Telecommunication Standardisation Sector Document AVC-881
Study Group 15

Experts Group for Video Coding and Systems in 8 Jan 1996
ATM and Other Network Environments

SOURCE : Stuart Dunstan, Siemens Ltd
TITLE : Some editorial comments on H.245
PURPOSE : Proposal

Introduction

H.245 was decided according to Resolution 1 at the Study Group 15 meeting in November. The work done on
H.245 leading up to that meeting appears to be quite sound. In particular the section on bi-directional logical
channel procedures has captured the required logic using one additional message, and one additional state with an
associated timer, but without further complicating the procedures. The logic of the maintenance loop procedures is
quite straight forward.

This document lists some editorial comments on H.245 (h245ncmd4.ww6). While it may or may not be possible to
incorporate these comments in a final version of H.245, I hope that thcsc comments will at least be of use to other
interested H.245 users.

1. Section 8.5, B-LCSE

1.1. reverseLogicalChannelNumber

A bi-dircctional logical channel is specified by one number, though it has forward and reverse transmission
channels and parameters. This number is the forwardLogicalChannelNumber which discriminates between all
logical channel signalling messagcs.

reverscLogicalChannelNumber is transparent to the B-LCSE. It is assigned by the user at the incoming B-LCSE
and carried 10 the outgoing B-LCSE in the field of the
OpenLogicalChannelAck.reverseLogicalChannelParameters.reverseLogicalChannelNumber message. It is
neither set nor read by the B-LCSE.

The coding of reverseLogicalChannelParameters in the OpenLogicalChannel and OpenLogicalChannelAck
messages differ, as shown in the following table. The associated primitive parameters are also shown.

message field fields within associated parameter

OpenLogicalChannel reverseLogicalChannclPa | dataType REVERSE_PARAM

rameters .
multiplexParameters

OpenLogicalChannelAck | reverseLogicalChannelPa | reverseLogicalChannelN | REVERSE_DATA
rameters umber

portNumber

multiplexParameters

Hence reverseLogicalChannelNumber does not need to be stated explicitly in section 8.5: it is simply a field
embedded within REVERSE_DATA.

The following changes are required to section 8.11 to reflect the above.
Note that reverseLogicalChannclNumber serves no purpose in H.310; the return channel is identified by the PID
value contained in the mux parameters. reverscLogicalChannclNumber is coded for applications which have no

such mux layer identification.

1.2, Section 8.5.2.3 ¢), REVERSE DATA

Correct definition of REVERSE _DATA as follows,

c) The REVERSE_DATA parameter spccifics parameters associated with the reverse logical
channel, that is, from the terminal containing the incoming B-LCSE to the terminal containing the outgoing B-
LCSE. This parameter is mapped to the reverseLogicalChannelParameters field of the OpenLogicalChannelAck
message and is carricd transparently to the pecr B-LCSE user.

1.3. Section 8.5.4.3, REVERSE_DATA

Add entry for ESTABLISH.confirm in Table 33, as shown below.
TABLE 33/H.245

Default primitive parameter values

primitive parameter default value !

ESTABLISH.indication | FORWARD_PARAM | Gpenl ogicalChannel. forwardLogicalChannelParameters
REVERSE_PARAM OpenLogicalChannel.reverseLogicalChannelParameters

ESTABLISH.confirm REVERSE _DATA OpenLogicalChannelAck.reverseLogicalChannelParameters

RELEASE.indication SOURCE CloseLogicalChannel.source
CAUSE null
1.4. Section 8.5.4.5, Figure 19 (ii)

OpenLogicalChannelConfirm arriving in the AWAITING ESTABLISHMENT state at the incoming B-LCSE is
correctly identified as an error condition. However what action should be taken? Currently
CloseLogicalChannelAck is sent. This is not in line with correct approach of keeping incoming side passive. The
following is recommended,

» remove CloseLogicalChannel Ack

Clean up is thus a user issue i.c. usc close logical channel signalling entity to request a closure, as occurs for timer
expiry in the AWAITING CONFIRMATION state.

2. Section 8.7, Multiplex Table Signalling Entity

The correct field name in which the parameter MUX-DESCRIPTOR is carried in the MultiplexEntrySend message,
is MultiplexEntrySend.multiplexEntryDescriptor.elementList. The ficld name currently used varies throughout
section 8.7. (Above naming agrees with that adopted for the MultipicxEntrySendReject message cause field in
Table 42). :

Section 6 says that MultiplexEntryDescriptor is made up of two fields; multiplexTableEntryNumber and
elementList. The former is set by the state variable out_ENUM, while the later is set by the MUX-DESCRIPTOR
parameter. The procedures need to recognise these two fields.

Hence the following changes;

2.1. Section 8.7.2.3 Parameter definition

2nd sentence a) should read,

“ .. This parameter is mapped to the elementList field of the MultiplexEntrySend message L

Note missing capital “M” in “MultiplexEntrySend™.

2.2 Section 8.7.3.1 Table 42

For the MultiplexEntrySend message in Table 42 change, “multiplexTableEntryNumber” to
“multiplexEntryDescriptor.multiplexTableEntryNumber”. Change “MultiplexElement” to
“multiplexEntryDescriptor.clementList”.

2.3. Section 8.7.4.2, Table 43

Change “MultiplexEntrySend. MultiplexEntryDescriptor” to
“MultiplexEntrySend. multiplexEntryDescriptor.elementList”

2.4, Section 8.7.4.3, Table 44

For the MultiplexEntrySend message change, “multiplexTableEntryNumber” to
“multiplexEntryDescriptor. multiplexTableEntryNumber”. Change “MultiplexElement” to

“multiplexEntryDescriptor.clementList”.
2.5. Section 8.7.4.3, Table 44

The correct reference to the cause parameter of the MultiplexEntrySendReject message is
“MultiplexEntrySendReject.rejectionDescriptions.cause”. In Table 44 change “cause” to
“rejectionDescriptions.cause”. Table 42 is correct.

3. Section 8.8, Request Multiplex Entry
3.1. Section 8.8.4.2, Table 48
The correct reference to the cause parameter of the MultiplexEntrySendReject message is

“RequestMultiplexEntryReject. rejectionDescriptions.cause”. In Table 48 change “cause” to
“rejectionDescriptions.cause”. Table 46 is correct.

3.2, Section 6, RequestMultiplexEntryReject message

In the syntax for the RequestMultiplexEntryReject message there is an cntryNumbers field and
multiplexTableEntryNumber; there should be only onc occurrence of this field type.

The simplest thing to do is to remove the cntryNumbers field (though removal of the
RequestMultiplexEntryRejectionDescriptions structure is cleaner).

3.3. Section 8.8.3.1, Table 46

The field “multiplexTableEntryNumber” in Table 46 is inconsistent with the syntax in section 6. Note that the
term “MultiplexTableEntryNumber” (capital M) is a field type, and not a ficld name (I think). The correct name is
cither of “entryNumbers” or “multiplexTableEntryNumber®. There is a slight problem in semantics with
“entryNumbers”; it should probably be just “entryNumber”.

It is recommended that,

« in section 6, for the request multiplex entry messages, the “entryNumbers” ficld name be changed to
“multiplexTableEntryNumber”.

+ in section 8.8, all references to this field are corrected. This may effect,
- Table 46 (currently MultipiexTableEntryNumber)
- 8.8.3.2 (currently multiplexTableEntryNumber)
- Tablc 48 (currently multiplexTableEntryNumber)

In all cases, for the RequestMultiplexEntryReject message the correct reference is
RequestMultiplexEntryReject.rejectionDescriptions.multiplexTableEntryNumber; but sce above point.

34. Section 8.8.3.1, Table 46

The RequestMultiplexEntryRelease message also requires the “entryNumber” field in Table 46. Table 48 is correct
with respect to this.

3.5. Section 8.8.4.3, SDLs

In Figure 33 (ii), for the REJECT.indication primitive in the RequestMultiplexEntryReject message part, there
should be the text caption “CAUSE = RequestMultiplexEntryReject.cause”.

While NULL may well be the only current valid entry of the cause ficld, the SDL should be generalised, so that new
additions of the cause field values will not change the SDLs.
4. Section 8.11, Maintenance Loop Signalling Entity

4.1. Section 6, syntax

The syntax for MaintenanccLoopOffCommand turns off all loops simultancously. It may have been desirable to
allow maintenance loops to be turned off individually, though there may have been good reason for not doing this.

With respect to setting of the Maintenancel.oopRequest.type field, the MaintenanceLoopRequest has the following:
synlax,

MaintenanceloopRequest ::=SEQUENCE
{
type CHOICE
{
systemLoop NULL,
medialoop LogicalChannelNumber,
logicalChanneil.oop LogicalChannelNumber,
)8
}
Note that both,

+ the LOOP_TYPE parameter, and
» the logical channel numbcr

are required 1o set the type field. Section 8.11 should reflect this.
However the MaintenanceLoopAck and the MaintecnanceLoopReleasc messages use the same syntax for type, when
in fact only logical channel number is required (system loop is logical channel number not present): when a logical

channel has been looped, it matters not what the Ack or Releasc messages say about loop type.

Section 8.11 currently has no means to store the LOOP_TYPE value between when the MaintenanceLoopRequest
message is received, and when the MaintenanceLoopAck message is scnt in response.

The following solutions are possible in order of prefercnce, most preferred first,

a) code MaintenanceLoopAck and MaintenanceLoopRequest messages as (or something like)

MaintenanceLoopAck/Request ::=SEQUENCE
logicalChannelNumber NULL (system loop)
logicalChannelNumber LogicalChannelNumber
b

)

b) do nothing: the LOOP_TYPE information in the type ficld is anyway not rcquired in the Ack/Release
messages, and can be an arbitrary value.

c) include an incoming side state variable that stores thc value of LOOP_TYPE when the
MaintenanceLoopRequest message is received. This state variable assists in setting the value of the
type ficld in the MaintenanceLoopAck message.

4.2 8.11.2.3 Parameter definition
Repair as follows,
a) The LOOP_TYPE parameter specifies the type of maintenance loop. It has values of “SYSTEM”,

“MEDIA”, and “LOGICAL_CHANNEL”. This parametcr, and the logical channel number, determine the value of
the type field of the MaintenanceLoopRequest message, which is then carried to the peer MLSE user.

4.3. section 8.11.3.2 Note
Could probably remove note at end of this section, with the clarifications listed here.
4.4. section 8.11.4.3 Note 2

The type field is set by the local state variable and the LOOP_TYPE parameter. In Table 60, modify the first entry
and append the note 2 as shown,
TABLE 60/H.245

Default message field values

message ficld default value 1
MaintenanceLoopRequest type LOOP.request(LOOP_TYPE) and out MLNZ? |
MaintenanceL.oopAck type in MLN
MaintenancelLoopReject type in_MLN

cause RELEASE .request(CAUSE)

MaintenanceLoopOffCommand - -

Notes:

1. A message ficld shall not be coded, if the corresponding primitive parameter is null i.e. not present.

2. The value of the type ficld is dctcrmined by both the LOOP_TYPE parameter and the logical channel
number. See syntax in 6.

-end -

