ISO/IEC JTC1/SC29/WG11 MPEG93/ 407 March 1993

Telecommunication Standardization Sector

Study Group 15

Experts Group for ATM Video Coding (Rapporteur's Group on Part of Q.2/15)

Document AVC-464 March 23, 1993

SOURCE

: Japan

TITLE

: Relation between MPEG-2 transport mux and ATM/AAL

PURPOSE

: Information and Discussion

Relevant sub-group: System

1. Introduction

MPEG-2 system has two muxes. One is program mux in which elementary bitstreams such as video and audio are multiplexed using a same SCR (System Clock Reference). The other is transport mux in which several programs with independent SCRs are multiplexed. This document discusses whether ATM/AAL can take place of transport mux or not.

Note; Consideration of program mux (MPEG-1 Systems) as multimedia multiplexing for conversational communication services is done in another document. (AVC-463)

2. Transport packet syntax

Transport packet syntax is now under discussion. One example is described below[1]. Transport packet has a constant length which is determined by application. One transport packet contains at most one program packet. It means that the program packet headers occur immediately after the transport packet headers [2] *1.

*1; Objections still exist.

One example of transport packet;

TRANSPORT PACKET STRUCTURE

PSC = Packet Start Code (8 bits)

PREFIX = The Packet Header (3 or 4 bytes)

PRI = Priority Indicator (1-3 bits)

PEI = Packet Error Indicator (1 bit)

ECF = Encryption Control Flag (2 bits)

PCNT = Packet Sequence Counter (4-6 bits)

AFT = Adaptation Field Type (4-6 bits)

PID = Packet ID (12-16 bits)

AF = Adaptation Field (8*n bytes)

SCR+PCR+MSKID+CW (Example)

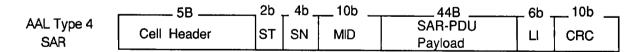
PCR = Program Clock Reference (SCR in MPEG-1 Systems)

MSKID = Mask ID?

CW = Control Word

PAYLOAD = Elementary stream data to be transported (8*n bytes)

TR	A	N!	ςp	ORT	PACKET	STR	TT	CTI	IRE


P	SC PREFI	X AF		PAYLOAD				Ī
TRA	ANSPORT F	REFIX S	TRUCTUR	.Е				
I P	RI PEI	ECF	PCNT	AFT		PID		1
	APTATION I	FIELD ST	RUCTURE	E (Examp	le)			
ī	SCR	1	PCR	1				
SCI	R+PCR+CW							
1	SCR	1	PCR		MSKID	CONTROL	WORD	ī

3. Relation between transport mux functions and ATM/AAL functions

One example of relation between transport mux functions and ATM/AAL functions is shown below. When transport packet length varies application by application, LI in SAR is useful. ATM/AAL type 4 (SAR) can cover almost all transport mux functions.

Transport Packet Syntax Candidate Syntax in ATM/AAL PCS(Packet Start Code) : Cell boundary **PREFIX** PRI = Priority Indicator (1-3 bits) : CLP = Cell Loss Priority (1bit; ATM header) : CRC = Cyclic Redundancy Check PEI = Packet Error Indicator (1 bit) ECF = Encryption Control Flag (2 bits) : MID = Multiplex ID (ATM header or SAR header)*1 PCNT = Packet Sequence Counter (4-6 bits) : SN = Sequence Number (4 bits; SAR header) AFT = Adaptation Field Type (4-6 bits) : ST = Segment Type(2 bits; SAR header) ? *2 PID = Packet ID (12-16 bits) : VPI/VCI = Virtual Path ID / Virtual Channel ID or MID = Multiplex ID (ATM header or SAR header) **AF** :?

^{*2;} ST can only indicate existence of program packet headers.

4. Conclusion

ATM/AAL type 4 (SAR) can cover almost all transport mux functions which are currently considered. Further studies are necessary whether there are any other functions which are not covered by ATM/AAL functions.

^{*1;} MID is originally for multiplexing but may be used for this encryption control flag purpose.

^[1] Tony Wasilewski; MPEG Transport Packet Structure, MPEG Systems ad hoc, e-mail, 5 Mar 1993.

^[2] Sandy MacInnis; Comments on layered structure and Rome agreements, MPEG Systems ad hoc, e-mail, 8 Mar 1993.