ITU Telecommunication Standardization Sector  	   Document AVC-1071


Study Group 16 


Ex Q.2&3/15 Rapporteur Meeting				5 December 1996


Boulder, 17-20 December 1996








SOURCE:	Scott Petrack & O.D. Kahane, Vocaltec Ltd.


		email:	odk@vocaltec.com, petrack@vocaltec.com


		voice:	+972 9 952 5802


		fax:	+972 9 956 1867





TITLE: 








Enhancements and Improvements in H.323 Addressing








PURPOSE: Proposal


( 


�



Abstract





Some problems with the current addressing possibilities for H.323 clients are discussed, within the RAS messages of H.225 for client-gatekeeper communication. The addition of a small number of fields makes the protocol more consistent and uniform. It also enables a much richer set of addressing function, and improves the robustness of the system and its ability to work with gatekeeper proxies.





Also, by adding a single optional field to the SETUP-UUIE message of H.225, one can allow remote clients to retain privacy while at the same time remain accessible. These changes are particularly useful for calls that traverse the domain of authority of a single gatekeeper. 





Another related problem concerns gatekeeper discovery. The current method uses broadcast or multicast, which limits the ability to locate the gatekeeper.We propose two methods for gatekeeper discovery which do not require broadcast or multicast and which leverage the standard DNS infrastructure. 





The proposals we offer are all in the form of extra fields to be added to the RAS messages. Thus they are backward compatible with RAS as it is currently defined. 


1.0 Introduction





The RAS protocol defined within H.225 provides the basic necessary services to support resolution of logical addresses (which can be e164 numbers or h323-IDs) into transport addresses. Our experience with addressing resolution within IP networks, combined with a careful analysis of RAS messages, has led us to identify some problems with the services that RAS enables. Some of these problems limit its usefulness, while others make RAS not in line with standard internet practice. Still others make it difficult to support the privacy or security features that some implementations require. 





To take one example among many, in some messages a GatekeeperIdentifier is required within the message, but in other messages it is not included. In practice this means that the gatekeeper is really determined by its transport address. We shall argue that it is both more consistent and extremely useful to separate the Gatekeeper’s identifier from its transport address, and require that the GatekeeperIdentifier appear in every RAS request. Doing this offers more than mere logical consistency - it allows for greater flexibility and function if there can be more than one logical gatekeeper at a particular transport address,


and it is necessary to state explicitly the source and/or destination gatekeeper in every message if multicast, broadcast, or proxy gatekeepers are used. If we make the field OPTIONAL, then no existing implementations are affected.





AVC-1021 [1] mentioned a similar problem for clients. There it was noted that there are situations where one needs to be able to identify a client by the pair (aliasAddress, transportAddress); a similar consideration is true for other endpoints as well. Generally, there is a need for richer possibilities for identifying endpoints than is currently supported. Similar considerations apply for identifying MCUs and Gateways as well as clients and gatekeepers. 





We show that this richer set of identifiers for the source and destination endpoints in RAS messages also solves the problem of gatekeeper Proxies in a simple way. This is an important consideration for environments that require special protection, such as corporate networks. 





We would also like to propose that RAS messages can be sent over reliable transport (TCP). It is possible to secure a reliable channel with technology which is widely available today [2].





As a further protection in some environments, we propose that it be possible for a gatekeeper to return to a client an access token that the client can then present to the remote terminal or gateway in order to place a call. The client is not required to understand the access token in any way. But it is required that if it receives an access token from the gatekeeper within a Location Confirmation, that it present the token without change in the SETUP-UUIE message it first sends when placing a call. It is even allowed that the access token entirely replace the destinationAddress or destCallSignalAddress in the SETUP message. This makes it possible for a gatekeeper to enable a local client to call a remote client, without revealing to the local client any (possibly private) information about the remote client. In our experience, such a privacy feature is extremely useful. It provides one with a function similar to a phone which can only be reached if done via a “receptionist.” The actual phone number is never revealed to the calling client.





In addition to allowing a wider set of identifiers,  it is important to allow the gatekeeper to return a larger set of responses. For example, at present I can send a Location Request and include an h323-ID and get back the transport address of the client with that h323-ID; or I can include an e164 number and get back the transport address of a Gateway. But it is quite natural to want to include an h323-ID, but get back an e164 number AND the transport address of the gateway that can connect me to that E.164 number. This could be useful in many situations. For example, in an environment which supported it, the H.323 system could connect to the remote subscriber’s telephone in case his direct H.323 client had crashed. This is an example of how allowing a richer set of possibilities also creates a more robust system.





As another example of  the combination of consistency, utility, and robustness, notice that the destinationInfo field in the Location Request message is a SEQUENCE of AliasAddresses. It would be equally natural for the gatekeeper to return a SEQUENCE of transportAddresses (or other identifiers for the remote terminal). The requesting endpoint could try the returned addresses in turn, moving on to the next address for example if the called client crashed or otherwise unreachable.





To further improve the reliability of the system, it is often useful in our experience to attach a time value to the registration of a network terminal. These devices are still inherently more volatile than traditional CPEs. (This is because these devices are often not dedicated systems like traditional CPEs but software applications running in multitasking environments). When a terminal registers, it is very useful for it to give an “ExpirationDate” for its registration. We propose that this time be expressed in seconds since 1 January 1970 (a traditional measure of time within IP environments). The gatekeeper should be able to return an earlier date, in which case it is the responsibility of the registering client to refresh the registration by this date.





A final lacuna in the terminal-gatekeeper communication concerns gatekeeper discovery. The Internet has the Domain Name System (DNS), which is a distributed database of information about Domain Names. This system cannot be used to resolve client addresses without large changes in its infrastructure, because the granularity of its information only descends to hosts, and not to individual client applications. But it is perfectly suited to mapping Domain Names into gatekeeper identifiers, and we suggest two distinct and yet not incompatible ways to do this. One way is the new proposed Internet Standard for service discovery [3]. Eventually this will be the standard and common method for solving the problem of discovering service location in the Internet. The problem with this method is that it is not compatible with current DNS infrastructure[4]. For this reason we propose a second method, which is. This method uses the TXT records that can be associated with any domain name. We suggest a precise scheme which allows any string compliant with the RFC-822 [5] standard for Email names to serve as a GatekeeperIdentifier, in such a way that a unique transport address can be associated to the name by DNS.





In this remainder of this document we describe these proposals in detail. In each case our proposal is an extension of an existing H.225 message. In some cases we have extended the definition of a particular RAS message structure. In every case the new definition contains the current defintion as a proper subset; thus compatibility is maintained. It is possible to imagine proposing enhancements which do nothing more than add individual fields at the end of each message. But this would result in code which is considerably more complex, since there would now be in some cases two fields which serve the same purpose, one containing more information than the other.





2.0	Specific Enhancements to H.225 Messages





This section contains the specific changes that we propose. Along with each change is a precise description of the enhancement or improvement it brings. The changes to the ASN.1 of H.225 are marked in italics.





AliasAddress		::=CHOICE


{


	e164			IA5String (SIZE (1..128)) (FROM (“0123456789#*,”)),


	h323_ID		BMPString (SIZE (1..256)),--Basic ISO/IEC 10646-1(Unicode)


	url_id			IA5String (SIZE (1.. 512)),-- rfc1738 compliant URL


	email_ID		IA5String (SIZE (1.. 512)),-- rfc822 email adress


	...


}	





An AliasAddress should be enriched to allow for email addresses and URLs as valid IDs. 


See RFC 822 [5] for the defintion of allowed email addresses and RFC 1738 for the definition of allowed URLs [6]. We shall propose in section 3 a new URL type (“ras:”) to be used specifically for gatekeepers.





GatekeeperIdentifier	::=	AliasAddress





A GatekeeperIdentifier should be allowed to be the same kind of string that any other identifier is. In particular, we shall describe in section 5 a method to use rfc822 compliant strings for GatekeeperIdentifiers which allows one to leverage DNS to perform gatekeeper location.





Allowing any AliasAddress to be a GatekeeperIdentifier solves the following consistency problem: The syntax of the Registration Request Message requires the registering terminal to supply the terminalType. It is allowed for the gatekeeper bit to be set, indicating that the registering terminal is indeed a gatekeeper. The terminal must also supply a terminalAlias. If the terminal happens to be a gatekeeper, then it is not consistent if the terminalAlias of this gatekeeper cannot be the same as the gatekeeperIdentifier.





AccessToken	::=	IA5String (SIZE (1.. 512))	--a (possibly encrypted) string


ExpirationDate	::=	INTEGER			--seconds since 1 January 1970





EndpointAlias	::= SEQUENCE {


	endpointName		AliasAddress		OPTIONAL,


	callSignalAddress	SEQUENCE OF TransportAddress	OPTIONAL,


	rasAddress		SEQUENCE OF TransportAddress	OPTIONAL,


	endpointType		EndpointType 		OPTIONAL,


	accessToken		AccessToken		OPTIONAL,


}





We shall describe the detailed use of the AccessToken later. It is a string which may optionally pass from the gatekeeper to the terminal. When it appears, the terminal is expected to put the access token into the SETUP-UUIE. It provides a way to increase the privacy and security of calls which involve a gatekeeper.





Please note that the ExpirationDate is an absolute time - it is not a measure of time “until” some other event such as silent deletion (often called “time to live”). A time to live value would need to be constantly updated, and could never remain accurate in environments which might have a noticeable signal delay. Using an abolute measure like the time of deletion avoids this problem entirely.





The EndpointAlias is an enhancement of the AddressAlias structure. The main proposal of this document is that one should use this EndpointAlias structure in many places where now appears either AddressAlias or TransportAddress. This is the primary enabler of the enhanced function. 





It is allowed that none of the fields be present, although this is very rare. This might occur where a null string would occur as an AliasAddress in current H.225.


 


GatekeeperRequest		::=SEQUENCE --(GRQ)


{


	requestSeqNum		RequestSeqNum,			


	protocolIdentifier		ProtocolIdentifier,			


	nonStandardData		NonStandardParameter OPTIONAL,	


	gatekeeperIdentifier	GatekeeperIdentifier OPTIONAL,


gatekeeperAddress	TransportAddress OPTIONAL,


	callServices		QseriesOptions  OPTIONAL, 


	endpointAlias		SEQUENCE OF EndpointAlias OPTIONAL,


	...


}





The endpointAlias is now a SEQUENCE of endpointAlias structures rather than a SEQUENCE of AliasAddresses. It is still the case that each element in the sequence must be an alias for the same logical endpoint. But the richer structure now allows, for example, for a terminal on a multi-homed host to identify itself along with its preferred transport address, or for an MCU acting on behalf of a telephone to identify the telephone by the E.164 number and the transport address of the gateway. This information could be vital to allow the correct gatekeeper to confirm.





Note that the rasAddress field now appears within the endpointAlias structure. This allows an endpoint to offer different rasAddresses in the same way that current H.225 allows it to offer several AliasAddresses. This is important for robustness, for example.


Backward compatibilty is attained if the endpointAlias contains a single sequence of AliasAddress and a single rasAddress.





The reason that one may require the gatekeeperAddress field is in case the client is using a gatekeeper proxy. The terminal may wish to submit this request to a gatekeeper or gateway that can forward the request to the correct gatekeeper. 





GatekeeperReject		::=SEQUENCE --(GRJ)


{


	requestSeqNum		RequestSeqNum,


	protocolIdentifier		ProtocolIdentifier,			


	nonStandardData		NonStandardParameter OPTIONAL,


	gatekeeperIdentifier	GatekeeperIdentifier  OPTIONAL,


gatekeeperAddress	TransportAddress OPTIONAL,


	rejectReason		GatekeeperRejectReason,


	gatekeeperRedirect	EndpointAlias	OPTIONAL,


	...


}





We have added a new structure to the GRJ, the gatekeeperRedirect. This is an optional structure. If it is present, it indicates to the rejected terminal another gatekeeper where the rejected terminal might have better luck. This structure includes the gatekeeperIdentifier in the EndpointName field and in the transport address for RAS signalling of the gatekeeper in the TransportAddress field. 





As before, the gatekeeperAddress field is used if there is a proxy answering on behalf of a different gatekeeper. In this case the gatekeeperIdentifier and the gatekeeperAddress together indicate which gatekeeper provided the rejection.





RegistrationRequest		::=SEQUENCE --(RRQ)


{


	requestSeqNum		RequestSeqNum,				


	protocolIdentifier		ProtocolIdentifier,						nonStandardData		NonStandardParameter OPTIONAL,	


	discoveryComplete	BOOLEAN,							


	terminalAlias		SEQUENCE OF EndpointAlias OPTIONAL,		


	gatekeeperIdentifier	GatekeeperIdentifier  OPTIONAL,


gatekeeperAddress	TransportAddress OPTIONAL,


	endpointVendor		VendorIdentifier,


	expirationDate		ExpirationDate


	...


}





Here the terminalAlias is now a SEQUENCE of EndpointAlias. Note that several fields have been moved to the terminalAlias field. This extra structure allows a terminal to associate together addressAliases and the transportAddress of a gateway. For example, suppose a particular telephone terminal can be reach via one of two gateways, but it has a different E.164 number to each gateway. This can be easily expressed by have a SEQUENCE of two terminalAlias structures. The relationship cannot be expressed at all with the current RRQ message. Other associations, such as associating particular rasAddresses with particular callSignalAddresses, are also possible and quite natural. This is not possible in RAS as it is currently defined. 





RegistrationConfirm	::=SEQUENCE --(RCF)


{


	requestSeqNum		RequestSeqNum,				


	protocolIdentifier		ProtocolIdentifier,				


	nonStandardData		NonStandardParameter OPTIONAL,	


	terminalAlias		SEQUENCE OF EndpointAlias OPTIONAL,


	gatekeeperIdentifier	GatekeeperIdentifier  OPTIONAL,


	gatekeeperAddress	TransportAddress OPTIONAL,


	endpointIdentifier	EndpointIdentifier,


	expirationDate		ExpirationDate	


	...	


}





The RCF is similar to the original, except that a SEQUENCE of EndpointAliases is returned. The gatekeeperAddress field is the address at which the gatekeeper wishes to receive subsequent RAS messages. This also allows a proxy to send an RCF on behalf of a gatekeeper. Also, it allows the confirmation to arrive via multicast. Finally, we have seen that it helps to separate the gatekeeperIdentifer from its transport address.





RegistrationReject		::=SEQUENCE --(RRJ)


{


	requestSeqNum		RequestSeqNum,				


	protocolIdentifier		ProtocolIdentifier,				


	nonStandardData		NonStandardParameter OPTIONAL,


	rejectReason		RegistrationRejectReason,					


	gatekeeperIdentifier	GatekeeperIdentifier  OPTIONAL,


gatekeeperAddress	TransportAddress OPTIONAL,


gatekeeperRedirect	EndpointAlias	OPTIONAL,


	...


}





The RRJ message can contain a redirect just as the GRJ message can.





UnregistrationRequest		::=SEQUENCE --(URQ)


{


	requestSeqNum		RequestSeqNum,				


	endpointAlias		SEQUENCE OF EndpointAlias OPTIONAL,		


	nonStandardData		NonStandardParameter OPTIONAL,


	endpointIdentifier	EndpointIdentifier OPTIONAL,


gatekeeperIdentifier	GatekeeperIdentifier  OPTIONAL,


gatekeeperAddress	TransportAddress OPTIONAL,


	...


}





UnregistrationConfirm	::=SEQUENCE --(UCF)


{


	requestSeqNum		RequestSeqNum,				


	nonStandardData		NonStandardParameter OPTIONAL,


gatekeeperIdentifier	GatekeeperIdentifier  OPTIONAL,


gatekeeperAddress	TransportAddress OPTIONAL,


	...


}





UnregistrationReject		::=SEQUENCE --(URJ)


{


	requestSeqNum		RequestSeqNum,				


	rejectReason		UnregRejectReason,				


	nonStandardData		NonStandardParameter OPTIONAL,


gatekeeperIdentifier	GatekeeperIdentifier  OPTIONAL,


gatekeeperAddress	TransportAddress OPTIONAL,


gatekeeperRedirect	EndpointAlias	OPTIONAL,


	...


}





It is inconsistent that there be a gatekeeperIdentifier in the Register messages but not in the Unregister messages. More than a logical problem, the information is needed when the message is one from a gatekeeper to a terminal, or when the message is multicast. Even more important, it is essential if a terminal is registered at more than one gatekeeper. It might perform a series of unregistrations, or even a single one via broadcast. The fields are needed to know which gatekeeper is involved in the request or the error.





Note that it is considered an error to unregister when one is not in fact registered according to the current H.225. This might happen more often now because of the ExpirationDates. This would occur, for example, if an ExpirationDate passes and then a terminal attempts to unregister itself. If it had been silently deleted, it would get the “nonCurrentlyRegistered” error.





AdmissionRequest		::=SEQUENCE --(ARQ)


{


	requestSeqNum	RequestSeqNum,		


	callType	CallType,		


	callModel	CallModel OPTIONAL,		


	endpointIdentifier	EndpointIdentifier,		


	destinationInfo	SEQUENCE OF EndpointAlias OPTIONAL, 


	destExtraCallInfo	SEQUENCE OF EndpointAlias OPTIONAL,


	srcInfo	SEQUENCE OF EndpointAlias,	 


	bandWidth	BandWidth,   				callReferenceValue	CallReferenceValue,			


	nonStandardData	NonStandardParameter OPTIONAL,


	callServices	QseriesOptions  OPTIONAL,


	conferenceID	ConferenceIdentifier,


	activeMC	BOOLEAN,


	answerCall	BOOLEAN,	-- answering a call	


gatekeeperIdentifier	            GatekeeperIdentifier  OPTIONAL,	


gatekeeperAddress	            TransportAddress OPTIONAL,


	...


}





Again, unless one wishes to identify the gatekeeper with its transport address, it is necessary to include the gatekeeperIdentifier in the request. Also, by substituting EndpointAlias to identify the source and destination, one can fulfill all the scenarios of AVC-1021 and quite a few more. For example, the access token field might be used as a private signal to the admissions gatekeeper which would then grant admissions. Via non H.323 means (for example Email or HTTP) one could dispense an access token which


would then grant access for particular user or a particular time. 





AdmissionConfirm	::=SEQUENCE --(ACF)


{


	requestSeqNum		RequestSeqNum,			


	bandWidth		BandWidth,				


	callModel		CallModel,				


	destCallSignalAddress	EndpointAlias,			


	irrFrequency		INTEGER (1..65535) OPTIONAL,			


	nonStandardData		NonStandardParameter OPTIONAL,


gatekeeperIdentifier	GatekeeperIdentifier  OPTIONAL,


gatekeeperAddress	TransportAddress OPTIONAL,


	...	


}





The gatekeeper can return a new gatekeeperIdentifier and/or gatekeeperAddress to be used for subsequent RAS requests about this call, as usual. The fields that are filled in in the destCallSignalAddress field should be used for the first SETUP-UUIE of the call. See later for the enhanced SETUP-UUIE message.





AdmissionReject		::=SEQUENCE --(ARJ)


{


	requestSeqNum		RequestSeqNum,		


	rejectReason		AdmissionRejectReason,	


	nonStandardData		NonStandardParameter OPTIONAL,


gatekeeperIdentifier	GatekeeperIdentifier  OPTIONAL,


rasAddress		TransportAddress OPTIONAL,


gatekeeperRedirect	EndpointAlias	OPTIONAL,


	...


}





The usefulness of the added fields should be clear by now. The gatekeeperIdentifier and gatekeeperAddress fields can identify whence the message comes, useful if  a proxy returns the answer and if multicast or broadcast is used. The Redirect message can indicate to the rejected client a gatekeeper which might be more sympathetic to the Admission Request.





BandwidthRequest		::=SEQUENCE --(BRQ)


{


	


	requestSeqNum		RequestSeqNum,			


	endpointIdentifier	EndpointIdentifier,			


	conferenceID		ConferenceIdentifier,			


	callReferenceValue	CallReferenceValue,			


	callType			CallType OPTIONAL,


 	bandWidth		BandWidth,   				


	nonStandardData		NonStandardParameter OPTIONAL,


gatekeeperIdentifier	GatekeeperIdentifier  OPTIONAL,


gatekeeperAddress	TransportAddress OPTIONAL,


	...


}





BandwidthConfirm	::=SEQUENCE --(BCF)


{


	


	requestSeqNum		RequestSeqNum,			


	bandWidth		BandWidth,   					


	nonStandardData		NonStandardParameter OPTIONAL,


gatekeeperIdentifier	GatekeeperIdentifier  OPTIONAL,


gatekeeperAddress	TransportAddress OPTIONAL,


	...


}





BandwidthReject		::=SEQUENCE --(BRJ)


{


	


	requestSeqNum		RequestSeqNum,		


	rejectReason		BandRejectReason,		


	allowedBandWidth	BandWidth,   			


	nonStandardData		NonStandardParameter OPTIONAL,


gatekeeperIdentifier	GatekeeperIdentifier  OPTIONAL,


gatekeeperAddress	TransportAddress OPTIONAL,


gatekeeperRedirect	EndpointAlias	OPTIONAL,


	...


}





LocationRequest		::=SEQUENCE --(LRQ)


{


	requestSeqNum		RequestSeqNum,		


	endpointIdentifier	EndpointIdentifier OPTIONAL,		


	destinationInfo		SEQUENCE OF AliasAddress,  		


nonStandardData		NonStandardParameter OPTIONAL,


srcInfo			SEQUENCE of AliasAddress OPTIONAL,


replyAddress		EndpointAlias,


gatekeeperIdentifier	GatekeeperIdentifier  OPTIONAL,


gatekeeperAddress	TransportAddress OPTIONAL,


	...


}





LocationConfirm	::=SEQUENCE --(LCF)


{


	requestSeqNum		RequestSeqNum,			


	callSignalAddress	SEQUENCE OF EndpointAlias,			


 	nonStandardData		NonStandardParameter OPTIONAL,


gatekeeperIdentifier	GatekeeperIdentifier  OPTIONAL,


gatekeeperAddress	TransportAddress OPTIONAL,


	...	


}





LocationReject		::=SEQUENCE --(LRJ)


{


	requestSeqNum		RequestSeqNum,		


	rejectReason		LocationRejectReason,	


	nonStandardData		NonStandardParameter OPTIONAL,


gatekeeperIdentifier	GatekeeperIdentifier  OPTIONAL,


gatekeeperAddress	TransportAddress OPTIONAL,


gatekeeperRedirect	EndpointAlias	OPTIONAL,


	...


}





The use of the EndpointAlias instead of AliasAddress is particularly imprtant for the Location Request messages. The basic function of the Location Messages is to input an AliasAddress and to get back the physical location of an H323 compliant terminal. By using the EndpointAlias in the response, it is possible for a gatekeeper to return an E164 number and the transport address of a gateway, when asked to resolve an h323-ID. This is a very natural and useful function which is absent from the current RAS messages.





Note also that the Location Confirmation has been enhanced to allow the return of a SEQUENCE of terminals. As in current H.225, these callSignalAddresses are all meant to point to the same logical terminal. But offering a SEQUENCE of possible EndpointAliases rather than a single one has several advantages:





It is more robust. The calling terminal should consider all elements in the sequence after the first as being backups or secondary routes to reach the requested location. If one EndpointAlias cannot be reached, the next element in the list can be called without reconsulting the gatekeeper. 


It is more flexible. It allows a gatekeeper to return different E.164 numbers or h323-ids, each of which might use a different gateway or gatekeeper. 


It is more efficient. If the gatekeeper did not return such a list, obtaining the secondary EndpointAlias from the gatekeeper would be more difficult, because it would require saving state in the gatekeeper about which device was first returned in the first Location Confirmation.





It is worth making a comment about the replyAddress field in the Location Request. This field is particularly inconsistent with other RAS messages. First, it is the only such field in any RAS message. If it is useful in this message, it might well be useful in others. Note that in all other RAS messages, the assumption is made that the reply is returned to the transport address which sent the RAS request. So one might think that all RAS request messages should have this field.We would like to propose this emendation to H.225.





On the other hand, there is another field that is present in some form in all RAS request messages, but missing from precisely this one: a srcInfo field. Every other request has a field which serves this purpose, although it is given this name only in the Admission Request message. But this field could be extremely useful in helping the gatekeeper decide which location to return in the confirmation message. This is why it is included here.





For the sake of simplicity, we would also suggest that the single name “srcInfo” be used in all the other request messages. This is really just a question of simplicity. In current H.225, this field has a different name in each message, and this impairs the understandability of the RAS protocol. We would not insist on this if it is considered that it would affect the backward compatibility of the RAS messages.





The new fields for gatekeeperIdentity and gatekeeperAddress and gatekeeperRedirect are as before used when there is a proxy gatekeeper, or when a Redirect is desired.





DisengageRequest		::=SEQUENCE --(DRQ)


{


	requestSeqNum		RequestSeqNum,			


	endpointIdentifier	EndpointIdentifier,			


	conferenceID		ConferenceIdentifier,		


	callReferenceValue	CallReferenceValue,			


	disengageReason		DisengageReason,				


	nonStandardData		NonStandardParameter OPTIONAL,


gatekeeperIdentifier	GatekeeperIdentifier  OPTIONAL,


gatekeeperAddress	TransportAddress OPTIONAL,


gatekeeperRedirect	EndpointAlias	OPTIONAL,


	...	


}





DisengageConfirm		::=SEQUENCE --(DCF)


{


	requestSeqNum		RequestSeqNum,		


	nonStandardData		NonStandardParameter OPTIONAL,


gatekeeperIdentifier	GatekeeperIdentifier  OPTIONAL,


gatekeeperAddress	TransportAddress OPTIONAL,


	...


}





DisengageReject	::= SEQUENCE --(DRJ)


{


	requestSeqNum		RequestSeqNum,		


	rejectReason		DisengageRejectReason,		


	nonStandardData		NonStandardParameter OPTIONAL,


gatekeeperIdentifier	GatekeeperIdentifier  OPTIONAL,


gatekeeperAddress	TransportAddress OPTIONAL,


gatekeeperRedirect	EndpointAlias	OPTIONAL,


	...


}








InfoRequest	::=SEQUENCE --(IRQ)


{


	requestSeqNum	RequestSeqNum,				


	callReferenceValue	CallReferenceValue,			


	nonStandardData	NonStandardParameter  OPTIONAL,


gatekeeperIdentifier	GatekeeperIdentifier  OPTIONAL,


gatekeeperAddress	TransportAddress OPTIONAL,


replyGatekeeper		GatekeeperIdentifier  OPTIONAL,


	replyAddress	TransportAddress OPTIONAL,


	...


}





The InfoRequest is a message from a gatekeeper to a terminal. We have added the usual gatekeeperIdentifier and rasAddress field so that the terminal can know the source of the message. Since H.225 stipulates a replyAddress which is not necessarily that of the original gatekeeper, it is necessary to include a replyGatekeeper field as well so that the terminal can send the IRR back to the correct gatekeeperIdentifier.





 InfoRequestResponse	::=SEQUENCE --(IRR)


{


	nonStandardData		NonStandardParameter OPTIONAL,


	requestSeqNum		RequestSeqNum,			


	endpointIdentifier	EndpointIdentifier,


	endpointAlias		SEQUENCE OF EndpointAlias OPTIONAL,


	perCallInfo		SEQUENCE OF SEQUENCE�	{				


		nonStandardData		NonStandardParameter OPTIONAL,


		callReferenceValue	CallReferenceValue,			


		conferenceID		ConferenceIdentifier,			


		originator		BOOLEAN OPTIONAL,				


		audio			SEQUENCE OF RTPSession OPTIONAL,


		video			SEQUENCE OF RTPSession OPTIONAL,


		data			SEQUENCE OF TransportChannelInfo OPTIONAL,


		h245			TransportChannelInfo,


		callSignaling		TransportChannelInfo,


		callType			CallType,				


		bandWidth		BandWidth,				


		callModel		CallModel,


		...


	} OPTIONAL,


gatekeeperIdentifier	GatekeeperIdentifier  OPTIONAL,


gatekeeperAddress	TransportAddress OPTIONAL,


	...


}





This structure has been simplified and unified in a way which should be clear by now. In the original message, there were fields for rasAddress, endpointType, the callSignalAddress, and the enpointAlias, some of which were SEQUENCEs and some of which were not. These have all been replaced by a SEQUENCE of EndpointAlias, which allows one to associate different parts of these structures in useful ways.





Finally, we add a single field to the SETUP-UUIE:





Setup-UUIE			::=SEQUENCE


{


	protocolIdentifier		ProtocolIdentifier,				


	h245Address		TransportAddress OPTIONAL,				


	sourceAddress		SEQUENCE OF AliasAddress OPTIONAL,


	sourceInfo		EndpointType,						destinationAddress	SEQUENCE OF AliasAddress OPTIONAL,	


	destCallSignalAddress	TransportAddress OPTIONAL,	


	accessToken		AccessToken OPTIONAL,		


	destExtraCallInfo		SEQUENCE OF AliasAddress OPTIONAL,	-- Note(1) 


	destExtraCRV		SEQUENCE OF CallReferenceValue OPTIONAL,-- Note(1)


	activeMC		BOOLEAN,					


	conferenceID		ConferenceIdentifier,				


	conferenceGoal		CHOICE					


	{


		create		NULL,


		join		NULL,


		invite		NULL,


		...


	},


	callServices		QseriesOptions  OPTIONAL,


	callType		CallType,


	...


}





The field which has been added is the accessToken. This string may be returned in a Location Confirm or Admission Confirm request from a gatekeeper. Although it is an optional field, if this token is returned by a gatekeeper in either RAS message, it is strongly advised that the terminal insert it into the SETUP-UUIE. We would like to emend the explanation of the SETUP-UUIE to allow for the possibility that the destinationAddress and the destCallSignalAddress be missing if the accessToken is present. This will allow a gatekeeper to put the correct value into the accessToken field in a form which the terminal might not understand but which the gateway or gatekeeper which receives the SETUP message might understand. All other fields are unchanged.





Summary





In summary, we have not removed any information from any message, but made some additions an enhancements. A current H.225 implementation can trivially use the proposed enhancements here without any loss. Apart from a gain in consistency, the proposed emendations that we have suggested bring the following improvements in RAS signalling:





improved support for multicast and broadcast


improved privacy


support for proxy gatekeepers


richer addressing, especially for terminals beyond a gateway or gatekeeper domain


greater robustness in case of terminal or gatekeeper failure





3.0	Gatekeeper Location





This section is rather brief, because the proposal here is to use standards which are already


described elsewhere. The reader is encouraged to refer to [3] for details.





Broadcast cannot truly be used effeciently thoughout large portions of an internet. Even when it is possible and practical to do so, it usually is considered a security risk. 





There is already work in within the IETF to specify how to use DNS to locate a service. For the purposes of this work, a “service” is identified by a short name of less than 14 characters, and to “locate” the service just means to find the transport address to which one can send the appropriate protocol messages for that service. Thus these ideas can be used as is to determine the RAS address of a gatekeeper. 





We propose already to ask IANA to reserve the service name “itu-h323-ras” for the gatekeeper service of H323. 





The current suggestion in [3] is to add to DNS a new Resource Record, called SVR for “service location”. Given a domain name, the new SVR record will return the transport address of the itu-h323-ras server for that domain.





If we agree to give use rfc822_ids or URLs as gatekeeper identifiers, then it is easy to extract the domain name from the identifier. For email names, we propose to use the domain name to the right of the ‘@’ sign. For URL_ids, we propose to use the domain name part of the server. We also propose to register the URL identifier “ras:” for the RAS protocol. Thus the following URL would be admissible as a gatekeeperIdentifier:





ras://server.name.com/gk_name





We propose that when a domain name is used in the server field of a URL of type ras:, that a SVR query be made to obtain the transport address of the itu-h323-ras service for that domain. This transport address obtained shall be the used for RAS signalling to the gatekeeper with that identifier.





This is a simple, and standard solution to our problem. The only problem is that almost no current DNS client or server implementations support the SVR resource record yet. Unless the DNS client knows about the SVR resource record type, it is not possible for it to pass on queries for this resource record. Until this support becomes widespread, we still need a method for service location. 





We propose here a simple solution which both leverages existing support and does not conflict with any other service. This last requirement is particularly important. It is not possible to just “pretend” that a gatekeeperIdentifier is an email address and the leverage existing email infrastructure, because then one can create conflicts which can interfere with the correct functioning of Email.





All current DNS implementations support the TXT resource record. Basically this is some free text that can be returned for each domain name. It is possible to store many TXT resources for a single domain. The standard stipulates that all TXT records will be returned when a query is made for them.





We propose that we use the same convention for extracting a domain name from a gatekeeperIdentifier that was suggested above. Either rfc822 compliant strings can be used (email “-like” names) or rfc 1768 compliant strings ( a URL) for gatekeeperIdentifiers.


In order to resolve the transport address of the gatekeeper with a given gatekeeperIdentifier, a DNS TXT query will be made for the domain name in the identifier. The terminal will then look for lines in the response of the form:





itu-H323-gk		ras://server:portno/		x





In these lines, the ‘server’ can be either a domain name, or an ipnumber. The portno is a port number. The ‘x’ at the end of the line is a number which gives the priority of the particular server. 





The client can parse the returned lines, and from them obtain the transport address of  the gatekeeper within that domain to which it can send RAS messages.





This system can be implemented now, takes no more resources than the proposed standard, and in fact causes no conflicts with existing applications. Not only are text records not widely used, but it is highly unlikely that any existing text record has precisely the form outlined above. The fact that DNS requires a server to return all TXT records associated with a domain name means that the client can filter out and process only those records which are useful to it.





The proposed system provides a useful method to locate gatekeepers which have one of several particular forms for their identifiers. These forms are very natural. They include such reasonable identifiers as follows:





gatekeeper@mycom.com


ras://mycom.com/gatekeeper


admissions@mycom.com


bandwith-manager@mycom.com


ras://123.23.12.1:3000/executive-gatekeeper.





4.0	RAS signalling in a reliable channel





The technology to secure a reliable channel is more advanced that the corresponding technology for an unreliable one; for this reason we wish to propose that RAS signalling be allowed on a reliable channel as well as an unreliable one.





5.0	References





[1] 	ITU Telecommunication Standardization Sector, Document AVC-1021


	Study Group 16, Jim Toga





[2]	Internet Draft: The SSL Protocol Version 3.0


A. Freier, P. Karlton, P. Kocher, 11/21/1996, 


ftp://ds.internic.net/internet-drafts/draft-ietf-tls-ssl-version3-00.txt                     





 	Internet Draft: SSH Transport Layer Protocol


T. Ylonen, 06/14/1996


ftp://ds.internic.net/internet-drafts/draft-ietf-tls-ssh-00.txt





[3]	A DNS RR for specifying the location of services (DNS SRV)


Internet Draft: draft-gulbrandsen-dns-rr-srvcs-03.txt (March 1996)


Arnt Gulbrandsen (Troll Technologies) and Paul Vixie (Vixie Enterprises)


ftp://ds.internic.net/internet-drafts/draft-gulbrandsen-dns-rr-srvcs-03.txt





This describes in detail the new SRV record for locating services in the Internet.





See Also: Finding Stuff (Providing information to support service discovery)


Internet-Draft: draft-ietf-ids-discovery-02.txt (October 1996)


by Ryan Moats (AT&T) and Martin Hamilton (Loughborough University)


ftp://ds.internic.net/internet-drafts/draft-ietf-ids-discovery-02.txt





This is an independent suggestion to use TXT records to implement service location.





[4]	RFC1035  P. Mockapetris, "Domain names - implementation and specification", 


           11/01/1987. (Pages=55) (Format=.txt) (Obsoletes RFC0973) (STD 13) 


           (Updated by RFC1348) 


	ftp://ds.internic.net/rfc/rfc1035.txt


RFC1034  P. Mockapetris, "Domain names - concepts and facilities", 


           11/01/1987. (Pages=55) (Format=.txt) (Obsoletes RFC0973) (STD 13) 


           (Updated by RFC1876, RFC1101) 


	ftp://ds.internic.net/rfc/rfc1034.txt





[5]	RFC 0822  D. Crocker, "Standard for the format of ARPA Internet text  


           messages", 08/13/1982. (Pages=47) (Format=.txt) (Obsoletes 


           RFC0733) (STD 11) (Updated by RFC1327, RFC0987) 


	ftp://ds.internic.net/rfc/rfc822.txt





[6]	RFC 1738: “Uniform Resource Locators (URL)”


T. Berners-Lee (CERN), L. Masinter (Xerox Corporation) 


and M. McCahill (University of Minnesota) December 1994


ftp://ds.internic.net/rfc/rfc1738.txt





( This contribution contains intellectual property covered by one or more patent applications owned by VocalTec. VocalTec intends to license its rights on a non-discriminatory basis on reasonable terms and conditions in accordance with the ITU guidelines.


No license, whether express or implied by estoppel or otherwise, is granted herein to any intellectual property right, and VocalTec disclaims all liability, including liability for infringements of any proprietary rights, arising from or otherwise connected to implementation of information contained in this document. VocalTec does not warrant or represent that such implementation will not infringe any such rights.








Vocaltec	AVC-1071 December 1996	� PAGE �15�











