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1 INTRODUCTION

This document gives a comprehensive description of the MPEG-2 Test Model (TM). This model is used in the
course of the research for comparison purposes.

In order to obtain results for comparison this document describes some techniques that are not a matter of
standardisation. Some of these techniques are of debatable value but are included to provide a common basis
for comparisons. In order to have comparable simulation results the methods described in this document are
therefore mandatory.

The readers are asked to give comments and corrections to remove ambiguous parts.

In several places this TM will be different from what is possible with CD 11172-2,
sections or paragraphs describing this are marked in the margin.
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2 GENERAL CODEC OUTLINE

A single loop structure is depicted in figures 2.1 and 2.2. The generic structure of the test model is based on
the following main issues:

input / output format CCIR 601
Pre- and post processing, as described in section 3.

Random access of coded pictures, which requires the definition of Group of pictures, as described in
Section 4 and 6.

Motion Vector search in forward and/or backward direction, as described in Section 5.

Prediction modes, forward, backward and bi-directional motion compensated, field or frame motion
compensation, as described in section 6.

DCT, on frames or fields as described in section 7
Entropy coding, as described in section 8.

4 Mbps and 9 Mbps target rate, including multiplexing and regulation, as described in section 9 an 10
respectively.

Scalable bit streams as described in Appendix D.
Extensions for purely field based coding are given in Appendix E.
Experiments for cell loss are given in Appendix F.

Experiments for compatibility are given in Appendix G.

2.1 Arithmetic Precision

In order to reduce discrepancies between implementations of this TM , the following rules for arithmetic

operations are specified.

(@) Where arithmetic precision is not specified, such as in the calculation of DCT transform coefficients,
the precision should be sufficient so that significant errors do not occur in the final integer values

) The operation / specifies integer division with truncation towards zero. For example, 7/4 is truncated
to 1, and -7/4 is truncated to -1.

(c) The operation // specifies integer division with rounding to the nearest integer. Half-integer values
are rounded away from zero unless otherwise specified. For example, 3//2 is rounded to 2 and -3//2 is
rounded to -2.

(@ Where ranges of values are given by two dots, the end points are included if a bracket is present, and

excluded if the 'less then' (<) and 'greater then' (>) characters are used. For example, [a..b> means
from ato b, including a but excluding b.
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Figure 2.1: Encoder Block Diagram

Figure 2.2: Decoder block diagram
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3 SOURCE FORMATS

This section gives a description of the Source Formats and their conversion from and to CCIR 601. For the
purposes of the simulation work, only the particular formats explained in this section will be used.

3.1 Source Input Formats

The SIF's consists of component coded video Y, Cb and Cr. The simulated algorithm uses two source input
formats for moving pictures. The differences are the number of lines, the frame rate and the pixel aspect
ratio. One is for 525 lines per frame and 60Hz, the other one is for 625 lines per frame and 50Hz.

The parameters for the so called active 4:2:0-525-format and active 4:2:0-625-format frames are:

4:2:0-525 4:2:0-625

Number of active lines

Luminance (Y) 480 576

Chrominance (Cb,Cr) 240 288
Number of active pixels per line

Luminance (Y) 704 704

Chrominance (Cb,Cr) 352 352
Frame rate (Hz) 30 25
Frame aspect ratio (hor:ver) 4.3 4:3

Table 3.1: Active 4:2:0 Formats

For compatibility with MPEG]1 or scalability a second set of formats is defined, the MPEG1 SIF. The
parameters for the so called active SIF-525 and active SIF-625 frames are:

SIF525 SIF625

Number of active lines

Luminance (Y) 240 288

Chrominance (Cb,Cr) 120 144
Number of active pixels per line

Luminance (Y) 352 352

Chrominance (Cb,Cr) 176 176
Frame rate (Hz) 30 25
Frame aspect ratio (hor:ver) 4:3 4:3

Table 3.2: Active SIF Format
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For compatibility with H.261 a third format is defined, the Common Intermediate Format (CIF). The
parameters for the so called active CIF are:

. CIF

Number of active lines

Luminance (Y) 288

Chrominance (Cb,Cr) 144
Number of active pixels per line

Luminance (Y) 352

Chrominance (Cb,Cr) 176
Frame rate (Hz) 30
Frame aspect ratio (hor:ver) 4:3

Table 3.3: Active CIF Format

When scalable extensions are used, a hierarchy of formats can exist, with the highest resolution equal to
the CCIR 601 Active 4:2:0 format, and with lower resolutions having either 1/2, 1/4, or 1/8, the number of
pixels in each row and column,

3.2 Definition of fields and frames

The CCIR 601 and the active 4:2:0 formats are both interlaced. A frame in these formats consists of two
fields. The two fields are merged in one frame. The odd lines are within one field the even lines in the other
field. There is a sampling time difference between the two fields. Let us define FIELD1 as the field
preceding FIELD2,

1. Video data is 50 (50 Hz) or 60 (60 Hz) fields per second. The first field is the odd field, and is
numbered field 1. The second field is the even field and is numbered field 2 and so on. So odd
numbered fields are odd fields and even numbered fields are even fields.

2. 50 Hz fields have 288 lines each, and 60 Hz fields have 240 lines each. The fields are considered to
be interlaced, and the first line of the first (odd) field is above the first line of the second (even) field
for both 50 and 60 Hz.

3. The field lines are numbered as if they are combined into a frame, and the numbering starts at one.

So, the first line of the frame, which is the first line of the first (odd) field is line 1. The second line
of the frame which is the first line of the second (even) field is line 2. And so on, so odd numbered
lines are in odd fields, and even numbered lines are in even fields.

4, For display of 50 Hz material, the 288 lines are the active 288 lines of that format. This will display
correctly since in that format, the first line of the first field is above the first line of the second field.

S. For display of 60 Hz material, the 240 lines are placed in a specific set of the 243 active lines of that
format. The first (odd) field is displayed on lines 21, 23, ..., 499, and the second (even) field is
displayed on lines 22, 24, ..., 500. The active lines 19, 501, and 503 of the odd fields and the active
lines 18, 20, and 502 of the even fields are displayed as black.
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3.3 Conversion of CCIR 601 to the Input formats

3.3.1 Conversion of CCIR 601 to the 4:2:0 format

Pre processing is applied to convert the CCIR 601 format to the 4:2:0 format. This is described in the
following.

First the signal is cropped from 720 luminance pels per line to 704 pels per line by removing 8 pels from the
left and 8 pels from the right. Similarly the 360 chrominance pels per line are cropped to 352 pels per line by
removing 4 pels from the left and 4 pels from the right.

Luminance: two fields are merged in their geometrical order to form a frame.
Remark: Some processing in the running of the coding scheme is however field based (DCT coding,
prediction); thus it is still needed to know for each line of pixels which field it originates from.

Chrominance: The following 7 tap vertical filter is used to pre-filter the FIELD1
[-29, 0, 88,138, 88, 0, -29] /256
Then, vertical sub sampling by 2 is performed.

The following 4-tap vertical filter is used to decimate the FIELD2:
[1,7,7,1)16
Then, vertical sub sampling by 2 is performed.

The two sub sampled chrominance fields are merged to form a frame. This is shown in figure 3.1.

Orlginal Flelds
Even

F1

Figure 3.1: 4:2:0 Chrominance sub sampling in the fields



5-May-92 Test Model 1, Draft Revision 1

Figure 3.2 : 4:2:0 Chrominance sub sampling in a frame

NOTE: The horizontal positions of the chrominance sample is wrong.

In figure 3.1 and 3.2 the following symbols are used:
the vertical position of the original lines

the vertical position of lines of the sub sampled odd ficld
the vertical position of lines of the sub sampled even field

3.3.2 Conversion of CCIR 601 to SIF

The CCIR 601 formats are converted into their corresponding SIFs by sampling odd fields and using the
decimation filter of table 3.4.

720
Fomm e, - - +
I I
I I
I I
I Y |
I [
| |
| I
I |
e i +
CCIR 601
525/625
360
b +
| | 480 +
| | /576 |
I g, v t----- > |
| | |
I [ !
I | +
LR R +
CCIR 601
525/625

0dd field only

360

e + 240 t-m-m---- +240
| | /288 | | /288
I [ [ I
| Fomooeoo- > | |
| | Horizontal| |
| | Decimation| |
| | Filter | |
e + R +

0dd field only SIF

180

+ 240 +----4+ 240 180
| /288 | | /288 +----+ 120
R >| +m---- > | | 144
|Horizontal | |vertical | |
|Decimation| |Decimationt----+
+ +----+Filter

SIF

Figure 3.3 Conversion from CCIR 601 into SIF
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The filter coefficients are depicted in table 3.4.

(29[ o] 88 J138] 8 [ 0 ]20] sse

Table 3.4 Decimation filter
Note: the odd fields contain the top most full line

3.3.3. Conversion of CCIR 601 to SIF Odd and SIF Even

The CCIR 601 formats are converted into their corresponding SIF Odd by sampling odd fields and SIF Even
by sampling even fields and then applying horizontal decimation files of Table 3.4 in each case.

T20
Odd Field
CCIR 601 RRRRRRAN
626/626 Even Feld Filter SIF Even
240 240
%650 1288 88
>
480 Horizontal ; Vartical
76 ‘ Docimati Y Deci
0Odd Fleld Filter Filter
Field 360 240 240
Sptit m8s 188 10 1
Horizontal o Vartical " : nu
. Deci
CCIR 601 Decimation SIF Even
case26 EconFlod  Filter Filter

Fig 3.4: Conversion from CCIR 601 into SIF Odd and SIF Even
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The CCIR 601 formats are converted into their corresponding HHR's by first decimating to SIF Odd and SIF
Even as in previous section, and then creating interlaced frames by alternating between lines of SIF Odd's and

SIF Even's.

720

CCIR 601
526/625

360

CCIR 601
526/625

720 240 360
1288
——-
: Horizontal
i r\ o~ 43
Odd Field Filter SIF 0dd
240 360
/288
—————
Horizontal
i Decimation
Even Field Filter SIF Even
240 240 180
/288 1288
——————
Horizontal Vertical G
Decimation Deci SIF Odd
Odd Field Filter Filter
360 240 240
1288 1288 180
Horizontal Vertical
: : Decimation Decimation SIF Even
Even Field Filter Filter

Fig. 3.5 Conversion from CCIR 601 into HHR
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3.3.5 Conversion of CCIR 601 to SIF Interlaced (SIF-1)

The CCIR formals are converted into their corresponding SIF interlaced by following the sequence of
decimation operations show in Fig. 3.6. The horizontal filter used for decimation is from Table 3.4. The
filter used for vertical decimation of odd fields is also from Table 3.4; for deciamton of even fields a new
filter is specified below.

120
/144

1 na sl

626/%626 Even Feld Decimation

240

180

1676 Odd Field Filter Filters

120
—
180 " 2] a4
Field 30 20 240 w0 120 . Field G
Split o 180 Me:
p E 1288 > 1288 - 144 n e b T
| : Horizontal Vertical 2| vertieal D
CCIR 601 : Decimation ] Decimati Decimati
526/625 EvenFela  Filtor Filters Filter

Fig. 3.6: Conversion from CCIR 601 into SIF Interlaced (SIF-I)

Horizontal Filter: Table 3.4
Vertical Filter:
QOdd Field Table 3.4
Even Field -4,23,109, 109, 23, -4

Note: The SIF-I interlaced images generated seem devoid of jerkiness but appear blurry. Better choice of
decimation filters needs further investigation.

3.4 Conversion of the Input Formats to CCIR 601

3.4.1 Conversion of the 4:2:0 Format to CCIR 601

Luminance samples of each 4:2:0 field are copied to the corresponding CCIR 601 field.
Chrominance samples are not horizontally resampled.

Vertical resampling of the chrominance is done differently on field 1 and field 2 because of the different
locations of the chrominance samples.

12
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In field 1, the chrominance samples in the CCIR 601 field are obtained by interpolating the chrominance
samples in field 1 only of the 4:2:0 format. Referring to line numbers defined in the 4:2:2 frame, samples on
lines 1, 5, 9 etc. are copied from the corresponding lines in the 4:2:0 field. Samples on lines 3, 7, 11 etc. are
interpolated by the even tap filter [1, 1]//2 from the corresponding adjacent lines in the 4:2:0 field.

In field 2, the chrominance samples in the CCIR 601 field are obtained by interpolating the chrominance
samples in field 2 only of the 4:2:0 format. Referring to line numbers defined in the 4:2:2 frame, samples on
lines 2, 6, 10 etc. are interpolated from the corresponding adjacent lines in the 4:2:0 field using a [1, 3)//4
filter. Samples on lines 4, 8, 12 etc. are interpolated by a [3, 1)//4 filter from the corresponding adjacent lines
in the 4:2:0 field.

3.4.2 Conversion of SIF to CCIR 601

A SIF is converted 1o its corresponding CCIR 601 format by using the interpolation filter of table 3.5.

720
360 720 e +
e + 240 R + 240 | |
| | /288 I | /288 | |
| Fo----- > | o > | Y | 480
| | Horiz | |Vertical | 576
| | Interp. | | Interp | |
t-------- + Filt  +-------------- + Filter |
R +
SIF 525/625
CCIR 601
360
180 360 +-----e-- +
180 120 +--~--4 240 Fommm-m- + 240 | |
+----+ /144 | | /288 | | /288 [ | 480
I t------- >| Fommemm - > | tommmmm-- > U,V | /576
[ | | |Horizontal | | Vertical] |
+----+Vertical| | Interp | | Interp | |
Interp +----+ Filter +------ + Filter | |
Filter +-------- +
SIF 525/625 CCIR 601

Figure 3.7: Conversion of SIFs to CCIR 601 formats

The filter coefficients are shown in table 3.6.

|-12] o140 256 [ 140 [ 0 [-12] /256

Table 3.5 Interpolation filter

Note: the active pel area should be obtained from the significant pel area by padding a black level around the
border of the significant pel area. :

13
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3.4.3 Conversion of SIF Odd and SIF Even to CCIR 601

SIF Odd and SIF Even are interpolated using interpolation filters of Table 3.5 and interlaced CCIR 601 is
created by merging of fields by alternating between lines of upsampled odd and even fields.

360 240

/288

Horlzontal
Interpolation
SIF 0dd Filter
240
1288
Horizontal
Interpolation
SIFEven  TUter
180 120
1144
Vertical
Interpolation
SIF Filter
0dd
180 120
/144
Vertical
=) Interpolation
SIF Filter
Even

720

240

720

240

180 940

Horizontal

Interpolation

Filter

180 240

| ro88

| Horizontal

o Interpolation

Filter

360

360

CCIR 601
240
360
/288
S —

480

1676
240
/288

CCIR 601

Figure 3.8:Conversion of SIF Odd and Even to CCIR 601
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3.4.4 Conversion of HHR to CCIR 601

HHR is split into SIF Odd and SIF Even, each of which are interpolated using interpolation filter of Table 3.5

and interlaced CCIR 601 is created by merging of fields consisting of alternating between lines of upsampled
odd and even fields.

240 720
/288

960

Horizontal
Interpolation
Filter

480
A7

240 720

Horizontal
Interpolation
Filter

CCIR 601

SIF Even

120 240 360
0w e B 240 s
| ] Vertieal g Horizontal 1288
A —
Intorpolation Interpolation
Rilter Filter
. 120 240
adi [ 88 - ] 20
HHR Lol :
526626 Horizontal - 1268 8
Interpolation CCIR 601
Filter Filter

Figure 3.9: Conversion of HHR to CCIR 601

3.4.5 Conversion of SIF interlaced to CCIR 601

SIF interlaced format is interpolated to CCIR 601 by following the sequence of operations shown in Fig. 3.9.
The horizontal filter used for interpolation is that of Table 3.5. The filter used for vertical interpolation of
odd fields is also that of Table 3.5; for vertical interpolation of even fields a new filter is specified below.

15
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720

360

Vertical

Filter

120
/144

180

240
/288

360

Vertical

Filter

Horizonta)

- | Interpolation

Filter

CCIR 601
626/526

CCIR 601
526828

Figure 3.10: Conversion of SIF interlaced (SIF-I) to CCIR 601

Horizontal Filter: Table 3.5
Vertical Filter:
Odd field: Table 3.5
Even field: -4, 40, 220, 220, 40, -4

Note: The upsampled CCIR 601 images seem devoid of jerkiness but appear quite blurry. Better choice of
interpolation filters needs futher investigation,

16
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4 LAYERED STRUCTURE OF VIDEO DATA

4.1 Sequence

A sequence consists of one or more concatenated Groups of Pictures.

4.2 Group of pictures

A Group of Pictures consists of one or more consecutive picture. The order in which pictures are displayed
differs from the order in which the coded versions appear in the bit stream. In the bit stream, the first frame in
a Group of Pictures is always an intra picture. In display order, the last picture in a Group of Pictures is
always an intra or predicted picture, and the first is either an intra picture or the first bidirection picture of the
consecutive series of bi-directional pictures which immediately precedes the first intra picture.

4.3 Picture
Pictures can be intra, predicted, or interpolated pictures (known as I-pictures, P-pictures, and B-pictures - see

section 6.1). The arrangement of pictures, in display order, in a Group of Pictures of this TM for the frame
coding mode is shown in Figure 4.1, In the figure frames 1-15 are part of a Group of Picture.

Interpolated Interpolated \’ Interpolated

Predicted Intra Predicted Predicted Intra

Figure 4.1 Structurc of a Group of Pictures in Frame Coding mode

Note: In pure field coding this structure will be different
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R L +
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Figure 4.2 Arrangement of Slices in a Picture in Field Coding mode
Note: In pure field coding this structure will be different
For the purposes of simulation, each frame consists of 30 or 36 Macro block Slices (MBS, see section 4.9),
4:2:0-525 has 30 MBSs and 4:2:0-625 has 36. These MBSs cover the significant pel area. The arrangement of

these MBSs in a frame is shown in figure 4.2.

4.3.1 Slices in a Picture - Compatibility Experiment 2 (Appendix G.2)

SIF Odd is MPEG-1 coded to produce MPEG-1 compatible constrained bitstream.
Decoded SIF Odd and SIF Even are used as compatible prediction of CCIR 601.

18
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4.3.2 Slices in a Picture - Compatibility Experiment 3 (Appendix G.3)

601 i

HHR is MPEG-1 coded to produce MPEG-1 compatible unconstrained bitstream.
Decoded HHR layer is used as compatible prediction of CCIR 601.

4.3.3 Slices in a Picture - Compatibility Experiment 4 (Appendix G.4)

SIF (of SIF-I) is MPEG-1 coded to produce MPEG-1 compatible constrained bitstream.
Decoded SIF (or SIF-I) is used as compatible prediction of CCIR 601.

19
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4.3.4 Slices in a Picture - Hybrid Experiment 1(a) (Appendix 1.3)
i :|

‘CCIR 601

GO 601

SIF (or SIF-I) is MEPG-1 coded but resulting bitstream is arranged to form Scale 4 and Scale 8 substreams.
Decoded SIF (or SIF-I) layer is used as spatial prediction of CCIR 601.

4.3.5 Slices in a Picture - Hybrid Experiment 1(b) (Appendix 1.3)

COIRGOY =

20
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SIF Odd is MPEG-1 coded but resulting bitstream is arranged to form Scale 4 and Scale 8 substreams.
Decoded SIF Odd layer is used to predict SIF Even layer, SIF Odd and SIF Even are used as spatial
prediction for CCIR 601.

Note: The given slice multiplexing structures may not work for all picture (fram field) structures that can be
selected in compatibility and hybrid experiments. These multiplexing structures should however be used as a
guide if particular variation of an experiment requires a new structure.

4.4 Macro block Slice

A Macroblock Slice consists of a variable number of macroblocks. A Macroblock Slice can start at any MB
and finish at any other MB in the same frame. In this Test Model, a Macroblock Slice consists of a single row
of 44 Macroblocks, beginning at the left edge of the picture, and ending at the right edge.

e e e e et R i el R e S

| 1] 21 31 41 51 6| | 41 | 42 | 43 | 44 |
e i e i I A Tt T

Figure 4.3: Test model Macroblock Slice Structure

When scalable extensions are used (Annex D), the Slice layer may contain Macroblocks of resolution lower
than 16x16.

4.4.1 Slave Slice (scalable extension)

Slave slices are layers of Slave macroblocks which are spatially co-located with the Macroblocks in the
Slice layer.

4.5 Macroblock

A 4:2:0 Macroblock consists of 6 blocks. This structure holds 4 Y, 1 Cb and 1 Cr Blocks and is depicted in
figure 4.4a.

R
| 1| 2 | +---+ +---+
+---+---+ [ 5 | | 6 |
| 3 | 4 | +---+ +---+
F---4---+

Y Cb Cr

Figure 4.4a: Gencral 4:2:0 Macroblock structure
When the picture format is 4:2:2, a Macroblock consists of 8 blocks.

Sl et T Rt I T s
2121 | 51 | 7|
t---t---+ -4 ---+
| 31 41 | 6] | 8|
+t---+---+  +---+  +---4

21
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Y Cb Cr
Figure 4.4b: 4:2:2 Macroblock structure

The internal organisation within the Macroblock is different for Frame and Field DCT coding, and is depicted
for the luminance blocks in figure 4.5 and 4.6. The chrominance block is in frame order for both DCT
coding macroblock types.

8 8
7777777727207 277777777

I !

PALLIZL7Z0777277)

, S I—
8 S — —

—_— .
N —

(7777772777227
777777777272

Figure 4.5 : Luminance Macroblock Structure in Frame DCT Coding

8 8
7////////////////27////////////////4/

Jrrizzzzzzzzzzzzzz77z277Z77z2
7777770077777
WV/////////////////
00020000005, 70000000005200004

74

iz

Figure 4.6 : Luminance Macroblock Structure in Field DCT Coding

When scalable extensions are used (Annex D), Macroblocks may contain scaled_blocks of resolution lower
than 8x8.

4.5.1 Slave_macroblock (scalable extension)

Slave_macroblocks are layers of slave_blocks which are spatially co-located with the scaled_blocks in
the Macroblock layer.

22
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4.6 Block

A Block consists of an array of 8x8 coefficients. Figure 4.7 shows coefficients in the block in zigzag scanned
order.

L e b D e e S

| 1] 2| 6] 7]115]16]28]|29| +------ > increasing cycles per
R At el LR L e S | picture width

| 31 5] 8114|17127|13043] |
D e i e e e 5 |
| 41 9]113]|18|26]31(42]44| I
R e e A it il L T S v/
110112]19|25|32(41|45[54|

Rl it stk s e e il e increasing cycles per
[11]20]24133]40|46]53|55| picture height
D e e e e e e
121123134139|47152|56(61]

D R e e L LT e S
[22]135138148]51|57]|60]62|

e e e e sl AL L P S
|36]137]149]|50]58|59]63|64 |

e il el R LR

Figure 4.7: Block structure
4.6.1 Scaled_block (scalable extension)

When scalable extensions are used (Annex D), a scaled_block is used instead of a block. A scaled_block
may consist of an array of NxN coefficients, where N is 1, 2, 4, or 8",

4.6.2 Slave_block (scalable extension)
Slave_blocks are arrays of coefficients, which are used to enhance the spatial or amplitude resolution of the

coefficients in the corresponding Scaled_block layer. Figure 4.8 shows the Scaled_block and
Slave_block structures that are possible in a scalable bit stream.
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5 MOTION ESTIMATION AND COMPENSATION

To exploit temporal redundancy, motion estimation and compensation are used for prediction.

Prediction is called forward if reference is made to a frame in the past (in display order) and called backward
if reference is made to a frame in the future. It is called interpolative if reference is made to both future and
past.

For this TM the search range should be appropriate for each sequence, and therefore a vector search range per
sequence is listed below:

Table Tennis: 15 pels/frame

Flower Garden 15 pels/frame

Calendar *15 pels/frame
Popple +15 pels/frame
Football +31 pels/frame

PRL CAR 131 pels/frame [NOTE: isn't 63 pels/frame more appropriate?]

A positive value of the horizontal or vertical component of the motion vector signifies that the prediction is
formed from pixels in the referenced frame, which are spatially to the right or below the pixels being
predicted.

5.1 Motion Vector Estimation

For the P and B-frames, two types of motion vectors, Frame Motion Vectors and Field Motion Vectors, will
be estimated for each macroblock. In the case of Frame Motion Vectors, one motion vector will be generated
in each direction per macroblock, which corresponds to a 16x16 pels luminance area. For the case of Field
Motion Vectors, two motion vectors per macroblock will be generated for each direction, one for each of the
fields. Each vector corresponds to a 16x8 pels luminance area.

The algorithm uses two steps. First a full search algorithm is applied on original pictures with full pel
accuracy. Second a half pel refinement is used, using the local decoded picture.
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5.1.1 Full Search

A simplified Frame and Field Motion Estimation routine is listed below. In this routine the following relation
is used: ‘
(AE of Frame) = (AE of FIELD1) + (AE of FIELD2)

where AE represents a sum of absolute errors.

With this routine three vectors are calculated, MV_FIELD1, MV_FIELD2 and MV_FRAME.

Min FIELD1 = MAXINT;
Min FIELD2 = MAXINT;
for (y = -YRange; y < YRange; y++) {
for (x = -XRange; x < XRange; x++) {

AE FIELDl = AE Macroblock(prediction mb(x,y),
lines_of FIELD1 of current mb);
AE FIELD2 = AE Macroblock(prediction mb(x,y),
lines_of FIELD2_ of current mb);
AE FRAME = AE FIELD1 + AE_FIELD2;
if (AE FIELD1 < Min FIELDI) ({
MV _FIELD1 = (X,y);
Min FIELD1 = AE FIELD1;
}
if (AE_FIELD2 < Min FIELD2) {
MV_FIELD2 = (X,Yy);
Min FIELD2 = AE_FIELD2;
}
if (AE_FRAME < Min FRAME) {
MV_FRAME = (X,Y);
Min FRAME = AE FRAME;

The search is constrained to take place within the boundaries of the significant pel area. Motion vectors
which refer to pixels outside the significant pel area are excluded.

5.1.2 Half pel search

The half pel refinement uses the eight neighbouring half-pel positions in the corresponding local decoded
field or frame which are evaluated in the following order:

1
4
6

N O N
o« W W

where 0 represents the previously evaluated integer-pel position. The value of the spatially interpolated pels
are calculated as follows:

Sx+0.5,y ) = (S y)+S(x+1,y))//2,
S(x ,y+0.5) = (SELY+SX,y+1)/2,
S(x+0.5,y+0.5) = (SCX,Y)+S(x+1,y)+SX,y+1)+S(x+1,y+1))//4.

where x, y are the integer-pel horizontal and vertical coordinates, and S is the pel value. If two or more
positions have the same total absolute difference, the first is used for motion estimation.
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5.2 Motion Compensation

Motion compensation is performed differently for field coding and for frame coding. General formulas for
frame and field coding are listed below.

Forward motion compensation is performed as follows:
S(xy) =S1(x + FMVx(x,y), y + FMVy(x,y))

Backward motion compensation is performed as follows:
S(xy) =SM+1(x + BMVx(xy), y+BMVy(x,y))

Temporal interpolation is performed by averaging,

S(x.y) = ( S1(x + FMVx(x,y) ,y+FMVy(x,y)) +
SM+1(x + BMVx(x.y), y + BMVy(x,y)))//2

A displacement vector for the chrominance is derived by halving the component values of the corresponding
MB vector, using the formula from CD 11172:

right_for = (recon_right_for/ 2) >> 1;

down_for = (recon_down_for / 2) >> 1;

right_half_for = recon_right_for/2 - 2*right_for;

down_half_for = recon_down_for/2 - 2*down_for;

5.2.1 Frame Motion Compensation

In frame prediction macroblocks there is one vector per macroblock. Vectors measure displacements on a
frame sampling grid. Therefore an odd-valued vertical displacement causes a prediction from the fields of
opposite parity. Vertical half pixel values are interpolated between samples from fields of opposite parity.
Chrominance vectors are obtained directly by using the formulae above. The vertical motion compensation is
illustrated in figure 5.1.

Reference Frame
Vertical_ MV =0@ |
ps3 |
| oMV =1
p S50 |

Figure 5.1: Frame Motion Compensation
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5.2.2 Field Motion Compensation

In field prediction macroblocks there are two vectors per macroblock. The first vector refers to blocks in
field 1 and the second vector refers to blocks in field 2.

if ( nint(vertical_motion_vector+0.25) == EVEN)
reference is made to the same parity field
else
reference is made to the opposite parity field

The integer part of the vector measures displacements on a frame sampling grid. Therefore an odd-valued
vertical displacement causes a prediction from a field of opposite parity. Vertical half pixel values are
interpolated between samples from fields of the same parity.

Chrominance vectors are indeterminate and the exercise is left to the reader. You could try and do the same
as in frame mode.

In the field coding mode, the half pel interpolation is performed with reference to a single field. Vectors with
0.5 pel accuracy result in a linear interpolation of the two or four corresponding pixels, in the reference field.
The motion compensation is shown in figures 5.2 and 5.3.

Reference Fields
Vertica_ MV=0 @ [;10.5

1.5MM ,MV =1
2& ul_I?-5
3.5||ﬂ ‘3
i
r 8

Figure 5.2: Motion Compensation for FIELD1
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Figure 5.3: Motion Compensation for FIELD2
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6 MODES AND MODE SELECTION

In section 6.1, a coding structure with different frame modes is introduced. Within each frame, macroblocks
may be coded in several ways, thus aiming at high coding efficiency. The MB modes for intra, predicted and
interpolated frames are shown in 6.2 to 6.4.

6.1 Picture types

Pictures are coded in several modes as a trade-off between coding efficiency and random accessibility. There
are basically three picture coding modes, or picture types:

- I-pictures: intra coded pictures.

- P-pictures: forward motion-compensated prediction pictures.

- B-pictures: motion compensated interpolation pictures.

Although, in principle, freedom could be allowed for choosing one of these methods for a certain picture, for
the Test model a fixed, periodic structure is used depending on the respective picture.

Every N-th frame of a sequence starting with the first frame is coded as intra frame i.e. frames 1, N+1, etc.
(see Fig. 5.1). Following every M-th frame in between (within a Group of Pictures) is a predicted frame coded
relative to the previous predicted or intra frame. The interpolated frames are coded with reference to the two
closest previous and next predicted or intra frames. In this TM, M=3 and N=15 for 29.97 Hz and M=3 and
N=12 for 25 Hz.

[NOTE: exact values for M and N have to be defined, for different experiments)

The following parameters are currently to be used for core- experiments:

Frame rate 25 Hz 29.97 Hz
N 12 15
M 3 3

Coding modes available for predicted and interpolated frames are described in detail in the following
paragraphs.

6.2 Macroblock types in an intra picture

In an I-picture the following macroblock types are provided:
- Intra

- Intra with modified quantizer

See also table B.2a

Independent of the macroblock type a compatible prediction and field/frame DCT coding indications are
given in the bit stream, see also chapter 9, the macroblock layer section.

The macroblock type selection is done in the following order:
- Compatible prediction

- Field/frame DCT coding

- Modified quantizer
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6.3 Macroblock types in a predicted picture

In predicted frames the following macroblocks types can be distinguished:
- Motion compensation coded

- No motion compensation coded

- Motion compensation not coded

- Intra

- Motion compensation coded with modified quantizer

- No Motion compensation coded with modified quantizer

- Intra with modified quantizer

See also table B.2b

Independent of the macroblock type a compatible prediction, field/frame DCT coding and field/frame motion
vector prediction indications are given in the bit stream, see also chapter 9, the macroblock layer section.

Macroblock type selection is done in the following order:
|- MC/no MC - Field/Frame prediction

- Intra/Inter
|- Compatible prediction

- Modified quantizer
|- Field/frame DCT coding

- Coded/not Coded

6.4 Macroblock types in an interpolated picture

In interpolated frames the following macroblock types are provided:
- Interpolate, not Coded

- Interpolate, Coded

- Backwards, not Coded

- Backwards, Coded

- Forwards, not Coded

- Forwards, Coded

- Intra

- Interpolate with modified quantizer
- Backwards with modified quantizer
- Forwards with modified quantizer

- Intra with modified quantizer

Independent of the macroblock type a compatible prediction, field/frame DCT coding and field/frame motion
vector prediction indications are given in the bit stream, see also chapter 9, the macroblock layer section.

Macroblock type selection is done in the following order:
- Interpolative/Forwards/Backwards - Frame/Field prediction
- Intra/Inter
|- Compatible prediction
- Modified quantizer
|- Field/frame DCT coding
- Coded/not Coded

6.5 Selection criteria

The following rules apply to interlace and compatible bit streams. A subset of them apply to scalable bit
strcams as well. For details refer to Annex D.
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6.5.1 Motion Compensation/No Motion Compensation - Frame/Field

For P-frames, the decision of selecting the Frame Motion Vector or the Field Motion Vector is by MSE
comparison of each error signal: If (SE of Frame) <= (SE of FIELDI + SE of FIELD2) then the Frame
Motion Vector is chosen.

The decision of MC/no MC will be SE based. If (SE of MC) < (SE of No MC) then MC mode.
6.5.2 Forward/Backward/Interpolative - Field/Frame prediction

Each B-frame Macroblock has possible Forward/Backward/Interpolated modes, and each mode has further
Frame/Field prediction mode, so there totally 6 possible modes. All SE of the error signals of each mode will
be calculated, and the mode with the least SE is chosen. In the case of two modes having the same SE, the
mode with Frame prediction only will have higher priority, and also forward prediction will have higher
priority than backward with interpolated mode the least priority.

6.5.3 Compatible prediction

When the experiment is not intended for compatible coding, this mode is not selected. When the experiment
is intended for compatible coding the following criterion is used.

See appendix G.
6.5.4 Intra/Inter coding

The implementation of the intra/non-intra decision is based on the comparison of VAR and VAROR as
computed in the following algorithm:

for(i=1;i<=16;i++) {
for(j=1;j<=16; j++)
OR = O,
Dif =OR - S(i,j);
VAR = VAR + Dif*Dif;
VAROR=VAROR + OR*OR;
MWOR =MWOR + OR;
}
}
VAR = VAR/256;
VAROR=VAROR/256 - MWOR/256*MWOR/256;

Where: O(1,j) denotes the pixels in the original macroblock. S(i,j) denotes the pixels of the reconstructed
macroblock, in the frame referred to by the motion vector. Full arithmetic precision is used. The
characteristics of the decision are described in Fig. 6.1. (Non-intra decision includes the solid line in Fig.
6.1.)

32



5-May-92 Test Model 1, Draft Revision 1

VAROR

266.....u.4.,,.A...........,.,,.....‘

192 - - - - o e e oL

128......,4..'.....

64

192 268

Figure 6.1: Characteristic Intra/Inter

6.5.5 Modified Quantizer

In chapter 10 "Rate control and quantization control" the algorithm for the calculation of the quantizer is
given. If the quantizer given by this algorithm is not equal to the previous quantizer the modified quantizer
indication is used.

6.5.6 Field/Frame DCT coding decisions

Field based rather than frame based coding is used if the following equation holds:
Varl => (Var2 + 4096)
where Varl and Var2 are calculated with the following lines:

Varl = 0;

Var2 = 0;

for (Pix = 0; Pix < 16; Pix++) {
Sum = 0;

for (Line = 0; Line < 16; Line += 2) {
Sum += O(Pix, Line) - O(Pix, Line+l});
}

Varl += Sum * Sum;
Sum = 0;
for (Line = 0; Line < 16; Line += 4) {
Sum += O(Pix,Line) + O(Pix,Line+l) - O(Pix,Line+2) - O(Pix,Line+3);
}

Var2 += Sum * Sum;

}
where O(Pix, Line) denotes the 16 x 16 macroblock to be transformed.

6.5.7 Coded/Not Coded

The choice of coded or not coded is a result of quantization. When all coefficients are zero then a block is
not coded. A Macroblock is not coded if no block in it is coded, else it is coded.
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7 TRANSFORMATION AND QUANTIZATION

While mode selection and local motion compensation are based on the macroblock structure, the
transformation and quantization is based on 8*8 blocks.

Blocks are transformed with a 2-dimensional DCT as explained in Appendix A. Each block of 8*8 pixels thus
results in a block of 8*8 transform coefficients. The DCT coefficients are quantized as described in sections
7.1 and 7.2,

7.1 Quantization of Intra frames and Intra Macroblocks
Intra frame DCT coefficients are quantized with a uniform quantizer without a dead-zone.
7.1.1 DC Coefficients

The quantizer step-size for the DC coefficient of the luminance and chrominance components is always 8.
Thus, the quantized DC value, QDC, is calculated as:

QDC =dc//8

where "dc" is the 11-bit unquantized mean value of a block.

7.1.2 AC Coefficients

AC coefficients ac(i,j) are first scaled by individual weighting factors,
ac~(i,j) = (16 * ac(i,)) // wi(i.j)

where wi(i,j) is the (i,j)th element of the Intra quantizer matrix given in figure 7.1. ac~(i,j) is limited to the
range [-2048,2047).

8 16 19 22 26 27 29 34
16 16 22 24 27 29 34 37
19 22 26 27 29 34 34 38
22 22 26 27 29 34 37 40
22 26 27 29 32 35 40 48
26 27 29 32 35 40 48 58
26 27 29 34 38 46 56 69
27 29 35 38 46 56 69 83

Figure 7.1 - Intra quantizer matrix
The step-size for quantizing the scaled DCT coefficients, ac~(i,j), is derived from the quantization parameter,
mquant. Mquant is calculated for each macroblock by the algorithm defined in Section 10 and is stored in the
bit stream in the slice header and, optionally, in any macroblock (see Section 9 for the syntax of the bit-
stream and Section 10 for the calculation of mquant in the encoder).
The quantized level QAC(,j) is given by:

ac~(i,j) + sign(ac~(i,jy*(p * mquant // q)

QAC(G,)) =
(2*mquant)

34



5-May-92 Test Model 1, Draft Revision 1

and QAC(i,j) is limited to the range [-256..255), for this TM p=3, and q = 4.

7.2 Quantization of Predicted and Interpolated frames

Non-intra macroblocks in Predicted and Interpolated frames are quantized with a uniform quantizer that has a
dead-zone about zero. A non-intra quantizer matrix, given in figure 7.2, is used.

16 17 18 19 20 21 22 23
17 18 19 20 21 22 23 24
18 19 20 21 22 23 24 25
19 20 21 22 23 24 26 27
20 21 22 23 25 26 27 28
21 22 23 24 26 27 28 30
22 23 24 26 27 28 30 31
23 24 25 27 28 30 31 33

Figure 7.2 - Non-intra quantizer matrix

The step-size for quantizing both the scaled DC and AC coefficients is derived from the quantization
parameter, mquant. Mquant is calculated for each macroblock by the algorithm defined in Section 10. The
following formulae describe the quantization process. Note that INTRA type macroblocks in predicted and
interpolated frames are quantized in exactly the same manner as macroblocks in Intra-pictures (section 7.1)
and not as described in this section.

ac~(i,j) = (16 * ac(i,j) // wN(i,j)

where:
WN(,j) is the non-intra quantizer matrix given in figure 7.2

QAC(,j) =ac~(1j) /(2*mquant) IF mquant == odd
= (ac~(i,j}+1) / (2*mquant) IF mquant == even AND ac~(i,j)>0
= (ac~(i,j)-1) / (2*mguant) [F mquant == even AND ac~(i,j)<0

QAC (i,j) is limited to the range [-256..255).

7.3 Inverse Quantization
7.3.1 Intra-coded macroblocks

This section applies to all macroblocks in Intra-Frames and Intra macroblocks in Predicted and Interpolated
Frames. Reconstruction levels, rec(i,j), are derived from the following formulae.

rec(i,j) = mquant * 2 * QAC(,j) * wi(i,j)/ 16

if (rec (i,j) is an EVEN number && rec(i,j) > 0)
rec (i,j) = rec(i,j) - 1

if (rec (i,j) is an then number && rec(i,j) < 0)
rec (i,j) = rec(i,j) + 1

if (QAC (i,j) == 0)
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rec (i,j)=0

The DC term is special case
rec (1,1) =8 *QDC

Where:
mquant is the quantization parameter stored in the bit stream and calculated according to the
algorithm in section 10,

rec(i,j) is limited to the range [-2048..2047].

7.3.2 Non-Intra-coded macroblocks

This section applies to all non-Intra macroblocks in Predicted and Interpolated Frames. Reconstruction levels,
rec(i,j), are derived from the following formulae.

if (QAC(.) > 0)
rec(i,j) = (2 * QAC(,j) + 1) * mquant * wN(i,j) / 16

if (QAC(,j) < 0)
rec(i,j) = (2 * QAC(,j) - 1) * mquant * wN(i,j)/ 16

if (rec (i,j) is an EVEN number && rec(i,) > 0)
rec (1,j) = rec(i,j) - 1

if (rec (i,j) is an EVEN number && rec(i,j) <0)
rec (i,j) = rec(i,j) + 1

if (QAC (i,)) == 0)
rec (i,j)=0

rec(i,j) is limited to the range [-2048..2047].
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8 CODING

This section describes the coding methods used to code the attributes and data in each macroblock. The
overall syntax of the video coding is described in the following section, section 9.

The spatial position of each macroblock is encoded by a variable length code, the macroblock address
(MBA). The use of macroblock addressing is described in section 8.1.

Macroblocks may take on one of a number of different modes. The modes available depend on the picture
type. Section 6 describes the procedures used by the encoder to decide on which mode to use. The mode
selected is identified in the bit stream by a variable length code known as MTYPE. The use of MTYPE is
described in section 8.2.

The coding of motion vectors is addressed in section 8.3.

Some blocks do not contain any DCT coefficient data. To transmit which blocks of a macroblock are coded
and which are non-coded, the coded block pattern (CBP) variable length code is used (see section 8.4).

The coefficients in a block are coded with VLC tables as described in section 8.5, 8.6, and 8.7.

|For additional information about scalable bit streams, refer to Annex D.

8.1 Macroblock Addressing

Relative addressing is used to code the position of all macroblocks in all frames. Macroblocks for which no
data is stored are run-length encoded using the MBA; these macroblocks are called skipped macroblocks.

In Intra frames there are no skipped macroblocks. In predicted frames a macroblock is skipped if its motion
vector is zero, all the quantized DCT coefficients are zero, and it is not the first or last macroblock in the
slice. In interpolated frames, a macroblock is skipped if it has the same MTYPE as the prior macroblock, its
motion vectors are the same as the corresponding motion vectors in the prior macroblock, all its quantized
DCT coefficients are zero, and it is not the first or last macroblock in the slice.

A macroblock address (MBA) is a variable length code word indicating the position of a macroblock within a
MB-Slice. The order of macroblocks is top-left to bottom-right in raster-scan order and is shown in Figure
4.2. For the first non-skipped macroblock in a macroblock slice, MBA is the macroblock count from the left
side of the frame. For the Test Model this corresponds to the absolute address in figure 4.3. For subsequent
macroblocks, MBA is the difference between the absolute addresses of the macroblock and the last non-
skipped macroblock. The code table for MBA is given in Table B.1.

An extra code word is available in the table for bit stuffing immediately after a macroblock slice header or a
coded macroblock (MBA Stuffing). This code word should be discarded by decoders.

The VLC for start code is also shown in Table B.1
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8.2 Macroblock Type

Each frame has one of the three modes:

1 Intra (I-frames)
2 Predicted (P-frames)
3 Interpolated (B-frames)

For these three frame types different VLC tables for the Macroblock types are used. See table B.2a for Intra,
table B.2b for predictive-coded pictures and table B.2¢ for bidirectionally predictive-coded pictures.

Methods for mode decisions are described in section 6. In macroblocks that modify the quantizer control

parameter the MTYPE code word is followed by a 5-bit number giving the new value of the quantization
parameter, mquant, in the range [1..31].

8.2.1 Compatible Prediction Flag

A two-bit codeword, compatible_type, immediately follows the MBTYPE VLC, if the bitstream is indicated
as being compatible in the sequence header.

The definition of this codeword is in the definition of the Macroblock layer.
8.2.2 Field/Frame Coding Flag

A one-bit flag, interlaced_macroblock_type, immediately follows the MBTYPE VLC. If its value is 1 it
indicates that the macroblock coefficient data is in field order as described in chapter 6. If its value is 0 it
indicates that the macroblock coefficient data is in frame order.

~8.2.3 Field/Frame Motion Compensation Flag

A one-bit flag, interlaced_motion_type, immediately follows the interlaced_macroblock_type flag. If its
value is 1 it indicates that field-based motion prediction is used as described in section 5.2.2. If its value is 0
it indicates that frame-based motion prediction is used as described in section 5.2.1. If field-based prediction
is used twice as many motion vectors are stored as are needed in the case of frame-based prediction.

8.3 Motion Vectors

Motion vectors for predicted and interpolated frames are coded differentially within a macroblock slice,
obeying the following rules:

- Every forward or backward motion vector is coded relative to the last vector of the same type. Each
component of the vector is coded independently, the horizontal component first and then the vertical
component.

- The prediction motion vector is set to zero in the macroblocks at the start of a macroblock slice, or if
the last macroblock was coded in the intra mode. (Note: that in predictive frames a No MC decision
corresponds to a reset to zero of the prediction motion vector.)

- In interpolative frames, only vectors that are used for the selected prediction mode (MB type) are
coded. Only vectors that have been coded are used as prediction motion vectors.
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The VLC used to encode the differential motion vector data depends upon the range of the vectors. The
maximum range that can be represented is determined by the forward_f code and backward_f code

encoded in the picture header. (Note: in this Test Model the full_pel flag is never set - all vectors have half-
pel accuracy).

The differential motion vector component is calculated. lts range is compared with the values given in table
8.1 and is reduced to fall in the correct range by the following algorithm:

if (diff_vector < -range)

diff_vector = diff_vector + 2*range;
else if (diff_vector > range-1)

diff_vector = diff_vector - 2*range;

forward_f_code Range
or backward_f code

1 16

2 32

3 64

4 128

5 256

6 512

7 1024

Table 8.1 Range for motion vectors

This value is scaled and coded in two parts by concatenating a VLC found from table B.4 and a fixed length
part according to the following algorithm:

Let f_code be either the forward_f_code or backward _f code as appropriate, and diff_vector be the
differential motion vector reduced to the correct range.

if (diff_vector == 0) {
residual = 0;
vle_code_magnitude = 0;

)
else
scale_factor = 1 << (f_code - 1);
residual = (abs(diff_vector) - 1) % scale_factor;
vlc_code_magnitude = (abs (diff_vector) - residual) / scale_factor;
if (scale_factor != 1)
vlc_code_magnitude += 1;
)

vlc_code_magnitude and the sign of diff_vector are encoded according to table B.4. The residual is encoded
as a fixed length code using (f_code-1) bits.

For example to encode the following string of vector components (measured in half pel units)
3 10 30 30-14-16 27 24
The range is such that an f value of 2 can be used. The initial prediction is zero, so the differential values are:

3 720 0-44 -2 43 -3
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The differential values are reduced to the range -32 to +31 by adding or subtracting the modulus 64 corresponding to the
forward_f_code of 2:

3720 020 -2-21-3

These values are then scaled and coded in two parts (the table gives the pair of values to be encoded (vic,
residual)):

(2,0) (40) (10,1) (0,0) (10,1) (-1,1) (-11,0) (-2,0)
The order in a slice is in raster scan order, except for Macroblocks coded in Field prediction mode, where the

upper two luminance blocks vector is predicted from the preceding Macroblock and the two lower luminance
blocks vector is predicted from the upper one, see also figure 8.1.

P |
-l
——//'1'// -

Figure 8.1 : Motion Vector Prediction Order

Prediction is changed according to Appendix J.
8.4 Coded Block Pattern

|There are two types for the coded block pattern, one for the 4:2:0 and one the 4:2:2 coding modes.

8.4.1 4:2:0
If MTYPE shows that the macroblock is not INTRA coded and all the coefficients of a block are zero after
quantization, the block is declared to be not coded. If all six blocks in a macroblock are not coded, the

macroblock is declared to be not coded. In all other cases the macroblock is declared to be coded.

If the MTYPE shows that the macroblock is INTRA all blocks are declared to be coded and the CBP code
word is not used.

A pattern number defines which blocks within the MB are coded;
Pattern number = 32*P| + 16*P7 + 8*P3 + 4*P4+ 2*Ps + Pg
where Py is 1 if any coefficient is present for block n, clse 0. Block numbering is given in Figure 4.4.

The pattern number is coded using table B.3 Macroblock pattern
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8.4.24:2:2

When the picture format is 4:2:2, the pattern number is coded with an 8 bit FLC.

8.5 Intraframe Coefficient Coding
8.5.1 DC Prediction

After the DC coefficient of a block has been quantized to 8 bits according to section 7.1.1, it is coded lossless
by a DPCM technique. Coding of the luminance blocks within a macroblock follows the normal scan of
figure 4.4. Thus the DC value of block 4 becomes the DC predictor for block 1 of the following macroblock.,
Three independent predictors are used, one each for Y, Cr and Cb.

At the left edge of a macroblock slice, the DC predictor is set to 128 (for the first block (luminance) and the
chrominance blocks). At the rest of a macroblock slice, the DC predictor is simply the previously coded DC
value of the same type (Y, Cr, or Cb).

At the decoder the original quantized DC values are exactly recovered by following the inverse procedure.

The differential DC values thus generated are categorised according to their "size" as shown in the table
below.

DIFFERENTIAL DC SIZE
absolute value)
0 0
1 1
2to3 2
4t07 3
8to 15 4
16 to 31 5
321063 6
64t0 127 7
128 t0 255 8

Table 8.2 Differential DC size and VLC
The size value is VLC coded according to table B.5a (luminance) and B.5b (chrominance).
For each category enough additional bits are appended to the SIZE code to uniquely identify which difference

in that category actually occurred (table 8.3). The additional bits thus define the signed amplitude of the
difference data. The number of additional bits (sign included) is equal to the SIZE value.
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DIFFERENTIAL DC | SIZE | ADDITIONAL CODE
-255t0-128 8 00000000 to 01111111
-127 to -64 7 0000000 to 0111111
-63t0-32 6 000000to 011111
-31to-16 5 00000 to 01111
-15t0-8 4 0000t0 0111
-7to-4 3 000 to 011

3to-2 2 00to 01

-1 1 0

0 0

1 1 1

2t03 2 10to 11

4t07 3 100to 111

8to 15 4 1000to 1111

16to 31 5 10000to 11111
32t063 6 100000to 111111
64t0 127 7 1000000to 1111111
128 t0 255 8 10000000 t0 11111111

Table 8.3. Differential DC additional codes
8.5.2 AC Coefficients

AC coefficients are coded as described in section 8.7.

8.6 Non-Intraframe Coefficient Coding

8.6.1 Intra blocks

Intra blocks in non-intra frames are coded as in intra frames. At the start of the macroblock, the DC predictors
for luminance and chrominance are reset to 128, unless the previous block was also intra; in this case, the
predictors are obtained from the previous block as in intra frames (section 8.5.1).

AC coefficients are coded as described in section 8.7.Transform coefficient data is always present for all 6
blocks in a macroblock when MTYPE indicates INTRA.

8.6.2 Non intra blocks

In other cases MTYPE and CBP signal which blocks have coefficient data transmitted for them. The
quantized transform coefficients are sequentially transmitted according to the zig-zag sequence given in
Figure 4.5.

The most commonly occurring combinations of successive zeros (RUN) and the following value (LEVEL) are
encoded with variable length codes. Other combinations of (RUN, LEVEL) are encoded with a 20-bit or 28-
bit word consisting of 6 bits ESCAPE, 6 bits RUN and 8 or 16 bits LEVEL. For the variable length encoding
there are two code tables, one being used for the first transmitted LEVEL in INTER and INTER + MC
blocks, the second for all other LEVELS except the first one in INTRA blocks, which is encode as described
in section 8.6.1.

8.6.3 Scalable blocks

Coding of intra and non intra blocks in a scalable bitstream is described in Annex D.
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8.7 Coding of Transform Coefficients

The combinations of zero-run and the following value are encoded with variable length codes as listed in
table B.5c to B.5f. End of Block (EOB) is in this set. Because CBP indicates those blocks with no
coefficient data, EOB cannot occur as the first coefficient. Hence EOB does not appear in the VLC table for
the first coefficient. Note that EOB is stored for all coded blocks.

The last bit 's' denotes the sign of the level, '0' for positive '1' for negative.
The remaining combinations of (RUN, LEVEL) are encoded with a 20-bit or 28-bit word consisting of 6 bits

ESCAPE, 6 bits RUN and 8-bits or 16-bits LEVEL. RUN is a 6 bit fixed length code. LEVEL is an 8-bit or
16-bit fixed length code. See table B.5g
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9 VIDEO MULTIPLEX CODER

In this section the video multiplex is explained. Unless specified otherwise the most significant bit occurs
first. This is Bit 1 and is the left most bit in the code tables in this document.

9.1 Method of Describing Bit Stream Syntax

Each data item in the bit stream is in bold type. It is described by its name, its length in bits, and a mnemonic
for its type and order of transmission.

The action caused by a decoded data element in a bit stream depends on the value of that data element and
on data elements previously decoded. The following constructs are used to express the conditions when data
elements are present, and are in normal type:

while ( condition ) { If the condition is true, then the group of data elements occurs next
data_element in the data stream. This repeats until the condition is not true.
}

do {

data_element The data element always occurs at least once.
} while (condition)  The data element is repeated until the condition is not true.

if ( condition) { If the condition is true, then the first group of data elements occurs
data_element next in the data stream.
)

else { If the condition is not true, then the second group of data elements
data_clement occurs next in the data stream.
}

for (i=0;i<n;i++) { The group of data elements occurs n times. Conditional constructs
data_element within the group of data elements may depend on the value of the
ces loop control variable i, which is set to zero for the first occurrence,
} incremented to one for the second occurrence, and so forth.

As noted, the group of data elements may contain nested conditional constructs. For compactness, the {} are
omitted when only one data element follows.

data_element [n] data_element [n] is the n+1th element of an array of data.

data_clement [m..n] is the inclusive range of bits between bit m and bit n in the data_element.
While the syntax is expressed in procedural terms, it should not be assumed that this section implements a
satisfactory decoding procedure.. In particular, it defines a correct and crror-free input bit stream. Actual
decoders must include a means to look for start codes in order to begin decoding correctly, and to identify

errors, erasures or insertions while decoding. The methods to identify these situations, and the actions to be
taken, are not standardised.
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Definition of bytealigned function

The function bytealigned () returns 1 if the current position is on a byte boundary, that is the next bit in the bit
stream is the first bit in a byte.

Definition of nextbits function

The function nextbits () permits comparison of a bit string with the next bits to be decoded in the bit stream.

Definition of next_start_code function

The next_start_code function removes any zero bit and zero byte stuffing and locates the next start code.

next_start_code() {
while ( 'bytealigned() )

zero_bit 1 "o
while ( nextbits() != '0000 0000 0000 6000 0000 0001' )
zero_byte 8 "00000000"

)

9.2 Mnemonics

The following mnemonics are defined to describe the different data types used in the coded bit-stream.

bslbf Bit string, left bit first, where "left" is the order in which bit strings are written in the standard.
Bit strings are written as a string of 1s and Os within single quote marks, e.g. '1000 0001".
Blanks within a bit string are for ease of reading and have no significance.

uimsbf Unsigned integer, most significant bit first.

viclbf Variable length code, left bit first, where "left" refers to the order in which the VLC codes are
wrilten in Annex B,

The byte order of multi-byte words is most significant byte first.
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9.3 Specification of the Coded Video Bit stream Syntax

9.3.1 Start Codes

Start codes are reserved bit patterns that do not otherwise occur in the video stream. All start codes are byte aligned.

name hexadecimal value
picture_start_code 00000100
slice_start_codes (including slice_vertical_positions 00000101
through
000001AF
|| slave_slice_start_code 000001B0O
reserved 000001B1
user_data_start_code 000001B2
sequence_header_code 000001B3
sequence_error_code 000001B4
extension_start_code 000001B5
reserved 000001B6
sequence_end_code 000001B7
group_start_code 000001 B8
system start codes (see note) 000001B9
through
000001FF
NOTE - system start codes are defined in Part 1 CD 11172

The use of the start codes is defined in the following syntax description with the exception of the sequence_error_code.
The sequence_error_code has been allocated for use by the digital storage media interface to indicate where uncorrectable
errors have been detected.

9.3.1.1 Slice Start Codes - Frequency Scaling
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9.3.1.2 Slice Star s - Compatibility Experiment 2 (Appendix G.2
name hexadectmal value
slice start code (sif odd) 00000101
through
000001AF
sif even slice etart code 000001B1
ceir 601 slice start code 000001B6

9.3.1.3 Slice Start Codes - Compatibility Experiment 3 (Appendix G.3)

name hexadecimal value

slice start code (hbr) 00000101
through
000001AF

ocir 607 slice start code 000001B6

9.3.1.4 Slice Start Codes - Compatibility Experiment 4 (Appendix G.4)
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9.3.1.5 Slice Start Codes - Hybrid Experiment 1(a) {Appendix 1.3)

name hexadecimal value
slice stazl code (stf.odd scaled or sifud scaledl - 00000101
through
000001AF
slave slic. start codg (sif odd.scale8or sif 1 scale8) .. - 000001B0
ccir 6Q1 slice atart code . —_ 000001B6

9.3.1.6 Slice Start Codes - Hybrid Experiment 1(b) (Appendix 1.3)

9.3.2 Video Sequence Layer

video_sequence() {
next_start_code()
do {
sequence_header()
do{
group_of_pictures()
} while ( nextbits() == group_start_code )
} while ( nextbits() == sequence_header_code )
sequence_end_code 32 bslbf
)
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9.3.3 Sequence Header
sequence_header() {
sequence_header_code 32 bslbf
horizontal_size 12 uimsbf
vertical_size 12 uimsbf
pel_aspect_ratio 4 uimsbf
picture_rate 4 uimsbf
bit_rate 18 uimsbf
marker_bit 1 "
vbv_buffer_size 10 uimsbf
constrained_parameter flag 1
load_intra_quantizer_matrix 1
if (load_intra_quantizer_matrix )
intra_quantizer matrix[64] 8+64 uimsbf
load_non_intra_quantizer_matrix 1
if (load_non_intra_quantizer_matrix )
non_intra_quantizer_matrix[64] 8*64 uimsbf
next_start_code()
if (nextbits() == extension_start_code ) {
extension_start_code 32 bslbf
compatible 3 uimsbf
interlaced 1 uimsbf
sscalable 1 uimsbf
fscalable 1 uimsbf
chroma_format 1 uimsbf
sequence_type 1 uimsbf
reserved 8 uimsbf
if (fscalable) {
do{
fscale_code 8 uimsbf
» while (nextbits !="00000111")
end_of scales code 8 00000111’
if (sscalable) {
do {
sscale_code 8 uimsbf
} while (nextbits !="'00000111")
end_of scales_code 8 '00000111"
}
}
while ( nextbits () !="'0000 0000 0000 0000 0000 0001' ) {
sequence_extension_data 8
}
next_start_code()
}
if (nextbits() == user_data_start_code ) {
user_data_start_code 32 bslbf
while ( nextbits() !="0000 0000 0000 0000 0000 0001' ) {
user_data 8
)
next_start_code()
}
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Icompatible -- This is a three-bit integer defined in the following table.

binary value | Standard

000 not compatible

001 MPEG1 compatible
010 H.261 compatible
011 MPEG2 compatible
100 reserved

reserved

111 reserved

For scalable bitstreams this integer is set to zero.

interlaced - This is a one-bit integer defined in the following table.

binary value | Coding
0 not interlaced
1 interlaced

For scalable bitstreams this integer is set to zero.

scalable - This is a one-bit integer defined in the following table.

not scalable
1 scalable

chroma_format - This is a one bit integer defined in the following table:

4:2:0
1 4:2:2

| sequence_type - This is a one bit integer defined in the following table:

Frame sequence
1 Pure Field Sequence
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scale_code - This is an 8-bit integer that defines the DCT size for the scalable layers, i.e. DCT_size =
1<<scale_code. The values of this integer are:

scale code

scale 1 layer

scale 2 layer

scale 4 layer

scale 8 layer
reserved

reserved

reserved
end_of_scales_code
reserved

D AU WO

256 reserved

Example: The bitstream with scale_codes 1, 2, 3, 3, 7 would be interpreted to mean that there are four
layers, a scale-2, followed by a scale-4, followed by two scale-8 layers.

9.3.4 Group of Pictures Layer

group_of_pictures() {

group_start_code 32 bslbf
time_code 25
closed_gop 1
broken_link 1
next_start_code()
if ( nextbits() == extension_start_code ) {
extension_start_code 32 bslbf
while ( nextbits() !="'0000 06000 0000 0000 0000 0001' ) {
group_extension_data 8
}
next_start_code()
}
if ( nextbits() == user_data_start_code ) {
user_data_start_code 32 bsIbf
while ( nextbits() != 0000 0000 0000 0000 0000 0001') {
user_data 8
)
next_start_code()
}
do{
picture()
} while ( nextbits() == picture_start_code )
i

52



9.3.5 Picture Layer

5-May-92 Test Model 1, Draft Revision 1

picture() {
picture_start_code
temporal_reference
picture_coding_type
vbv_delay

if ( picture_coding_type == 2 |l picture_coding_type == 3) {

full_pel_forward_vector
forward_f code

>

if ( picture_coding_type == 3) {
full_pel_backward_vector
backward f code
b

while ( nextbits() =="1') {
extra_bit_picture
extra_information_picture

}

extra_bit_picture

next_start_code()

if (nextbits() == extension_start_code ) {
extension_start_code
picture_structure
reserved

while ( nextbits() !='0000 0000 0000 0000 0000 0001') {

picture_extension_data
)
next_start_code()

H
if ( nextbits() == user_data_start_code ) {
user_data_start_code

while ( nextbits(Q) = '0000 00600 0000 0000 0000 0001') ¢

user_data
b
next_start_code()
)
do {
slice()
} while ( nextbits() == slice_start_code )

}

32 bslbf
10 uimsbf
3 uimsbf
16 uimsbf
1

3 uimsbf
1

3 uimsbf
1 ”n l fl

8

1 " 0 "

32 bslbf
1 uimsbf
7 uimsbf
8

32 bsIbf
8

picture_structure - This is a one bit integer defined in the table below. The picture_structure is set to 0 when

the sequence_type is set to 1.

Frame structure

Field structure
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9.3.6 Slice Layer

slice() {
slice_start_code 32 bslbf
quantizer scale 5 uimsbf
if (scalable) {
extra_bit_slice 1 "1
dct_size 8 uimsbf
}
while ( nextbits() =="1") {
extra_bit_slice 1 “1"
extra_information_slice 8
}
extra_bit_slice 1 "
do{
macroblock()
} while ( nextbits() !='000 0000 0000 0000 0000 0000' )
next_start_code()
}

|9.3.6.1 Slave Slice Layer

slave_slice() {

slave slice_start_code 32 bsibf

quantizer_delta_magnitude S uimsbf
quantizer_delta_sign 1 uimsbf
dct_size 8 uimsbf

for (s=0; s<slice_size; s++) {
slave_macroblock(dct_size)

i

For scalable bitstreams, the following definitions apply: dct_size - 1, 2, 4, or 8.

quantizer_delta: This integer is added to all "quantizer_scale" values in the slice and macroblock
layers, to derive the corresponding quantizer_scale values (mquant) in the slave_slice and slave_macroblock
layers. For the Test Model this delta is zero.

quantizer_delta_magnitude:  specifies the magnitude of "quantizer_delta".

quantizer_delta_sign: specifies the sign of "quantizer_delta".

slice_size: the total number of macroblocks in the slice layer (44).
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macroblock() {

while ( nextbits() == '0000 0001 111')
macroblock_stuffing
while ( nextbits() == '0000 0001 000')
macroblock_escape
macroblock_address_increment
macroblock_type
if (compatible)
compatible_type
if (interlaced) {
if (picture_structure == 0) {
if (macroblock_intra Il macroblock_pattern )
interlaced_macroblock_type
if ((macroblock_motion_forward) Il
(macroblock_motion_backward))
interlace_motion_type
Yelse {
if (macroblock_motion_forward XOR
macroblock_motion_backward)
field_interlaced_motion_type
)
>
if ( macroblock_quant )
quantizer_scale
if ( macroblock_motion_forward ) {
motion_horizontal_forward_code
if ( (forward_f!=1) &&
(motion_horizontal_forward_code !'=0))
motion_horizontal_forward _r
motion_vertical_forward_code
if ((forward_f!=1) &&
(motion_vertical_forward_code !'=0))
motion_vertical_forward_r
)
if (interlace_motion_type)
motion_horizontal_forward_code_2
if ((forward_f !'=1) &&
(motion_horizontal_forward_code_2 1= 0))
motion_horizontal_forward_r 2
motion_vertical_forward_code 2
if ((forward_f 1= 1) &&
(motion_vertical_forward_code_2 != 0))
motion_vertical_forward r 2
b
b
if ( macroblock_motion_backward ) {
motion_horizontal_backward_code
if ((backward_f '=1) &&
(motion_horizontal _backward_code != 0))
motion_horizontal_backward_r
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11 vicibf
11 viclbf
1-11 viclbf
1-6 viclbf
2 uimsbf
1 uimsbf
2 uimsbf
1 uimsbf
5 uimsbf
1-11 viclbf
1-6 uimsbf
1-11 vielbf
1-6 uimsbf
1-11 viclbf
1-6 uimsbf
1-11 vlelbf
1-6 uimsbf
1-11 viclbf
1-6 uimsbf




motion_vertical_backward_code
if ((backward_f != 1) &&
(motion_vertical_backward_code != 0))
motion_vertical_backward_r
if (interlace_motion_type) {
motion_horizontal_backward_code 2
if ((backward_f 1= 1) &&
(motion_horizontal _backward_code_2 != 0))
motion_horizontal_backward_r 2
motion_vertical_backward_code 2
if ((backward_f !'=1) &&
(motion_vertical_backward_code_2 != 0))
motion_vertical_backward r 2

}
)
if (chroma_format == 0) {
if ( macroblock_pattern)

coded_block_pattern
for (i=0; i<6; i++ )
if (scalable) {
scaled_block(i)
}
else {
block( i)
)
)
Yelse {
if ( macroblock_pattern)
coded_block_pattern
for (1=0; i<8; i++)
if (scalable) {
scaled_block(i)
)
else {
block( i)
)
}
if ( picture_coding_type == 4)
end_of macroblock
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1-11 viclbf
1-6 uimshf
1-11 viclbf
1-6 uimsbf
1-11 viclbf
1-6 uimsbf
39 viclbf
8 uimsbf
1 " l'l

compatible_type - This is a one-bit integer defined in the following table.

binary value || Prediction

00 Not Compatible

01 Fieldl Compatible prediction
10 Field2 Compatible prediction

11 Field1&2 Compatible prediction
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For Compatibilty Experiment 1 (Appendix G.1) the prediction works as follows. The corresponding quarter
of the reconstructed SIF macroblock is upsampled by a 1/2 | 1/2 bilinear interpolation (Appendix G.2, G.3,
G.4) (Appendix 1.3(a) and 1.3(b))

For Compatibility Experiments 2,3,4 and Hybrid Experiments 1(a), 1(b), depending on the specific
experiment, either simply linear or bilinear interpolation is necessary. All interpolatoin is performed on a
macroblock basis and appropriate filters from Sec. 3.4 are used.

interlace_macroblock_type - This is a one-bit integer indicating whether the macoblock is frame DCT
coded or field DCT coded. If this is set to "1", the macroblock is field DCT coded.

interlace_motion_type - This is a one-bit integer indicting the macroblock motion prediciton, defined in the
following table:

binary value || Motion Prediction
00 Frame based

01 Field based

10 FAMC

11 Dual field based

field_interlaced_motion_type - This is a one bit integer defined in the following table:

0 Field based prediction
1 Dual field prediction

9.3.7.1 Slave Macroblock Layer

slave macroblock(dct size) {
for (i=0; i<6; i++) {
slave block[i, dct size]
)
}
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9.3.8 Block Layer

block(i) {

if ( pattern_code[i] ) {
if ( macroblock_intra ) {

if (i<4) {
dct_dc_size_luminance 2-7 viclbf
if(dct_dc_size_luminance != 0)
dct_dc_differential | 1-8 uimsbf
}
else {
dct_dc_size_chrominance 2-8 viclbf
if(dct_dc_size_chrominance !=0)
dct_dc_differential 1-8 uimsbf
}
)
else {
dct_coeff_first 2-28 viclbf
)

if ( picture_coding_type !=4) {
while ( nextbits() 1="'10"
det_coeff_next 3-28 viclbf
end_of block 2 "10"
}
}

9.3.8.1 Scaled Block Layer

For scalable bitstreams the following syntax extensions apply:

scaled block({i) {
if (pattern code[i]) {
if (macroblock intra) {

if (i<4) {
dect_de size luminance 2-7  vlclbf
if (dct _dc_size luminance != 0)
dect_dc_differential 1-8  vlelbf
}
else {
dct_dc_size_chrominance 2-8  vlclbf
if (dct_dc_size chrominance != 0)
det_dc_differential 1-8  vlclbf

}
)
if (dct _size > 1) {

while ((nextbits() != eob_code) && more coefs)
next_dct_coef(dct size) 2-16  vlclbf
if (more coefs)
end of block 2-16 vlclbf

}
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slave_block [i,dct size] {
if (pattern code[i]) {

while ((nextbits() != eob_code) && more coefs) f{
next_dct_coef(dct size) 2-16 vleclbf
}
if (more coefs) {
end of block 2-16  vlelbf
}

}
}

pattern_code(i) - For slave_blocks, this code is the same as that of the colocated scaled_block in the slice
layer.

more_coefs - more_coefs is true if we have not already decoded the last coefficient in the block of DCT
coefficients except that, for the 8x8 slave_slice, more_coefs is always true (this is to retain compatibility with
MPEG-1 style of coding 8x8 blocks, which always includes an end_of_block code).

eob_code - An end_of_block Huffman code specified in the appropriate resolution scale VLC table.

next_det_coef - DCT coefficient coded by run/amplitude or run/size VLCs. The VLC table used
depends on "dct_size", as explained in Annex D.
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10 RATE CONTROL AND QUANTIZATION CONTROL

This section describes the procedure for controlling the bit-rate of the Test Model by adapting the macroblock
quantization parameter. The algorithm works in three-steps:

1 Target bit allocation: this step estimates the number of bits available to code the next frame. It is
performed before coding the frame,

2 Rate control: by means of a "virtual buffer", this step sets the reference value of the quantization
parameter for each macroblock.

3 Adaptive quantization: this step modulates the reference value of the quantization parameter

according to the spatial activity in the macroblock to derive the value of the quantization parameter,
mquant, that is used to quantize the macroblock.

Step 1 - Bit Allocation
Complexity estimation

After a frame of a certain type (I, P, or B) is encoded, the respective "global complexity measure" (Xj, Xp, or
Xp) is updated as:

Xi=Si Qi. Xp=S5pQp, Xp=SpQp
where Sj, Sp, Sp are the number of bits generated by encoding this frame and Qj, Qp and Qp are the average

quantization parameter computed by averaging the actual quantization values used during the encoding of the
all the macroblocks, including the skipped macroblocks.

Initial values
Xj=160 * bit_rate/ 115
Xp =60 * bit_rate/ 115
Xp = 42 * bit_rate/ 115

bit_rate is measured in bits/s.
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Picture Target Setting

The target number of bits for the next frame in the Group of pictures (Tj, Tp. or Tp) is computed as:

R
Tj = max { , bit_rate / (8*picture_rate) }
NpXp NpXp
1+ +
Xi Kp XiKp
R
Tp =max { , bit_rate / (8*picture rate)}
L —
R
Tp = max { , bit_rate / (8*picture_rate)}
Np + ------ememe-

Where:

Kp and K are "universal" constants dependent on the quantization matrices. For the matrices
specified in sections 7.1 and 7.2 Kp = 1.0 and Kp = 1.4.

R is the remaining number of bits assigned to the GROUP OF PICTURES. R is updated as follows:
After encoding a frame ,R=R - Sjp b
Where is Sj p b is the number of bits generated in the picture just encoded (picture type is I, P or B).
Before encoding the first frame in a GROUP OF PICTURES (an I-frame):
R=G+R
G = bit_rate * N / picture_rate
N is the number of frames in the GROUP OF PICTURES.

At the start of the sequence R = 0.

Np and Np are the number of P-frames and B-frames remaining in the current GROUP OF
PICTURES in the encoding order.

1 [ BIB][P[B]B[P[B]B[P[B][B

R-bits

Np = 2

Np=4

Figure 10.1 - GROUP OF PICTURES structure
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Step 2 - Rate Control

i MB Index ——s MB_CntL
o

Figure 10.2 : Rate Control for P-frames

Before encoding macroblock j (j >= 1), compute the fullness of the appropriate virtual buffer:

o TiG-D
di =do’ + Bj.1 - --------
MB_cnt
or
Tp G-1
djp =doP + T
MB_cnt
or
Tp G-D
djb =do? + Bj1 - -ee-
MB_cnt

depending on the picture type.

where
dol, doP, dgP are initial fullnesses of virtual buffers - one for each frame type.

Bj is the number of bits generated by encoding all macroblocks in the frame up to and including j.
MB_cnt is the number of macroblocks in the frame.
d ji, dip, d jb are the fullnesses of virtual buffers at macroblock j- one for each frame type.

The final fullness of the virtual buffer (dj! , djP, d;P: j =MB_cnt) is used as do® doP, doP for encoding the
next frame of the same type.

62



5-May-92 Test Model 1, Draft Revision 1

Next compute the reference quantization parameter Qj for macroblock j as follows:

where the "reaction parameter" r is given by
r=2* bit_rate/ picture_rate
and dj is the fullness of the appropriate virtual buffer.
The initial value for the virtual buffer fullness is:
doi=10* 1731

doP = Kp do

Step 3 - Adaptive Quantization

Compute a spatial activity measure for the macroblock j from the four luminance sub-blocks using the intra
(ie original) pixels values:

actj=1+ min (var_sblk)
sblk=1,4

where
64
var_sblk = SUM (Pk - P_mean ) 2
k=1
1 64
P_mean= --- SUM Pk
64 k=1
and Pk are the pixel values in the original 8*8 block.

Normalize actj:

2 * actj+ avg_act

N_actj =
actj+ 2 * avg_act

avg_act is the average value of act; the last frame to be encoded. On the first frame, avg_act = 400.
Obtain mquant; as:
mquantj = Qj * N_act;
where Qj is the reference quantization parameter obtained in step 2. The final value of mquantj is clipped to

the range [1..31] and is used and coded as described in sections 7, 8 and 9 in either the slice or macroblock
layer.
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Known Limitations

- Step 1 does not handle scene changes efficiently.

- Step 3 does not work well on highly interlaced material, since the entire method uses frame macroblocks.
- A wrong value of avg_act is used in step 3 after a scene change.

- VBV compliance is not guaranteed.
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The 2-dimensional DCT is defined as:
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7 7 (2x+1)u*pi (Ly+1)v¥pi
F(u,v) = (1/4) C(u) C(v) SUM SUM f(x,y)cos{ } cos{ h
x=0 y=0 16 16
withu,v,x,y=0,1,2,..7
where x, y = spatial coordinates in the pel domain
u, v = coordinates in the transform domain
C(u), C(v) = 1/SQRT (2) for u,v=0
1 otherwise
The inverse DCT (IDCT) is defined as;
7 7 (2x+1)u*pi Qy+1)v*pi
f(x,y) = (1/49) SUM SUM C(u) C(v) F(u,v) cos{ Ycos{ h
u=0 v=0 16 16

The input to the forward transform and output from the inverse transform is represented with 9 bits. The
coefficients are represented in 12 bits. The dynamic range of the DCT coefficients is (-2048, ..., 2047).

Accuracy Specification

The 8 by 8 inverse discrete transform shall conform to IEEE Draft Standard Specification for the Implementations of 8 by
8 Inverse Discrete Cosine Transform, P1180/D2, July 18, 1990. Note that Section 2.3 P1180/D2 "Considerations of
Specifying IDCT Mismatch Errors" requires the specification of periodic intra-picture coding in order to control the
accumulation of mismatch errors. The maximum refresh period requirement for this standard shall be 132 pictures, the
same as indicated in P1180/D2 for visual telephony according to CCITT Recommendation H.261 (see Bibliography).
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APPENDIX B: VARIABLE LENGTH CODE TABLES

Introduction

This annex contains the variable length code tables for macroblock addressing, macroblock type, macroblock pattern,

motion vectors, and DCT coefficients.

B.1 Macroblock Addressing

Table B.1. Variable length codes for macroblock_address_increment.

macroblock_address_ increment macroblock_address_ increment
increment VLC code value increment VLC code value
1 1 00000101 10 17
011 2 0000 0101 01 18
010 3 0000 0101 00 19
0011 4 0000 0100 11 20
0010 5 0000 0100 10 21
0001 1 6 0000 0100 011 22
0001 0 7 0000 0100 010 23
0000 111 8 0000 0100 001 24
0000110 9 0000 0100 000 25
0000 1011 10 00000011 111 26
0000 1010 11 00000011 110 27
0000 1001 12 0000 0011 101 28
0000 1000 13 0000 0011 100 29
00000111 14 0000 0011 011 30
0000 0110 15 0000 0011 010 31
00000101 11 16 0000 0011 001 32
0000 0011 000 33
0000 0001 111 macroblock_stuffing
0000 0001 000 macroblock_escape
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B.2 Macroblock Type
Table B.2a. Variable length codes for macroblock_type in intra-coded pictures (I-pictures).
VLC code || macroblock_ | macroblock_ | macroblock | macroblock_ | macroblock_
quant motion_ motion_ pattern intra
forward backward
1 0 0 0 0 1
01 1 0 0 0 1
| 001 0 0 0 0 0

|| The last code-word applies only to compatible coders.

Table B.2b. Variable length codes for macroblock_type in predictive-coded pictures (P-pictures).

VLC code || macroblock_ | macroblock_ | macroblock | macroblock | macroblock
quant motion_ motion_ pattern intra
forward backward

1 0 1 0 1 0

01 0 0 1 0

001 0 1 0 0 0

00011 0 0 0 0 1

00010 1 1 0 1 0

00001 1 0 0 1 0

000001 1 0 0 0 1
[focoooor o 0 0 0 0

|| The last code-word applies only to compatible coders.

Table B.2¢c. Variable length codes for macroblock_type in bidirectionally predictive-coded pictures (B-pictures).

VLC code [ macroblock_ [macroblock_ |macroblock_ | macroblock_ | macroblock
quant motion_ motion_ pattern intra
forward backward
10 0 1 1 0 0
11 0 1 1 1 0
010 0 0 1 0 0
011 0 0 1 1 0
0010 0 1 0 0 0
0011 0 1 0 1 0
00011 0 0 0 0 1
00010 1 1 1 1 0
000011 1 1 0 1 0
000010 1 0 1 1 0
000001 1 0 0 0 1
lloooooor  fo 0 0 0 0

|| The last code-word applies only to compatible coders.

Table B.2d. Variable length codes for macroblock_type in DC intra-coded pictures (D-pictures).

| VLC code || macroblock_ | macroblock_ | macroblock_ | macroblock_ | macroblock_ |
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quant motion_ motion_ pattern intra
forward backward
1 0 0 0 0 1
B.3 Macroblock Pattern
Table B.3. Variable length codes for coded_block_pattern.
coded_block_pattern coded_block_pattern
VLC code cbp VLC code cbp
111 60 0001 1100 35
1101 4 0001 1011 13
1100 8 0001 1010 49
1011 16 0001 1001 21
1010 32 0001 1000 41
1001 1 12 0001 0111 14
1001 0 48 0001 0110 50
1000 1 20 0001 0101 22
10000 40 0001 0100 42
01111 28 0001 0011 15
01110 44 0001 0010 51
01101 52 0001 0001 23
01100 56 0001 0000 43
01011 1 00001111 25
01010 61 OOQO 1110 37
01001 2 0000 1101 26
01000 62 00001100 38
001111 24 0000 1011 29
0011 10 36 0000 1010 45
0011 01 3 0000 1001 53
0011 00 63 0000 10600 57
0010111 5 00000111 30
0010110 9 00000110 46
0010 101 17 0000 0101 54
0010 100 33 0000 0100 58
0010011 6 00000011 1 31
0010010 10 0000 0011 0 47
0010 001 18 0000 0010 1 55
0010 000 34 0000 00100 59
0001 1111 7 0000 0001 1 27
00011110 11 0000 0001 O 39
0001 1101 19
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B.4 Motion Vectors

Table B.4. Variable length codes for motion_horizontal_forward_code, motion_vertical_forward_code,
motion_horizontal_backward_code, and motion_vertical_backward_code.

motion

VLC code code
0000 0011 001 -16
0000 0011 011 -15
0000 0011 101 -14
00000011 111 -13
0000 0100 001 -12
0000 0100 011 -11
00000100 11 -10
0000 0101 01 9
0000 0101 11 -8
0000 0111 -7
0000 1001 -6
0000 1011 -5
0000 111 -4
0001 1 -3
0011 -2
011 -1

1 0
010 1
0010 2
0001 0 3
0000110 4
0000 1010 5
0000 1000 6
0000 0110 7
0000 0101 10 8
0000 0101 00 9
0000 0100 10 10
0000 0100 010 11
0000 0100 000 12
00000011110 13
0000 0011 100 14
0000 0011 010 15
0000 0011 000 16
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B.5 DCT Coefficients

Table B.5a Variable length codes for det_dc_size_luminance.

VLC code dct_dc_size_luminance
100

00

01

101

110
1110
11110
111110
1111110

[=-BE B RV N R SV S N =

Table B.5b. Variable length codes for dct_dc_size_chrominance.

VLC code dect_dc_size_chrominance
00

01

10

110

1110
11110
111110
1111110
11111110

OO AW —=O
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Table B.5c. Variable length codes for det_coeff_first and dct_coeff _next.

det_coeff_first and det_coeff nex|
variable length code  (NOTED) |l run level

10 end_of block
ls (NOTE2)
11s (NOTE3)
Olls

0100 s

0101 s

00101s

00111 s
00110s

0001 10 s
000111s
000101 s

0001 00 s
0000110s

0000 100 s
0000111 s
0000101 s

0000 01
00100110

0010 0001 s
00100101 s
00100100 s
00100111 s
00100011 s
00100010 s

0010 0000 s

0000 001010 s 0
0000 0011 00s
00000010 11 s 2
0000001111 s 4
0000 001001 s 5
00000011 10 s 14
0000001101 s 15
0000 001000 s 16

)—db—lNAi—l)—'i—‘M'-—lb—lul—‘[\)l—!i—‘b—l

cape

u»—-oog\ooowo\xoxu“—-.pwowo»—-oo

—
W= 0O

—
o = DN WER N == DWW

NOTEI - The last bit 's' denotes the sign of the level, '0' for positive
'1' for negative.

NOTE2 - This code shall be used for dct_coeff_first.

NOTES3 - This code shall be used for dct_coeff next.
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Table B.5d. Variable length codes for det_coeff_first and dct_coeff_next (continued).

det_coeff_first and dct_coeff_nex
variable length codle = (NOTE)

2
=
g
e

00000001 1101 s
0000 0001 1000 s
0000 0001 0011 s
0000 0001 0000 s
0000 0001 1011 s
0000 0001 0100 s
00000001 1100 s
0000 0001 0010 s
0000 0001 1110s
0000 0001 0101 s
0000 0001 0001 s
0000 0001 1111 s 17
0000 0001 10108 18
0000 0001 1001 s 19
0000 0001 0111 s 20
0000 0001 0110s 21
0000 0000 1101 0's
0000 000011001 s
0000 0000 11000 s
0000 0000 10111 s
0000 0000 1011 0s
0000 0000 10101 s
0000 0000 10100 s
00000000 1001 1 s
0000 0000 1001 0's
0000 0000 1000 1 s
0000 0000 10000 s
0000000011111 s
0000000011110s 23
0000 000011101 s 24
0000 0000 11100 25
0000000011011 s 26

XN APV, OOOO
—_ o

= e e = DD DN W W R N = = O 00

b—
w N

(SR = N e NN
——
(V=N

— O W W

0

N
[\
e e = DD W RN

NOTE - The last bit 's' denotes the sign of the level, '0' for positive,
'l' for negative.
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Table B.5e. Variable length codes for dct_coeff_first and dct_coeff next (continued).

det_coeff_Ffirst and dct_coeff nex|
variable lengthcodle ~ (NOTE) || run level
000000000111 11 s 0 16
0000 00000111 10s 0 17
0000 0000011101 s 0 18
0000 00000111 00 s 0 19
0000 0000011011 s 0 20
0000 0000011010 s 0 21
0000 0000011001 s 0 22
0000 0000 011000 s 0 23
0000 0000 0101 11 s 0 24
0000 0000 0101 10 s 0 25
0000 0000 0101 01 s 0 26
0000 0000 0101 00 s 0 27
0000 00000100 11 s 0 28
0000 0000 0100 10 s 0 29
0000 0000 010001 s 0 30
0000 0000 0100 00 s 0 31
0000 0000 0011 000 s 0 32
0000 0000 0010 111 s 0 33
0000 0000 0010110 s 0 34
0000 0000 0010 101 s 0 35
0000 0000 0010 100 s 0 36
0000 0000 0010011 s 0 37
0000 0000 0010 010 s 0 38
0000 0000 0010 001 s 0 39
0000 0000 0010 000 s 0 40
0000 0000 0011 111 s 1 8
0000 0000 0011 1105 l 9
0000 0000 0011 101 s 1 10
0000 0000 0011 100 s 1 11
0000 00000011 011 s 1 12
0000 0000 0011 010 s 1 13
0000 0000 0011 001 s 1 14
NOTE - The last bit 's' denotes the sign of the level, '0' for positive,
'1' for negative.
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Table B.5f. Variable length codes for dct_coeff_first and dct_coeff_next (continued).

det_coeff_first and dct_coeff_nex|

variable length code ~ (NOTE) || run level
0000 0000 0001 0011 s 1 15
0000 0000 0001 0010 s 1 16
0000 0000 0001 0001 s 1 17
0000 0000 0001 0000 s 1 18
0000 0000 0001 0100 s 6 3
0000 0000 0001 1010 s 11 2
0000 0000 0001 1001 s 12 2
0000 0000 0001 1000 s 13 2
0000 0000 0001 0111 s 14 2
0000 0000 0001 0110 s 15 2
0000 0000 0001 0101 s 16 2
0000 00000001 1111 s 27 1
0000 00000001 1110 s 28 1
0000 0000 0001 1101 s 29 1
0000 0000 0001 1100 s 30 1
0000 0000 0001 1011 s 31 1
NOTE - The last bit 's' denotes the sign of the level, '0' for positive,
'1' for negative.

Table B.5g. Encoding of run and level following escape code as a 20-bit fixed length code (-127 <= level <= 127) or as a
28-bit fixed length code (-255 <= level <= -128, 128 <= level <= 255),

fixed length code run fixed length code level
0000 00 0 forbidden -256
0000 01 1 1000 0000 0000 0001 -255
0000 10 2 1000 0000 0000 0010 -254
1000 00000111 1111 -129
1000 0000 1000 0000 -128
1000 0001 -127
1000 0010 -126
111111 63 11111110 -2
11111111 -1
forbidden 0
0000 0001 1
01111111 127
0000 0000 1000 0000 128
0000 0000 1000 0001 129
00000000 1111 1111 255
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APPENDIX C : Video Buffering Verifier

Constant rate coded video bit streams shall meet constraints imposed through a Video Buffering Verifier (VBV) defined in
Section C.1.

The VBV is a hypothetical decoder which is conceptually connected to the output of an encoder. Coded data is placed in
the buffer at the constant bit rate that is being used. Coded data is removed from the buffer as defined in Section C.1.4,
below. It is a requirement of the encoder (or editor) that the bit stream it produces will not cause the VBV to either
overflow or underflow.

C.1 Video Buffering Verifier

1. The VBV and the video encoder have the same clock frequency as well as the same picture rate, and are operated
synchronously.

2. The VBYV has a receiving buffer of size B, where B is given in the vbv_buffer_size field in the sequence header.

3. The VBV is initially empty. It is filled from the bitstream for the time specified by the vbv_delay field in the video
bitstream,

4. All of the data for the picture which has been in the buffer longest is instantaneously removed. Then after each
subsequent picture interval all of the data for the picture which (at that time) has been in the buffer longest is
instantaneously removed. Sequence header and group of picture layer data elements which immediately precede a picture
are removed at the same time as that picture. The VBV is examined immediately before removing any data (sequence
header data, group of picture layer or picture) and immediately after each picture is removed. Each time the VBV is
examined its occupancy shall lie between zero bits and B bits where B is the size of the VBV buffer indicated by
vbv_buffer_size in the sequence header.

This is a requirement on the video bit stream including coded picture data, user data and all stuffing,

To meet these requirements the number of bits for the (n+1)'th coded picture d (including any preceding sequence
header and group of picture layer data elements) must satisfy:

d >B +2R/P-B
n+l n

d <=B +R/P
n+l n

where:
n>=0
B_ is the buffer occupancy just after time t
n
R'= bitrate
P = number of pictures per second
t is the time when the n'th coded picture is removed from the VBV buffer

$$$$ insert figure here

Figure C.1 VBV Buffer Occupancy
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APPENDIX D : Extension for scalability experiments

|
The necessary syntax extensions for scalable bitstreams have been described in Chapter 9. These extensions
implement a hierarchical pyramid in the frequency (DCT) domain. Although the syntax is flexible, in the
Test Model we restrict its application to two layers of spatial resolution; 1/4 and 1/16 of CCIR-601.

In the non-scalable Test Model a MB is subdivided into six 8x8 blocks of lumipance and chrominance
information, each block being coded using the 8x8 Discrete Cosine Transform (DCT). The scalability
extensions allow coding of multiple video resolutions by implementing a hierarchy of layers corresponding to
subsets of the 8x8 DCT coefficients. In decoding to a target resolution, we must use an inverse DCT of a size
that matches the size of the subset of coefficients of the target. Finally, to increase coding efficiency, DCT
data for high levels of resolution are coded differentially from DCT data from lower levels of resolution. This
prediction scheme also allows for some degree of bandwidth control for each of the resolution layers.

D.1.1 MULTIPLEXING OF MULTIRESOLUTION DATA

Data for various resolution scales is multiplexed at the level of the Slice layer. The Slice layer, in a scaled
bitstream, contains data for the lowest resolution scale; it is followed by a variable number of Slave_slices
that contain data for the other resolution scales. The syntax for the scaled Slice layer is compatible with the
syntax for the non-scaled Slice layer.

The Macroblock syntax for a scalable bitstream is also compatible with the cofresponding syntax for a non-
scalable bitstream. To preserve the MB structure, all MB attributes are coded with the lowest resolution
scale, using the standard Macroblock syntax (except for the coding of "scaled_blocks" instead of "blocks").
Thus MB addresses, types, motion vectors, and coded block patterns, are coded together with the information
for the lowest resolution "scaled_blocks". The low resolution "scaled_blocks" are coded, however, using a
modification of the usual "block" syntax, as shown in Chapter 9. :

The "Slave_slices" contain Slave_macroblock data which, in turn, contain additional DCT coefficient data.
These data increase the resolution of the scaled_blocks in the MBs. Because the MB attributes of the Slice
layer are inherited by the Slave_macroblocks, we need only code additional DCT data for blocks marked by
the corresponding Coded Block Pattern.

Two slave_slices are used in the Test Model. The first contains data for 1/4 CCIR resolution, i.e. 4x4 DCT
coefficients; the second brings the resolution up to full CCIR resolution, i.e. 8x8 DCT coefficients.

D.1.2 HIERARCHICAL PREDICTION

DCT coefficients in a low resolution layer are used to predict the corresponding coefficients in the next
(higher) resolution layer. Thus, the 2x2 DCT coefficients of the Test Model's base Slice layer are used to
predict the upper-left 2x2 coefficients of the corresponding coefficients in the 4x4 slave layer. Similarly, the
4x4 coefficients of the first slave layer are used to predict the upper-left 4x4 coefficients of the corresponding
coefficients in the 8x8 slave layer. After computing the prediction differences, these differences together
with the new (not predicted) coefficient data are coded using a zig-zag scan pattern as shown in Figure 4.8

D.1.3 DCT AND IDCT DEFINITIONS FOR LOW RESOLUTION SCALES

DCT transforms with non-standard normalization factors should be used to facilitate the process of
quantization and inverse quantization. One can use the same quantization matrix in all resolution scales, if
the following definitions are used:

SCALE FDCT IDCT
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8x8 DCT (8x8) IDCT (8x8)
4x4 2%DCT (4x4) IDCT(4x4)/2
2x2 4*DCT (2x2) IDCT(2x2) /4

where DCT(NxN) and IDCT(NxN) are the standard 2-dimensional definitions for the transforms of size N,

An alternative implementation, not supported in this Test Model, would use the standard DCT definitions and
instead renormalize the quantization matrix.

D.1.4 QUANTIZATION

One quantization matrix is used for all resolution scales. For the 2x2 hierarchical layer, the upper left 2x2
elements of the 8x8 quantizer matrix are used. Similarly, for the 4x4 layer, the upper left 4x4 elements of the
8x8 matrix are used. In the Test Model, the quantized DCT coefficients in the 2x2 and 4x4 layers are
obtained by simply extracting the appropriate coefficients from the corresponding set of quantized 8x8
coefficients.

In general, to rebuild the DCT coefficients for a target scale, the following steps are needed:

1. partial inverse quantization of the DCT coefficients of the target scale and all lower scales by the
appropriate quantizer scale factor "mquant_x" (mquant_2 for scale 2x2, mquant_4 for scale 4x4, and
mquant_8 for scale 8x8),

2, where appropriate, summation of the results of the previous step (hierarchical prediction),

3. final inverse quantization of the DCT coefficients of the target scale using the appropriate quantization
matrix (intraor non-intra).

Note that mquant_2=mquant_4=mgquant_8 in this Test Model. The partial and the final inverse quantizations
are defined such that their combined formula corresponds exactly to the formula for inverse quantization in
the Test Model (section 7.3). Thus, except for DC coefficients in intra blocks, partial inverse quantization is
defined by:

if QAC(i,j) = 0 then
partial inv(i,j) = 0
else
partial inv(i,j) = (2*QAC(i,j)+k) * mquant x

where partial_inv is the partial dequantization, k=0 for intra, and k=1 for non-intra macroblocks. Final
inverse quantization is defined by:

rec(i,j) = (partial_inv(i,j) * w(i,j)) / 16

where w=wI for intra, and w=wN for non-intra macroblocks. This reconstruction is then followed by normatl
clipping and adjustment of even reconstruction values as described in section 7.3. For the DC value of intra
blocks, the reconstruction is obtained by calculating 8*QDC, for all scaling layers.

D.1.5 PROVISIONS FOR BANDWIDTH CONTROL OF RESOLUTION LAYERS

The Slave_slice layer specification includes the quantizer_delta parameter. This delta is always specified
with reference to the corresponding quantizer scale factor used in the Slice layer, as explained in section
9.3.6. This parameter is used to derive the "mquant" values used in the slave layers. For the Test Model the
"quantizer_delta" parameter is always zero.

D.1.6 CODING OF MOTION VECTOR INFORMATION
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Motion vector data are part of the MB attributes which are coded in the Slice layer. Whereas the pixel data in
the Slice of the scalable Test Model has a 1/16 resolution, the motion vector data are that of a full resolution
video. Motion vector data are the same as that which would be derived for a non-scalable bitstream; no
additional computations are required. To reconstruct resolution scales other than full resolution, these data
must be scaled appropriately. For example, the x- and y-motion-vector components at 1/4 resolution are 1/2
the corresponding full resolution components. Similarly the 1/16 vector components are 1/4 the
corresponding full resolution components. After scaling, the motion vector components should be rounded
away from zero to achieve a resolution of 1/2 pixel.

D.1.7 VLC CODING

Coding of 2x2 and 4x4 DCT coefficients is through a set of new VLC tables, described below. For the final
8x8 layer, coefficients are coded (intra macroblocks included) by using the standard MPEG-1 tables 2-B.5c-g,
without the special-case treatment of the first run/amplitude event (note that, in slave_slices, there may be
blocks where all prediction differences and all unpredicted coefficients are zero; in those cases an EOB is the
first and only event coded).

The variable-length coding scheme used for coding of DCT coefficients in the lower scales, is a modified
JPEG-style. In the JPEG scheme, VLC codes are assigned to RUNS and SIZE combinations, followed by a
fixed code of length SIZE. The combined VLC and fixed length codes are used to specify the exact
amplitude. The entire (RUN, SIZE) codeword tables can be constructed from knowledge of the number of
codewords of each length, and an ordered list of (RUN, SIZE) pairs. We provide a pseudo-C program
segment to generate the codewords and illustrate its operation below. Since the maximum RUN is 15, we
represent a (RUN, SIZE) pair by

VALUE = 16*RUN + SIZE.

Note that VALUE=0 is reserved for the End of Block (EOB) symbol. The numbers of codewords of each
length and ordered lists of VALUEs are given below for tables used in Scales 2, 4, and 8.

SCALE 2 NUMBER OF CODES of EACH LENGTH:
ncodes_2[16] = {

ll l’ 0I 2’ 2/ 2’ 3' 0/

3, 1, 0, 2, 2, 0, 0, 15 };

Thus, there is one codeword of length 1, one of length 2, none of length 3, etc.

SCALE 2 VALUES:

values 2[34] = {
0x00, 0x01, 0x02, O0x1l1l, 0x03, 0x21, 0x12, 0x31,
0x04, 0x13, 0x22, 0x05, 0x14, 0x32, 0x23, 0x06,
0x1l5, 0x16, 0x24, 0x33, 0x25, 0x07, 0x08, 0x10,
0x17, 0x18, 0x26, 0x27, 0x28, 0x34, 0x35, 0x36,
0x37, 0x38 };

Thus, the codeword of length one has VALUE=0 (i.e. EOB), the codeword of length two has VALUE=1 (i.e.
RUN=0, SIZE=1), etc.

SCALE 4 NUMBER of CODES of EACH LENGHT:
ncodes _4[16] = {

o, 1, 2, 3, 6, 4, 4, 4,

6, 1, 2, 2, 0, 0, 0, 95 };

SCALE 4 VALUES:

values_4[130] = {
0x00, 0x01, O0x31, 0x1l, 0x21, 0x51, 0x02, 0x32,
0x41, Ox61, 0x81, 0x91, 0x12, 0x52, 0x71, OxAl,
0x03, 0x22, 0x33, 0xBl, 0x13, 0x42, 0xCl, OxE1l,
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0x34, 0x53, 0x62, 0x92, 0xDl, OxF1l, 0x82, 0x04,
0x23, 0x72, 0x14, 0x43, 0xA2, 0x35, 0x54, 0x93,
0x63, 0xB2, 0x24, 0x83, 0xC2, 0x05, 0x73, OxE2,
0x15, 0x94, 0xb2, 0x36, 0x55, 0x06, O0xF2, 0x07,
0x08, 0x10, Oxl1l6, 0x1l7, 0x18, 0x25, 0x26, 0x27,
0x28, 0x37, 0x38, 0x44, 0x45, 0x46, 0x47, 0x48,
0x56, 0x57, 0x58, 0x64, 0x65, 0x66, 0x67, 0x68,
0x74, 0x75, 0x76, 0x77, 0x78, 0x84, 0x85, 0x86,
0x87, 0x88, 0x95, 0x96, 0x97, 0x98, O0xA3, O0xA4,
0xA5, O0xA6, 0xA7, OxA8, 0xB3, 0xB4, 0xB5, 0xB6,
0xB7, 0xB8, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, 0xCS8,
0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, OxE3, O0xE4,
0xE5, 0xE6, 0xE7, O0xE8, 0xF3, 0xF4, OxF5, O0xF6,
O0xF7, O0xF8 };

PSEUDO-C CODE TO GENERATE CODEWORD VALUES:

valpt = values_2; /* Point to first value in list of values */
ncodes = ncodes_2;
code=0; /* Initialize Huffman code value */
for (length=1; length<=16; ++length) {
code = (code<<l) + 1;
for (i=1; i<=ncodes[length-1]; ++i) {
++valpt;
--code;
}

}

Note: The list of "code"'s generated in this fashion are converted to binary codewords by 1) expanding "code"
as an unsigned binary number of length equal to the "length" of code, and 2) bit-wise complementing the
resulting binary codeword.
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Example from Scale 2 data above:

| Ox O 0 0 1 0 |
| Ox 1 0 1 2 10 |
| Ox 2 0 2 4 1100 [
| 0Ox11 1 1 4 1101 |
| Ox 3 0 3 5 11100 |
| 0x21 2 1 5 11101 |
|  0x12 1 2 6 111100 |
| 0x31 3 1 6 111101 |
| Ox 4 0 4 7 1111100 |
| 0x13 1 3 7 1111101 |
| 0x22 2 2 7 1111110 |
| 0x 5 0 5 9 111111100 |
| 0x14 1 4 9 111111101 |
| 0x32 3 2 9 111111110 |
| 0x23 2 3 10 1111111170 |
| 0x 6 0 6 12 111111111100 |
| 0x15 1 5 12 111111111101 [
| 0x16 1 6 13 1111111111100 |
| 0x24 2 4 13 1111111111101 |
| 0x33 3 3 16 1111111111110000 |
| 0x25 2 5 16 11111111112130001 |
| O0x 7 0 7 16 1111111111110010 |
| Ox 8 0 8 16 11111111131110011 |
| 0x10 1 0 16 1111111111110100 |
[ 0x17 1 7 16 1111111111110101 |
| 0x18 1 8 16 1111111211110110 |
| 0x26 2 6 16 11113111111110111 |
| 0x27 2 7 16 11111211111111000 |
| 0x28 2 8 16 1111111111111001 |
| 0x34 3 4 16 1111111111111010 |
| 0x35 3 5 16 11111113111111011 |
| 0x36 3 6 16 1111111111111100 |
| 0x37 3 7 16 1111111111111101 |
| 0x38 3 8 16 11111111311111110 |

D.2. IMPLEMENTATIONS
D.2.1 DECODER

A block diagram of the scalable Test Model decoder is shown in Figure D.1. The 3-layer decoder in the
scalable of the Test Model supports 2x2 (low), 4x4 (medium), and 8x8 (high) resolution scales. After
demultiplexing and entropy decoding, there will be for every 8x8 block, corresponding 2x2 and 4x4 blocks,
all of which are necessary to build the final 8x8 matrix of DCT coefficients. The low resolution 2x2 blocks
are used as a prediction to the four lowest order coefficients of their corresponding 4x4 blocks. Similarly, the
4x4 blocks are used as prediction to the 16 lowest order coefficients of their corresponding 8x8 blocks.

Because the same quantization matrix, Q8, is used for all hierarchical layers, the low resolution DCT
coefficient data are only partially dequantized as we build the target resolution set of coefficients.
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Dequantization by Q8 is only needed once we reach the target resolution (an additional simplification can be
achieved in the Test Model. Since the quantizer_delta parameter is always set to zero, dequantization by the
quantizer_scale parameter is needed only at the target resolution. In this case, no additional multiplies are
required over those required in the non-scalable syntax).

Once all 8x8 blocks in 2 macroblock have been dequantized, they can be used to reconstruct their
corresponding pixels by the same techniques used in the non-scalable Test Model. In this regard, 16x16
motion compensation prediction and interpolation can be used.

For a decoder operating at a lower than 8x8 resolution, only the required DCT coefficients are rebuilt. Except
for the use of IDCTs other than the 8x8 IDCT, and motion compensation for scaled macroblocks of 4x4 or
8x8, the reconstruction method is the same as with full resolution video. Of special note is that motion
vectors need to be scaled as explained before.

D.2.2 ENCODER

In summary, the Test Model encoder is a simple one. In this encoder the 2x2, and 4x4 DCT data are simply
extracted from the corresponding quantized coefficients in the 8x8 data. The prediction differences of the
frequency pyramid are, therefore, always zero.

Because there is no feedback loop in the lower resolution scales, this encoder will result in accumulation of
quantization and motion compensation errors at these resolution scales. The error, however will be naturally
reset back to zero whenever a new Group of Frames starts. This limitation can be overcome by more
complex encoders.

D.2.2.1 RATE CONTROL AND MQUANT SELECTION

These features are implemented in the same manner as with the non-scalable Test Model, i.e. rate control and
mquant are implemented counting the bits generated by each macroblock together with its corresponding
slave_macroblocks; the quantizer_scale of the macroblock layer is then set using the mquant value of the full
resolution macroblock.

D.2.2.2 FRAME/FIELD CODING, COMPATIBLE, AND OTHER MACROBLOCK TYPES

Only frame prediction and coding are permitted for experiments with scalability. Other macroblock-type
decisions are made using the full resolution video, just as with the non-scalable Test Model (except for the
above restrictions). Motion vector estimation is performed only for the full resolution video. The MB type,
address, and coded block pattern are defined with the full resolution data, exactly as in the non-scalable Test
Model; these attributes are coded, however, together with the lowest resolution layer and used throughout all
resolution scales.
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Appendix E : Description of Pure Field Based Coding

TMO(Field)

*SM3 is simply applied to Rec 601(each fields), 1GOP=24fields(60),21fields(50)
BBIBBPBBPBBPBBPBBPBBP(BBP)

*P-pictures are predicted by previous 2P(I)-pictures

forwerd
o(e) P ---->Pp
/different(field parity)
e(o) P~/

VLC(syntax) is basically same as B-pictures, but only names of prediction mode are changed.
Backward --> Dfferent
Bi-directionally --> Average=(For+Diff)/2

*ME :Full search or Hierachical Method
Range:+/-31(not depend on the field distance)
Accuracy:half-pel

SM3Fi++(optional)
*B-pictures are predicted by 3P(I)-picture
For. Back.
o{e) P-->B<------ P

e(o) P

*MB Type (noMC's are rejected)

VLC
Pred.Type For Diff Back non-coded coded
F+B 1 0 1 10 11
F+D 1 1 0 0100 0101
D+B 0 1 1 0110 0111
F 1 0 0 0010 00010
B 0 1 0 0011 00011
D 0 0 1 00001 000001
Intra 0 0 0 - 0000001

Optimizing for field base coding (example)
Format 4:2:0 ----> 4:2:2

MBsize 16*16 ----> 16*8

Scanning for Y

0 1 5 6 14 15 27 28 0 2 6 12 20 28 36 44
2 4 7 13 16 26 29 42 1 5 11 19 27 35 43 51
3 8 12 17 25 30 41 43 3 7 13 21 29 37 45 52
9 11 18 24 31 40 44 53 ---> 4 10 18 26 34 42 50 57
10 19 23 32 39 45 52 54 8 14 22 30 38 46 53 58
20 22 33 38 46 51 55 60 9 17 25 33 41 49 56 61
21 34 37 47 50 56 59 61 15 23 31 39 47 54 59 62
35 36 48 49 57 58 62 63 16 24 32 40 48 55 60 63

E.1 The Haifa Delta

Description of Pure FIeld Sequence (PFIS)

(1) Pure FIeld Sequence 1l-bit flag
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There is the 1-bit flag which indicates whether the followed
sequence be coded as a Frame-based or Field-based prediction.

If PFIS flag is set to "1", then the followed sequence(bitstream)
is coded as a PFIS.

(2) Number of reference pictures for prediction

a) I-picture : 0

b) P-picture : 2 (fields)
Always two reference pictures from the last and second last
I-picture and/or P- picture are used. The last(nearest previous)
I-picture or P-picture is the opposite parlty Field and the
second last(second nearest) I- or P-picture is the same parity
Field.

c) B-picture : 2, 3 or 4 (fields)
The number of reference picture for B-picture prediction can be
chosen from 2, 3 and 4 in accordance with the tradeoff among the
cost of memory, delay, encoder complexity and picture quality.
The picture coding type information and temporal reference will
provide the information about the number of reference picture and
that which pictures are used as the references.

(3) Picture header
In Pure FIeld Sequence, each field will be processed as a picture
then has always its Picture-header while the sencond Field of
"Frame-based dual prediction" does not have.

(4) Picture distance inbetween consecutive references
For the coding efficiency and simplification, the picture distances
inbetween consecutive reference pictures(I- and/or P-picture) are
restricted to odd numbers. (M =1, 3, 5, - - - )

(5) Difference in picture-header

The 1-bit flag of "field structure" in Frame-based prediction does
not exist in Pure FIeld Sequence.

(6) Macro Block of Pure FIeld Sequence

a) MB size
The MB size in PFIS is 16x16 of luminance, the same as Frame-
based prediction, while the actual spatial size on a display is
as twice as the Frame-based MB size in vertical direction.

b) Adaptive MC in a MB
In P- and B-pictures, the 16x16 MB may be divided to two of
16x8 Sub-MB in accordance with the decision of adaptive PFIS MB
coding. The decision step and formula are shown in "Decision of
l6xl6_MC / 16x8 MC" attached.

c) MB types
The MB types of P-picture and B-picture are now very similar each
other because of two references in the P-picture, then the VIC
table of MB type is shared and shown in Table_B.2c. In case of
P-picture, the "macroblock motion forward" is used for the same
parity field prediction and the "macroblock __motion_backward" for
opposite parity field prediction.

khkhkhkkkhkkkhhhhkhhhkhkhhkhhkhhkrhhhhhhhhkhhhhhhhhhhhhhkhdhohhhhhrkrkhrrrhohdkhdh
Attached parts
khkhkhkkhhhhdhhkhhdhhhhhhhhhhhhdhhdhhhhhhhhhhhhhhhhhhhhhrhohdkrhrhhdhkdhdodhdd

Decision of 16x16 MC / 16x8 MC

(1) Sub-MB structure in the Pure Field Sequence
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16
[ |
8 | sub-MB | upper sub MB
| |
I [
I I
8 | sub-MB | lower sub-MB
I I
| I
16x16 MB

(2) MV definition in the MB layer
The "MV_v_f", "MV_v_b", "MV_h f" and "MV_h b" are the motion
vectors for 16x16 MC or upper sub-MB 16x8 MC.
The "MV_v_f 2", "MV_v b 2", "MV_h f 2" and "MV_h b 2" are the

motion vectors for lower sub-MB 16x8 MC.
(3) 16x16_MC / 16x8 MC decision formula
If (all MV's of upper sub-MB == all MV's of lower sub-MB)

then do 16x16 MC
else do two of 16x8_MC

khkhhkhkhkkkhkhkhkhkkhkkhkkhkkhhhhhdhhhhhhhhhhhhkhhhhhkhhkhhkhkhkkkhhkkkhhkhhkkdhddhk

Coding and transmission order

trns. p6, B2, B4, P9, B5, B7, Pl2, B8, B10, P15, B1ll, B13,
oxder

even even even odd odd odd even even even odd odd odd

# of
fwd_ref (2) 1 2 (2) 1 2 (2) 1 2 (2) 1 2 -
bwd_ref 2 1 2 1 2 1 2 1 -
b) M=5
| Bl | B3 | P5 | B7 | B9 ] B11 | B13 | P15
PO | B2 | B4 | B6 | B8 | P10 | B1l2 | B1l4 |
trns. plo, B2, B4, B6, B8, P15, B7, B9, Bll, B13, P20, B1l2, -
order

even even even even even odd odd odd odd odd even even -
# of
bwd ref (2) 1 1 2 2 (2) 1 1 2 2 (2) 1 -
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fwd ref 2 2 1 1 2 2 1 1 2 -

(2) In case of 4 of B-picture references

trns. P6, Bl1, B2, P9, B4, BS, Pl2, B7, B8, P15, B10, Bll,
order

even odd even odd even odd even odd even odd even odd

# of
fwd ref (2) 2 2 (2) 2 2 (2) 2 2 (2) 2 2 -
bwd ref 2 2 2 2 2 2 2 2 -
b) M=5
| B1 | B3 | PS5 | B7 | B9 [ B11 | B13 | P15
PO | B2 | B4 | B6 | B8 | P10 | B12 | Bl4 |
trns. P10, B1, B2, B3, B4, P15, B6, B7, B8, B9, P20, Bll, -
order

even odd even odd even odd even odd even odd even odd -
# of ’
fwd_ref (2) 2 2 2 2 (2) 2 2 2 2 (2 2 -

bwd ref 2 2 2 2 2 2 2 2 2 -

khkkkhkkkhkhkkhkhkhkkhkkhkhkhhhhhhhhkhkhhhhhhhhhhrhhrhhhdkhhdhhhdhhhhhhrrhrh

Parameters for TM1

(1) Picture distance inbetween I-pictures and P-pictures
- N (inbetween I-pictures) = 24 in case of 625/50 format
- N = 30 in case of 525/60 format
- M (inbetween I-/P-pictures) = 3

(2) Number of references for B-picture = 3

(3) Picture type sequence and coding/transmission order
The same as above (1) a)

trns. p6, B2, B4, P9, B5, B7, Pl2, B8, B1l0, P15, Bll, B13, -
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order

even even even odd odd odd even even even odd odd odd -
# of
fwd ref (2) 1 2 (2) 1 2 (2) 1 2 (2) 1 2 -

bwd ref 2 1 2 1 2 1 2 1 -

Table of prediction references for each picture

| picture [1 fwd ref | bwd ref |
khkkkkhhhkhkhhkhhkhhkhhhkkhhkhhhhhhhkhkhhhhhkhhkhhkhkhhhkk*k
| P6 Il PO, P3 | I
ez 11 e 0 e3, e

B« 1 o, e3 |

e 1 e, e |
Bs 1l e3 | e e

BT 11 e3, e | e .
ez 11 e, e

. Bs 1l ee | es, e12 |
| B0 1l e, e | e2 |
eis 1 ee, ez |
B 11 es | ez, e1s |
B3 1l e, ez | es |

In case of two references either fwd ref or bwd ref for B-picture, the
best of two will be chosen prior to apply the bidirectional prediction
by MSE criteria, and the parity-bit portion of MV-vertical-component
will indicate that which candidate is used.

hhhkhhhkhhhkhhkhhhhdhhhhhhhhhkhhhkhhhhhhhhhhhhhhhhkhkhkkhhhhdhdhhhhrhrkr ks
khkhkhhhhkhhkhhkhkhhhhhkhhhkhkhhkhhhkhhhhhhhhhhhkhdhhhhhhhhhhhhhhhhkhrhxhkkkkkdk

Comments for "TM-1 as a delta from PWD-0"

The syntax of macroblock layer can be understood from the delta as;

macroblock() {

while(nextbits() == '0000 0001 111')
macroblock stuffing 11 vlclbf
while(nextbits() == '0000 0001 000')
macroblock escape 11 vlclbf
macroblock_address increment 1--11 vlclbf
macroblock type 1--6 vlclbf
if (compatible)
compatible type 1 uimsbf
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if (interlaced) {

* if (picture structure == 0) {
if (macroblock intra || macroblock pattern)
interlaced macroblock type 1 uimsbf

1f((macroblock motion forward) ||
(macroblock motion backward))

* interlaced motion type 2 uimsbf
* } else {
* if (macroblock motion forward XOR
* macroblock motion backward)
* field interlaced motion type 1 uimsbf
* ]
if (macroblock_guant)
quantizer scale 5 uimsbf
if (macroblock motion forward) {
motion horizontal forwarf code 1--11  vlclbf
if((forward f != 1) &&
(motion _horizontal forward code != 0))
motion_ horizontal forward | r 1--6 uimsbf
motion _vertical | forward code 1--11 vlclbf
1f((forward f 1= 1) a&
(motion vertical forward code != 0))
motion vertical_ forward r 1--6 uimsbf
}
if(interlace motion type) {
motion horizontal forward code 2 1--11 vliclbf
if ((forward f != 1) &&
(motion horizontal forward code 2 != 0))
motion horizontal _forward r 2 1--6 uimsbf
motion - vertical _ forward code 2 1--11 vleclbf
if ((forward f != 1) &&
(motion vertical forward code 2 != 0))
motion vertical forward r 2 1--6 uimsbf

}
}

if (macroblock_motion backward) {

motion horizontal _backwarf code 1--11 vlclbf
if((forward f != 1) s&&
(motion horizontal forward code != 0))
motion horlzontal backward r 1--6 uimsbf
motion . vertical backward code 1--11 vliclbf
1f((forward f 1=1) &&
(motion vertical_ backward code != 0))
motion vertical backward r 1--6 uimsbf

}

if(interlace motion type) {

motion horizontal _backward code 2 1--11 vlielbf
1f((backward f 1= 1) &&
(motion horizontal backward code 2 != 0))
motion horizontal forward r 2 1--6 uimsbf
motion - . vertical backward code 2 1--11 vlclbf
1f((backward f 1= 1) &s&
(motion_vertical_backward_code_2 1= 0))
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motion vertical_backward r 2 1--6 uimsbf

}
}

if (macroblock pattern)

coded block pattern 3--9 vlclbf

for(i=0; i<6; it++)
block(i)

if (picture coding type == 4)
end of macroblock 1 "

(1) picture structure field

In Pure FIeld Sequence,
defined yet then I like
the "picture structure"

(2) adaptive MC size in
There is no description
whether 16x16_MC or two
adaptive MC then I like

the meaning of "picture structure" field is not
to propose that in case of Pure FIeld Sequence,
is always "1".

Pure FIeld Sequence

in Pure Field Sequence that how to indicate
of 16x8_MC is used in accordance with the

to propose that the "field interlaced motion

type" will indicate as follow.

one of 16x16 MC
two of 16x8 MC

field interlaced motion_type == "Q"
field interlaced motion type == "1"

(3) parity bit field for Pure FIeld Sequence

This is decribed in the
will indicate the field

above that a portion of MV-vertical-component
parity information, but this is not convinient

or even not necessary in some cases for the "Pure FIeld Sequence"
so I like to propose something different scheme (syntax) later.
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Appendix F: Cell loss experiments

F.1 Cell loss

Cell loss can occur unpredictably in ATM networks. This document proposes a method of simulating cell
loss. A specification for a packetized bitstream has been defined. A model of bursty cell loss is defined and
analysed in order to allow the simulation of bursty cell loss. The proposed specification and model are
simplified; no attempt is made to model actual ATM networks; the main objective of the model is to allow
consistent simulation of the effects of cell loss on video coding.

F.1.1 Bitstream specification

The coded bit stream is packetized into 48 byte cells consisting of a four bit sequence number (SN), a
four bit sequence number protection field (SNP) and 47 bytes of coded data. In the stored file each cell is
preceded by a Cell Identification byte (CI). The syntax is as follows:

< CI ><SN><SNP>< 47 bytes of data >

The CI byte consists of the bit string '1011010' followed by the priority bit. The priority bit is set to '1' for
low priority cells and '0' for high priority cells. The cell loss ratio for low priority cells may be different
to that for high priority cells. SN is incremented by one after every cell. The sequence number protection
is set to zero.

For a lost cell the cell is discarded.
F.1.2 Galculation of cell loss probabilities

This section outlines a method for determining whether any cell in a bitstream should be marked as lost.
Cell loss is assumed to be random, with the probability of cell loss depending only on whether the
previous cell of the same priority was lost.

Firstly the mean cell loss rate and the mean burst of consecutive cells lost is calculated from the
probabilities of cell loss. These equations are then rearranged in order to express the cell loss probabilities
in terms of the mean cell loss rate and the mean burst of consecutive cells lost.

The following notation is used. The probability that any cell is lost is given by P, the probability that a
cell is lost given that the previous one was not lost is given by Pp and the probability that a cell is lost
given that the previous one was lost is given by P|. These probabilities are illustrated in the tree diagram
below.
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[==-=~-- Lost Cell
P1 |
|=====---- Lost Cell -------- |
| 1-P1 |
P | | ---- Not Lost Cell
Unknown |
Previous ------ |
State |
1-P | [-=----- Lost Cell
I Pn |
|-=-=---- Not Lost Cell ------ |
1-Pn |

|---- Not Lost Cell
F.1.3 Calculation of mean cell loss rate

The mean cell loss probability is given by P. In this section a relationship between P, Py, and Py is derived,
as follows, by finding two equivalent expressions for the probability of a given cell being lost. A lost cell
can occur in two ways: immediately after a cell has been lost and after a cell has been received. The
probability that a cell is lost, P, is the sum of the probability that the cell is lost given the previous cell
was lost multiplied by the probability that the previous cell was lost, P * PJ, and the probability that the
cell is lost given the previous cell was not lost multiplied by the probability that the previous cell was not
lost, (1 - P) * Pp. So,

P = P*Pp + (1-P)* Py
So

P = Pn/(l-Pl+Pn)

)

F.1.4 Calculation of mean burst of consecutive cells lost

A burst of lost cells is defined as a sequence of consecutive cells all of which are marked as lost. It is
preceded by and followed by one or more cells that are marked as not lost. The length of the burst of lost
cells is defined as the number of cells in a burst that are marked as lost. The mean burst of consecutive
cells lost is defined as the mean burst length, This number must always be greater than or equal to one.

A burst starts when a cell is lost after one or more cells have not been lost. The probability that this is a
burst of length one is equal to the probability that the next cell is not lost, that is, 1 - P|. The probability
that this is a burst of length two is equal to the probability that the next cell is lost and the one after that is
not lost, that is, P * (1 - Py). The probability of a burst of length n is P{(n-1) * (1 - P). The mean burst
length, B, is therefore given by:

B = (1-PD + 2*P *(1-Pp) + 3*P2*(1-P) + ...
Summing this series leads to the result:

B = 1/(1-Pp
2)
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F.1.5 Calculation of cell loss probabilities
Rearranging equation (2) gives:

P
3)

1-1/B

Rearranging equation (1) gives:

Pn = P*(1-Pp/(1-P)
Using equation (3) gives:

Pn = P/(B*(1-P))

)

F.1.6 Simulation of cell loss

Equations (3) and (4) allow the probabilities of cell loss to be calculated from the average cell loss rate
and the mean length of bursts of lost cells. Cell loss can easily be simulated using these probabilities:
assume that the first cell is received, then the probability that the next will be lost is given by Py. The
probability that a cell is lost is always Pp, unless the previous cell was also lost in which case the relevant
probability is Pj.

A simulation of cell loss only needs a random number generator, the values of Py and P| and the
knowledge of whether the previous cell of the same priority was lost or not. Pseudo-Pascal code to
perform cell loss is given below. Random is a function that returns a random number between zero and
one; its implementation is given below.

PreviousCelllost := FALSE;

Write('Enter mean cell loss rate and burst length');
Readln(P,B);

PL := 1 - 1/B

PN := P / (B * (1-P) )

For CellCount := 1 To NumberOfCells DO

BEGIN
CASE PreviousCellLost OF
TRUE : IF Random < PL THEN Celllost := TRUE
ELSE CellLost := FALSE;
FALSE : IF Random < PN THEN Celllost := TRUE
BELSE CellLost := FALSE;
END;
Write(Celllost);
PreviousCellLost := CellLost;
END;

END.

If the priority bit is used then the cell loss generator must be implemented separately for each of the
priorities.

F.1.7 Random number generation
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To ensure the consistent simulation of cell loss, it is necessary to ensure that the same sequence of
random numbers is generated by all simulations regardless of the machine or programming language
used. This section describes a method for the generation of such random numbers.

Random numbers are generated by use of a 31 bit shift register which cycles pseudo-randomly through
(2731 - 1) states (the value of zero is never achieved). The shift operation is defined by the pseudo-Pascal
code below.

DO 31 times

Begin
Bit30 := (ShiftRegister & 2430) DIV 2730
Bit25 = (ShiftRegister & 2725) DIV 24725

ShiftRegister := (2*ShiftRegister MOD 2%31) + (Bit30 XOR Bit25);
End

To generate a random number, the shift register is first shifted as above and then divided by (2731 - 1). It
may be easier to use it as it is, and multiply the probabilities in the program above by (231 - 1),

A separate random number generator is used for low and high priority cell loss. For each, the shift register

is initialised to a value of 1 and is then shifted 100 times. If this is not done, the first few random numbers
will be small, leading to the loss of the first cells in the bitstream.

F.2 Parameters

This section suggests specific values of the parameters to allow consistent simulation of the effects of cell
loss on video coding.

The cell loss experiment will use a mean cell loss rate of 1 in 1000 and a mean burst length of 2. Only
low priority cells are lost. The following formula gives the value of P to use for low priority cells.

Total Bit rate
P=103 x

Total bitrate - Bit rate for high priority cells
For example:
Total bit rate 4Mbits/s
High priority bit rate 2Mbits/s (50% of Total)
then the mean cell loss rate figure for the cell loss simulation program is 2 x 103,

Other cell loss experiments at different cell loss rates can also be shown.

For all experiments the following table should be completed.

High priority bit Low priority bit
rate rate

1-layer
2-layer base
enhance
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Appendix G: Compatibility and spatial scalability

Scalability is achieved by spatial reduction in the pel and temporal domain. Compatibility is a specific
implementation of the spatial scalabilty. The following section will describe several core experiments. An
adhoc group will be formed, which will discuss results and will work on improvements.

G.1 Experiment 1

For this the conversion of section 3.3.2 is used, which will give SIF images decimated from the FIELD1 part
of a sequence.

G.1.1 General Parameters

Global parameters for coding are:
M=3, N=12, for 25Hz

M=3, N=15 for 30Hz

Bitrate:

MPEGT! layer to be coded at 1.5Mbit/s
Total bitrate 4Mbit/s.

G.1.2 Coding of the SIF

The coding is performed entirely inline with MPEG1. For the encoder the TM is used except all non MPEG1
non compliant additions (frame based like SM3).

G.1.3 Coding

The coding is performed entirely inline with the TM, with the following additions:

G.1.3.1Compatible prediction method

On a macroblock basis a prediciton of the error signal can be made after the subtraction. This prediction is
generated from the corresponding coded 8*8 prediction error block of the lower layer (See figure G.1 and
G.2). This 8*8 block is then upsampled to a 16*8 block by a [1/2, 1, 1/2] filter. A similar operation is
perform on the chrominance 4*4 subblock to give a 8*4 prediciton block.
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Figure G.1: Compatible encoder structure
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Figure G.2: Compatible decoder structure
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G.1.3.2 Selection method

There are two cases:
1 - The high resolution signal is coded intra
2- The high resolution signal is coded inter

Case 1: The selection decision is on the luminance. The implementation of the compatible decision is based
on the comparison of VARPE and VARPPE on a field by field basis as computed in the following
algorithm:

for(i=1;i<=16;i++) {
for(j=1;j<=8; j++) {
OR = PE(i,j)
DIF = OR - PPE(i,j)
VARPPE += DIF * DIF
VARPE += OR * OR
MWOR +=OR
b
)
VARPPE /= 256;
VARPE = VARPE/256-MWOR/256*MWOR/256
Where: PE(i,j) denotes the pixels in the prediction error macroblock of the corresponding field. PPE(i,j)
denotes the pixels of the predicted prediction error macroblock from the lower layer.

The characteristics of the decision are described in figure 6.1 (Non-Intra decision includes the solid line in
figure 6.1)

Case 2: The selection decision is on the luminance. The implementation of the compatible decision is based
on the comparison of VARPE and VARPPE on a field by field basis as computed in the following
algorithm:
for(i=1;i<=16;i++) {

for (j=1;j<=8; j++) {
VARPE += PE(4,j) * PE(i,]);
VARPEPE += PPE(i,j) * PPE(i,j);

}

If (VARPE < VARPPE) then non-compatible prediction for that field is used
else compatible prediciton for that field is used.

Where: PE(i,j) denotes the pixels in the prediction error macroblock of the corresponding field. PPE(,j)
denotes the pixels of the predicted prediction error macroblock from the lower layer.

G.1.3.3 Quantisation

Quantissation is inline with chapter 7. There is one exception, which is intra quantisation in only used on intra
macroblock type and no compatible prediction (compatible_type = 00).

G.1.3.4 Coefficient coding
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In all picture types, macroblocks in which a compatible prediction has been made (ie when compatible_type
is not 00) the quantized coefficients are sequentially transmitted according to the zig-zag sequence given in
figure 4.5.

The combinations of zero-run and the following value are encoded with variable length codes as listed in
table B.5c to B.5f. End of Block (EOB) is in this set. Because CBP indicates those blocks with no
coefficient data, EOB cannot occur as the first coefficient. Hence EOB does not appear in the VLC table for
the first coefficient. Note that EOB is stored for all coded blocks.

The last bit 's' denotes the sign of the level, '0' for positive '1' for negative.

The remaining combinations of (RUN, LEVEL) are encoded with a 20-bit or 28-bit word consisting of 6 bits

ESCAPE, 6 bits RUN and 8-bits or 16-bits LEVEL. RUN is a 6 bit fixed length code. LEVEL is an 8-bit or
16-bit fixed length code. See table B.5g

G.1.3.5 Fixed Macrablock type

If the compatible prediction results in no transmitted coefficients for entrire macroblock eg CBP = 0, and the
macroblock is inter with no motion compensation then the macroblock MUST still be transmitted. This
requires a new macroblock type per picture mode (see table B.2)

G.2 Experiment 2
G.2.1 Syntax extentions

Below extentions to the syntax are given neccesary to perform spatial scalable experments

9.3.3 Sequence Header

sequence_header ( ) {

if (nextbits ( ) == extension_start_code) {

extension_start_code 32 uimsbf
sscalable 1 uimsbf
if (sscalable) {

do{

sscale_code 8 uimsbf

} while (nextbits ! ='00001111"

end_of sscales code 8 '00001111"
)
interlaced 1 uimsbf
fscalable 1 uimsbf
reserved 3 uimsbf
if (fscalable) {

do {
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fscale code
} while (nextbits ! = '000000111"
end_of fscales_code

}

while (nextbits ( ) ! ='0000 0000 0000 0000 0001"){

sequence_extension data

b
next-start-code ( )

9.3.3 Sequence Header (contd.)

5-May-92 Test Model 1, Draft Revision 1

8 uimsbf

8 '00000111'

sscalable - This is a one-bit integer defined in the following table.

binary value feature
0 not spatially scalable
1 spatially scalable

sscale_code - This is a 8-bit integer that defines the coding standard and compatibility, if any, for each
resolution layer. The DCT size for all spatial scales is 8.
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sscale ~de

Feature of Spatial Scale

® @ N R R A N = O

not compatible
MPEG-1 compatible sif odd
H 261 compatible cif
MPEG-1 compatible sif i
MPEG-1 compatible hhr
6if r*on coded with MPEG-1 compatible sif odd
ocir 601 coded with MPEG-1 compatible sif odd
ooir 601 coded with MPEG-1 compatible sif i
ocir 801 coded with sif even and MPEG-' ~ompatible sif odd
ccir 601 coded with MPEG-1 compatible hhr
reserved
reserved

(]

?

L]
end of ~scal~ =ode

@

®
@

reserved

Example: A bitstream with sscale-codes 1,5,8,15 would be interpreted to mean that there are three spatial
layers, MPEG-1 compatible SIF Odd, followed by SIF Even coded with respect to SIF Odd, followed by
CCIR 601 coded with respect to both SIF Odd and SIF Even.

fscalable - This is a one-bit integer defined in the following table.

binary value feature
0 not frequency scalable
1 frequency scalable

fscale_code - This is an 8-bit integer that defines DCT size for the scalable layers; i.e. DCT_size =
l<<scale_code. The values of this integer are:
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Feature of Frequency Scale

fscale 1 layer

fscale 2 layer

fscale 4 layer
fscale 8 layer

reserved

reserved

reserved
end ofmficalamgode

reserved

2
3
4
5
6
7
8
@
@
@

(]
[+
[

Example: A bitstream with fscale-codes 1,2,3,3,7 would be interpreted to mean that there are four frequency
layers a scale-2, followed by a scale-4, followed by two scale-8 layers.

9.3.5 Picture Layer

picture ( ) {

do {
if (tmp_start_code == slave_slice_start_code) {
slave_slice ( )

}

else {
~ slice ()

}

} while (tmp_stari_code = nextbits ( )) ==(slice_start_code | | sif_even_start_code | |
ccir_601_slice_start_code | | slave_slice_start_code ))
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9.3.6 Slice Layer

slice ( ) {
slice_start_code | | sif_even_slice_start_code
|1 ccir_601_slice_start code

if (fscalable) {
extra_bit_slice
dct_size

9.3.7 Macroblock Layer

macroblock ( ) {

if (sscalable)
compatible_type

for(i=0;i<6;i++){
if (fscalable && sscalable) {

if (slice_start_code) {
scaled_block (i, dct_size)

}

else {
block (i)

)

}
else if (fscalable) {
scaled_block (i, dct_size)

}
else {
block (i);
}
}
)
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G.2 Compatibility Experiment 2: MPEG-1 Field Coding in a Three Layer
Structure

In this experiment, three spatial resolution layers are allowed. Layer 1 consists of MPEG-1 coded SIF odd
fields and producers a MPEG-1 compatible constrained bitstream. Layer 2 consists of SIF even fields coded
using MPEG-2 field/dual field adaptive macroblock motion compensation allowed in field structure pictures,
within a sequence of frames. Layer 1 and Layer 2 combined also form equivalent HHR resolution. Layer 3 is
CCIR 601 and uses adaptive choice of temporal prediction from previous coded and spatial rediction
(obtained by upsampling decoded Layer 1 and Layer 2) corresponding to current temporal reference. For this
layer, all macroblock adaptive motion compensation modes in either frame-structure or field-structure
pictures can be employed and are subject to experimentation. This compatible and spatially scalable coding
scheme is illustrated by functional diagram of Fig. G.3.

Fig. G.3 Functional Diagram of a 3 Layer Spatially Scalable and Constrained Compatible Scheme

Filters used in decimation and for interpolatoin are described in Sections 3.3.3 and 3.4.3 respectively.

G.2.1 Data Rates

Layer 1: SIF odd MPEG-1 coded at 1.15 Mbit/s
Layer 2: SIF Even MPEG-2 Field/Dual Field coded with MPEG-1 prediction at 0.85 Mbit/s
Layer 3: CCIR 601 MPEG-2 coded (with spatial predictions from Layer 1 and Layer 2) at 2.0 Mbit/s

The total data rate for Layers 1, 2, and 3 is 4 Mbit/s. Experimentation can performed with alternate data rate
assignments of 1.5, 0.9, and 1.6 Mbit/s corresponding to Layers 1, 2, and 3.

G.2.2 MPEG-1 Encoding

For simulations, SM3 with following modifications is employed.

— No variable thresholding

— Intra matrix also employed for Non-Intra macroblocks

— Motion estimation range horizontally and vertically of ©10.5 pels between consecutive pictures.
— Mquant and rate-control of MPEG-2 PWDO.
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Coding is carried out with M=3, N=15 (30 Hz)/N = 12 (25 Hz) at 1.15 Mbit/s.

G.2.3. Field/Dual Field MPEG-1 Predictive Encoding

The choice of Field/Dual Field motion compensation is made on a macroblock basis when encoding
macroblocks of even fields using MPEG-2 field-structure option. Odd fields are coded exactly as MPEG-1
and are used in prediction of even fields. The motion compensation (MC) prediction macroblock modes are

illustrated in Fig. G.4(a) and Fig. G.4(b). Flied-structure pictures are employed, odd fields (O) and even fields
(E) are shown along with examples of MC prediction modes in SIF even fields both for P- and B- pictures.

/‘\/\
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Fig G.4(a) MC Prediction for Field based Macroblocks in Even Fields.
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Fig G.4(b) MC Prediction for Dual Field Based Macroblocks in Even Fields
G.2.4 CCIR 601 Encoding with Compatible Prediction

Either frame-structured of field-structured pictures can be assumed for coding of this layer. If frame-
structured pictures are employed, macroblocks can adaptively choose between frame, field, or dual field

102



5-May-92 Test Model 1, Draft Revision 1

based MC from previous coded pictures as well as spatial prediction for current (combined layer 1 and layer
2) lower resolution picture. In field structure pictures, on a macroblock basis, field or dual field based MC
modes can be selected. The "interpolate to 4:2:0" in Fig. G.3 forms the spatial prediction and is performed on
macroblock basis.

G.2.5 Syntax and Multiplexing

At sequence layer sscalable is set to '1'; fscalable is set to '0'; and interlace is set to '1".
The sscale_code sequence for this experiment is 1,5,8,15, as discussed in example in Sec. 9.3.3. A slice
based multiplexing scheme of Sec. 4.3.1 is used with start codes from Sec. 9.3.1.2.

G.3 Compatibility Experiment 3: MPEG-1 Frame Coding in a Two Layer
Scheme

In this experiment, two spatial resolution layers are allowed. Layer 1 consists of MPEG-1 coded HHR frames
and produces MPEG-1 compatible unconstrained bitstream. Layer 2 is CCIR 601 and uses adaptive choice of
temporal prediction from previous coded and spatial prediction (obtained by upsampling decoded HHR)
corresponding to current temporal reference. For this layer, on a macroblock basis, best MC mode is
adaptively chosen from among various options available in frame (or field) structure pictures and is subject to
experimentation. This compatible and spatially scalable coding scheme is illustrated functional diagram of
Fig. G.5.

4:2:2

Fig. G.5 Functional Diagram of a 2 Layer Spatially Scalable Code and Unconstrained Compatible Scheme.

Filters used for decimation and for interpolation are described in Sections 3.3.4 and 3.4.4 respectively.
G.3.1 Data Rates

Layer 1: HHR MPEG-1 coded at 2.0 Mbit/s
Layer 2: CCIR 601 MPEG-2 coded (with spatial prediction from Layer 1) at 2.0 Mbit/s

The tolal data rate for Layers 1 and 2 is 4 Mbit/s. Experiments can be performed with alternate data rate
assignments of 2.4 and 1.6 Mbit/s corresponding to Layers 1 and 2.
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G.3.2 MPEG-1 Encoding

For simulation, SM3 with following modifications is employed.

— No variable thresholding

— Intra-motion also employed for Non Intra macroblocks.

— Motion estimation range horizontally 10.5 pels and vertically 15.5 pels between consecutive pictures.
— Maquant and rate control of MPEG-2 PWDO.

Coding is carried out with M=3, N=15 (30 Hz)/N = 12 (25 Hz) at 2.0 Mbit/s.
G.3.3 CCIR 601 Encoding with Compatible Prediction

Either frame structure or field structure pictures can be assumed for coding of this layer, If frame-structure
pictures are employed, macroblocks can adaptively choose between frame, field, or dual field based MC from
previous coded pictures as well as spatial prediction from current (Layer 1) lower resolution pictures. In
field-structure pictures, on a macroblock basis, field or dual-field based MC modes can be selected. The
"interpolate to 4:2:0" in Fig. G.5 forms the spatial prediction and is performed on a macroblock basis.

G.3.4 Syntax and Multiplexing

At sequence layer sscalable is set to'1', fscalable is set to '0’, and interlace is set to '1'. The sscale_code
sequence for this experiment is 4,9,15, the first two identify coding standards for each resolution and the last
isend_of sscale code (as discussed in Sec. 9.3.3). A slice based multiplexing scheme of Sec. 4.3.2 is used
with start codes from Sec. 9.3.1.3.

G.4 Compatibility Experiment 4: MPEG-1 Field Coding in a Two Layer
Scheme

In this experiment, two spatial resolution layers are allowed. Layer 1 consists of MPEG-1 coded either SIF
odd or SIF interlaced fields and produces a MPEG-1 compatible constrained bitstream. Layer 2 is CCIR 601
and uses adaptive choice of temporal prediction from previous coded and spatial prediction (obtained by
upsampling decoded SIF odd or SIF interlaced) corresponding to current temporal reference. If SIF odd is
used in Layer 1, Layer 2 could be field structure so that on a macroblock basis, field or dual field MC as well
as horizontally interpolated SIF odd field prediction can be employed. If SIF interlaced is used in Layer 1,
Layer 2 could be frame structure and on a macroblock basis, best prediction mode could be adaptively chosen
from among various options available in frame structured pictures. This compatible and spatially scalable
coding scheme is illustrated by functional diagram of Fig. G.6.
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Fig. G.6 Functional Diagram of a 2 Layer MPEG-1 Constrained Compatible Code

Filters used for decimation and for interpolation for SIF odd are described in Sec. 3.3.2 and 3.4.2, filters for
SIF interlaced are specified in Sec. 3.3.5 and 3.4.5.

G.4.1 Data Rates

Layer 1: SIF odd or SIF interlaced MPEG-1 coded at 1.15 Mbit/s

Layer 2: CCIR 601 MPEG-2 coded (with spatial prediction for Layer 1) at 2.85 Mbit/s

The total data rate for Layers 1 and 2 is 4 Mbit/s. Experiments can be performed with alternate data rate

assignments of 1.5 and 2.5 Mbit/s corresponding to Layers 1 and 2.

G.4.2. MEPG-1 Encoding

For simulation, SM3 with following modifications is employed:

#No variable thresholding

Alntramatrix also employed forNonIntra macroblock

#Motion estimation range horizontally and vertically is ®10.5 pels between consecutive pictures
#sMquant and rate control of MPEG-2 PWDO.

Coding is carried out with M =3, N =15 (30 Hz)/N = 12 (25 Hz) at 1.15 Mbit/s

G.4.3 CCIR 601 Encoding with Compatible Prediction

If SIF odd is employed in Layer 1, field structure coding is assumed for CCIR601 layer. If SIF interlaced is
employed in Layer 1, frame structure coding is assumed for CCIR601 layer. For field-structure pictures, on a
macroblock basis, field or dual field MC mode can be selected. The"interpolate to 4:2:0 field or 4:2:0 frame"
in Fig. G.6 forms the spatial prediction and is performed on a macroblock basis.

G.4.4. Syntax and Multiplexing

At sequence layer sscalable is set to '1', fscalable is set 10'0", and interlace is set to'1'. The sscalable _code

sequence when this experiment is performed with SIF odd is 1,6,15; when SIF interlaced is used the sequence
3,7,15. The end_of_sscale_code is 15. A slice based multiplexing scheme of Sec. 4.3.3 with start codes
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from Sec. 9.3.1.4 are used. It is worth noting that if SIF odd and field structure coding are employed, slice
based multiplexing scheme of Sec. 4.3.3 may be used for CCIR 601 MPEG-2 coded odd field only, even
fields may contain only CCIR 601 slices.
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Appendix H: Low delay coding.

Profile;

- M=1 isused. That means no B- frames of B- fields.
- NoI - frames are used. The regular update is replaced by:
- 2 INTRA SLICEs /frame when frame based coding is used.
- 1 INTRA SLICE /field when field based coding is used.
This means that the whole picure is updated after 18 frames with a 625 line format and 15 frames with a

525 line format. To assure that the update is complete, there is a restriction on the motion vectors for the
SLICE before the first INTRA SLICE in a frame/field. This is illustrated in the figure below.

$$$$$ insert figure here

For the initial setting of the buffer regulation parameters, N is set to the the number of the frames in the
sequence to be coded. This is to ensure that the target bitrate over the whole sequence ( e.g. 4 Mb/s) is
achieved.

Core experimennts,

Purpose of the experiments:

- To achieve a target coding/decoding delay < 150 ms.
- To optimize picture quality taking the delay restriction into account.

Test conditions:

- Bitrate: 4 Mby/s.

- Sequences: MOB&CAL, FLOWERGARDEN +?
Outputs from the experiments:

- Statistics and tape demonstrations as for other Core experiments.
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- Listing and/or graphics showing the buffer occupancy along the whole sequence. This is to indicate what
physical buffer size - and resulting buffer delay - would be required in a real system.

Except for the first frame/field, there is only one frame/field type. For that reason the frame to frame
variation in the virtual buffer reflects the variation in the real buffer content. For that reason it is proposed to
list (or make graphs of) the following virtual buffer fillings for each frame:

- Content at the end of each frame.

- Maximum virtual virtual buffer content for each frame (comparing each SLICE).

- Minimum virtual buffer content for each frame.

Coding elements to be tested:

The low delay is achieved by the following elements:

- Frame/field structure (IPPPP..) This is taken care of in the "profile".
- Buffer regulation. For the moment the TM1 buffer control is used. Optimization of the buffer regulation in
order to further reduce coding/decoding delay could be considered later.

ing of frames or fields - this means coding complete fiel ly. (The coding of complete field
will reduce delay but might also reduce picture quality).

Improvement of resulting picture quality:
It is felt that the main element for increased picture quality is improved prediction. The main emphasis of the

experiments is therefore to test and compare coding with the different prediction modes forP- frames/fields in
T™1.

Conclusion
The main issues of the low delay core experiments to are to test and compare different prediction modes for

the (IPPPP..) frame/field structure to ensure good picture quality also for applications wher lowdelay is
desirble/essential
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Appendix I: Experments on scalability

Introduction A group of interested parties met to discuss a set of experiments that address various
application profiles relevant to scalability. As a result of these discussions, we are proposing a set of three
experiments that we believe are representative of the requirements from a significant set of applications. The
intent is to have members perform the first two experiments using the two proposed approaches to scalability,
namely frequency and spatial domain scalability. The results of these experiments will be presented at the
next meeting of WG 11 in July, where we will request the help of the implementation group in analyzing the
complexity of these approaches.

Experiments
Broadcast with heterogenous receivers

e  ¥Total bandwidth fixed (4mbit/s)
e layers (1/16, 1/4, 1).
e ¥No cons&aints on bit allocation other than total bandwidth restriction,
e ¥Best quality pictures at high resolution.
o  ¥Useful low resolution pictures
* ¥Encoder specification:

Frequency scalability: as in TM1

Spatial scalability: to be specified
Experimenters: DTB, IBM, MMI, Siemens
Multichannel, each channel has fixed bandwidth.
e ¥Total bandwidth 4mbit/s
o Layers(1/16, 1/4,1)

Bandwidths: 0.75, 1.5, 4.0
*  ¥Useful low resolution picture
¢ ¥Encoder Specification:

Frequency scalability: to be specified

Spatial scalability: as in TM1
Experimenters: AT&T, DTB, IBM, DTB, Siemens
Hybrid (Spatial / frequency)

e  ¥Total Bandwidth 4mbit/s
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e Spatial Layers
Layer 1 is TM1 with backward compatible extensions.

Layer 1/4 is TM1, SIF resolution, frame mode only, at 1.5 mbit/s
(includes frequency layer).

¢ Y¥Frequency Layer
Below the 1/4 layer(1/16).
No bandwidth constraint
Encoder scalability as in TM1
Experimenters: AT&T, Bellcore, Columbia
Possible additional experimenters: IBM, MIT, Sarnoff
Multichannel Scalability for Entertainment
¥Total bandwidth 4mbits/s
¥3 Layers
Bandwidths: 1.5, 2.5 and 4.0 mbit/s
Two layers presented at full screen resolution
One layer presented at 1/4 screen resolution
¥Layers may be coded using resolution or SNR scaling
¥Encoder specification:
SNR scalability: to be specified
Frequency domain resolution scalability (if used): to be specified
Spatial scalability: as in TM1

Experimenters: AT&T, MIT

1.3 Hybrid (Spatial and Frequency) Scalability

Test Model 1, Draft Revision 1

.3.1 Hybrid Experiment 1(a): A 3 Layer Hybrid Scalable Scheme

In this experiment, an MPEG-1 encoder is used to code SIF odd or SIF interlaced (SIF-I) fields, but the
encoded data is organized into two frequency scales ("fscale 8" and "fscale4"). The "fscale4" is base-layer
and carries (4 x 4 block) DCT coefficients, motion vectors, coded block pattern, and macroblock type
overhead for all macroblocks in each SIF field. The “fscale8" is slave layer and carries only the remaining
DCT coefficients coded in MPEG-1 encoder. The base-layer, slave-layer relationship is exactly the same as
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that in frequency scalable experiments. For base-layer, zig-zag scan and VLC's are the same as for frequency
scalable experiments, whereas slave-layer uses MPEG-1 zig-zag scan and VLC's. The decoded "fscale8"
(including "fscale4') macroblocks are upsampled and allow spatial prediction in addition to other temporal
prediction (MC mode) choice available when coding CCIR 601 resolution and MPEG-2 encoder.
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Fig. 1.1 Functional Diagram of a 3 Layer (spatial and frequency) Scalable Hybrid Scheme
Filters used for decimation and intepolation are described in Sec. 3.3.2, 3.3.5, 3.4.2, and 3.4.5

For simulations, data rates are assigned to various layers according to Appendix G.4.1, MPEG-1 encoding
parameters used are that from Appendix G.4.3, and CCIR 601 MPEG-2 encoding follows Appendix G.4.3.

At sequence layer both sscalable and fscalable are set to '1'. The sscalable_code and fscale_code can be
derived from tables in Sec. 9.3.3.

The slice based multiplexing scheme used is that of Sec. 4.3.4.

1.3.2 Hybrid Experiment 1(b): A 4 layer Hybrid Scalable Scheme

In this experiment, an MPEG-1 encoder issued to code SIF odd fields, and the encoded data is organized into
two frequency scales ("fscale4" and "fscale8") just like in Hybrid Experiment 1(a). The "fscale4" is base-
layer and carries DCT coefficients, motion vectors, coded block pattern, and macroblock type overhead for all
330 macroblocks in each STF field. The "fscale8" is slave layer and carries only the remaining DCT
coefficients coded in MPEG-1 encoder. The base-layer, slave-layer relationship is exaclty the same as that in
frequency scalable experiments. For base-layer zig-zag scan and VLC's are the same as for frequency
scalable experiments, whereas slave-layer uses MPEG-1 zig-zag scan and VLC's. The decoded "fscale8"
(included "fscale4") macroblocks allow the choice of MC prediction from Odd fields in addition to MC
prediction from previously decoded Even fields when coding SIF Even fields with MPEG-2 encoder.
Decoded odd and even field (slices) are upsampled on a macroblock basis and allow spatial prediction in
addition to other temporal predictions (MC mode) choices available when coding CCIR resolution and
MPEG-2 encoder.
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Fig. 1.2 Function Diagram of a 4 Layer (spatial and frequency) Scalable Hybrid Scheme

Filters used for decimation and interpolation are described in Sec. 3.3.3 and 3.4.3.

For simulations, data rates are assigned to various layers according to G.2.1. MPEG-1 encoding parameters
used are that from Appendix G.2.2, and CCIR 601 MPEG-2 encoding follows Appendix G.2.3.

At sequence layer both sscalable and fscalable are set to '1'. The scale_code and fscale_code can be derived
from tables in Sec. 9.3.3. The slice based multiplexing scheme used is that of Sec. 4.3.5.
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Appendix J: Delta on Frame/field prediction

In MBs that are field DCT coded (interlaced_macroblock_type == 1), chrominance block structure is as
follows :

0 When the picture format is 4:2:2, the chrominance blocks structure is analogous to that of the luminance.

0 When the picture format is 4:2:0, the chrominance blocks is structure is equal to that used for frame coded
MBs. In other words, chroma is always frame coded.

It was agreed that when prediction is frame based, the reference field for
chroma prediction may not be the correct onme, but until a unanimous
solution to this problem is found, it was agreed to keep it as it was.in
PWDO.

8.3 Motion Vectors

There are four prediction motion vectors : PMV1l, PMV2, PMV3 and PMV4. They
are reset to zero at the start of a slice and at intra-coded MBs.

ooo In frame-structure pictures

oo Frame based or FAMC prediction

o In P-Pictures, PMV1l is used. PMV2 is reset to PMV1l

o0 In B-pictures, PMV1l is used for forward motion vector prediction, and
PMV3 is used for backward motion vector prediction. PMV2 is reset to PMV1,
and PMV4 is reset to PMV3.

oo Field based prediction

o In P-Pictures, PMV1 is used with field 1, PMV3 is used with field 2. PMV2
is reset to PMV1, and PMV4 is reset to PMV3.

o In B-pictures, PMV1 and PMV2 are used for forward motion vector
prediction with field 1 and 2, and PMV3 and PMV4 are used for backward
motion vector prediction with fields 1 and 2.

oo Dual field prediction :

o In P-Pictures, PMV1l is used with prediction of field 1 from field 1, PMV2
is used with prediction of field 1 from field 2, PMV3 is used with
prediction of field 2 from field 2, PMV4 is used with prediction of field 2
from field 1,

o In B-pictures, PMV1l is used with forward prediction from the field with
same parity, PMV2 is used with forward prediction from the field with
opposite parity, PMV3 is used with backward prediction from the field with
same parity, PMV4 is used with backward prediction from the field with
opposite parity.

ooo In field-structure pictures

oo Frame based or FAMC prediction : does not exist

oo Field based prediction

o In P-Pictures, PMV1l is used. PMV2 is reset to PMV1.
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0 In B-pictures, PMV1l is used with forward prediction, PMV3 is used with
backward prediction. PMV2 is reset to PMV1l, and PMV4 is reset to PMV3.

oo Dual field prediction

o In P-Pictures, PMV1 is used with prediction with the field of the same
parity, PMV2 is used with prediction with the field of the opposite parity.

o In B-Pictures, PMV1 is used with forward prediction with the field of the
same parity, PMV2 is used with forward prediction with the field of the
opposite parity, PMV3 is used with backward prediction with the field of
the same parity, PMV4 is used with backward prediction with the field of
the opposite parity.

9.3.3 Sequence Layer

A pure field sequence contains pictures representing fields.
<<< Pure field sequences described in Appendix E >>>
A frame sequence contains pictures of two different structures

o Frame-structure : the picture is formed of MBs containing 16x16 pels of
both fields.

o Field-structure : the picture is formed of all the MBs containing pels of
field 1 only, followed by all the MBs containing pels of field 2 only. 1In
this case, field 1 is decoded first, then field 2 is decoded. Field 1 can
be used as prediction for field 2.

In a field-structure I-picture, field 1 is intra coded, and field 2 is
coded with prediction from field 1, using MB syntax defined for P-pictures.
Dual field prediction cannot be used in field 2.

In a field-structure P-picture, the latest two fields NOT part of a B-
picture are used for the prediction. This means in particular that field 2
will use field 1 of the same picture as one reference.

In a field-structure B-picture, the closest two fields NOT part of a B-
picture are used for prediction (forward and backward).

In a field-structure picture, the syntax of the

The size of a MB is 16x16 in both picture structures.

9.3.7 Macroblock Layer

When picture is field-structure, the syntax to be used is equivalent to
that when interlaced_motion_type is set to "frame_base prediction" ("00").

oco FAMC Prediction
<<< described in separate document >>>

000 Dual Field Prediction
00 Frame-structure

o P-picture

Two forward motion vectors to predict the pels of field 1, and two forward
motion vectors are used to predict the pels of field 2.

The prediction is obtained by averaging the two predictions obtained with
the two motion vectors.

o B-picture

Two forward motion vectors or two backward motion vectors are used to
predict the pels of field 1, and two forward motion vectors or two backward
motion vectors are used to predict the pels of field 2. 1In an interpolated
MB, dual field prediction is not allowed.

The prediction is obtained by averaging the two predictions obtained with
the two motion vectors.
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oo Field-structure

o P-picture

Two forward motion vectors to predict the pels of the field.

The prediction is obtained by averaging the two predictions obtained with
the two motion vectors.

o B-picture

Two forward motion vectors or two backward motion vectors are used to
predict the pels of the field. In an interpolated MB, dual field
prediction is not allowed.

The prediction is obtained by averaging the two predictions obtained with
the two motion vectors.

The number of motion vectors transmitted for each MB can be summarized as
follows

oo In frame-structure pictures:
o Frame based or FAMC prediction: 1 (P-pictures), 1 or 2 (B-pictures)
o Field based prediction: 2 (P-pictures), 2 or 4 (B-pictures)

o0 Dual field prediction: 4 (P-pictures), 4 (B-pictures)

oo In field-structure pictures:
o Frame based or FAMC prediction: does not exist

o Field based prediction: 1 (P-pictures), 1 or 2 (B-pictures)

o Dual field prediction: 2 (P-pictures), 2 (B-pictures)
In all cases, the parity of the field being referenced by a motion vector
is determined from its vertical component "y" as follows, where "y" is in
half-pel units
if ((y & 3) == Il (y & 3) == 3)

same parity
else

opposite parity

Note: in case of dual field prediction, the motion vector referring to the
field of same parity is transmitted first, and the motion vector referring
to the field of opposite parity is transmitted second.

Skipped Macroblocks

Until an unambiguous definition exists, skipped MB are not used in this TM.
An equivalent "non-skipped" MB type is used instead.
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ooooDecision rules
oooFrame-structure pictures

ooP-pictures

Frame based prediction compute MSE

Field based prediction combine forward prediction for field 1 and 2
compute MSE

FAMC prediction compute MSE

Dual field prediction compute MSE for field 1 and field 2
_ separately. Add the two MSEs

Pick prediction mode with smallest MSE.

ooB pictures:

Frame based prediction compute MSE of forward,
backward and interpolate modes
Field based prediction combine forward prediction for field 1 and 2

combine backward prediction for fieldl and 2
find average (interpolation)
compute MSE for each mode

FAMC prediction compute MSE
as in frame based prediction
Dual field prediction compute MSE of forward and

backward prediction (no interpolation)
Select mode with best MSE

oooField structure pictures
ooP-pictures

Field based prediction compute MSE
Dual field prediction compute MSE
Pick prediction mode with best MSE.

0ooB pictures:

Field based predition compute MSE for forward, backward,
and interpolative prediction
Dual field prediction compute MSE of forward and

backward prediction (no interpolation)
Select mode with best MSE
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Appendix K: Motion Compensation for FAMC

Basically, the motion compensation for FAMC is interpolation from four
pixels in reference frame. The address calculations of these 4 point are
defined in the next page, and it is illustrated in Fig, a.1. The

horizontal (X) axis interpolation is rounded in half pixel precision
because of hardware simplification, and the vertical interpolation is
arithmetic precision interpolation.

P=ref frame(x_evenl,y_even) Q=ref_ frame(x_even2,y even)
even line - - - o - - - - - @----- o - - - - - - -

A ref even = (P + Q)//2

>k d e

FAMC_MB(xl,yl) = (a*ref_even + b*ref odd)//(atb)

v ref_odd = (R + 8)//2
odd line - -=-0 -~ == +--@- - - - - o - - - - - - -
R=ref frame(x_oddl,y_odd) S=ref_ frame(x_odd2,y odd)

Fig. I.a.l FAMC prediction for even line
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Get_FAMC MB_for_ Forward (Frame Distance, Origin, FAMC_MV, FAMC MB) {

N = float(l/(2*Frame_Distance)) /* =0.5 When Frame Distance=1 */
/* =0.25 When Frame Distance=2 */
/* =0.17 When Frame Distance=3 */
for (yl=0; yl<16; ++yl) {
yg = yl + yorigin
for (x1=0; x1<16; ++x1) [
Xxg = x1 + xorigin

if (yl == even) { /* For first(Even) Field */

X_evenl = xg + (2 * FAMC_MVx)/2 /*
Addressing X of pixel P */

X_even2 = xg + (2 * FAMC_MVx)//2 /*
Addressing X of pixel Q */

y_even = yg + Adjacent_Even_Line_ for Even _Field_for_ Forward /*
Addressing Y of P & Q pixels */
(Frame_Distance, FAMC MVy)

x_oddl = xg + ((4 * (FAMC MVx - N*FAMC MVx))//2)/2 /*
Addressing X of R pixel */

X odd2 = xg + ((4 * (FAMC MVx - N*FAMC MVX))//2)//2 /*
Addressing X of S pixel

y_odd = yg + Ad]acent 0dd Line_for Even_Field for Forward /*

Addressing Y of R & S pixels */
(Frame Distance, FAMC MVy)

/%
Horizontal interpolation */
ref_even = (ref_frame(x_evenl,y even) + ref frame(x _even2,y _even))//2
ref odd = (ref frame(x oddl, y odd) + ref_frame(x_pddZ y_odd))//2
FAMC  MB(x1l,yl) = (a*ref_even + b*ref_odd)//(atb) /* Vertical
interpolation */
1
else { /* For second(0dd) Field */
X_oddl = xg + (2 * FAMC  MVx)/2 /*
Addressing X of R pixel
%X_odd2 = xg + (2 * FAMC ' MVx)//2 /*
Addressing X of S pixel */
y_odd = yg + Adjacent_0dd_Line_ for 0dd_Field_for_Forward /*
Addressing Y of R & S pixels */

(Frame_Distance, FAMC MVy)

x_evenl = xg + ((4 * (FAMC_MVx + N*FAMC MVx))//2)/2 /*
Addressing X of P pixel */

X_even2 = xg + ((4 * (FAMC _MVx + N*FAMC MVx))//2)//2 /*
Addressing X of Q pixel */

y_even = yg + Adjacent_Even_Line for_ 0dd_Field_ for_ Forward /*
Addressing Y of P & Q pixels */
(Frame_Distance, FAMC_MVy)

/*

Horizontal interpolation */

ref_odd = (ref_frame(x_oddl,y_odd) + ref_ frame(x_odd2,y _odd))//2

ref even = (ref _frame(x_evenl,y _even) + ref frame(x even2,y even))//2

FAMC _MB(x1l,yl) = (a*ref_odd + b*ref even)//(a+b) /* Vertical
interpolation */

}

}
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Backward Motion Compensation is a little different from forward one
because the relative position of both field of reference and predicted
frame is inversed. That is, in forward prediction, odd field of reference
is near to predicted frame, but in backward prediction, even field of
reference is near to predicted one in time domain.

Different points from forward are indicated by 'A'.

--> MV direction <-- MV direction

I | | I | | | |

I | | I I | | |

I | I | J I | |
even odd even odd even odd even odd
reference predicted predicted reference

------------------------- >time me--Tss------------------->time
forward prediction backward prediction

FPig a.2 difference of forward and backward prediction

Get_FAMC MB_for_Backward (Frame_Distance, Origin, FAMC MV, FAMC MB) {

N = float(l/(2*Frame_Distance)) /* =0.5 When Frame Distance=1 */
/* =0.25 When Frame Distance=2 */
/* =0.17 When Frame Distance=3 */
for (yl=0; yl<16; ++yl) {
yg = yl + yorigin;
for (x1=0; x1<16; ++x1) (
xg = x1 + xorigin

if (yl1 == even) { /* For first(Even) Field *x/
x_evenl = xg + (2 * FAMC MVx)/2 /*
Addressing X of pixel P */
X _even2 = xXg + (2 * FAMC MVx)//2 /* Bddressing X
of pixel Q *x/

y_even = yg + Adjacent Even_Line_for_Even Field for Backward /+*

Addressing Y of P & Q pixels */
AAAAAAAAANAAAANAAAANAAAAAANAAAAAAAAAAAAAAAAANAAA

(Frame_Distance, FAMC MVy)

x_oddl = xg + ((4 * (FAMC_MVx + N*FAMC MVx))//2)/2 /*
Addressing X of R pixel x/
AAA
x_odd2 = xg + ((4 * (FAMC MvVx + N*FAMC_MVX))//2)//2 /*
Addressing X of S pixel */
AAA

y_odd = yg + Adjacent _0dd_Line_for_Even_Field for Backward /*
Addressing Y of R & S pixels */
AAAAAANAAAAAAAAAAAAAAANAAAAAAAAAAAAAAAAAAAAAAA

(Frame_Distance, FAMC MVy)

/*
Horizontal Interpolation */
ref_even = (ref_ frame(x evenl,y_even) + ref _frame(x_even2,y _even))//2
ref_odd = (ref_frame(x_ oddl,y odd) + ref frame(x_ odd2, y_ odd))//2
FAMC _MB(x1,yl) = (a*ref even b*ref_odd)//(a+b) /* Vertical
interpolation */
]
else { /* For second(0dd) Field *x/
x_oddl = xg + (2 * FAMC_MVx)/2 /*
Addressing X of R pixel */
x_odd2 = xg + (2 * FAMC_MVx)//2 /* Addressing X
of 8 pixel */

y_odd = yg + Adjacent_0dd_Line for_ 0dd_Field_for Backward /*

Addressing Y of R & S pixels */
AAAAAAANAAAAAAAAAANAAAAAANAAAAAAAAAAAAAAAAAAAN

(Frame_Distance, FAMC MVy)
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x_evenl = xg + ((4 * (FAMC MVX - N*FAMC MVx))//2)/2 /*
Addressing X of P pixel */
AAA
x_even2 = xg + ((4 * (FPAMC_MVx - N*FAMC MVx))//2)//2 /*
Addressing X of Q pixel */
AAA
y_even = yg + Adjacent_Even_Line_ for_0Odd_Field for_Backward /*

Addressing Y of P & Q pixels */
AAAANANAAAAAAAAANAARAAAAAAAAAAAAAAAAAAAAAAAAAAA

(Frame_Distance, FAMC_MVy)

/*

Horizontal interpolation */

ref_odd = (ref_frame(x oddl,y odd) + ref_frame(x odd2,y odd})//2

ref_even = (ref_frame(x_evenl,y even) + ref_ frame(x even2,y even))//2

FAMC_MB(x1l,yl) = (a*ref_odd + b*ref even)//(a+tb) /* Vertical
interpolation */

1

]
]

1

(Adjacent XXX Line for_ XXX _Field_ for_ XXX) functions are shown in Table 1.1 to
1.4,
and the vertical interpolation coefficients (a,b) are shown in Table 2.1 to 2.2.

xorigin
|
0----wv-x9g-------71719
O+--------- to-m--- L +
| ¢ : |
| x1l |
| 0| 15 |
Fo e e e e +
yorigin ->| 0: | |
[-=--- yl--:--+ |
| : MB |
S 15: . . e e +
| : |
I I
| I
| |
| : : Frame |
479+------~-- Fomm---- ittt + Fig. a.3

Prediction for Chrominance is calculated in the same manner of luminance with
replacing the FAMC MV to the vector which is derived by halving component value
of the corresponding MB vector, using the formula from DC 11172;

right_for = (recon_right_for/2)>>1;

down_for = (recon_down_for/2)>>1;
right_half_ for = recon_right for/2 - 2#*right_for;
down_half_for = recon_down_for/2 - 2*down_for;

An example of FAMC for luminance and chrominance are depicted in Fig. 1.
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2. Motion Vector Estimation for FAMC

For FAMC, the most important point is to detect the "correct" motion vectors.
To detect the "correct" motion vectors, motion estimation is performed under
FAMC evaluation function described in "Motion Compensation®. Motion estimation
is applied on original pictures.

Get FAMC MB for_xxxx in following both Steps is Get FAMC MB for_ Forward when
detecting forward MV and is Get FAMC MB_for ~Backward when “detecting backward MV.

1) Step 1 ; Integer pel accuracy

Min AE = MAXINT
for (j=(-YRange); j<(YRangetl); ++j) {
for (i=(-XRange); i<(XRange+l); ++i) {
Get_FAMC MB_for xxxx (Frame_Distance, Origin, (i,j), FAMC_MB)
AE_famc = AE_macroblock (current_mb, FAMC MB)
if (AE_famc < Min_ AE) {
Min_AE = AE_famc
FAMC MV = (i,3)

}
2) Step 2 ; Half pel accuracy

Half pel refinement uses the eight neighboring half-pel positions which are
evaluated the following order;

1 2 3
4 0 S
6 7 8

where 0 represents the previously evaluated integer-pel position.
Min_AE as a result of in Step 1 is used as an initial value in Step 2.

foxr (j=-1; 3j<2; ++j) {
for (i=-1; i<2; ++i) {
Get_FAMC_MB_for_xxxx (Frame Distance, Origin,
(FAMC MVx int+0.5*%i, FAMC MVy int+0.5%j), FAMC  _MB)
AE_famc = AE macroblock (current mb, FAMC_ MB)
if (AE_famc < Min_AE) {
Min_AE = AE_famc
FAMC_MV = (FAMC_MVx_int+0.5%i, FAMC MVy int+0.5%3)

}
]
where (FAMC MV_int) represents the motion vector which is detected in integer-pel
motion estimation stage.
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Table 1.2
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Table 1.4

Table 1.3

o
=
]
T 3
]
o O
3
M m
o |
st TT
o | !
Y ! '
PR
1
F_m" 2—+
1 1
T P m '
g9 2
o_r: a
g gt
Wl @
| < v = '
N I '
Siel L
T o0, 1
.%qu_ v 1
1 ]
K w:
—~mt Qo
vy Z
[ Be
+ ——+
o]
T M
s g
Y
- O
O ad
e om
I+ ==+
oo :
oo. '
BHD .l
U
[ —
-
ko] n_.uzu
g g
& ! 8 !
N H
&g 80
._f~.F ]
A
Q. ——
a |t H
T >l
> T W.
=®o.! K
_;. o
! =
5% £
| -]
€+ ——+

CONNNN < OO WOV YWY VOXOSOOON
e R e |
+
(=]
lllllllllllllllll o ——— e e et
t
OCONMNMN < < FLIIIOOOVO CONNNT I
'
+ ' +
'

o ] [ov]
|||||||| o ———— b —— —— —— ——
' '
COAMNAMNNT ! OCOANNNNNDLI CONNNNN<
' '

+ ' + ' +
' '
(=] t o ' @

+
|
|

Repeated

oCNOoOWVOMOoW OO NONOoLW CHOoONOoOWVOoW
COHHNMNMMN @ LU O OIS VOO O~
e

MmO nm nmununumnerc~Na G el NN
R K R R |
+
(=]
lllllllllllllllll +III||I||
'
L B IR N Bt B B It ] 2l ol ol ol el a e We U B B B Bt It T Bt ]
'
+ ' +
i o
o t —
llllllll —_—_——————— e —_————— ——
| '
HeEEHAENMOD I A AAMMOON A A AMO WY
| 1
+ ' + ! +
' ' N
=) t [¥) t —

Repeated

CHMONONnOLI oMOoONOonon Smonmowvowm

COrHmFMNMNMNM TN OO OO AHH
A

R R T

y < 0, the sign of all figures in Table 1.1 - 1.4 should be

e ettt T TR PP P

*In case of FAMC MV

changed to minus.

123




5-May-92 Test Model 1, Draft Revision 1

Table 2.2 (a,b)
(yl == odd) in forward prediction
(yl == even) in backward prediction
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