ITU Telecommunication Standardization Sector
Study Group 15
Experts Group for Video Coding and Systems
in ATM and Other Network Environments

Document AVC-802
14 September 1995
Version 3

Source: Rapporteur (Sakae OKUBO)

Title: Open Issues towards the Yokosuka Meeting

Purpose: for action

This is a list of items which require contributions before the Yokosuka meeting.

- 1. H.310 (see AVC-746 for the current text)
- 1) Difference between B-ISDN and ATM LAN

We are going to define RAST-P and RAST-L depending on the network environments. Where is the technical difference between public networks and ATM LANs? For example,

- transmission clock characteristics
- signalling
- policing
- charging

This question is also relevant to the possible scenarios for expanding broadband audiovisual communication terminals. Which will be the driving force?

- dedicated terminal
- extension of N-ISDN terminal
- extension of PC/WS
- extension of STU (television receiver)
-

What will be the likely network configuration which accommodate the terminals?

2) Relationship between RAST and ROT/SOT

The SG15 Experts Group has given priority to technologies for realizing conversational systems (RAST), and trying to harmonize with distributive or retrieval systems (ROT/SOT). The ATM Forum and DAVIC are taking the other approach. We need a neat solution to make RAST function as ROT as well. Particularly the relationship between H.245 and DSM-CC need be clarified.

- call/session management
- C&I signals
- 3) Review/update of call setup and logical channel setup procedures in Figure 2 for complete pictures of the communication phases.

Clarify how to use toolkit Recommendations ($\rm H.222.0, H.222.1, H.245, Q.2931, etc.$). cf AVC-769.

4) Definition of transfer rate capability; quantization of bit rates

nx64 kbit/s is sufficient? Further quantization is required from implementation point of view?

- 5) Syntax for video frame synchronous C&I signals
- 6) Start up bitrate(s) <9.1/AVC-743R>

For example, procedures to start with something like 64 kbit/s and then extend it to the final bitrate such as 6 Mbit/s.

7) Relationship between terminal type and its attributes

Review/update Table 2/H.310 which indicates mandatory and optional functions for each terminal type.

2. H.222.0, H.262

- 1) Check whether the H.222.0 final version incorporated the items in Annex A to AVC-709; apply the defect report if necessary <4.1/AVC-743R>
- 2) All the defects need be listed and corrected.
- 3. White contributions (H.222.1, H.245, H.321, H.322)

Known errors should be corrected at the November SG15 meeting.

4. H.222.1

- 1) Security aspects; encryption, conditional access
- 2) Review of PCR aware mapping between TS packets and AAL SDU (cf. ATMF resolution at the August meeting)
- 3) Conflict with default PID values with other applications (DVB, ATV, ...)

Can this be a problem? If so, how should it be solved?

- unique identification and its registration?
- identification by the H.310 manager?

5. H.245

1) Definition of MPEG audio capabilities

See Eskild Nielsen's message dated August 7.

6. Verification tests for H.222.1 and H.245

- 2 -

Document AVC-802 (Version 3)

^^^^^^

- 1) Bitstream exchange and verification by simulation
- 2) Hardware verification
 - logical channel signalling in particular
 - from call setup to teardown for SVC
 - cooperation with the LBC group

These tests should be materialized.

7. H.222.2 (RTI)

- 1) Clarification of the mystery section 3.3
- 2) MPEG will make it Technical Report (not International Standard) without t_jitter values. Can this be a problem for ITU-T?

8. H.321

- 1) New H.221 BAS codes for 2B communications using a single VC?
- 2) Consideration for ATM LAN environments

9. Draft H.323, H.22Z

See Sections 8.2, 8.3 and Annex 11 of AVC-800R.

- Confirmation of the usage of RTP/RTCP as opposed to either a new protocol or the definition of H.22Z as being above RTP/RTCP.
- 2) Conclusion on how to make use of RTP/RTCP, and resolution of issues related to the ITU-T's relationship to IETF.
- 3) Additions to H.245
- 4) Gatekeeper/Gateway/Terminal Control PDU structure
- 5) multi-cast operations and their possible impact on H.22Z control PDUs
- 6) LAN addresssing issues
- 7) What the default(mandatory) modes of LAN operation are, i.e. centralized vs distributed audio mixing, centralized vs. distributed video switching.
- 8) Method of H.261 packing (MB, GOB, or full frame). Raises issue of possible conflict with RTP, which is now suggesting MBs.

- 9) Transmission of T.120 and other data
- 10. Second phase work items
- 1) Verification of the H.310 total system
- 2) Interworking between different H-series terminals accommodated in different networks
- 3) Multipoint systems
- 4) VBR communications
- 5) Questions for the next study period
- 11. Liaison with other groups
- 1) Study Group 13 (AVC-803, AVC-804)
- error multiplication due to dummy information insertion when
 FEC withoug interlaeving is used and a cell loss happens
 - corrupted data deleivery option for AAL5
- 2) Study Group 11 (AVC-806)
- $\ -$ requirements for the common routing of multiple connections
- or upper bound for the differentinal delay between such

connections

- solution to terminal protocol identifictaion (SG15 pointer +
 - SG15 high layer information*)
- * Terminal protocol identification + Multiplexing Capabilities
- 3) MPEG and Study Group 11 (AVC-805, AVC-807 to be published)
 - mechanism to accommodate resource/correlation ID
- 4) Study Group 8 (AVC-808)
 - Protocol stacks for H.245 and T.120-series data

References

- [1] AVC-752 Open Issues toward the Stockholm meeting (Rapporteur), March 1995
- [2] AVC-800R Report of the Haninge meeting (Rapporteur), May 1995

END