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Abstract

An understanding of cell loss characteristics is essential to design effective video codecs for ATM
networks. Cell loss models currently used within the CCITT SGXV Experts Group consider only
loss characteristics at the cell level. This implies that longer term characteristics of loss, which resuit
from longer term correlations in the video source rate, are ignored. This document considers longer
term characteristics which arise when streams from variable rate video codecs are statistically

multiplexed. From the results it is clear that these will have a significant impact on codec
performance.

1. Introduction

The Experts Group is considering the use of Variable Bit Rate (VBR) video coding to provide
higher quality than conventional constant bit rate (CBR) coded video for a given equivalent network
usage. However, to realise this advantage it is necessary to make use of statistical multiplexing of
. the variable rate sources to improve network utilisation. When statistical multiplexing is employed,
cell loss due to switch buffer overflow results. The average cell loss ratio (CLR) can be kept to
arbitrarily low levels by reducing network utilisation, however, to obtain reasonable network
utilisation and hence provide some gain from statistical multiplexing, cell loss must be non-zero.

In this document we use a simplified model of the video sources and the multiplexing process which
makes it possible to either calculate or determine by simple experiments various cell loss
characteristics. We present a number of useful measures including the average CLR, the average
congestion time (the length of time over which the offered rate is greater than the network capacity
and hence the cell loss ratio is high), the congestion time distribution and the average CLR during
congestion. These measures are extremely useful in the design of cell loss resilient variable rate

video codecs. Numerical examples calculated for statistically multiplexed video sources are
provided.

2. Results

A detailed discussion of the results, the assumptions which were made and the experiments
performed is given in the Appendix. In summary the main results are:

» Congestion which leads to high cell loss occurs in bursts.

* Bursts of high cell loss can last from several frames up to tens of frames, depending on
the correlation in the source statistics and the average CLR on the network.

* The duration of intervals with no cell loss depend almost in inverse proportion to the

average cell loss on the network. The average durations range from about 1 hour down
to about a second.

* During congestion, cell loss is very high and the level of the loss is only mildly
dependent on the average CLR on the network. Instantaneous CLRs of 0.01 are not
uncommon.

3. Conclusions

The model of cell loss currently being used within the Experts group [8] does not represent the long
term burst characteristics of cell loss which will result when VBR video sources are statistically
multiplexed. The analysis and experiments presented in this document indicate that, during intervals
of congestion which can last over several frames, cell loss can be of the order of 0.01. We believe

that VBR codecs should be tested under these cell loss conditions to ensure that adequate end to end
performance is achieved.
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Appendix. Detailed Discussion
A.l Source and Network Models

To investigate the cell loss characteristics, we assume a simplified model of both the sources and the
multiplexing arrangement in the network.

A.1.1 Source Models

In [3] it has been argued using experimental evidence from variable rate video codecs that the rate
distribution, in bits per frame, is approximately bell shaped and the auto-covariance of the bit-rate is
approximately exponental. This suggests that the statistical characteristics of bit-rate generation
from video codecs can be modelled as a discrete time first order autoregressive process (AR(1)).

The auto-covariance of an AR(1) process is exponential and can be written as C, = a*-C,, where
C, is the variance of rate and a is the model parameter. If we have N independent auto-regressive
sources with identical parameters (mean=g,, standard deviation=0, and a) then the model for the
multiplexed sources is also auto-regressive of order one with parameter a, mean givenby N -1, and
standard deviation given by vN - g,.

To demonstrate the accuracy of the AR(1) model we have examined the output of two different
variable rate video codecs. The first is the Alcatel real-time VBR codec, for which an extensive set
of rate data is available [4]. The second is based on the CCITT Rec. H.261 standard, applied to
video-conference source materiall[5]. Figure 1 shows the auto-correlation function for these
codecs. The first three plots are from the Alcatel codec while the second video phone plot is from
the H.261 based codec. Also included are exact exponential auto-correlation functions which apply
to the AR(1) model with different parameter values. From these results it can be seen that the auto-
correlation functions are not precisely modelled by a single exponential, except over short
segments. However, the exponential model with parameter of 0.975 is approximately correct for the
video-phone data, while values of about 0.98 and 0.99 are appropriate for the other two data setsZ.
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Figure 1. Auto-correlation function for VBR sources, along with the exponential model auto-
correlation for various values of the parameter a.

1The variable rate output was obtained by keeping the quantizer step-size within the codec fixed.

2There is some doubt about the validity of the Alcatel data since it contains a number of unexpected spikes which
suggest coder malfunctions. We have trimmed the data to remove these spikes in the current study.
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A.1.2 Network/Switch Model

In developing models of cell loss processes, it is useful to distinguish between cell scale congestion
and burst scale congestion [1,2]. Cell scale congestion is a result of the simultaneous arrival of cells
from different sources over a short period of time. Burst scale congestion occurs when the sum of
the rates of the sources is greater than the multiplexer capacity over a period much longer than the
inter-cell arrival time. With relatively small buffers in the multiplexer cell loss due to cell scale
congestion can be eliminated at the penalty of a non-zero, but acceptable delay [6]. For video
sources the output rate can be correlated over many frames. Therefore it is impractical to use

multiplex buffers to absorb the burst scale congestion, both due to the size of the required buffer
and the associated delay incurred [7].

In this document we assume that multiplex buffers have been dimensioned to absorb cell scale
congestion and consider purely burst scale congestion. This simplifies the analysis considerably

since it allows us to use a continuous flow model of the sources and the multiplexer and we can
assume that the multiplexer is memoryless.

Under the assumption of a memoryless multiplexer, the cell loss rate can be approximated as a
simple function of the total rate of the multiplex of sources. Under ideal conditions this loss
function, L(R), would be zero for total rates below the network capacity and then increase linearly
above the capacity with a slope of one [AVC-75],i.e.

LR 0, R<C
R®=1r-c, R>C
where R is the total rate of the multiplexed sources and C is the network capacity. The instantaneous
CLR is given by,
CLR, = LR)
R

The average CLR can be calculated as the average cell loss rate divided by the average cell
transmission rate. The expression for average CLR in terms of L(R), the probability density
function of the multiplexed sources p(R) , the average rate of the multiplexed sources, £, and the

variance of the multiplexed sources, 0z, is given in [AVC-75, AVC-106R] for both the general
case and the case where p(R) is a Gaussian density.

It should be noted that both the instantaneous.and average CLRs strictly represent the CLR present
in the multiplexer, and not the CLR experienced by individual sources. We make the assumption

here that these two figures are identical. Analysis described in [1] supports this assumption,
particularly in the case of identical sources.

Meanrate  [cLR=10? |CLR=10"° |CLR=10* |CLR=10"
(Mb/s)

0.384 381 359 344 323

1.0 140 129 120 109

4.0 31 26 23 19

Table 1. Numbers of sources which can be accommodated on a 150 Mb/s network, assuming that
the source standard deviation is equal to the mean3.

Table 1 shows the number of VBR sources which can be accommodated for different CLRs and
different source mean rate assumptions, assuming Gaussian distributed sources. It is worth noting

3Equal source mean and variance gives a variability which is typical of video material. It is approximately equivalent
to allowing a peak to mean ratio of 3.
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that the penalty, in terms of number of sources, incurred by going from a CLR of 10™ to a CLR of

10 varies from 17.4 % to 6 % depending on the source mean rate assumptions. Hence,
particularly for large numbers of sources, there is good reason to suggest that one can operate the
network at reasonably low average CLRs without sacrificing significant network utilisation.

A.2. Bursty Nature of Congestion

It should be fairly clear that the model assumptions which have been made lead to the conclusion
that cell loss occurs in bursts rather than being uniformly distributed over time. This is because the
rate of the VBR sources is correlated over time and therefore when it is high it will tend to remain

high for some period. The burstiness of cell loss is directly related to this correlation in the codec
output rate.

In developing video coding techniques which can operate in the presence of cell loss it is important
to understand both the frequency and the length of bursts of high cell loss, as well as the actual level
of cell loss which occurs during bursts. In the following analysis we consider these aspects
separately. This in itself makes the analysis an approximation since one should be considering the

joint distributions of burst lengths and cell loss levels, however this separation gives a useful first
approximation.

A.2.1 Burst length distribution

The burst length distribution is relatively straight-forward to determine analytically, unfortunately it
is difficult to evaluate the multiple integral which results and so it is not of much use practically.

Roberts, et al [2] have suggested approximating congestion as a two state Markov process, as
shown in figure 2.
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Figure 2. Two State Markov approximation to the congestion process. State O represents
uncongested and state 1 represents congested.

The parameters of this process can be estimated directly from the assumed models for the source.

We have
T 1 -2 Yy-a- Zj
—— 1-R| —=— |tdz
z‘=[1“27t { (“_az }
1-X(y)
where, X(.) is the standard normal distribution. Similarly,
7
1 ~1212 '}' —-a-2z
—e™" R —=|dz
z-J:- 2z ( 1- a2 }
Py = =="
X(7)

Of course, P, =1— B, and P, =1— Py, For this model the probability of exactly N consecutive

congested frames, given that congestion has commenced, is given by P(N) = (1-B,)Ry™ and
therefore

1n-

N-1 .
P(Burst 2 N / Burst) = 1_(1 _P“)z},l.l-l

i=1
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An equally straight-forward approach is to use experimental techniques with simulated data from an
auto-regressive source. The simulation of the cell loss is trivial and statistics can be collected rather
easily. Figure 3 provides the measured conditional distribution for a mean rate of 1 Mb/s, and for
different values of the parameter a. Also shown are the distributions obtained from the Markov
approximation. The approximation is reasonable accurate except when a approaches 1. As expected
the probability of getting long burst lengths increases with increasing a. The length which the
congestion interval exceeds with a probability of 0.1 is about 3 frames for @=0.9, 5 frames for
a=0.95 and about 12 frames for ¢=0.99. In the case of a=0.99 even congestion intervals of 25
frames (i.e. about 1 second) are quite likely. Space precludes us from including the results for other
operating conditions. However, the general trends are that the distribution widens with increasing
average CLR, and increasing number of sources, though it is not very sensitive to either.
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Figure 3. Burst length distribution as a function of the AR(1) parameter a. The thin lines represent
the Markov approximation.

A.2.2 Average Congestion Length

For the Markov approximation the average congestion length is simply 1/(1- Pn). Figure 4 plots
the measured mean congestion length for a range of different source bit-rates, average CLRs and
correlation parameters. Also plotted, for a parameter value of 0.95, are the estimated values using
the 2-state Markov approximation. The results are close enough to make it difficult to separate them

from the rest of the plots. We have found that the Markov approximation is very accurate over the
complete range of parameter values investigated.
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Figure 4. Average congested intervals for a range of conditions. The results from the 2-state
Markov approximation are plotted for g=0.95 as solid circles.
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As expected there is a clear dependency of average congestion interval on the correlation parameter.
There is also a dependence on the average CLR and smaller average CLRs lead to shorter average
congestion intervals. The dependency on average bit-rate (or number of sources mulaplexed) is less

significant though there is a clear trend showing more multiplexed sources leads to longer average
congestion intervals.

Also of interest are average lengths of uncongested intervals. Table 2 gives some typical figures.
Our results have indicated a trend for longer uncongested intervals when a larger number of sources
are multiplexed, the average CLR is lower and when the source bit-rate is more correlated. The
most significant variation is as a function of average CLR where the lengths vary roughly inversely

(at least to the same order of magnitude). That is for an average CLR=10"*° average uncongested
intervals are about two orders of magnitude greater than those for an average CLR=10"".

a CLR=102 |CLR=10" |CLR=10" |[CLR=10"°
0.9 15 76 627 38910
0.95 22 108 862 48780
0.975 32 152 1219 61350
0.99 50 239 2109 95230

Table 2. Average uncongested intervals (number of frames) for different average CLRs and
different correlation parameters. These figures are for a source mean rate of 1 Mb/s.

A.3. Cell Loss During Congestion

The instantaneous CLR distribution given congestion is determined by the rate distribution of the
multiplex of sources and the capacity of the network. That is

P(CLR,>X/R>C)=P(R>ZI/R>C)= 1], c=2
P(R>Z), <7
P(R>C)

where Z=C/(1-X). Figure 5.illustrates the instantaneous CLR distribution during congestion, for a
mean rate of 1 Mb/s and three different average CLRs. Interestingly the dependency on average
CLR is minor. Similarly the distribution shows little variation for changes in the number of sources,
with only a slight trend to widen with reducing numbers of sources. This result confirms the
observation made by Norros [1] who calculated the average CLR during congestion and observed it
was fairly independent of average CLR. The results do show that the CLR during congestion can be
quite high, regardless of the average CLR, with values of 0.01 being relatively common.

REFERENCES
1. L Norros and J.T. Virtamo, "Who Loses Cells in the Case of Burst Scale Congestion", ITC-
13, 1991, pp. 829-833.

2. JI.W. Roberts, J. Guibert and A. Simonian, "Network Performance Considerations in the
Design of a VBR Codec", ITC-13, 1991, pp. 77-82.

3. B. Maglaris, et al, "Performance Models of Statistical Multiplexing in Packet Video

Communications”, IEEE Transactions on Communications, Vol. 37, No. 7, July 1988, pp.
834-844.

4. W. Verbiest and L. Pinnoo, "A Variable Bit Rate Video Codec for Asynchronous Transfer
Mode Networks", IEEE Journal Select. Areas in Commun., vol. 7, pp. 761-770, June 1989.

5. W.B.S. Tan, N. Duong and J. Princen, "A Comparison Study of Variable Bit Rate Versus
Fixed Rate Video Transmission", Proc. ABSSS-91, Sydney, Australia, July 1991.

6. J. W. Roberts, "Variable-Bit-Rate Traffic Control in B-ISDN", [EEE Communications
Magazine, Vol. 29, No. 9, Sept. 1991, pp. 50-56.

AVC-296 6



7. W. Verbiest and L. Pinnoo, "The Imapct of the ATM Concept on Video Coding", IEEE
Journal on Selected Areas on Communications, JSAC-6, No. 9, Dec. 1988, pp. 1623-1633.

8. "Cell loss Experiment Specification", CCITT SGXV Experts Group for ATM Video Coding,
document AVC-197, January, 1992.

1 Nb/s, CLR=10t-6 ‘ ) 1 Mb/s, CLR=10t-4

1 Mb/s, CLR=10t-3

1.0 4 0 1 1.0 4 /
508 1 §os 1 %osl
F ¥ 3
=1} ] g
506 1 §08 1 cost
g ¢ :
S 9 3
0 04 19 0.4 1 @2 04
g 2| S |
To2 4 %02 4 <oz}
o B &

0.0 : S S 0.0 —_—l .« 1§ 0.0 . )

-8.0 -40 -20 0.0 -8.0 -4.0 -20 0.0 -8.0 -4.0 -20 0.0
Instantaneous log(CLR) (log(CL0)) Instantaneous log(CLR) (log(CLO)) Instantaneous log(CLR) (log(CL0))

Figure 5. Conditional distribution of the instantaneous CLR for different average CLRs.
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