Telecommunication Standardization AVC-827 Intel-3

Sector

Original: English

(TSS)

Experts Group for Video Coding and Systems in October 24-27, 1995
ATM and Other Network Environments

Source:

STUDY GROUP 15
CONTRIBUTION

Jim Toga, Intel Corporation

email: jim_toga@ccm.jf.intel.com
voice: +1 (503) 264-8816

fax: +1 (503) 264-3485

Colin Hulme

email: colin_hulme@ccm.jf.intel.com

voice: +1 (503) 264-8022
Tom Bezdicek

email: thomas_m_bezdicek@ccm.jf.intel.com
voice: +1 (503) 264-8020

Don Evans

email: don_p_evans@ccm.jf.intel.com

voice: +1(503) 264-8682

Title: Gatekeeper and Connection Setup in H.323

Date: October 13, 1995

1. Introduction

tﬂxis proposal recommends a protocol description and operational model for utilizing a Gatekeeper entity
in an H.323 environment. As specified in the H.323 draft, the Gatekeeper is described as a separate logical
entity, it may be physically combined with any other endpoint described in the H.323 documents.

Sections 4 and 5 will outline procedures to be used in the call connection and setup with or without
Gatekeeper involvement. Section 7 describes the PDUs that should be added to H.22Z for usage in the
procedures. Section 8 contains some additional notes and options.

2. Background

It is expected that if Gatekeepers are present in the LAN environment, they will be utilized by any H.323
nodes (this includes but is not limited to, terminals, Gateways, and MCs). This is not meant to imply that
the presence on Gatekeepers is required in the H.323 environment.

Gatekeepers will provide admission control to LAN based conferencing, based upon bandwidth resource
usage. Either MC or native NOS security should provide admission control based upon security access.
Authentication of endusers should occur (to the extent desired) between Gatekeepers and any terminals that
register with them. It is expected that the primary authentication mechanism for security purposes with
respect to the LAN, will be supplied at the terminal/application interface.

Gatekeeper to Gatekeeper cooperation is encouraged for enterprise management, however there is no
requirement that Gatekeepers communicate outside of connection setup/permission exchanges. The ability
to cache information for performance or efficiency issues is up to implementors of a gatekeeper.

2.1 Definitions

Network Address - this is meant to encompass all of the addressing information that is needed for end to
end application communication. It includes both the physical transport address and the logical port to
which the application is bound.

Guardian - this is the term given to a Gatekeeper with which a terminal(s) has bound. A terminal will
attempt connections to other terminals via contacting its guardian gatekeeper.

Node - this term is used to denote any H.323 specified components as listed in sec 5 of H.323 Draft.
Terminal - is used as shorthand for the more formally defined H.323 terminal.

2.2 Symbols

BRQ - Bandwidth Request MRQ - Management Request
BCF - Bandwidth Confirmation MCF - Management Confirmation
BRJ - Bandwidth Reject MRJ - Management Reject

CRQ - Connection Request NLR - Node List Request

CCF - Connection Confirmation NRL - Node Response List

CRJ - Connection Reject RRQ - Registration Request

CIP - Connection In Progress RCF - Registration Confirmation
PRQ - Disconnect Request RRJ - Registration Reject

GRQ - Guardian Request SRQ - Status Request

GCF - Guardian Confirmation SRR - Status Report Response

GRJ - Guardian Reject

3. Framework and Models

The connection mode! for terminals on the LAN connecting to other terminals will be the same as
terminals connecting to Gateways. Stated in another manner, Gateways will appear to Gatekeepers and
other H.323 terminals as an H.323 terminal.

As established in the Ptell submission and current H.323 draft specification, terminals will register with
gatekeepers to establish a binding between the two. Thereafter, connection setup will be gated through this
gatekeeper (and the corresponding gatekeeper at the called end). Terminals should re-establish this
binding in the event that it becomes invalid. The consistent mapping of this binding is outside the scope of
this proposal but some solutions will be offered here. Although initial call setup and establishment of the
control channel occurs via interaction with the respective gatekeepers, continued conference exchanges
may occur without gatekeeper involvement. The two exceptions to this, are the disconnection of
terminal(s) from a conference and the unsolicited status (section 7).

There are two basic models of gatekeeper permissioned conferences: shared gatekeeper and peer
gatekeepers. Shared gatekeepers imply that the two (or more) terminals have the same guardian. The peer
gatekeeper model is present when two terminals do not have the same guardian. This does not imply that
the peer gatekeepers must be logical or physical neighbors in a network. The two models described are
shown in the respective figures that follow. The absence of a gatekeeper binding on either end of the
conference shall not be disallowed by the protocol or procedures.

©

cl C2
(Figure 1)

7 : "

Cl c2
(Figure 2)

4. Terminal-Gatekeeper Registration

There are two methods in which a terminal may find and become registered/bound to its gatekeeper. The
first method is an auto-binding mode, primarily controlled by physical topology. The second method
provides for a deterministic, static binding.

4.1 Auto-Binding

\ @
v/

Ci

e

(Figure 3)

C1 starts an H.323 video application. There is no gatekeeper address in the client.

1. CI broadcasts Guardian Request (GRQ), asking “who is my gatekeeper”.
This broadcast is targeted to a well known port.

2. Ideally router R1 is configured to block the broadcast so only gatekeeper G1 sees it and responds. In
the event that router R1 doesn’t block the broadcast, both gatekeepers G1 and G2 may respond with
GuardianConfirmation (GCF); “I can be your gatekeeper”.

C1 takes a response and may cache that information.

3. Cl sends a Registration Request (RRQ) with a flag set indicating to “Bind” to G1.
G1 detects the bind flag and may create a new cache entry for C1.

4. G1 sends a Registration Confirmation (RCF) back to C1.

If at any time a client determines it has an invalid binding with its guardian, it must rebind. The invalid
binding may be detected by either an RRJ (with an Not Bound status) or a timeout on an RRQ. Before it
re-binds, it should issue an GRQ to discover its ‘owning’ gatekeeper.

The terminal may issue the RRQ with the bind flag set to TRUE only if it receives a GCF or a timeout.
(receiving only GRJ’s constitues denial of permission to conference).

Auto-binding allows for lower administrative overhead in configuring individual H.323 terminals and
additionally allows replacement of an existing gatekeeper without reconfiguring all of the affected
terminals.

4.2 Static-Binding

@ -] ©®
7
i/

Cl

(Figure 4)

1. CI sends a Registration Request (RRQ) with a flag set indicating to “Bind” to G1.
G1 detects the bind flag and creates a new registration/binding entry for Cl.
2. Gl sends a Registration Confirmation (RCF) back to Cl.

As stated in section 7.1 of the H.323 draft, as part of the manual configuration of a terminal, the location
of its guardian gatekeeper may be entered.

4.3 Deterministic-Binding

The default binding behavior of the gatekeeper should be configurable (whether to respond to a GRQ
broadcast affirmative (GCF) or negative (GRJ)).

This functionality will provide for consistent binding between a terminal and a particular gatekeeper.
Additionally this may provide the ability to block a particular from conferencing. This blocking may be
accomplished through the use of a negative response to GRQ (GR)). If configured for an affirmative
response, the gatekeeper will reply with a GCF. If configured for a negative response, the gatekeeper will
reply GRJ.

If a terminal receives one or more negative responses and no positive responses, the terminal may not start
a conference. A terminal receiving no responses, assumes tacit approval to initiate a conference. (note:
there is a ‘rogue’ conference discovery mechanism described in Sec. 8)

A customer that so desired might set default behavior of a gatekeeper to negative response, and add users
10 a affirmative response list. This would determine the binding, and guarantee that no one uses bandwidth
if their gatekeeper is inactive.

Any hybrid of auto-binding and static binding can be provided with this model.

5. Call Connection/Setup

This section will outline a number of possible LAN environments and reference the PDUs that are
exchanged to initiate and complete, a call between terminals; the end state being the establishment of a
reliable transport connection carrying logical channel 0 (the control channel).

5.1 Both Clients bound to gatekeepers

B 7
2 3
g AN 6 5
/ }]
C! C2
Io 9 >
(Figure 5)
1. CRQfor C2 (C1 sends connection request for C2)
2. MRQ (G1 Queries C2 for C2's gatekeeper)
3. MCF (G1 may cache C2-G2)
4. CRQ for C2 from C1/G1 (G2 may cache C1-G1)
5. CRQ (G2 passes C1's CRQ to C2)
6. CCF (C2 accepts connection)
7. CCF
8. CCF
9. Control Channel Established

If C2 is already contained in G1’s cache, steps 2 and 3 may be eliminated. If C2 is not contained in G1’s
cache. but another client on the same subnet as C2 is contained in the cache, steps 2 and 3 may be
eliminated.

5.2

w AR W=

53

No LA WN -

Callee bound to gatekeeper

| 2
N\
Cl
4 C2
L e 5 »
(Figure 6)

CRQ for C2 from C1/?? (Cl indicates it has no gatekeeper)
CRQ from C1 (C2 queries G2 for approval)
CCF (G2 allows for bandwidth and un-bound C1)
CCF (C2 accepts connect request)

Control Channel Established

Caller bound to gatekeeper

Cl

CRQ for C2
MRQ

MRJ

CRQ

CCF

CCF

C2

(Figure 7)

(C1 sends connection request for C2)

(G1 Queries C2 for C2’s gatekeeper)

(C2 indicates it is not bound to a gatekeeper)
(G1 allows for bandwidth and un-bound C2)
(C2 accepts connect request)

Control Channel Established

5.4 Neither Client is bound to a gatekeeper

1 >
Ci 2 Cc2
3
(Figure §)
1. CRQ for C2 from C1/?? (Cl indicates it has no gatekeeper)
2. CCF (C2 accepts connection without gatekeeper)
3. Control Channel Established

6.0 Bandwidth Shifting

At any time during a conference, the terminals or Gatekeeper may request to increase or decrease the
respective bandwidth. The H.245 capabilities negotiation is outside the realm of this recommendation and
may actually occur before, during or after this sequence (with no consequences to the gatekeeper
specification).

Shown in figures 9 and 10 are client and Gatekeeper initiated requests. It is expected in most cases that the
client initiated, will be ‘asking for more’ ; the Gatekeeper initiated will be ‘asking for less’.

7

g 5 >
(Figure 9)
1. BRQ
2. BCF /BRJ
3. BRQ
4. BCF / BRJ
5. H.245 terminal CAP negotiation

Cl C2

(Figure 10)

BRQ

H.245 terminal CAP negotiation

BCF (or terminate sequence with BRJ)
BRQ

BCF/BRIJ

“©nh W —

A bandwidth reject (BRJ) is unlikely in step 5, since this negotiation will most probably be for lower
bandwidth. In the eventuality that G1 receives a BRJ in step 5, it must notify C1 with a new BRQ
restoring bandwidth to its original value.

If the sequence terminates in step 3 with a BRJ because one or both terminals couldn’t handle a bandwidth
reduction, the response by the gatekeeper is implementation specific and outside the realm of the
specification. A gatekeeper may choose to terminate the conference by issuing a DRQ.

7. PDUs

7.1 Background

requestSeqNum in PDUs are used to keep track of multiple outstanding requests. It is expected that any
associated response PDUs (success or failure) will have the corresponding requestSeqNum returned with
it.

extensionCount in PDUs is used as a counter to indicate additional bytes following the PDU. For current
implementations this value should be initialized to zero (0), to indicate no extension octets present. Future
implementations may set this to non-zero to indicate the number of uninterpreted octets that follow.

The NetworkAddress structure is meant to capture the various transport formats and includes any
transport specific scheme in addition to the possibly local reference to a ‘port’ number.

NetworkAddress ::=CHOICE
{
IPAddress SEQUENCE
{
transport OCTET STRING (SIZE(4)),
port INTEGER(0..4294967295)
}s
IPXAddress SEQUENCE,
{
node OCTET STRING (SIZE(6)),
netnum OCTET STRING (SI1ZE(4)),
port OCTET STRING (SIZE(2))
}’
IP6Address SEQUENCE,
{
transport OCTET STRING (S1ZE(16)).
port INTEGER(0..4294967295)
¥
NetBios OCTET STRING (SIZE(16)),
}
NodeType ENUMERATED
{
Gatekeeper),
Gateway @,
MC (4),
H323Terminal (8),
Undefined Node (268435456)
}

10

NS

Client 1
—p
GuardianRequest ::=SEQUENCE —(GRQ)
{
yearOfSpec OCTET STRING (SIZE(4))
requestSeqNum INTEGER (1..65535),
terminalldentifier OCTET STRING (SIZE(128)),
terminalAddress NetworkAddress,
terminalType NodeType,
gatekeeperldentifier OCTET STRING (SIZE(64)),
extensionCount INTEGER (0..65535)
}

requestSeqNum - this is a monotonically increasing number unique to the caller. it should be
returned by the called in any PDUs associated with this specific PDU.

terminalldentifier - this is a terminal/user specific string used to identify the caller. It is presumed
that application software has made appropriate authentication and this can be ‘trusted’. It should be
passed unmolested from application end to end.

ControlAddress - this is the network control address for this terminal. If multiple transports are
supported, they must be requested separately. This address includes local port information.

terminalType - this specifies the type(s) of the terminal that is registering (note that a H.323 terminal
may also be an H.323 MC).

gatekeeperldentifier - this is a string value that is used to logically identify a called gatekeeper. It
should be initialize to a zero (0) value by the caller.

Guardian

Confirmation/Reject
) <+ Gatekeeper |
Client |

GuardianConfirmation ::=SEQUENCE --(GCF)

{
yearOfSpec OCTET STRING (SIZE(4))
requestSegNum INTEGER (1..65535),
gatekeeperldentifier OCTET STRING (SIZE(64)),
gatekeeperAddress NetworkAddress,
extensionCount INTEGER (0..65535)

}

requestSeqNum - This should be the same value that was passed in the GRQ by the caller.

gatekeeperldentifier - this is a string value that is used to logically identify a called gatekeeper. It
may be used by the caller for future RRQs. .

gatekeeperAddress - this is an array of transport addresses: one for each transport that the gatekeeper
will respond to. This address includes local port information.

11

Guardian Reject :=SEQUENCE --(GRJ)

{

yearOfSpec OCTET STRING (SIZE(4))
requestSeqNum INTEGER (1..65535),
gatekeeperldentifier OCTET STRING (SI1ZE(64)),
rejectReason GuardianRejectReason,
extensionCount INTEGER (0..65535)
GuardianRejectReason ENUMERATED
{
Resource Unavailable 1),
Terminal Excluded (2),
Invalid Revision (5).
Undefined Reason (65535)
}

Registration Request

Client 1 >
Gatekeeper |

RegistrationRequest ::=SEQUENCE --(RRQ)

{
yearOfSpec OCTET STRING (SIZE(4))
requestSeqNum INTEGER (1..65535),
bindRequest BOOLEAN,
terminalldentifier OCTET STRING (SIZE(128)),
ControlAddress NetworkAddress,
terminal Type NodeType,
terminalExtNum E.164Address
extensionCount INTEGER (0..65535)

}

requestSeqNum - this is a monotonically increasing number unique to the caller. It should be
returned by the called in any PDUs associated with this specific PDU.

bindRequest - set to TRUE if requesting a new binding with called gatekeeper; set to FALSE if
registering only.

terminalldentifier - this is a terminal/user specific string used to identify the caller. It is presumed
that application software has made appropriate authentication and this can be ‘trusted’. It should be
passed unmolested from application end to end.

ControlAddress - this is the network control address for this terminal. If multiple transports are
supported, they must be registered separately. This address includes local port information.

terminalType - this specifies the type(s) of the terminal that is registering (note that a H.323 terminal
may also be an H.323 MC).

terminalExtNum - This optional value is a phone number by which external (to the LAN) terminals
may identify this terminal.

12

Registration

Confirmation/Reject
. < Gatekeeper |
Client 1

RegistrationConfirmation :==SEQUENCE —(RCF)

{
yearOfSpec OCTET STRING (SIZE(4))
requestSeqNum INTEGER (1..65535),
gatekeeperldentifier OCTET STRING (S1ZE(64)),
gatekeeperAddress NetworkAddress (SIZE(3)),
extensionCount INTEGER (0..65535)

}

requestSeqNum - This should be the same value that was passed in the RRQ by the caller.

gatekeeperldentifier - this is a string value that is used to logically identify a called gatekeeper. It
may be used by the caller for future RRQs.

gatekeeperAddress - this is an array of transport addresses; one for each transport that the gatekeeper
will respond to. This address includes local port information.

Registration Reject :=SEQUENCE --(RRJ)
{
yearOfSpec OCTET STRING (SIZE(4))
requestSeqNum INTEGER (1..65535),
rejectReason RejectReason,
}
IrequestSeqNum - This should be the same value that was passed in the RRQ by the caller.
RejectReason ENUMERATED
{
Not Bound Registration 1),
Duplicate Registration Request (2),
Invalid Ext Num (3),
Duplicate Bind Request 4),
Invalid Revision (),
Invalid Network Address 6),
Undefined Reason (65535)
}

13

Connection Request

ﬁ
@ Gatekeeper 2
Connection Request

Client 1 /

Client 2

Connection Request ::=SEQUENCE -(CRQ)

{
yearOfSpec OCTET STRING (SIZE(4)),
requestSeqNum INTEGER (1..65535),
originatingID OCTET STRING (SIZE(128)),
originatingAddress NetworkAddress,
destinationAddress NetworkAddress,

originatingGatekeeper ~ NetworkAddress,
destinationGatekeeper ~ NetworkAddress,

destinationWanInfo Wanlnfo,

conferencelD INTEGER(0..4294967295),
callType CallType,

callMedia CallMedia,

bandWidth INTEGER (1..4294967295),
connectionlD INTEGER (1..4294967295),
extensionCount INTEGER (0..65535)

requestSeqNum - this is a monotonically increasing number unique to the caller. It should be
returned by the called in any PDUs associated with this specific PDU.

originatinglD - this is a terminal/user specific string used to identify the caller. It is presumed that
application software has made appropriate authentication and this can be ‘trusted’. It should be
passed unmolested from application end to end. May be used for ‘caller-id” functionality.

originatingAddress - this is a specific transport address on which the caller would like a response to
this request. It is assumed that this will be the incoming port address for logical channel 0, if this
connection is successful.

destinationAddress - this is a specific transport address on which the caller would like to contact the
called terminal.

originatingGatekeeper - this is a gatekeeper address to which the caller is bound. If the caller is not
bound to a gatekeeper, this should be initialized to all zeros (0).

destinationGatekeeper - this is a gatekeeper address to which the called may be bound. It should be
set to zeros (0) by the caller. It may be filled in by a gatekeeper, or the called.

destinationWanInfo - this specifies further contact information that a gateway might use.

conferencelD - this is used to indicate whether this is the initial connection of a new conference or the
connection to an existing conference. The value will be set to zero (0) if caller does not wish to
partake in a pre-existing conference. If it is non-zero, it specifies the conference which is being
joined/invited to. (in which case the connection is to/from a node with MC capabilities)

caliType - Using this value, gatekeeper can make determine ‘real’ bandwidth usage.

callMedia - Utilized by gatekeepers and called to determine acceptance of connection.

bandWidth - the number of 1k BITS/sec requested for the connection.

14

connectionID - Will contain a unique number pair, as specified by the coordinating gatekeepers. The
originating and destination gatekeepers will assign values (15 bits) in the LSW and MSW
respectively. This will allow the connection to be uniquely identified from all others. In the event
that one end or the other does not have a gatekeeper, the msb (bit 16) of the respective LSW/MSW
will be set and a terminal supplied number will be assigned.

Originating (Gatekeeper) ID Destination (Gatekeeper) ID
Wanlnfo :=SEQUENCE
{
E.164Numbers SET SIZE(0..6) OF OCTET STRING (SIZE(16)),
channelRate INTEGER (1..4294967295),
????MORE INFO
}
CaliType ENUMERATED
{
PointToPoint)] -- Point to point
OneToN), -- no interaction (a podium)
NToOne 4), -- no interaction (a listener)
NToN (8), -- interactive
BroadCast (16), -- Multicast included
}
CallMedia ENUMERATED
{
Data mn, -- note that these may be logically OR’d
Audio 2),
Video 4)
}

15

Connection
Confirmation/rejection

Gatekeeper 1 —— Gatekeeper 2

Client 1 Connection Client 2
Confirmation/rejectio ¢ — — = = — = = — = = = — — — -
Connection Confirmation ::=SEQUENCE --(CCF)
{
yearOfSpec OCTET STRING (SIZE(4))
requestSeqNum INTEGER (1..65535),
originatingGatekeeper ~ NetworkAddress,
destinationAddress NetworkAddress,
destinationGatekeeper ~ NetworkAddress,
conferencelD INTEGER(0..4294967295),
connectionlD INTEGER (1.. 4294967295),
extensionCount INTEGER (0..65535)
}

requestSeqNum - This should be the same value that was passed in the CRQ by the caller.

originatingGatekeeper - this is a gatekeeper address to which the caller is bound. If the caller is not
bound to a gatekeeper, this should be initialized to all zeros (0).

destinationAddress - this is a specific transport address on which the called would like to establish the
connection. This may or may not be the same value that was passed in the CRQ.

destinationGatekeeper - If the called is bound to a gatekeeper, this value will contain a valid address.

conferencelD - this is used to indicate whether this is the initial connection of a new conference or the
connection to an existing conference. If the value is set to zero (0) indicating that the caller does not
wish to partake in a pre-existing conference, and the callee returns an 1D associated with the newly
created conference.

connectionID - Will contain a unique number pair, as specified by the coordinating gatekeepers. The
originating and destination gatekeepers will assign values (15 bits) in the LSW and MSW
respectively. This will allow the connection to be uniquely identified from all others. In the event
that one end or the other does not have a gatekeeper the bit 16 (msb) of the respective LSW/MSW
will be set. The setting of bit 32 will indicate that the MSWhas been assigned a possibly, non-
unique value by the called terminal.

16

Connection Rejection ::=SEQUENCE --(CRJ)

{

yearOfSpec OCTET STRING (SIZE(4))

requestSegNum INTEGER (0..65535),

rejectReason RejectReason,

conferencelD INTEGER(0..4294967295),

connectionlD INTEGER (1.. 4294967295),

extProtocolType ProtocolType,

extReason INTEGER(0..65535)

bandWidth INTEGER (1..4294967295) -- measured in 1k bit increments
extensionCount INTEGER (0..65535)

requestSeqNum - This should be the same value that was passed in the CRQ by the caller.

rejectReason - contains numerical reason code for failure of CRQ.

extProtocolType - this is used to specify the protocol family that supplied the reason codes in
extReason. (currently only Q.931)

extReason - this is the reason code as stipulated by extProtocolType.

bandWidth - if rejectReason indicates no bandwidth, then this value will contain the maximum that
can be requested. This does not protect against a race condition; the caller will have to reissue the
CRQ with this lower value, which may again fail. If rejectReason is something other than
bandwidth, this should be set to 0 and passed un-interpreted.

RejectReason ENUMERATED
{
No Bandwidth),
Gatekeeper Resources),
Unreachable Destination (3).
Destination Rejection),

Invalid Revision (5),
No Permission (6),
UnreachableGatekeeper (7).
Destination Busy (8),
Not Bound (9). -- From local Gatekeeper
Gateway Resources (10),
Bad Format Address (.
Caller Not Bound (12), -- Destination Gatekeeper
Caller Not Bound (13), -- Destination Gatekeeper
Destination NoAnswer (14),
Undefined Reason (65535)
)
ProtocolType ENUMERATED
Q.931),
Undefined Protocol (65535)
}

17

Connection in
Progress

_
Gatekeeper 2

Connection in
Progress

Gatekeeper 1

Client 1 Client 2
Connection In Progress ::=SEQUENCE —(CIP)
{
yearOfSpec OCTET STRING (S1ZE(4))
requestSegNum INTEGER (1..65535),
connectionID INTEGER (1.. 4294967295),
channelNum INTEGER (0..65535), -- ID of WAN channel #
connection Status ConnectionStatus
extensionCount INTEGER (0..65535)
}
ConnectionStatus ENUMERATED
{
Connected 0),
No Connection (),
Idle),
Disconnecting 3),
Dialing 4),
Connecting (5).
Ringing 6).
Redirecting),
Undefined Status (65535)
}
Gatekeeper | GuardianQuery Request/Response/Reject
Client 1 Client 2
Guardian Query Request :=SEQUENCE —-(GQQ)
{
yearOfSpec OCTET STRING (SIZE(4))
requestSeqNum INTEGER (1..65535),
replyAddress NetworkAddress,
extensionCount INTEGER (0..65535)
}

18

Guardian Query Response

::=SEQUENCE --(GQRS)

{
yearOfSpec OCTET STRING (SIZE(4))
requestSeqNum INTEGER (1..65535),
gatekeeperldentifier OCTET STRING (SIZE(64)),
gatekeeperAddress NetworkAddress,
extensionCount INTEGER (0..65535)
}
Guardian Query Reject :=SEQUENCE —(GQRJ)
{
yearOfSpec OCTET STRING (SIZE(4))
requestSeqNum INTEGER (1..65535),
rejectReason GuardianQueryRejectReason,
)
GuardianQueryRejectReason ENUMERATED
{
No Gatekeeper),
Invalid Revision (%),
Undefined Reason (65535)
}

Status Request ::=SEQUENCE --(SRQ)

{
yearOfSpec OCTET STRING (S1ZE(4))
requestSeqNum INTEGER (1..65535),
connection]D INTEGER (0..4294967295),
extensionCount INTEGER (0..65535)

connectionID - This may be set to 0 to indicate the a *logical’ connection is being queried. Itisupto
local interpretation as to what this means. It may be interpreted as the ‘first’ connection made, or it
may be interpreted as ‘all’ connections in which case the node may respond with multiple SRRs.

Status Report Response ::=SEQUENCE --(SRR)

{
yearOfSpec OCTET STRING (SIZE(4)),
requestSeqNum INTEGER (1..65535),
nodeType NodeType,
conferencelD INTEGER(0..4294967295),
connectionlD INTEGER (1..4294967295),
callState ConnectionStatus,
originatingID OCTET STRING (SIZE(128)),
originatingAddress NetworkAddress,
destinationAddress NetworkAddress,
originatingGatekeeper ~ NetworkAddress,
destinationGatekeeper ~ NetworkAddress,
destination WanlInfo Wanlnfo,
callType CallType,
callMedia CallMedia,
bandWidth INTEGER (1..4294967295),
bytesSent INTEGER (1..4294967295),
bytesRcvd INTEGER (1..4294967295),
extensionCount INTEGER (0..65535)

}

Disconnect
Request

Gatekeeper 1 Gatekeeper 2 .

Client 1 Client 2

DisconnectRequest ::=SEQUENCE —-(DRQ)

{
yearOfSpec OCTET STRING (SIZE(4))
requestSeqNum INTEGER (1..65535),
connectionID INTEGER (1.. 4294967295),
terminalldentifier OCTET STRING (SIZE(128)),
gatekeeperldentifier OCTET STRING (SIZE(64)),
disconnectReason DisconnectReason,
extProtocol Type ProtocolType,
extReason INTEGER(0..65535)
reasonString OCTET STRING (SIZE(80)),
delayTime INTEGER (0..65535), - number of seconds
extensionCount INTEGER (0..65535)

}

This PDU may be sent between peer terminals or Gatekeepers, and under usual circumstances will be
issued by a terminal to its guardian Gatekeeper. It is assumed that if this PDU is sent from a Gatekeeper to
a terminal that the terminal will in turn, send a like PDU to its bound Gatekeeper. This will allow the tear-
down of associated, local logical channels.

DisconnectReason ENUMERATED
{

Hang Up (1),

Remote Hang Up (2).

Remote Abort 3),

Transfer 4),

Gatekeeper)

Undefined Reason (65535)
}

connectionID - ID of connection that is to be disconnected.

extProtocolType - this is used to specify the protocol family that supplied the reason codes in
extReason. (currently only Q.931)

extReason - this is the reason code as stipulated by extProtocolType.

reasonString - a string value that is optionally supplied by the caller as to why the disconnection has
been requested. 1f this PDU is from the Gatekeeper to a terminal, this can be ‘displayed’.

delayTime - a count in seconds before the actual disconnect will be initiated. This can be used by a
Gatekeeper when ‘forcing’ a terminal to disconnect.

20

Gatekeeper |
Client1 | € -> -

BandwidthRequest ::=SEQUENCE —~(BRQ)

{
yearOfSpec OCTET STRING (SIZE(4))
requestSeqNum INTEGER (1..65535),
terminalldentifier OCTET STRING (SIZE(128)),
connectionlD INTEGER (1.. 4294967295),
callType CallType,
callMedia CallMedia,
replyAddress NetworkAddress,
gatekeeperldentifier OCTET STRING (SIZE(64)),
bandWidth INTEGER (1..4294967295) -- measured in 1k bit increments
extensionCount INTEGER (0..65535)

}

requestSeqNum - this is a monotonically increasing number unique to the caller. It should be
returned by the called in any PDUs associated with this specific PDU.

terminalldentifier - this is a terminal/user specific string used to identify the caller/called. Itis
presumed that application software has made appropriate authentication and this can be ‘trusted’.

connectionID - 1D of connnection that is to have the bandwidth changed.

callType - Using this value, gatekeeper can make determine ‘real’ bandwidth usage.

callMedia - Can be utilized by gatekeepers and called to determine acceptance of connection.

replyAddress - this is the transport address to which the BCF, or BRJ is to be sent.

gatekeeperldentifier - this is a string value that is used to logically identify a calling/called
gatekeeper.

bandWidth - the NEW number of 1k BITS/sec requested for the connection.

Bandwidth
- Confirmation/Reject >
Client 1
Bandwidth Confirmation ::=SEQUENCE --(BCF)
{
yearOfSpec OCTET STRING (SIZE(4))
requestSegNum INTEGER (1..65535),
bandWidth INTEGER (1..4294967295) -- measured in 1k bit increments
extensionCount INTEGER (0..65535)
}

requestSeqNum - This should be the same value that was passed in the BRQ by the caller.
bandWidth - the maximum that might be offered with a new BRQ.

21

Bandwidth Reject ::=SEQUENCE -(BRJ)

{
yearOfSpec OCTET STRING (SIZE(4))
requestSeqNum INTEGER (1..65535),
rejectReason BandRejectReason,
)
BandRejectReason ENUMERATED
{
Not Bound 1),
Invalid ConnectionID (2),
Invalid Permission (3),
Request Denied 4),
Invalid Revision (5),
Undefined Reason (65535)
}

Nodes are typed into four broad categories: Gatekeepers, Gateways, MCs, and terminals. Different types
may be returned within the list supplied in the NRL. In all cases, the responding node (that issuing the
NRL; currently only Gatekeepers) will include their address information. It should be noted that all
information in NodeEntry may not be relevant depending on the terminal type.

A protocol for the discovery and tracking of gatekeeper/gateway/mc/terminal nodes is beyond the scope of
this specification. One possibility is that gatekeepers use a ‘hello’ mechanism (perhaps a NLR containing
only themselves) and cache this along with any terminal registrations. For example, gatekeepers may age
out cached remote node information if a configurable number of periods have passed without receiving a
NRL. :

1. Node List Request (NLR). Any gatekeeper can issue this broadcast (or multicast) at any time. All
gatekeepers receiving the request will respond with their gatekeeper address information and a list of
all other known nodes (NRL).

2. Node Response List (NRL). This can be sent point to point in response to a received NLR. It may
also be periodically broadcast (or multicast).

Gatekeeper 1 Node List Request >

NodeListRequest ::=SEQUENCE --(NLR)

{
yearOfSpec OCTET STRING (SIZE(4))
requestSeqNum INTEGER (1..65535),
gatekeeperldentifier OCTET STRING (SIZE(64)),
gatekeeperAddress NetworkAddress,
nodeType NodeType
extensionCount INTEGER (0..65535)

}

22

Gatekeeper | —Diode List Response

NodeResponseList :=SEQUENCE ~-(NRL)
{
yearOfSpec OCTET STRING (SIZE(4))
requestSegNum INTEGER (1..65535),
responseStatus ResponseStatus
gatekeeperldentifier OCTET STRING (SIZE(64)),
nodeList SEQUENCE SIZE(1..256) OF NodeEntry,
extensionCount INTEGER (0..65535)
)
ResponseStatus ENUMERATED
{
Success 0),
Not Supported m,
Unknown Node Type),
Invalid Revision (5),
Undefined Status (65535)
}
NodeEntry =SEQUENCE
{
nodeldentifier OCTET STRING (SIZE(64)),
nodeSeqNum INTEGER (1..65535)),
nodeAge INTEGER (1.. 4294967295),
nodeAddress NetworkAddress (SIZE(3)), -- one per transport
nodeType NodeType
}

8. Other Considerations

8.1 Gatekeeper to Gatekeeper Information Exchange

The gatekeepers will maintain information about other gatekeepers in the enterprise. This is done
primarily for presenting a list of gatekeepers to the admin to allow for remote control and management.

We are concerned that we not reinvent the wheel. Gatekeepers should be manageable in the enterprise via
SNMP. There appears to be no standardized method for node discovery in SNMP. SNMP manageable
entities are discovered via “Hello” broadcasts and ARPs(TCP/IP specific solution). Further investigation
required here. ' :

23

Gatekeeper address information is exchanged. Optionally gateway/MC information may also be
exchanged. The capability to keep gateway information private should be provided. Note that client
information is not included. Client information will be exchanged during normal operation (described in
section 4). There are two PDUs for accomplishing this information exchange:

1. Node List Request (NLR). Any gatekeeper can issue this broadcast (or multicast) at any time. The
NLR will specify whether gatekeeper or gateway information is requested. In the event of a
gatekeeper list request, all gatekeepers receiving the request will respond with their gatekeeper address
information and a list of all other known gatekeepers (NRL). In the event of a gateway list request, the
gatekeepers receiving the request may respond with their gateway address information and a list of all
other known gateways.

2. Node Response List (NRL). This can be sent point to point in response to a received NLR. It is also
periodically broadcast (or multicast). The periodical interval shall be configurable (default = 3 hours).

Gatekeepers will age out cached remote gatekeeper information if a configurable number of periods
(default = 4) have passed without receiving a NRL (default = 12 hours).

When a gatekeeper is first activated, it sends an immediate NRL broadcast (or multicast) which contains
just its own address. This is used as a notification that a new gatekeeper has joined the enterprise. This is
also used for identifying rogue conferences (see below). It then sends a NLR and caches the information
returned in the point to point NRLs with the other gatekeeper and gateway information.

NOTE: The gatekeeper broadcast is on a different port than the client broadcast (see section 3.1). Itis
strongly recommended that IT organizations configure their routers to forward this broadcast (versus
blocking the client broadcast).

8.2 Rogue conference discovery

If both terminals are bound to gatekeepers, they send unsolicited status (SRR) every 5 minutes to their
gatekeepers for the duration of the conference. If one or both terminals are not bound to a gatekeeper they
cannot send SRRs.

When a new gatekeeper is started, it sends a broadcast (or multicast) announcing its presence. Unmanaged
terminals that are in a conference will detect this broadcast (or multicast) and start sending unsolicited
status messages to the new gatekeeper. These SRR messages will identify the conference as a “Rogue”. It
is up to the gatekeeper what action to take upon discovering rogue conferences.

A gatekeeper can send a status request (SRQ) at any time to a client. The client will respond with
an immediate SRR. This allows an updated snapshot of conference activity.

24

