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1 Introduction

A difficulty arises when implementing leaky prediction that is caused by the finite precision of the digital
filter used to generate the prediction error. This is independent of the multiplication method in the
leak-multiplier. We describe the problem, propose two solutions that completely eliminate this difficulty,
and recommend that the latter solution be incorporated into the MPEG-2 syntax.

Throughout the description, we ignore signal quantization effects. While the problem of finite pre-
cision remains for more general signals, we assume the original signal is constant in space and time for
illustration purposes. Furthermore, we assume that there has been a channel change which resets the
frame memory at the decoder to zero and that the frame memory at the encoder has converged to its
correct value prior to the channel change.

Figure 1 shows a simplified block diagram of encoder and decoder prediction loops, assuming the
value 128 has already been subtracted from the input signal z,. The encoder generates the prediction
error to be sent to the decoder by

Y =T — Tn[al't—ll,

where @ = 1 — 1/2” is the leak factor, and T}, (] denotes the truncation operation that eliminates the
least significant n bits. Truncation (or rounding) is necessary because input pixels to the DCT can
contain no more than 9 bits of precision per pixel. However, the output of the multiplication az,_, is
+ n bits, and the extra n bits cannot be transmitted to the decoder. The subscript ¢ can be either a

9 spatial or a temporal index. The decoder reproduces the signal

we = Y + Tnfow,—4],

to which it adds 128 to get the output signal.

If the input z; is constant in the index ¢, then the prediction error y; will also be constant. Therefore,
the decoded signal w; will build up until it reaches a steady-state value that depends only on y,. As a
result, a range of input values are all mapped into the same steady-state output value at the decoder.
This is illustrated in Table 1 when a = 15/16, both for floating-point multiplication with truncation as
described in appendix L (core experiment 6) and fixed-point multiplication implemented with shift-and-
subtract. (The limit cycle also exists if rounding is used instead of truncation.) The problem becomes
more significant as o approaches 1, since 2" levels are mapped into a single value.




Floating point shift & subtract
Input range Inpui range
e+ 128 Y | W+ 128 z+ 128 Yy | we+128
0-151}-8 0 0-151]-8 0
16 -31 | -7 16 16 -31 | -7 16
32-47 | -6 32 32-471]-6 32
48-63 | -5 48 48 - 63 | -5 48
64-79 | -4 64 64-79 | -4 64
80-95 | -3 80 80-95 | -3 80
96 — 111 | -2 96 96 — 111 | -2 96
112 -127 | -1 112 112-127 | -1 112
128 | 0 128 128-143 | 0 128
129 -144 | 1 129 144 -159 | 1 144
145 - 160 | 2 145 160 - 175 | 2 160
161-176 | 3 161 176 - 191 | 3 176
177-192 | 4 177 192 -207 | 4 192
193-208 | 5 193 208-223 | 5 208
209 -224 | 6 209 224 -239 | 6 224
225-240 | 7 225 240-255 | 7 240
241 -255 | 8 241

Table 1: Limit cycles with a« = 15/16

The limit-cycle effect is most easily seen after a channel change in a still image with a leak factor
fairly close to 1. For example, in still-flowergarden with o = 15/16, there is significant contouring
present in the sky, which remains even after 60 frames. This is demonstrated by D1 tape.

2 Two solutions to the limit cycle

We describe two solutions to the limit cycle, and compare their convergence given channel changing
and their noise performance. Both methods are equivalent to adding a signal that varies between 0 and
(2" —1)/2" after multiplication but before truncation. However, the methods differ in how they produce

this auxiliary signal.

2.1 Solution 1

The first solution uses error spectrum shaping (ESS) to eliminate the limit cycle in the digital filter that
generates the prediction error signal. (Note that this is similar to, but distinct from, error spectrum
shaping used in quantization (DPCM) systems.) A simplified block diagram is shown in Figure 2.

ESS generates the auxiliary signal using the n least significant bits from the previous truncated
signal. Therefore, at the encoder, the auxiliary signal is

re = Rplaze_y + -],

and the prediction error signal is
v = 2 — Tplaze—1 + re-d,



where the operation Ry[] keeps the remainder n bits. The decoder does the same basic operation, using
its own auxiliary signal,

st = Rpfowi—y + 5:-4],

with the reconstructed value
wy = Y + Tnloawi—y + 5:-1].

ESS can eliminate the limit cycle even if s; # r;.

ESS requires memory in the feedback loop for the prediction. One method of implementation uses
one n-bit memory location to store the remainder bits from the previous pixel. In this case, the subscript
¢ refers to spatial location. However, this can cause dynamic difficulties. For example, with o = 15/16,
if the spatially and temporally constant DC input is 40, then the prediction error signal will alternate
in value between -5 and -6. As a result, the 16*16 prediction error block will not only have a DC
component, but also a high frequency component.

Alternately, we could implement ESS using enough n-bit memory locations to store the remainder
bits for each pixel location in the image. However, this requires a significant amount of additional
memory, so it is not recommended.

2.2 Solution 2

The second solution eliminates the limit cycle by using a pseudo-random auxiliary signal. It is equivalent
to add an auxiliary signal that varies between 0 and 2" — 1 prior to the multiplication by «, as shown
in Figure 3. At the encoder,

¥ =z — Tpla(z-1 + b)),

and at the decoder
wy = Yo + Tnla(wi—g + b))

For example, suppose the input value is constant at 40, so z; = z;—; = —88. Then, when 0 < b, < 8,
Yt = —6, while when 8 < b; < 16, 3y, = —5, if @ = 15/16. Without adding in the signal b, the prediction
error y; = —6 always (for truncation with either type of multiplication).

The signal b; must be the same at the encoder and the decoder to ensure there are no limit cycles.
Therefore, it should be sent in the picture layer immediately following the leak factor. This requires an
additional 6 bits per picture since the maximum n = 6. Because b, is constant throughout the picture,
a DC input gets transmitted as successive DC values, with no additional high frequency components.
The subscript t is a temporal index.

The choice of the signal b; remains a subject of encoder design. However, a signal that works well is
a ramp signal with the bits reversed (the most significant bit becomes the least significant bit, etc.).

The D1 tape demonstrates that contouring in the flowergarden sky is removed using this solution.

2.3 Comparison

Both solutions completely eliminate the limit cycle given a DC input. However, their dynamic behavior
differs. We give two examples.

First, Table 2 shows the mean squared error between the coded image (at the encoder) and the recov-
ered image at the decoder after a channel change, using a still-flowergarden. Solution 2 converges faster
to the correct image than solution 1 particularly in the chrominance components, and has significantly
lower MSE than the case with limit cycles.

Second, Table 3 shows the SNR of sequences coded at 4Mbps without channel errors or channel
changes when coded using the three methods. Mobile and Flower were coded with M = 3 and a = 7/8,
while Bus and Hockey were coded with M = 1 and « = 15/16. Both solutions improve the SNR with
errors, although the SNR with solution 2 is marginally better than with solution 1.



Frames | With limit cycles | Solution 1 | Solution 2
8838 (y) | 9761 (y) | 9651 (y)

40 31.7 (cb) 6.3 (cb) 3.5 (cb)
24.6 (cr) 3.5 (er) 1.1 (cr)

3032 (y) | 1087 (y) | 8.82(y)

60 28.7 (cb) 3.1 (cb) 0.5 (cb)
23.6 (cr) 2.6 (cr) 0.2 (cr)

Table 2: Mean Squared Error after channel change

Sequence | With limit cycles | Solution 1 | Solution 2
Mobile 28.02 28.06 28.07
Flower 28.91 28.93 28.94

Bus 28.35 28.44 28.44
Hockey 36.44 36.53 36.58

Table 3: SNR of sequences without channel effects

3 Recommendations

Because the limit cycle problem appears with both floating-point multiplication and shift-and-subtract
multiplication, we suggest that the shift-and-subtract multiplication be adopted for ease of implemen-
tation. Furthermore, to eliminate the limit cycles, we suggest that solution 2 be used.

For core experiments, the signal b; should be a bit-reversed ramp. The following pseudo-code can
be used once per picture to generate the current value of b;, where ¢ is now a time index. The value of
the variable ramp is initialized once to zero at the beginning of the encoding process.

ramp++;

ramp %= 64;

bt=0;

i=ramp;

for (k=0; k<n; k++) {
bt = (bt<<1) + (i%&0x01);
i = i>>1;

}

The variables bt and i are unsigned characters and k and ramp are integers. The variable bt contains
the value of the signal b;. Note that while ramp varies from 0 to 63, bt will vary from 0 to 2™ — 1.
The leak factor and value of the signal b; should be transmitted in the picture layer for every P
picture. One appropriate location is after the chroma_postprocessing_type bit in the picture layer,
with the syntax shown below.
if (picture_coding type == 2) {
leak _factor
leak.signal b

}

3 wimsbf
6 wuimsbf
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Figure 1(a). Encoder with limit cycles
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Figure 1(b). Decoder with limit cycles

Figure 2(a). Encoder without limit cycles, solution 1
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Figure 2(b). Decoder without limit cycles, solution 1
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Figure £(a). Encoder without limit cycles, solution 2
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Figure l’l(b). Decoder without limit cycles, solution 2



