parameter list which doesn’t match the expected parameter list for the feature identifier in the Feature Activation, the Feature Server shall discard the parameter list, and may provide suitable text and may prompt for any required parameters.

If a Feature Server receives a Feature Activation with a feature identifier that is not supported, or is out of range, or specifying a service to which the user is not subscribed, the Feature Server shall take one of the following actions:

· ignore the Feature Activation

· ignore the Feature Activation and clear the associated connection

· send a Feature Indication to the endpoint specifying the feature identifier from the FA and a status indication of Denied

If a Feature Indication with a feature identifier that is not supported, is out of range, or is unassigned, is received by an Annex L compliant endpoint, the endpoint shall ignore the Feature Indication.

2.3 Tones

Application of tones by the endpoint shall be requested via the Q.931 Signal information element. This IE is available in Alerting, Connect, Information, ReleaseComplete, Setup, SetupAck. This IE shall be encoded as described in section 4.5.28 of Q.931. An endpoint declaring support for the Signal IE shall support codepoints zero through nine and sixty-three as defined in Table 4-24/Q.931 (duplicated in Table 8 for informational purposes only), and in addition, shall support the codepoints listed in Table 9.

	Signal Value
	Description

	0
	Dial Tone

	1
	Ring Back Tone

	2
	Intercept Tone

	3
	Network Congestion Tone

	4
	Busy Tone

	5
	Confirm Tone

	6
	Answer Tone

	7
	Call Waiting Tone

	8
	Off-Hook Warning Tone

	9
	Pre-emption Tone

	63
	Tones Off

Table 8 - Q.931 Signal Values

	Signal Value
	Description

	10
	Ring Spash Tone

	11
	Prompt Tone

	12
	Error Tone

	13
	Stutter Dial Tone

	14
	Alerting Tone

	15
	Recorder Warning Tone

	16
	SIT Tone

	17
	Calling Card Service Tone

	18
	Distinctive Tone Pattern Tone

Table 9 - Additional Signal Values

In addition to the predefined tones, provision is made for dynamic specification of tones. This capability is indicated by the endpoint; the Feature Server specifies the tone to the endpoint, and assigns the tone a signal value from the range 32 through 62 inclusive which may then be requested via a Signal information element (see Section 4.2.3).

An endpoint may also be intrinsically able to provide a different set of nonstandard tones. Such tones may be used by the Feature Server in the same way. The endpoint declares the parameters of these tones, and indicates a signal value it has assigned to each of them.

Table 4-24/Q.931 also has provisions for controlling alerting, including network specific alerting patterns. Specification of such provisions is for future study.

2.4 Media Streams

Many features depend upon the ability to manipulate media streams. In H.323, media control is typically under the control of the endpoints, however there are a variety of mechanisms available to a Feature Server by which it is able to open, close, and redirect these streams. These mechanisms may include injection of H.245 messages into the H.245 control channel.

Although H.323 version 2 and later mandate support for empty Terminal Capability Set messages as a form of pause, many implementations either do not support the mechanism, or support it incompletely. This contribution proposes that during registration endpoints indicate whether they support this functionality.

For H.323 Annex F Simple Endpoint Types (SETs), there is no H.245 messaging, so the empty Terminal Capability mechanism for pause and rerouting is unavailable. Annex F provides an alternate mechanism which requires re-use of the Fast Connect procedure at any point in a call. Support for this mechanism is of interest to a Feature Server and can be provided by any Annex L endpoint.

In the H.245 Close Logical Channel message, there is a “reason” field that includes a “reopen” codepoint. This codepoint is an indication to the receiving endpoint that it should reopen the logical channel using Open Logical Channel signalling. However, many implementations ignore this reason field and treat all close requests in the same way. This contribution proposes that support for the reopen codepoint be declared to a Feature Server.

Similarly, H.323 mandates support for reception of the H.245 Communication Mode Command message, which may provide mechanisms useful to a Feature Server for media manipulation. These are the abilities to change transmission mode on a channel, to redirect the existing mode to a new address, and to close the channel associated with a particular mode and reopen using Open logical Channel procedures (possibly receiving a new transport address in the Open Logical Channel Ack message). These are available in a conference via the MC (which may be associated with the Feature Server), or in a simple point-to-point call. However, support for these functions is not mandatory, so this contribution proposes that endpoints indicate their support during stimulus capabilities declaration.

3 Stimulus Management

The nonStandardControl field of the H323-UU-PDU shall be used to transport all stimulus management information. The nonStandardControl field carrying Annex L stimulus management information shall be identified as follows:

nonStandardControl[n].nonStandardIdentifier.object = {itu-t (0) recommendation (0) h (8) 323 annex (1) l (12) version (0) [v]}

where n is the index of the nonStandardControl element used for the Annex L signalling, and [v] represents the version of the Annex L protocol. The value of [v] assigned to the protocol version decribed in this document is 1.

The actual management information shall be transported in the corresponding nonStandardControl[n].data field. The data structures defined in the following sections use ASN.1 syntax for clarity, but decision on the actual encoding is to be determined.

3.1 Capabilities

The capabilities listed in the following subsections are grouped here into a single structure which is used both for initial capabilities declaration and for responding to capabilities queries.

If a StimulusCapability field is a sequence then, if no such capability is present on the endpoint, zero elements shall be present in the field.

There is no difference between a capabilities declaration and a response to a capabilities query.

StimulusCapability ::= SEQUENCE

{

 nonStandard nonStandardParameter OPTIONAL,

 featureServer OCTET STRING (SIZE(0..40)) OPTIONAL,

 unicodeCharSets UnicodeCharSets OPTIONAL,

 screenDisplay ScreenDisplay OPTIONAL,

 keypadSupport KeypadSupport OPTIONAL,

 featureSupport FeatureSupport OPTIONAL,

 toneSupport ToneSupport OPTIONAL,

 mediaControl MediaControl OPTIONAL,

 ...

}

Feature Servers shall include the featureServer field, and may indicate any optional Unicode character sets in the unicodeCharSets field. All following fields shall be omitted.

Feature Servers may query an endpoint’s Annex L capabilities at any time (using the StimulusCapabilityQuery sent in any Q.931 message). An endpoint supporting Annex L shall respond to a capabilities query in the first Q.931 message following reception of a query; if no Q.931 message would ordinarily be sent in response to the received message, an Information message shall be used to transport the capabilities response.

StimulusCapabilityQuery ::= SEQUENCE

{

 nonStandard nonStandardParameter OPTIONAL,

 ...

}

3.1.1 User Interface

3.1.1.1 Text Encoding

Annex L compliant entities shall indicate the level of their support for Unicode based character sets. Support for Unicode by an entity shall be indicated by the presence of the UnicodeCharSets field as one of the entity’s Annex L capabilities. Support for Unicode page zero (U+0000 to U+00FF) shall be mandatory for all entities indicating Unicode support, and need not be explicitly signalled.

UnicodeCharSet ::= SEQUENCE

{

 low INTEGER (0..0xFFFF),

 high INTEGER (0..OxFFFF),

 ...

}

UnicodeCharSets ::= SEQUENCE SIZE(0..30) OF UnicodeCharSet -- EDITOR: 30 enough?
3.1.1.2 Text Presentation

The capabilities for screen display are static, i.e. they will not change based on the state of the terminal, so that a response to a query will carry exactly the same information as an initial capability declaration.

With the exception of the nonStandard field, all of the optional fields in the ScreenDisplay structure are required if the displayType is set to anything other than noDisplay.

A value of zero for numLinesInDisplay or numColumnsPerLine indicates that the dimension is essentially unlimited, and that some local scrolling mechanism may be provided.

ScreenDisplay ::= SEQUENCE

{

 nonStandard nonStandardParameter OPTIONAL,

 displayType DisplayType,

 numLinesInDisplay INTEGER (0..255) OPTIONAL,

 numColumnsPerLine INTEGER (0..255) OPTIONAL,

 persistence BOOLEAN, -- TRUE if supported

 ...

}

DisplayType ::= CHOICE

{

 noDisplay NULL, -- minimally useful

 numericDisplay NULL, -- space,0-9,*,#

 alphanumericDisplay NULL, -- space,0-9,*,#,a-z,A-Z

 fullDisplay NULL, -- all displayable characters

 ...

}

3.1.1.3 User Text Input

An endpoint may only support a subset of the full character set for user input. This capability shall be indicated to the Feature Server.

KeypadSupport
::=
CHOICE

{

 noKeypad NULL, -- minimally useful

 digitKeys NULL, -- digits 1,2,3,4,5,6,7,8,9,0,*,#

 alphanumericKeys NULL, -- add letters to digitKeys

 fullKeys NULL, -- all characters in declared character sets

 ...

}

3.1.2 Feature Key Management

3.1.2.1 Feature Support

Endpoints use the SupportedFeatures structure to declare which predefined features they support, as well as the number of programmed or programmable functions they support. Function support is further refined as either assignable or assigned.

SupportedFeatures ::= SEQUENCE

{

 messageWaiting BOOLEAN,

 conference BOOLEAN,

 ringerAlerter BOOLEAN,

 hookswitch BOOLEAN,

 flash BOOLEAN,

 forward BOOLEAN,

 transfer BOOLEAN,

 recall BOOLEAN,

 group INTEGER (0..1024),

 lineKey INTEGER (0..1024),

 function INTEGER (0..4096),

 nonStandard INTEGER (0..4096),

 ...

}

3.1.2.2 Function Assignment Support

Annex L compliant endpoints shall declare their support for Feature Server assigned functions. This is conveyed via the AssignableFunction structure. This structure can be used to convey information for feature identifiers from baseFeatureId to baseFeatureId+instances-1. The lower end of the range is constrained to be within the range reserved for functions (see Table 4); the upper end of the range shall not exceed the maximum feature identifier value for functions (8191). It is an error to have duplicate declarations for the same FeatureId.

A Feature Server may require knowledge of the relative position of physical keys (and other terminal elements) as presented to the end user. This is conveyed by the RelativePosition structure, which indicates the position of the terminal element relative to the top left of the user interface. Among terminal elements of the same type (i.e. indicators or keys), the column value is higher the further to the right a terminal element is located, and the row value is higher for terminal elements further towards the bottom. This field is only valid when the physical boolean is true. When multiple physical assignable keys are declared in a single AssignableFunction structure, a row or column value of zero may be used to indicate that the entire range is located in a single column or row respectively and that relative row or column position respectively is determined by feature identifer value independent of values in other AssignableFunction structures. [EDITOR: oh! need an example!]
RelativePosition ::= SEQUENCE

{

 row INTEGER (0..65535),

 column INTEGER (0..65535),

 ...

}

AssignableFunction ::= SEQUENCE

{

 baseFeatureId INTEGER (4096..8191),

instances INTEGER (1..4096),

 physical BOOLEAN,

relativePosition RelativePosition OPTIONAL,

 ...

}

Feature identifiers that are currently assigned are declared using the AssignedFunction structure. The value of the label field is presented to the user, typically associated with a softkey, or as an entry in a directory. The assignedBy field identifies features that have been dynamically assigned by a Feature Server. It may be desirable to extend this field to identify a particular Feature Server. Feature identifiers that are somehow predefined on the endpoint have the assignedBy field set to local, regardless of the mechanism actually used.

FunctionStatus ::= CHOICE

{

 nonStandard NonStandardParameter,

 undefined NULL,

 deactivated NULL,

 activated NULL,

 prompt NULL,

 pending NULL,

 denied NULL,

 ...

}

AssignedFunction ::= SEQUENCE

{

 featureId INTEGER (4096..8191),

 currentStatus FunctionStatus,

 label OCTET STRING (SIZE(0..40)),

 assignedBy CHOICE

 {

 local NULL,

 featureServer NULL,

 ...

 },

 ...

}

If the endpoint does not support function configuration or has no unassigned function keys, then the assignableFunctions field is omitted

FeatureSupport ::= SEQUENCE

{

 nonStandard nonStandardParameter OPTIONAL,

 supportedFeatures SupportedFeatures,

 assignedFunctions SEQUENCE (1..4096) OF AssignedFunction OPTIONAL,

 assignableFunctions SEQUENCE (1..4096) OF AssignableFunction OPTIONAL,

 maxLabelLen INTEGER (1..40) OPTIONAL, -- per feature

 q932FKMsupported BOOLEAN, -- TRUE if endpoint supports FA and FI

 parameterInput BOOLEAN OPTIONAL,

 ...

}

3.1.3 Tones

Endpoints must indicate whether they support the basic tones described in Table 8 - Q.931 Signal Values, as well as the extended tones described in Table 9 - Additional Signal Values. The actual physical manifestation of these tones is not specified by this document.

ToneSupport ::= SEQUENCE

{

 nonStandard nonStandardParameter OPTIONAL,

 basicTones BOOLEAN,

 extendedTones BOOLEAN,

 dynamicToneSupport DynamicToneSupport OPTIONAL,

 dynamicTones SEQUENCE SIZE(1..30) OF DynamicTone OPTIONAL,

 nonStandardStaticTones SEQUENCE SIZE(1..16) OF NonStandardStaticTone OPTIONAL,

 ...

}

-- dynamic tone support sizes seem based on fixed table sizes

DynamicToneSupport ::= SEQUENCE

{

 maxDynamicTones INTEGER (1..31), -- that’s all that are available

 maxElemPerTone INTEGER (1..15), -- some arbitrary number

 maxFreqPerElem INTEGER (1..3), -- my references say no more than 3 used

 ...

}

NonStandardStaticTone ::= SEQUENCE

{

 signalValue INTEGER (80..95),

 toneDescription SEQUENCE OF ToneElement,

 ...

}

3.1.4 Media Streams

MediaControl ::=
SEQUENCE

{

nonStandard NonStandardParameter OPTIONAL,

clcReopen BOOLEAN,

-- reopen Reason in CloseLogicalChannel

commModeReplace BOOLEAN,

-- CommMode w/new mode, existing mediaChannel

commModeRedirect BOOLEAN,

-- CommMode w/existing mode, new mediaChannel

commModeReopen BOOLEAN,

-- CommMode w/existing mode, no mediaChannel

emptyTCSpause BOOLEAN,

 fastStartRepeat BOOLEAN, -- repeated use of Fast Connect

...

};

3.2 Configuration

A Feature Server may configure an endpoint which supports the Annex L protocol at any point in a Q.931 connection. This section presents and describes the structures required.

StimulusConfiguration ::= SEQUENCE

{

 nonStandard nonStandardParameter OPTIONAL,

 dynamicTones SEQUENCE SIZE(1..30) OF DynamicTone OPTIONAL,

 functions SEQUENCE OF FunctionAssignment OPTIONAL,

 ...

}

3.2.1.1 User InterfaceText Encoding

No configurable options.

All character strings default to IA5 encoding, unless preceded by the control sequence defined in Section 3.1.1. Unicode shall only be sent to a entity know to support the transmitted character set.

3.2.1.2 Text Presentation

No configurable options.

3.2.2 User Text Input

No configurable options.

3.2.2.1 Feature Key Management

Configuration is limited to assignment of functions to softkeys, directories, and the like.

ServiceType ::= CHOICE

{

 indeterminate NULL, -- either call independent or call related, EP chooses

 callIndependent NULL,

 callRelated NULL,

 ...

}

FunctionAssignment ::= SEQUENCE

{

 nonStandard nonStandardParameter OPTIONAL,

 FeatureId INTEGER (4096..8191),

 serviceType ServiceType,

 label OCTET STRING (SIZE(1..40)),

 initialStatus FunctionStatus,

 parameters SEQUENCE SIZE(1..16) OF Parameter OPTIONAL,

 ...

}

ParameterType ::= CHOICE

{

 digit NULL, -- 0,1,2,3,4,5,6,7,8,9

 dialedDigit NULL, -- digit plus asterisk (*) and pound (#)

 alphanumeric NULL, -- dialedDigit plus all uppercase and lowercase letters

 displayable NULL, -- all in supported IA5 and Unicode character sets

 ...

}

Parameter ::= SEQUENCE

{

 nonStandard nonStandardParameter OPTIONAL,

 prompt OCTET STRING (SIZE(1..40)), -- display to user

 parmType ParameterType,

 parmWidth INTEGER(1..64), -- maximum number of chars in parameter

 ...

}

Assigned functions may also be deleted by a Feature Server. This is accomplished using the FunctionAssignment structure identifying the feature identifier and specifying an initialStatus of undefined. Endpoints supporting dynamic function assignment by Feature Servers shall also support the function deletion.

Endpoints shall permit re-assignment of an assigned function.

3.2.3 Tones

This section presents the data structures which are used by a Feature Server to download dynamic tones descriptions to endpoints. An assigned dynamic tone can be removed by a Feature Server by re-assigning the signalValue without any associated tone description. Re-assignment without prior removal is also possible.

Endpoints which accept dynamically configured tones should retain those tones between calls.

 [EDITOR: the following definition is based on the RTP tones draft, which is much easier to understand than the Megaco phone draft, plus it apparently drew from E.180 (has to be verified)]

ToneModulation ::= SEQUENCE

{

 modulation INTEGER (0..511), -- 0 is none

 divideBy3 BOOLEAN

}

ToneElement ::= SEQUENCE

{

 nonStandard nonStandardParameter OPTIONAL,

 toneModulation ToneModulation OPTIONAL,

 volume INTEGER (0..63), -- dBm0 (negative)

 duration INTEGER (0..32676), -- in millisecs, 0 is infinite

 frequency SEQUENCE OF INTEGER (0..4095) -- 0 is silence (see maxFreqPerElem)

 ...

}

DynamicTone ::= SEQUENCE

{

 nonStandard nonStandardParameter OPTIONAL,

 signalValue INTEGER (32..62),

 toneDescription SEQUENCE OF ToneElement OPTIONAL -- see maxElemPerTone

 ...

}

3.2.4 Media Streams

No configurable options.

4 Examples

This section provides examples of how Annex L signalling can be used to provide services on an endpoint. These examples are informational only, other implementations are possible.

[EDITOR: to become MSCs]

4.1 Example 1 – Configuring an endpoint at registration

· EP sends RRQ to GK

· GK sends RCF to EP and “something” to FS

· FS sends call-independent Setup w/Query to EP

The endpoint may recognize the vendor identifier in the sourceInfo field in the Setup message. The endpoint may tailor its response accordingly.

· EP sends Info w/cur config to FS

[EDITOR: there’s no vendor id in the Info message – may have to add as optional into the stimulusCapability structure (as optional)]

The Feature Server may recognize the endpoint’s vendor identifier, and may tailor it configuration accordingly.

· FS sends Info to EP w/new config

· EP sends Info w/result (or new config) to FS

· FS send RelComp/closes call signalling channel

· FS sends “something” to GK to indicate configuration complete

4.2 Example 2 – Configuring an endpoint during call establishment

· EP sends Setup to FS

· FS sends Setup onwards and sends Call Proceeding to EP w/new config

· EP sends Info w/result (or new config) to FS

· FS sends Alerting to EP (call continues normally)

4.3 Example 3 – Configuring an endpoint during active call

· FS sends Info to EP w/new config

· EP sends Info w/result (or new config) to FS

4.4 Example 4 – Activating a call independent service (Do Not Distoib)

This example begins with the user pressing a function key that has been labelled as “DND” and associated with feature identifier 4102. In this case, there happens to be no indicator associated with the invoked feature, so the Feature Server doesn’t send an FA to the endpoint.

· EP sends a Setup with FA (feature identifier = 4102) to FS

· FS sends RelComp with Display (persistent, “Do Not Disturb”) to EP

4.5 Example 5 – Call independent Notification (Message Waiting)

· FS sends call-independent Setup w/FI to EP

· FS sends RelComp/closes call signalling channel

If the Feature Server is providing a notification that messages are waiting, then the Feature Indication contains feature identifier value of 1 (Message Waiting), and a feature status indication of 1 (Activated). Optionally, the Display information element could provide additional information, such as the number of messages. Such display information would normally be flagged as persistent.

4.6 Example 6 – Line Key

This example begins with the user pressing a function key that has been labelled as “line 1” and associated with feature identifier 4100.

· EP sends Setup with FA (feature identifier = 4100) to FS

· FS sends Info with FA (feature identifer = 4100, status = activated) to EP

· FS sends SetupAck with Signal (value = 0, dial tone) to EP

· user presses “9” key: EP sends Info with Keypad Facility (“9”) to FS

· FS sends Info with Signal (value = 63,tones off) to EP

· user enters rest of called party number: EP sends each digit immediately after it is entered

· FS sends CallProc to EP (call continues normally)

4.7 Example 7 – System Speed Dial

This example begins with the user pressing the function key that has been labelled “speed dial” and associated with feature identifier 4096.

· EP sends Setup with FA (feature identifier = 4096) to FS

· FS sends Info with FI (feature identifier = 4097, status = prompt) and Display (“Enter [1-9]”) to EP

Feature identifier 4097 is a LED associated with the function key pressed. Locally, the EP reacts to a status value of prompt by flashing the LED.

· EP sends Info with Keypad Facility (“1”) to FS

· FS sends Setup to destination (555-1234)

· FS sends CallProc with FI (feature identifier = 4097, status = activated) and Display (“555-1234”) to EP

The EP reacts to a status value of activated by setting the LED on.

4.8 Example 8 – Call Hold

This example begins with a call in active state. The user presses a function key that has been labelled “hold” and assigned feature identifier 4098.

· EP sends Info with FA (feature identifer = 4098)

· FS serves as H.450.4 proxy for the EP, using the procedures in recommendation H.450.4 clause 10

· FS sends Info with FI (feature identifier = 4099, status = activated) and Display (“555-1234 Held”) to the EP

Feature identifier 4099 is a LED associated with the function key pressed. The EP lights the LED.

4.9 Example 9 – Call Transfer

This example begins with a call in active state. Annex L control is being provided at the transferring party’s end.

5 To Do...

· discussion of architectural models

· security considerations (it is highly dangerous to allow arbitrary endpoints to assign features, to write to display, etc. - a possibility is for all signalling to pass through the FS which it normally would if the FS is a gateway or GK/proxy, and allowing the FS to screen what the far end is doing)

· clarify what must be supported, and what needn’t

6 References

1 ANSI X3.64 Additional Controls for Use with the American National Standard Code for Information Interchange (1979). Supplanted by ECMA-48.

2 ECMA-48 Control Functions for Coded Character Sets (1991). This was used as the basis for ISO/IEC 6429 which was adopted under a special "fast track procedure".

3 ETS 300 175-5 (1996) Digital Enhanced Cordless Telecommunications (DECT) Common Interface Part 5: Network layer.

4 CCITT Recommendation T.50 (1992) - International Reference Alphabet (IRA).
5 R. Bell, P. Blatherwick, P. Holland, R. Bach, “Megaco IP Phone Media Gateway”, Work in Progress, Internet Engineering Task Force, August 1999.

6 H. Schulzrinne, S. Petrack, “RTP Payload for DTMF Digits, Telephony Tones and Telephony Signals”, Work in Progress, Internet Engineering Task Force, June 1999.
7 International Telecommunication Union, “Various tones used in national networks”, Recommendation Supplement 2 to Recommendation E.180, Telecommunication Standardization Sector of ITU, Geneva, Switzerland, Jan. 1994.

8 International Telecommunication Union, “Technical characteristics of tones for telephone service”, Recommendation Supplement 2 to Recommendation E.180, Telecommunication Standardization Sector of ITU, Geneva, Switzerland, Jan. 1994.

9 International Telecommunication Union, “International Reference Alphabet (IRA) (formerly International Alphabet No. 5 or IA5)”, T.50, Telecommunication Standardization Sector of ITU, Geneva, Switzerland, Sept. 1992.

10 ITU-T Study Group 16 APC-1597, “Feature key management extensions for H.323 SET terminals”, August 1999.

11 International Telecommunication Union, “Digital Subscriber Signalling System No. 1 (DSS1) – Generic Procedures for the Control of ISDN Supplementary Services”, Recommendation Q.932, Telecommunication Standardization Sector of ITU, Geneva, Switzerland, Mar. 1993.

12 ISO/IEC 10646-1 (1993-05), “Information technology - Universal Multiple-Octet Coded Character Set (UCS) - Part 1: Architecture and Basic Multilingual Plane”.

13 ISO/IEC 10646-1-am2 (1996-12), “Information technology - Universal multiple-octet coded character set (UCS) - Part 1: Architecture and basic multilingual plane - Amendment 2: UCS Transformation format 8 (UTF-8).”

� For compatibility with endpoints which do not support Annex L, Feature Servers should also be prepared to receive user input via the H.245 UserInputIndication message.

� So-called ANSI escape sequences were defined in ANSI X3.64-1979, which has been superseded by ECMA-48 and ISO 6429. ECMA-48 is the reference used in this document.

	* Contact:
	Dave Walker, SS8 Networks
	Tel:
+1 613 592 2459

Fax:
+1 613 592 8450

E-mail: drwalker@ss8networks.com

TSB:\SG2\Delayed\AnnexL-0299.doc
16/01/00

