5-Mar-92 PWD of Test Model 0

CCITT SG XV Document, AVC-212
Working Party Xv/1 March 1962
Experts group on ATM Video Coding

INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO-IEC/JTC1/5C29/WG11
CODED REPRESENTATION OF PICTURE AND AUDIO INFORMATION

ISO-EC/JTC1/SC29/WG11
MPEG 92/086

Title: Preliminary Working Draft (PWD)

Source: PWD Editing Committee

5-Mar-92 PWD of Test Mode! 0

Editorial Comments

Some times it was not so clear what was decided in Singapore. In these situations the Ad-Hoc group
wrote down the best solution it could think of, which does not nessarily represent the thought of the
MPEG or the CCITT Experts group.

Some questions and concerns are listed below:

¢ How are chrominance samples handle in the Field DCT coding mode?

¢ How are chrominance sample motion compensated in the Field prediction mode?

¢ Is the Chrominance sample position issue resolved? This also relates to the question above.

o Insection 5.7.1 full search is defined as part of the motion estimation, was this the outcome of
the Singapore meeting?

e Field/frame coding on intra blocks was not indictated in MPEG92/80, a text is given is section
6.2.

Arian Koster

PTT Research

Tel: +31 70 332 5664

Fax: +31 70 332 6477

Email: a.koster@research.ptt.nl

5-Mar-92 PWD of Test Model 0

1 INTRODUCTION

This document gives a comprehensive description of the MPEG-2 Test Model (TM). This model is used
in the course of the research for comparison purposes.

In order to obtfain results for comparison this document describes some techniques that are not a
matter of standardisation. Some of these techniques are of debatable value but are included to provide
a common basis for comparisons. In order to have comparable simulation results the methods
described in this document are therefore mandatory.

The readers are asked to give comments and corrections to remove ambiguous parts.

In several places this TM will be different from what is possible with
CD 11172-2, sections or paragraphs describing this are marked in the
margin.

5-Mar-92 PWD of Test Model 0

2 DE TLINE

The generic structure is depicted in figures 2.1 and 2.2. The generic structure of the reference model
is based on the following main issues:

e input / output format CCIR 601
e Pre- and post processing, as described in section 3.

¢ Random access of coded pictures, which requires the definition of Group of pictures, as described
in Section 4 and 6.

e Motion Vector search in forward and/or backward direction, as described in Section 5.

¢ Prediction modes, forward, backward and bi-directional motion compensated, field or frame
motion compensation, as described in section 6.

e DCT, on frames or fields as described in section 7
o Entropy coding, as described in section 8.

e 4 Mbps and 9 Mbps target rate, including multiplexing and regulation, as described in section 9 an
10 respectively.

o Scalable bit streams as described in Appendix D.
o Extensions for purely field based coding are given in Appendix E.

o Experiments for cell loss are given in Appendix F.

2.1 Arithmetic Precision

In order to reduce discrepancies between implementations of this TM , the following rules for
arithmetic operations are specified.

(a) Where arithmetic precision is not specified, such as in the calculation of DCT transform
coefficients, the precision should be sufficient so that significant errors do not occur in the
final integer values

(b) The operation / specifies integer division with truncation towards zero. For example, 7/4 is

truncated to 1, and -7/4 is truncated to -1.

© The operation // specifies integer division with rounding to the nearest integer. Half-integer
values are rounded away from zero unless otherwise specified. For example, 3//2 is rounded
to 2 and -3//2 is rounded to -2.

{d) Where ranges of values are given by two dots, the end points are included if a bracket is
present, and excluded if the less then' (<) and ‘greater then' (>) characters are used. For
example, [a..b> means from a to b, including a but excluding b.

5-Mar-92 PWD of Test Model 0

Figure 2.1: Encoder Block Diagram

Figure 2.2: Decoder block diagram

5-Mar-92 PWD of Test Model 0

3 SOQURCE FORMATS

This section gives a description of the Source Formats and their conversion from and to CCIR 601.
For the purposes of the simulation work, only the particular formats explained in this section will be
used.

3.1 Source Input Formats

The SIF's consists of component coded video Y, Cb and Cr. The simulated algorithm uses two source
input formats for moving pictures. The differences are the number of lines, the frame rate and the
pixel aspect ratio. One is for 525 lines per frame and 60Hz, the other one is for 625 lines per frame
and 50Hz.

The parameters for the so called active 4:2:0-525-format and active 4:2:0-625-format frames are:

4:2:0-525 |4:2:0-625

Number of active lines

Luminance (Y) 480 576

Chrominance (Cb,Cr) 240 288
Number of active pixels per line

Luminance (Y) 704 704

Chrominance (Cb,Cr) 352 352
Frame rate (Hz) 30 25
Frame aspect ratio (hor:ver) 4.3 4.3

Table 3.1: Active 4:2:0 Formats

For compatibility with MPEG1 or scalability a second set of formats is defined, the MPEG1 SIF. The
parameters for the so called active SIF-525 and active SIF-625 frames are:

SIF525 SIF625

Number of active lines

Luminance (Y) 240 288

Chrominance {Cb,Cr) 120 144
Number of active pixels per line

Luminance (Y) 352 352

Chrominance (Cb,Cr) 176 176
Frame rate (Hz) 30 25
Frame aspect ratio (hor:ver) 4:3 4.3

Table 3.2: Active SIF Format

5-Mar-92 PWD of Test Model 0

For compatibility with H.261 a third format is defined, the Common Intermediate Format (CIF). The
parameters for the so called active CIF are:

CIF

Number of active lines

Luminance (Y) 288

Chrominance (Cb,Cr) 144
Number of active pixels per line

Luminance (Y) 352

Chrominance (Cb,Cr) 176
Frame rate (Hz) 30
Frame aspect ratio (hor:ver) 4:3

Table 3.3: Active CIF Format

When scalable extensions are used, a hierarchy of formats can exist, with the highest resolution
equal to the CCIR 601 Active 4:2:0 format, and with lower resolutions having either 1/2, 1/4, or
1/8, the number of pixels in each row and column.

3.2 Definition of fields and frames

The CCIR 601 and the active 4:2:0 formats are both interlaced. A frame in these formats consists of
two fields. The two fields are merged in one frame. The odd lines are within one field the even lines in
the other field. There is a sampling time difference between the two fields. Let us define FIELD1 as
the field preceding FIELD2.

1.

Video data is 50 (50 Hz) or 60 (60 Hz) fields per second. The first field is the odd field, and is
numbered field 1. The second field is the even field and is numbered field 2 and so on. So
odd numbered fields are odd fields and even numbered fields are even fields.

50 Hz fields have 288 lines each, and 60 Hz fields have 240 lines each. The fields are
considered to be interlaced, and the first line of the first (odd) field is above the first line of the
second (even) field for both 50 and 60 Hz.

The field lines are numbered as if they are combined into a frame, and the numbering starts at
one. So, the first line of the frame, which is the first line of the first (odd) field is line 1. The
second line of the frame which is the first line of the second (even) field is line 2. And so on,
so odd numbered lines are in odd fields, and even numbered lines are in even fields.

For display of 50 Hz material, the 288 lines are the active 288 lines of that format. This will
display correctly since in that format, the first line of the first field is above the first line of the
second field.

For display of 60 Hz material, the 240 lines are placed in a specific set of the 243 active lines
of that format. The first (odd) field is displayed on lines 21, 23, ..., 499, and the second
(even) field is displayed on lines 22, 24, ..., 500. The active lines 19, 501, and 503 of the
odd fields and the active lines 18, 20, and 502 of the even fields are displayed as black.

5-Mar-92 PWD of Test Modei 0

3.3 Conversion of CCIR 601 to the Input formats
3.3.1 Conversion of CCIR 601 to the 4:2:0 format

Pre processing is applied to convert the CCIR 601 format to the 4:2.0 format. This is described in the
following.

First the signal is cropped from 720 luminance pels per line to 704 pels per line by removing 8 pels
from the left and 8 pels from the right. Similarly the 360 chrominance pels per line are cropped to
352 pels per line by removing 4 pels from the left and 4 pels from the right.

Luminance: two fields are merged in their geometrical order to form a frame.
Remark: Some processing in the running of the coding scheme is however field based (DCT coding,
prediction); thus it is still needed to know for each line of pixels which field it originates from.

Chrominance: The following 7 tap vertical filter is used to pre-filter the FIELD1
[-29, 0, 88, 138, 88, 0, -29] /256
Then, vertical sub sampling by 2 is performed.

The following 4-tap vertical filter is used to decimate the FIELDZ:
[1,7,7,11/16
Then, vertical sub sampling by 2 is performed.

The two sub sampled chrominance fields are merged to form a frame. This is shown in figure 3.1.

Original Fields
Even

Ft

Figure 3.1: 4:2:0 Chrominance sub sampling in the fields

5-Mar-92 PWD of Test Model 0

Figure 3.2 : 4:2:0 Chrominance sub sampling in a frame

NOTE: The horizontal positions of the chrominance sample is wrong.

In figure 3.1 and 3.2 the following symbols are used:
the vertical position of the original lines
the vertical position of lines of the sub sampled odd field
the vertical position of lines of the sub sampled even field

3.3.2 Conversion of CCIR 601

to SIF

The CCIR 601 formats are converted into their corresponding SIFs by sampling odd fields and using

the decimation filter of table 3.4.

720
B e Rttt +
| | 480
| | /576
I |
| Y | 4=-=---- >
| |
| [
| I
| [
fommmmmmm e +
CCIR 601
525/625
360
$ommmmm e + 360
I | 480 4---------
| | /576 |
| u,v R e > |
| | |
[| |
| | dmmmmm
fmmm———— - +
CCIR 601 0odd field
525/625

0dd field only

180
+ 240 D
| /288 |
|Horizontall
|Decimation|
Filter +4----

only

|
Horizontal| |
Decimation| |
Filter | |

+ 240
| /7288

180
+---=4 120
> | | 144
|Vertical | |
|Decimation+----+
+Filter

SIF

Figure 3.3 Conversion from CCIR 601 into SIF

5-Mar-92 PWD of Test Model 0

The filter coefficients are depicted in table 3.4.

[29] 0] 88 [138] 88 | 0 [-29] //256

Table 3.4 Decimation filter

Note: the odd fields contain the top most full line

3.4 Conversion of the Input Formats to CCIR 601
3.4.1 Conversion of the 4:2:0 Format to CCIR 601
Luminance samples of each 4:2:0 field are copied to the corresponding CCIR 601 field.

Chrominance samples are not horizontally resampled.

Vertical resampling of the chrominance is done differently on field 1 and field 2 because of the
different locations of the chrominance samples.

In field 1, the chrominance samples in the CCIR 601 field are obtained by interpolating the
chrominance samples in field 1 only of the 4:2:0 format. Referring to line numbers defined in the
4:2:2 frame, samples on lines 1, 5, 9 etc. are copied from the corresponding lines in the 4:2:0 field.
Samples on lines 3, 7, 11 etc. are interpolated by the even tap filter [1, 1]//2 from the corresponding
adjacent lines in the 4:2:0 field.

In field 2, the chrominance samples in the CCIR 601 field are obtained by interpolating the
chrominance samples in field 2 only of the 4:2:0 format. Referring to line numbers defined in the
4:2:2 frame, samples on lines 2, 6, 10 etc. are interpolated from the corresponding adjacent lines in
the 4:2:0 field using a [1, 3]//4 filter. Samples on lines 4, 8, 12 etc. are interpolated by a [3, 1]//4
filter from the corresponding adjacent lines in the 4:2:0 field.

10

5-Mar-92 PWD of Test Model 0

3.4.2 Conversion of SIF to CCIR 601

A SIF is converted to its corresponding CCIR 601 format by using the interpolation filter of table 3.5.

720
360 720 e T e +
tommm—-- + 240 ommmmmmm oo + 240 [|
| | /288 I | /288 [I
I +ommmm- > | Hmm—mm - > | Y | 480
| | Horiz | |Verticall | 576
| | Interp.| | Interp | |
R + Filt i it + Filter |
Fommmmm e - +
SIF 525/625
CCIR 601
360
180 360 dmmmm——-- +
180 120 +----+ 240 o= + 240 I |
+----+ /144 | | /288 | | /288 | | 480
I Y > | pmmmm - > | 4o >l U,V | /576
| | I |Horizontal | | Verticall I
+----+Verticall | Interp I | Interp | [
Interp +----+ Filter dom————- + Filter | |
Filter $mmmm—— - +
SIF 525/625 CCIR 601

Figure 3.4: Conversion of SIFs to CCIR 601 formats

The filter coefficients are shown in table 3.6.

[-12] 0140256 [140 0 | -12] //256

Table 3.5 Interpolation filter

Note: the active pel area should be obtained from the significant pel area by padding a black level
around the border of the significant pel area.

11

5-Mar-92 PWD of Test Model 0

4 LAY TRUCTURE OF VIDEQ DATA

4.1 Sequence

A sequence consists of one or more concatenated Groups of Pictures.

4.2 Group of pictures

A Group of Pictures consists of one or more consecutive picture. The order in which pictures are
displayed differs from the order in which the coded versions appear in the bit stream. In the bit
stream, the first frame in a Group of Pictures is always an intra frame. In display order, the last picture
in a Group of Pictures is always an intra or predicted picture, and the first is either an intra picture or
the first bidirection picture of the consecutive series of bi-directional pictures which immediately
precedes the first intra picture.

4.3 Picture

Pictures can be intra, predicted, or interpolated pictures (known as I-pictures, P-pictures, and B-
pictures - see section 6.1). The arrangement of pictures, in display order, in a Group of Pictures of
this TM is shown in Figure 4.1. In the figure frames 1-15 are part of a Group of Picture.
$388$8$s$$include figures here

Figure 4.1 Structure of a Group of Pictures

el e e +
e it +
o m e +
e i +
it bbb +
e e ittt l bbb +
e s +
i bl +
fom s m e m e mmm—mm o mm o - - +
it +
o mmm e mmm e mm—— i ————m - +
e e b +
e +
et +
+-30------=----mmm s +
+ - - - - - - - - - - - - - - - - - %
fmmmm e m e m e — e ———————— o +
+-36---——--——— - —mmmm - m e — - +
B et b +

Figure 4.2 Arrangement of Slices in a Picture
For the purposes of simulation, each frame consists of 30 or 36 Macro block Slices (MBS, see section

4.4). 4:2:0-525 has 30 MBSs and 4:2:0-625 has 36. These MBSs cover the significant pel area. The
arrangement of these MBSs in a frame is shown in figure 4.2.

12

5-Mar-92 PWD of Test Model 0

4.4 Macro block Slice

A Macroblock Slice consists of a variable number of macroblocks. A Macroblock Slice can start at any
MB and finish at any other MB in the same frame. In this Test Model, a Macroblock Slice consists of a
single row of 44 Macroblocks, beginning at the left edge of the picture, and ending at the right edge.

Figure 4.3: Test model Macroblock Slice Structure

When scalable extensions are used (Annex D), the Slice layer may contain Macroblocks of resolution
lower than 16x16.

4.4.1 Slave Slice (scalable extension)

Slave slices are layers of Slave macroblocks which are spatially co-located with the Macroblocks
in the Slice layer.

4.5 Macroblock

A Macroblock consists of 6 blocks. The general structure holds 4 Y, 1 Cb and 1 Cr Blocks and is
depicted in figure 4.4.

Ho——t-——
11 2 | +--—+ +--—+
tm——t-——+ I 5 | I 6 |
I 3 1 4 | +---4 +--—+
+oo—d--—+

Y Cb Cr

Figure 4.4: General Macroblock structure

The internal organisation within the Macroblock is different for Frame and Field DCT coding, and is
depicted for the luminance blocks in figure 4.5 and 4.6. The chrominance block is in frame order for
both DCT coding macroblock types.

13

AN T

iz

////////

////

5-Mar-92 PWD of Test Model 0

Yz

] iz

997900000007,
iz

iz
iz

950075

e %

77
7

0007060000,
///// /,

////////////////
7077 //////
7/ /// /
Y 7
'/////////////
///// //,

///

\
\

Figure 4.6 : Luminance Macroblock Structure in Field DCT Coding

When scalable extensions are used (Annex D), Macroblocks may contain scaled_blocks of resolution

lower than 8x8.

4.5.1 Slave_macroblock (scalable extension)

Slave_macroblocks are layers of slave_blocks which are spatially co-located with the

scaled_blocks in the Macroblock layer.

14

5-Mar-92 PWD of Test Model 0

4.6 Block

A Block consists of an array of 8x8 coefficients. Figure 4.7 shows coefficients in the block in zigzag
scanned order.

to—t e —d o —dm—d— -+ -+

| 11 21 61 7115116128129| - > increasing cycles per
e e e e e e e it | picture width

| 31 51 8114117127130143]| |
R e e il e it it |
| 41 9113118126131142144] I
e e i el Dl Ll bl \Y
110112119125132141145|541

i e s e T & increasing cycles per
111120124133140146153155| picture height
Fmmtm e —b ot
1211231341391471521561611

i e e e =
1221351381481511571601621

i e e it e b s
1361371491501581591631641

S e St it el bl bl ekt
Figure 4.7: Block structure
4.6.1 Scaled_block (scalable extension)

When scalable extensions are used (Annex D), a scaled_block is used instead of a block. A
scaled_block may consist of an array of NxN coefficients, where Nis 1, 2, 4, or 8",

4.6.2 Slave_block (scalable extension)
Slave_blocks are arrays of coefficients, which are used to enhance the spatial or amplitude

resolution of the coefficients in the corresponding Scaled_block layer. Figure 4.8 shows the
Scaled_block and Slave_block structures that are possible in a scalable bit stream.

15

Block_1
+-—+
[11
+-—+

Block_2
D et
| 11 2]
$-—4-—4
I 31 4|
+-—+-—+

Block_4
Y bt et
| 11 2| 6] 7|
ot m—tm—t-—4
I 31 51 8113
D it et Tt &
| 41 9112114]|
Rt Salak Sl bt
110111115116/

e

5-Mar-92 PWD of Test Model 0

Block_8
bt~ fm—dm— b —F—— - — ¢
| 1] 2) 6] 711511612829
e . it it bt Rt 3
| 31 51 8114117127130(43]
b mpm—pm—d e m—d -t —+
| 41 9113118126(31142]44|
Rl el e ik el Dbl Sl Sl
[10112119125132]41145|54|
e e S B e . Rt it
[11120124133140146153 55|
el e St ek bl Eobt e it
121123134139147152156|61]
e Rttt el Sebl bl el kel
122135138148151|5716062|
R e e i e e it il
136137149}1501581591631641
et el Rt b Saint el Rl bl

Figure 4.8: Block structures for scalable bit streams

16

5-Mar-92 PWD of Test Model 0

MOTI ESTIMATION AN MPENSATION
To exploit temporal redundancy, motion estimation and compensation are used for prediction.

Prediction is called forward if reference is made to a frame in the past (in display order) and called
backward if reference is made to a frame in the future. It is called interpolative if reference is made to
both future and past.

For this TM the search range should be appropriate for each sequence, and therefore a vector search
range per sequence s listed below:

Table Tennis: +15 pels/frame

Flower Garden +15 pels/frame

Calendar +15 pels/frame

Popple 115 pels/frame

Football +31 pels/frame

PRL CAR +31 pels/frame [NOTE: isn't 63 pels/frame more appropriate?)

A positive value of the horizontal or vertical component of the motion vector signifies that the
prediction is formed from pixels in the referenced frame, which are spatially to the right or below the
pixels being predicted.

5.1 Motion Vector Estimation

For the P and B-frames, two types of motion vectors, Frame Motion Vectors and Field Motion
Vectors, will be estimated for each macroblock. In the case of Frame Motion Vectors, one motion
vector will be generated in each direction per macroblock, which corresponds to a 16x16 pels
luminance area. For the case of Field Motion Vectors, two motion vectors per macroblock will be
generated for each direction, one for each of the fields. Each vector corresponds to a 16x8 pels
luminance area.

The algorithm uses two steps. First a full search algorithm is applied on original pictures with full pel
accuracy. Second a half pel refinement is used, using the local decoded picture.

17

5-Mar-92 PWD of Test Model 0

5.1.1 Full Search
A simplified Frame and Field Motion Estimation routine is listed below. In this routine the following
relation is used:

(AE of Frame) = (AE of FIELD1) + (AE of FIELD2)

where AE represents a sum of absolute errors.

With this routine three vectors are calculated, MV_FIELD1, MV_FIELD2 and MV_FRAME.

Min_FIELD1 = MAXINT;

Min_FIELD2 = MAXINT;

for (y = -YRange; y < YRange; y++) {
for (x = -XRange; x < XRange; x++) {

AE_FIELDl1 = AE_Macroblock(prediction_mb(x,Yy),
lines_of_FIELDl_of_current_mb) ;
AE_FIELD2 = AE_Macroblock(prediction_mb(x,Yy),
lines_of_FIELD2_of_ current_mb);
AE_FRAME = AE_FIELDl + AE_FIELD2;
if (AE_FIELDl < Min_FIELD1l) {
MV_FIELDl = (X,Y);
Min_FIELDl1 = AE_FIELDI1;
}
if (AE_FIELD2 < Min_FIELD2) (
MV_FIELD2 = (X,Y):
Min_FIELD2 = AE_FIELD2;

}
if (AE_FRAME < Min_FRAME) {

MV_FRAME = (X,Y):
Min_FRAME = AE_FRAME;

The search is constrained to take place within the boundaries of the significant pel area. Motion
vectors which refer to pixels outside the significant pel area are excluded.

5.1.2 Half pel search

The half pel refinement uses the eight neighbouring half-pel positions in the corresponding local
decoded field or frame which are evaluated in the following order:

1 2 3
4 0 5
6 7 8

where O represents the previously evaluated integer-pel position. The value of the spatially interpolated
pels are calculated as follows:

Sk+05y) =(Sky+Sk+1y)//2,
Sx ,y+0.5) = (Skxy+Sk,y+1)//2,
S{x+0.5,y+0.5) = (Sx,y)+Slx+1,y)+Sx,y+1)+Sx+1,y+1))//4.

where x, y are the integer-pel horizontal and vertical coordinates, and S is the pel value. If two or
more positions have the same total absolute difference, the first is used for motion estimation.

18

5-Mar-92 PWD of Test Model 0

5.2 Motion Compensation

Motion comperisation is performed differently for field coding and for frame coding. General formulas
for frame and field coding are listed below.

Forward motion compensation is performed as follows:
Six,y) =S1lx + FMVx(x,y), y + FMVylx,y))
Backward motion compensation is performed as follows:

Six,y) = SM+1(+ BMVx(x,y), y + BMVylx,y))

Temporal interpolation is performed by averaging.

Six,y) = (S1x + FMVx(x,y) ,y + FMVylxy) +
SM+1(x + BMVx(x,y), y + BMVyl{x y))//2

A displacement vector for the chrominance is derived by halving the component values of the
corresponding MB vector, using the formula from CD 11172:

right_for = (recon_right_for / 2) >> 1;

down_for = (recon_down_for / 2) >> 1;

right_half_for = recon_right_for/2 - 2*right_for:

down_half_for = recon_down_for/2 - 2*down_for;

5.2.1 Frame Motion Compensation

In frame prediction macroblocks there is one vector per macroblock. Vectors measure displacements
on a frame sampling grid. Therefore an odd-valued vertical displacement causes a prediction from the
fields of opposite parity. Vertical half pixel values are interpolated between samples from fields of
opposite parity. Chrominance vectors are obtained directly by using the formulae above. The vertical
motion compensation is illustrated in figure 5.1.

Reference Frame

Vertica MV =0 @ |

psl) |
[oMV =1

=

2’ |

23] |
| @
Pory |
4’ |
| 111
o

[
F1 F2

5

Figure 5.1: Frame Motion Compensation

19

5-Mar-92 PWD of Test Model 0

5.2.2 Field Motion Compensation

In field prediction macroblocks there are two vectors per macroblock. The first vector refers to blocks
in field 1 and the second vector refers to blocks in field 2.

if (nint(vertical_motion_vector+0.25) == EVEN)
reference is made to the same parity field
else
reference is made to the opposite parity field

The integer part of the vector measures displacements on a frame sampling grid. Therefore an odd-
valued vertical displacement causes a prediction from a field of opposite parity. Vertical half pixel
values are interpolated between samples from fields of the same parity.

Chrominance vectors are indeterminate and the exercise is left to the reader. You could try and do
the same as in frame mode.

In the field coding mode, the half pel interpolation is performed with reference to a single field.
Vectors with 0.5 pel accuracy result in a linear interpolation of the two or four corresponding pixels,
in the reference field. The motion compensation is shown in figures 5.2 and 5.3.

Reference Fields

Vertical MV=0 @ [|105
1.5[:1 #MV=1
2; [:12.5
3-5l:l 43

| |
46| [

|
I
foo

Figure 5.2: Motion Compensation for FIELD1

20

5-Mar-92

reference fields
Vertical MV = -1@ -¢s|'

051 + MV =0
|
1@ |_:11.5
|
|
2.51:1 ¥
|
3+ (13.5
| |
| @4
o F2

Figure 5.3: Motion Compensation for FIELD2

21

PWD of Test Model 0

5-Mar-92 PWD of Test Modei 0

6 MODES AND MODE SELECTION

In section 6.1, a coding structure with different frame modes is introduced. Within each frame,
macroblocks may be coded in several ways, thus aiming at high coding efficiency. The MB modes for
intra, predicted and interpolated frames are shown in 6.2 to 6.4.

6.1 Picture types

Pictures are coded in several modes as a trade-off between coding efficiency and random accessibility.
There are basically three picture coding modes, or picture types:

- I-pictures: intra coded pictures.

- P-pictures: forward motion-compensated prediction pictures.

- B-pictures: motion compensated interpolation pictures.

Although, in principle, freedom could be allowed for choosing one of these methods for a certain
picture, for the Test model a fixed, periodic structure is used depending on the respective picture.

Every N-th frame of a sequence starting with the first frame is coded as intra frame i.e. frames 1,
N+1, etc. (see Fig. 5.1). Following every M-th frame in between (within a Group of Pictures) is a
predicted frame coded relative to the previous predicted or intra frame. The interpolated frames are
coded with reference to the two closest previous and next predicted or intra frames. In this TM, M=3
and N=15 for 29.97 Hz and M=3 and N=12 for 25 Hz.

[NOTE: exact values for M and N have to be defined, for different experiments)

The following parameters are currently to be used for core- experiments:

Frame rate 25 Hz 29.97 Hz
N 12 15
M 3 3

Coding modes available for predicted and interpolated frames are described in detail in the following
paragraphs.

6.2 Macroblock types in an intra picture

In an I-picture the following macroblock types are provided:
- Intra

- Intra with modified quantizer

See also table B.2a

Independent of the macroblock type a compatible prediction and field/frame DCT coding indications
are given in the bit stream, see also chapter 9, the macroblock layer section.

The macroblock type selection is done in the following order:
- Compatible prediction

- Field/frame DCT coding

- Modified quantizer

22

5-Mar-92 PWD of Test Model 0

6.3 Macroblock types in a predicted picture

In predicted frames the following macroblocks types can be distinguished:
- Motion compensation coded

- No motion compensation coded

- Motion compensation not coded

- Intra

- Motion compensation coded with modified quantizer

- No Motion compensation coded with modified quantizer

- Intra with modified quantizer

See also table B.2b

Independent of the macroblock type a compatible prediction, field/frame DCT coding and field/frame
motion vector prediction indications are given in the bit stream, see also chapter 9, the macroblock
layer section.

Macroblock type selection is done in the following order:
- MC/no MC - Field/Frame prediction

- Compatible prediction

- Intra/Inter

- Modified quantizer

|- Field/frame DCT coding

- Coded/not Coded

6.4 Macroblock types in an interpolated picture

In interpolated frames the following macroblock types are provided:
- Interpolate, not Coded

- - Interpolate, Coded

- Backwards, not Coded

- Backwards, Coded

- Forwards, not Coded

- Forwards, Coded

- Intra

- Interpolate with modified quantizer
- Backwards with modified quantizer
- Forwards with modified quantizer

- Intra with modified quantizer

Independent of the macroblock type a compatible prediction, field/frame DCT coding and field/frame
motion vector prediction indications are given in the bit stream, see also chapter 9, the macroblock
layer section.

Macroblock type selection is done in the following order:

- Interpolative/Forwards/Backwards - Frame/Field prediction
|- Compatible prediction

- Intra/Inter

- Modified quantizer

|- Field/frame DCT coding

- Coded/not Coded

23

5-Mar-92 PWD of Test Model 0

6.5 Selection criteria

The following rules apply to interlace and compatible bit streams. A subset of them apply to scalable
bit streams as well. For details refer to Annex D.

6.5.1 Motion Compensation/No Motion Compensation - Frame/Field

For P-frames, the decision of selecting the Frame Motion Vector or the Field Motion Vector is by MSE
comparison of each error signal: If (SE of Frame) <= (SE of FIELD1 + SE of FIELDZ2) then the Frame
Motion Vector is chosen.

The decision of MC/no MC will be SE based. If {SE of MC) < (SE of No MC) then MC mode.
6.5.2 Forward/Backward/Interpolative - Field/Frame prediction

Each B-frame Macroblock has possible Forward/Backward/Interpolated modes, and each mode has
further Frame/Field prediction mode, so there totally 6 possible modes. All SE of the error signals of
each mode will be calculated, and the mode with the least SE is chosen. In the case of two modes
having the same SE, the mode with Frame prediction only will have higher priority, and also forward
prediction will have higher priority than backward with interpolated mode the least priority.

6.5.3 Compatible prediction

When the experiment is not intended for compatible coding, this mode is not selected. When the
experiment is intended for compatible coding the following criterion is used.

The SE of the compatible prediction is compared with the SE of the outcome of the previous decision.
The best one is selected.

6.5.4 Intra/Inter coding

The implementation of the intra/non-intra decision is based on the comparison of VAR and VAROR
as computed in the following algorithm:

for(i=1;i<=16;i++)(
for(j=1;j <= 16; j++) |

OR = Of,j)
Dif = OR - S{i,j);
VAR = VAR + Dif*Dif;
VAROR=VAROR + OR"OR;
MWOR =MWOR + OR;

] }

VAR = VAR/256;

VAROR=VAROR/256 - MWOR/256"MWOR/256;

Where: Ofi,j) denotes the pixels in the original macroblock. S(i,j) denotes the pixels of the
reconstructed macroblock, in the frame referred to by the motion vector. Full arithmetic precision is
used. The characteristics of the decision are described in Fig. 6.1. (Non-intra decision includes the
solid line in Fig. 6.1.)

24

5-Mar-92 PWD of Test Model 0

1'2:..44....4“...,..“A...A.
12‘;. " = = 2 = o = s
“..
o
0 o4 128 192 266
VAR
EE INTRA

Figure 6.1: Characteristic Intra/Inter

6.5.5 Modified Quantizer
In chapter 10 "Rate control and quantization control” the algorithm for the calculation of the quantizer

is given. If the quantizer given by this algorithm is not equal to the previous quantizer the modified
quantizer indication is used.

6.5.6 Field/Frame DCT coding
6.5.6 Field/Frame DCT coding decisions
Field based rather than frame based coding is used if the following equation holds:

Varl => (Var2 + 4096)
where Varl and Var2 are calculated with the following lines:

Varl = 0;
var2 = 0;
for (Pix = 0; Pix < 16; Pix++) {
Sum = 0;
for (Line = 0; Line < 16; Line += 2) {
Sum += O(Pix, Line) - O(Pix, Line+l);

}
varl += Sum * Sum;

Sum = 0;
for (Line = 0; Line < 16; Line += 4) {
Sum += O(Pix,Line) + O(Pix,Line+l) - O(Pix,Line+2) - O(Pix,Line+3);

}
Var2 += Sum * Sum;

}
where O(Pix, Line) denotes the 16 x 16 macroblock to be transformed.

6.5.7 Coded/Not Coded

The choice of coded or not coded is a result of quantization. When all coefficients are zero then a
block is not coded. A Macroblock is not coded if no block in it is coded, else it is coded.

25

5-Mar-92 PWD of Test Mode! 0

7 TRANSFORMATION AND QUANTIZATION

While mode selection and local motion compensation are based on the macroblock structure, the
transformation and quantization is based on 8*8 blocks.

Blocks are transformed with a 2-dimensional DCT as explained in Appendix A. Each block of 8*8

pixels thus results in a block of 8°8 transform coefficients. The DCT coefficients are quantized as
described in sections 7.1 and 7.2.

7.1 Quantization of Intra frames and Intra Macroblocks
Intra frame DCT coefficients are quantized with a uniform quantizer without a dead-zone.
7.1.1 DC Coefficients

The quantizer step-size for the DC coefficient of the luminance and chrominance components is
always 8. Thus, the quantized DC value, QDC, is calculated as:

QDC =dc//8

where "dc" is the 11-bit unquantized mean value of a block.

7.1.2 AC Coefficients

AC coefficients acfi,j) are first scaled by individual weighting factors,
ac~(1,}) = (16 * acfi,j)) // wili,j

where wii,j) is the (i,jith element of the Intra quantizer matrix given in figure 7.1. ac~(i,j) is limited to
the range [-2048,2047].

8 16 19 22 26 27 29 34
16 16 22 24 27 29 34 37
19 22 26 27 29 34 34 38
22 22 26 27 29 34 37 40
22 26 27 29 32 35 40 48
26 27 29 32 35 40 48 58
26 27 29 34 38 46 56 69
27 29 35 38 46 56 69 83

Figure 7.1 - Intra quantizer matrix
The step-size for quantizing the scaled DCT coefficients, ac~(i,j), is derived from the quantization
parameter, mquant. Mquant is calculated for each macroblock by the algorithm defined in Section 10
and is stored in the bit stream in the slice header and, optionally, in any macroblock (see Section 9 for
the syntax of the bit-stream and Section 10 for the calculation of mquant in the encoder).
The quantized level QAC,j) is given by:
QACH,) = ac~(i,j) // (2*'mquant)

and QAC(i,j) is limited to the range [-256..255].

26

5-Mar-92 PWD of Test Model 0

7.2 Quantization of Predicted and Interpolated frames

Non-intra macroblocks in Predicted and Interpolated frames are quantized with a uniform quantizer
that has a dead-zone about zero. A non-intra quantizer matrix, given in figure 7.2, is used.

16 17 18 19 20 21 22 23
17 18 19 20 21 22 23 24
18 19 20 21 22 23 24 25
19 20 21 22 23 24 26 27
20 21 22 23 25 26 27 28
21 22 23 24 26 27 28 30
22 23 24 26 27 28 30 31
23 24 25 27 28 30 31 33

Figure 7.2 - Non-intra quantizer matrix

The step-size for quantizing both the scaled DC and AC coefficients is derived from the quantization
parameter, mquant. Mquant is calculated for each macroblock by the algorithm defined in Section 10.
The following formulae describe the quantization process. Note that INTRA type macroblocks in
predicted and interpolated frames are quantized in exactly the same manner as macroblocks in Intra-
pictures (section 7.1) and not as described in this section.

ac~(i,j) = (16 * ac(i,j)) // wN(i,))

where:
WN(i,j} is the non-intra quantizer matrix given in figure 7.2

QAC(,j)= ac~(i,j) / (2'mquant) IF mquant == odd
= {ac~(i,j+ 1) / (2*mquant) IF mquant == even AND ac~(i,j)>0
= {ac~{i,j)-1) / (2*mquant) I[F mquant == even AND ac~(i,j)<0

QAC (i,j) is limited to the range [-256..255].

7.3 Inverse Quantization
7.3.1 Intra-coded macroblocks

This section applies to all macroblocks in Intra-Frames and Intra macroblocks in Predicted and
Interpolated Frames. Reconstruction levels, rec(i,j), are derived from the following formulae.

rec(i,j) = mquant * 2 * QAC(j) * wili,j) / 16

if (rec (i,j) is an EVEN number && rec(i,j) > 0)
rec (i,)) = rec(i,j) - 1

if (rec (i,j) is an then number && rec(i,j) < 0)
rec (i,)) = rec(i,j) + 1

if (QAC (1,j) == 0)
rec (i,jj=0

27

5-Mar-92 PWD of Test Model 0

The DC term is special case
rec{1,1)=8*QDC

Where:

mquant is the quantization parameter stored in the bit stream and calculated according to the
algorithm in section 10.

rec(i,j) is limited to the range [-2048..2047].
7.3.2 Non-Intra-coded macroblocks

This section applies to all non-Intra macroblocks in Predicted and Interpolated Frames. Reconstruction
levels, recfl,j), are derived from the following formulae.

if (QAC(,)) > 0)
rec(i,) = (2 * QAC(,j) + 1) * mquant * wN(i,) / 16

if (QACAi,j) < 0)
rec(i,)) = (2 * QAC(i,j} - 1) * mquant * wN(i,j) / 16

if (rec (i,j) is an EVEN number && rec(i,) > 0)
rec (i,)) = rec(i,j) - 1

if (rec (i) is an EVEN number && recfi,j) <0)
rec (i,j) = recfi,j) + 1

if (QAC (i,)) == 0)
rec(i,j =0

recli,j) is limited to the range [-2048..2047].

28

5-Mar-92 PWD of Test Model 0

DIN

This section describes the coding methods used to code the attributes and data in each macroblock.
The overall syntax of the video coding is described in the following section, section 9.

The spatial position of each macroblock is encoded by a variable length code, the macroblock address
(MBA). The use of macroblock addressing is described in section 8.1.

Macroblocks may take on one of a number of different modes. The modes available depend on the
picture type. Section 6 describes the procedures used by the encoder to decide on which mode to
use. The mode selected is identified in the bit stream by a variable length code known as MTYPE.
The use of MTYPE is described in section 8.2.

The coding of motion vectors is addressed in section 8.3.

Some blocks do not contain any DCT coefficient data. To transmit which blocks of a macroblock are
coded and which are non-coded, the coded block pattern (CBP) variable length code is used (see
section 8.4).

The coefficients in a block are coded with VLC tables as described in section 8.5, 8.6, and 8.7.

|For additional information about scalable bit streams, refer to Annex D.

8.1 Macroblock Addressing

Relative addressing is used to code the position of all macroblocks in all frames. Macroblocks for
which no data is stored are run-length encoded using the MBA; these macroblocks are called skipped
macroblocks.

In Intra frames there are no skipped macroblocks. In predicted frames a macroblock is skipped if its
motion vector is zero, all the quantized DCT coefficients are zero, and it is not the first or last
macroblock in the slice. In interpolated frames, a macroblock is skipped if it has the same MTYPE as
the prior macroblock, its motion vectors are the same as the corresponding motion vectors in the
prior macroblock, all its quantized DCT coefficients are zero, and it is not the first or last macroblock
in the slice.

A macroblock address (MBA) is a variable length code word indicating the position of a macroblock
within a MB-Slice. The order of macroblocks is top-left to bottom-right in raster-scan order and is
shown in Figure 4.2. For the first non-skipped macroblock in a macroblock slice, MBA is the
macroblock count from the left side of the frame. For the Test Model this corresponds to the absolute
address in figure 4.3. For subsequent macroblocks, MBA is the difference between the absolute
addresses of the macroblock and the last non-skipped macroblock. The code table for MBA is given
in Table B.1.

An extra code word is available in the table for bit stuffing immediately after a macroblock slice header
or a coded macroblock (MBA Stuffing). This code word should be discarded by decoders.

The VLC for start code is also shown in Table B.1

29

5-Mar-92 PWD of Test Model 0

8.2 Macroblock Type

Each frame has one of the three modes:

1 Intra (I-frames)
2 Predicted (P-frames)
3 Interpolated (B-frames)

For these three frame types different VLC tables for the Macroblock types are used. See table B.2a
for Intra, table B.2b for predictive-coded pictures and table B.2c for bidirectionally predictive-coded
pictures.

Methods for mode decisions are described in section 6. In macroblocks that modify the quantizer
control parameter the MTYPE code word is followed by a 5-bit number giving the new value of the
quantization parameter, mquant, in the range [1..31].

8.2.1 Compatible Prediction Flag

A one-bit flag, compatible_type, immediately follows the MBTYPE VLC, when used. If its value is 1
it indicates that compatible prediction is used.

The prediction works as follows. The corresponding quarter of the reconstructed SIF macroblock is up
sampled., by a 1/2 1 1/2 bilinear interpolation.

8.2.2 Field/Frame Coding Flag

A one-bit flag, interlaced_macroblock_type, immediately follows the MBTYPE VLC. If its value is
1 it indicates that the macroblock coefficient data is in field order as described in chapter 6. If its value
is O it indicates that the macroblock coefficient data is in frame order.

8.2.3 Field/Frame Motion Compensation Flag

A one-bit flag, interlaced_motion_type, immediately follows the interlaced_macroblock_type
flag. If its value is 1 it indicates that field-based motion prediction is used as described in section
5.2.2. If its value is O it indicates that frame-based motion prediction is used as described in section
5.2.1. If field-based prediction is used twice as many motion vectors are stored as are needed in the
case of frame-based prediction.

8.3 Motion Vectors

Motion vectors for predicted and interpolated frames are coded differentially within a macroblock slice,
obeying the following rules:

- Every forward or backward motion vector is coded relative to the last vector of the same type.
Each component of the vector is coded independently, the horizontal component first and then
the vertical component.

- The prediction motion vector is set to zero in the macroblocks at the start of a macroblock slice,
or if the last macroblock was coded in the intra mode. (Note: that in predictive frames a No MC

decision corresponds to a reset to zero of the prediction motion vector.)

30

5-Mar-92 PWD of Test Model 0

- In interpolative frames, only vectors that are used for the selected prediction mode (MB type)
are coded. Only vectors that have been coded are used as prediction motion vectors.

The VLC used to encode the differential motion vector data depends upon the range of the vectors.
The maximum range that can be represented is determined by the forward_f_code and
backward_f_code encoded in the picture header. (Note: in this Test Model the full_pel_flag is
never set - all vectors have half-pel accuracy).

The differential motion vector component is calculated. Its range is compared with the values given in
table 8.1 and is reduced to fall in the correct range by the following algorithm:

if (diff_vector < -range)

diff_vector = diff_vector + 2*range;
else if (diff_vector > range-1)

diff_vector = diff_vector - 2*range;

forward_f_code Range
or backward_f_code

16
32
64
128
256
512
1024

NOOUVD W=

Table 8.1 Range for motion vectors

This value is scaled and coded in two parts by concatenating a VLC found from table B.4 and a fixed
length part according to the following algorithm:

Let f_code be either the forward_f_code or backward_f_code as appropriate, and diff_vector be
the differential motion vector reduced to the correct range.

if (diff_vector == 0) {
residual = 0;
vic_code_magnitude = 0O;

else |
scale_factor = 1 << (f_code - 1);
residual = (abs(diff_vector) - 1) % scale_factor:;
vic_code_magnitude = (abs (diff_vector) - residual) / scale_factor;
if (scale_factor != 1)
vic_code_magnitude += 1;
}

vic_code_magnitude and the sign of diff_vector are encoded according to table B.4. The residual is
encoded as a fixed length code using (f_code-1) bits.

For example to encode the following string of vector components (measured in half pel units)

310 30 30-14-16 27 24

31

5-Mar-92 PWD of Test Model 0

The range is such that an f value of 2 can be used. The initial prediction is zero, so the differential values are:
3 720 044 -2 43 -3

The differential values are reduced to the range -32 to +31 by adding or subtracting the modulus 64
corresponding to the forward_f_code of 2:

3 720 020 -2-21 -3

These values are then scaled and coded in two parts (the table gives the pair of values to be encoded
(vic, residual)):

(2,00 @0 (10,1) (0,00 (10,1) (1, 1) (11,0 (2,0)
The order in a slice is in raster scan order, except for Macroblocks coded in Field prediction mode,

where the upper two luminance blocks vector is predicted from the preceding Macroblock and the two
lower luminance blocks vector is predicted from the upper one, see also figure 8.1.

]+

[= [D= gl

Figure 8.1 : Motion Vector Prediction Order

8.4 Coded Block Pattern

If MTYPE shows that the macroblock is not INTRA coded and all the coefficients of a block are zero
after quantization, the block is declared to be not coded. If all six blocks in a macroblock are not
coded, the macroblock is declared to be not coded. In all other cases the macroblock is declared to be
coded.

If the MTYPE shows that the macroblock is INTRA all blocks are declared to be coded and the CBP
code word is not used.

A pattern number defines which blocks within the MB are coded;
Pattern number = 32°P1 + 16*P2 + 8*P3 + 4°P4+ 2°P5 + Pg
where Py, is 1 if any coefficient is present for block n, else 0. Block numbering is given in Figure 4.4.

The pattern number is coded using table B.3 Macroblock pattern

32

5-Mar-92 PWD of Test Model 0

8.5 Intraframe Coefficient Coding
8.5.1 DC Prediction

After the DC coefficient of a block has been quantized to 8 bits according to section 7.1.1, it is coded
lossless by a DPCM technique. Coding of the luminance blocks within a macroblock follows the
normal scan of figure 4.4. Thus the DC value of block 4 becomes the DC predictor for block 1 of the
following macroblock. Three independent predictors are used, one each for Y, Cr and Cb.

At the left edge of a macroblock slice, the DC predictor is set to 128 (for the first block (luminance)
and the chrominance blocks). At the rest of a macroblock slice, the DC predictor is simply the
previously coded DC value of the same type (Y, Cr, or Cb).

At the decoder the original quantized DC values are exactly recovered by following the inverse
procedure.

The differential DC values thus generated are categorised according to their "size" as shown in the
table below.

DIFFERENTIAL DC SIZE
| (absolute value)
0

1

2to03

4to07

8to 15

16 to 31

32to 63

64 to 127

128 to 255

ONOOPL WD+~ O

Table 8.2 Differential DC size and VLC
The size value is VLC coded according to table B.5a (luminance) and B.5b (chrominance).
For each category enough additional bits are appended to the SIZE code to uniquely identify which
difference in that category actually occurred (table 8.3). The additional bits thus define the signed

amplitude of the difference data. The number of additional bits (sign included) is equal to the SIZE
value.

33

5-Mar-92

PWD of Test Model 0

DIFFERENTIAL DC | SIZE | ADDITIONAL CODE
-255 to -128 8 00000000 to 01111111
-127 to -64 7 0000000 to 0111111
-63 to -32 6 000000 to 011111
-31to-16 5 00000 to 01111
-15to0 -8 4 0000 to 0111
-7to-4 3 000 to 011

3to-2 2 00 to 01

-1 1 0

0 0

1 1 1

2to 3 2 10t0 11

4107 3 100 to 111

8to 15 q 1000 to 1111

16 to 31 5 10000 to 11111
32t063 6 100000 to 111111

64 to 127 7 1000000 to 1111111
128 to 255 8 10000000 t0 11111111

Table 8.3. Differential DC additional codes

8.5.2 AC Coefficients

AC coefficients are coded as described in section 8.7.

8.6 Non-Intraframe Coefficient Coding

8.6.1 Intra blocks

Intra blocks in non-intra frames are coded as in intra frames. At the start of the macroblock, the DC
predictors for luminance and chrominance are reset to 128, unless the previous block was also intra;
in this case, the predictors are obtained from the previous block as in intra frames (section 8.5.1).

AC coefficients are coded as described in section 8.7. Transform coefficient data is always present for
all 6 blocks in a macroblock when MTYPE indicates INTRA.

8.6.2 Non intra blocks

In other cases MTYPE and CBP signal which blocks have coefficient data transmitted for them. The
quantized transform coefficients are sequentially transmitted according to the zig-zag sequence given in
Figure 4.5.

The most commonly occurring combinations of successive zeros (RUN) and the following value
(LEVEL) are encoded with variable length codes. Other combinations of (RUN, LEVEL) are encoded
with a 20-bit or 28-bit word consisting of 6 bits ESCAPE, 6 bits RUN and 8 or 16 bits LEVEL. For
the variable length encoding there are two code tables, one being used for the first transmitted LEVEL
in INTER and INTER + MC blocks, the second for all other LEVELSs except the first one in INTRA
blocks, which is encode as described in section 8.6.1.

8.6.3 Scalable blocks

Coding of intra and non intra blocks in a scalable bitstream is described in Annex D.

34

5-Mar-92 PWD of Test Model 0

8.7 Coding of Transform Coefficients

The combinations of zero-run and the following value are encoded with variable length codes as listed
in table B.5c to B.5f. End of Block (EOB) is in this set. Because CBP indicates those blocks with no
coefficient data, EOB cannot occur as the first coefficient. Hence EOB does not appear in the VLC
table for the first coefficient. Note that EOB is stored for all coded blocks.

The last bit 's' denotes the sign of the level, ‘0" for positive '1' for negative.
The remaining combinations of (RUN, LEVEL) are encoded with a 20-bit or 28-bit word consisting of

6 bits ESCAPE, 6 bits RUN and 8-bits or 16-bits LEVEL. RUN is a 6 bit fixed length code. LEVEL is
an 8-bit or 16-bit fixed length code. See table B.5g

35

5-Mar-92 PWD of Test Model 0

9 VIDEO MULTIPLEX CODER

In this section the video multiplex is explained. Unless specified otherwise the most significant bit
occurs first. This is Bit 1 and is the left most bit in the code tables in this document.

9.1 Method of Describing Bit Stream Syntax

Each data item in the bit stream is in bold type. It is described by its name, its length in bits, and a
mnemonic for its type and order of transmission.

The action caused by a decoded data element in a bit stream depends on the value of that data
element and on data elements previously decoded. The following constructs are used to express the
conditions when data elements are present, and are in normal type:

while (condition) { If the condition is true, then the group of data elements occurs next
data_element in the data stream. This repeats until the condition is not true.
}

do {
data_element The data element always occurs at least once.

} while (condition) The data element is repeated until the condition is not true.

if { condition) { If the condition is true, then the first group of data elements occurs
data_element next in the data stream.
}

else { If the condition is not true, then the second group of data elements
data_element occurs next in the data stream.

}

for (i=0;1<n;i++) (The group of data elements occurs n times. Conditional constructs

data_element within the group of data elements may depend on the value of the
loop control variable 1, which is set to zero for the first occurrence,
} incremented to one for the second occurrence, and so forth.

As noted, the group of data elements may contain nested conditional constructs. For compactness,
the {} are omitted when only one data element follows.

data_element [n] data_element [n] is the n+1th element of an array of data.

data_element [m..n] is the inclusive range of bits between bit m and bit n in the data_element.

While the syntax is expressed in procedural terms, it should not be assumed that this section
implements a satisfactory decoding procedure. In particular, it defines a correct and error-free input
bit stream. Actual decoders must include a means to look for start codes in order to begin decoding
correctly, and to identify errors, erasures or insertions while decoding. The methods to identify these
situations, and the actions to be taken, are not standardised.

36

5-Mar-92 PWD of Test Model 0

Definiti f li nction

The function bytealigned () returns 1 if the current position is on a byte boundary, that is the next bit
in the bit stream is the first bit in a byte.

Definition of nextbits function

The function nextbits () permits comparison of a bit string with the next bits to be decoded in the bit
stream.

Definition of next_start code function

The next_start_code function removes any zero bit and zero byte stuffing and locates the next start
code.

next_start_code() {
while (!bytealigned())

zero_bit 1 "0"
while (nextbits() !='0000 0000 0000 0000 0000
0001")
zero_byte 8 "00000000"

J

9.2 Mhemonics

The following mnemonics are defined to describe the different data types used in the coded bit-stream.

bslbf Bit string, left bit first, where "left" is the order in which bit strings are written in the
standard. Bit strings are written as a string of 1s and Os within single quote marks, e.g.
'1000 0001". Blanks within a bit string are for ease of reading and have no significance.

uimsbf Unsigned integer, most significant bit first.

viclbf Variable length code, left bit first, where "left" refers to the order in which the VL.C codes
are written in Annex B.

The byte order of multi-byte words is most significant byte first.

37

5-Mar-92 PWD of Test Model 0

9.3 Specification of the Coded Video Bit stream Syntax

9.3.1 Start Codes

Start codes are reserved bit pattemns that do not otherwise occur in the video stream. All start codes are byte
aligned.

name hexadecimal value
picture_start_code 00000100
slice_start_codes (including slice_vertical_positior 00000101
through
000001AF
" slave_slice_start_code 000001B0O
reserved 000001B1
user_data_start_code 000001B2
sequence_header_code 000001B3
sequence_error_code 000001B4
extension_start_code 000001B5
reserved 000001B6
sequence_end_code 000001B7
group_start_code 000001B8
system start codes (see note) 000001B9
through
000001FF
NOTE - system start codes are defined in Part 1 CD 11172

The use of the start codes is defined in the following syntax description with the exception of the
sequence_error_code. The sequence_error_code has been allocated for use by the digital storage media interface
to indicate where uncorrectable errors have been detected.

9.3.2 Video Sequence Layer

video_sequence(} {
next_start_code()
do {
sequence_header()
do {
group_of_pictures()
} while (nextbits() == group_start_code)
} while (nextbits() == sequence_header_code)
sequence_end_code 32 bslbf

}

38

5-Mar-92 PWD of Test Model 0

9.3.3 Sequence Header

sequence_header{) {

sequence_header_code 32 bslbf
horizontal_size 12 uimsbf
vertical_size 12 uimsbf
pel_aspect_ratio : uimsbf
picture_rate 4 uimsbf
bit_rate 18 uimsbf
marker_bit 1 "1
vbv_buffer_size 10 uimsbf
constrained_parameter_flag 1
load_intra_quantizer_matrix 1
if (load_intra_quantizer_matrix)

intra_quantizer_matrix[64] 8*64 uimsbf
load_non_intra_quantizer_matrix 1
if (load_non_intra_quantizer_matrix)

non_intra_quantizer_matrix[64] 8*64 uimsbf

next_start_code()
if {(nextbits() == extension_start_code) {

extension_start_code 32 bslbf
compatible 3 uimsbf
interlaced 1 uimsbf
scalable 1 uimsbf
reserved 3 uimsbf
if (scalable) {
do {
scale_code 8 uimsbf
} while (nextbits != '00000111)
end_of_scales_code 8 ‘00000111’
}
while (nextbits () I='0000 0000 0000 0000 0000 0001') {
sequence_extension_data 8
}
next_start_code()
}
if (nextbits() == user_data_start_code) {
user_data_start_code 32 bslbf
while (nextbits() !="0000 0000 0000 0000 0000 0001') {
user_data 8

}
next_start_code()

)

}

39

5-Mar-92

compatible - This is a three-bit integer defined in the following table.

binary value | Standard

000 not compatible
001 MPEG1 compatible
010 H.261 compatible
011 MPEG2 compatible
100 reserved

.. reserved

111 reserved

For scalable bitstreams this integer is set to zero.

interlaced - This is a one-bit integer defined in the following table.

binary value | Coding
0 not interlaced
1 interlaced

For scalable bitstreams this integer is set to zero.

scalable - This is a one-bit integer defined in the following table.

0
1

not scalable
scalable

scale_code

W NN NN W= O

256

scale 1 layer
scale 2 layer
scale 4 layer
scale 8 layer
reserved
reserved
reserved

reserved

reserved

end_of_scales_code

PWD of Test Model 0

scale_code - This is an 8-bit integer that defines the DCT size for the scalable layers, i.e.
DCT _size = 1<<scale_code. The values of this integer are:

Example: The bitstream with scale_codes 1, 2, 3, 3, 7 would be interpreted to mean that there are
four layers, a scale-2, followed by a scale4, followed by two scale-8 layers.

40

5-Mar-92 PWD of Test Model 0
9.3.4 Group of Pictures Layer
group_of_pictures() {
group_start_code 32 bslbf
time_code 25
closed_gop 1
broken_link 1
next_start_code()
if (nextbits() == extension_start_code) {
extension_start_code 32 bslbf
while { nextbits() !="0000 0000 0000 0000 0000 0001
group_extension_data 8
)
next_start_code()
}
if { nextbits() == user_data_start_code) {
user_data_start_code 32 bslbf
while (nextbits() != 0000 0000 0000 0000 0000 0001
user_data 8

}
next_start_code()
)
do {
picture()
} while (nextbits{) == picture_start_code)
}

41

9.3.5 Picture Layer

5-Mar-g2 PWD of Test Model 0

picture() {

picture_start_code
temporal_reference
picture_coding_type
vbv_delay
if (picture_coding_type == 2 | | picture_coding_type == &
full_pel_forward_vector
forward_f_code
}
if { picture_coding_type == 3) |
full_pel_backward_vector
backward_f_code
}
while (nextbits() == '1") {
extra_bit_picture
extra_information_picture
}
extra_bit_picture
next_start_code()

if (nextbits() == extension_start_code) {
extension_start_code
while { nextbits() |= '0000 0000 0000 0000 0000 0001
picture_extension_data
}
next_start_code()
}
if (nextbits() == user_data_start_code } {
user_data_start_code
while (nextbits() != '0000 0000 0000 0000 0000 0001
user_data
}
next_start_code()
}
do {
slice()
} while { nextbits} == slice_start_code)

32
10

16

32

32

8

bslbf

uimsbf
uimsbf
uimsbf

uimsbf

uimsbf

"l"

"0"

bslbf

bslbf

42

5-Mar-82 PWD of Test Model 0

9.3.6 Slice Layer

slice() {
slice_start_code 32 bslbf
quantizer_scale 5 uimsbf
if (scalable) {
extra_bit_slice 1 "1t
dct_size 8 uimsbf
)
while (nextbits() == '1") {
extra_bit_slice 1 1"
extra_information_slice 8
)
extra_bit_slice 1 "o"
do {
macroblock()

} while { nextbits() !="'000 0000 0000 0000 0000 0000")
next_start_code()
}

9.3.6.1 Slave Slice Layer

slave_slice) {

slave_slice_start_code 32 bslbf

quantizer_delta_magnitude 5 uimsbf
quantizer_delta_sign 1 uimsbf
dct_size 8 uimsbf

for (s=0; s<slice_size; s++) {
slave_macroblock(dct_size)
}

For scalable bitstreams, the following definitions apply: dct_size - 1, 2, 4, or 8.

quantizer_delta: This integer is added to all "quantizer_scale” values in the slice and
macroblock layers, to derive the corresponding quantizer_scale values (mquant) in the slave_slice and
slave_macroblock layers. For the Test Model this delta is zero.

quantizer_delta_magnitude: specifies the magnitude of "quantizer_delta”.

quantizer_delta_sign: specifies the sign of "quantizer_delta".

slice_size: the total number of macroblocks in the slice layer (44).

43

5-Mar-92 PWD of Test Model 0

9.3.7 Macroblock Layer

macroblock() {

while (nextbits() == '0000 0001 111")

macroblock_stuffing 11 viclbf
while (nextbits() == ‘0000 0001 000°)

macroblock_escape 11 vicibf
macroblock_address_increment 1-11 viclbf
macroblock_type 1-6 vicibf
if (compatible)

compatible_type 1 uimsbf

if (interlaced) {
if (macroblock_intra | | macroblock_pattern)
interlaced_macroblock_type 1 uimsbf
if {{(macroblock_motion_forward) | |
{macroblock_motion_backward))
interlace_motion_type 1 uimsbf
}

if (macroblock_quant)

quantizer_scale 5 uimsbf
if (macroblock_motion_forward)
motion_horizontal_forward_code 1-11 viclbf

if ((forward_f |= 1) &&
(motion_horizontal_forward_code != 0))
motion_horizontal_forward_r 1-6 uimsbf
motion_vertical_forward_code 1-11 viclbf
if ((forward_f |= 1) &&
(motion_vertical_forward_code != 0})
motion_vertical_forward_r 1-6 uimsbf
}
if (interlace_motion_type) {
motion_horizontal_forward_code_2 1-11 viclbf
if (forward_f != 1) &&
{motion_horizontal_forward_code_2 != 0))
motion_horizontal_forward_r_2 1-6 uimsbf
motion_vertical_forward_code_2 1-11 viclbf
if (forward_f != 1) &&
{motion_vertical_forward_code_2 1= 0))
motion_vertical_forward_r_2 1-6 uimsbf
}
}

if (macroblock_motion_backward) {
motion_horizontal_backward_code 1-11 viclbf
if ((backward_f 1= 1) &&
{motion_horizontal_backward_code != 0))
motion_horizontal_backward_r 1-6 uimsbf
motion_vertical_backward_code 1-11 viclbf
if ((backward_f |= 1) &&
{motion_vertical _backward_code != 0))
motion_vertical_backward_r 1-6 uimsbf
if (interlace_motion_type) {

44

motion_horizontal_backward_code_2
if ((lbackward_f 1= 1) &&
{motion_horizontal_backward_code_2 != 0))
motion_horizontal_backward_r_2 1-
motion_vertical_backward_code_2 1-
if ((backward_f 1= 1) &&
(motion_vertical_backward_code_2 != 0))
motion_vertical_backward_r_2
}
}
if (macroblock_pattern)
coded_block_pattern
for (i=0; i<6; i++)
if (scalable) {
scaled_block(i)
}
else {
block(1)
}
)
if { picture_coding_type == 4)
end_of_macroblock

1-11
6
1

1-6

5-Mar-92 PWD of Test Model 0

viclbf

uimsbf

1 viclbf

uimsbf

viclbf

" 1"

compatible_type - This is a one-bit integer defined in the following table.

binary value || Prediction
0 Not Compatible
1 Compatible

interlace_macroblock_type - This is a one-bit integer indicating whether the macoblock is frame
DCT coded or field DCT coded. If this is set to “1", the macroblock is field DCT coded.

interlace_motion_type - This is a one-bit integer indicting whether the macroblock motin prediciton
is frame based or field based. If this is set to "1", the macroblock is field based motion compensated,

and two motion vectors per prediction direction are sent.

3.7.1 roblock Layer

slave_macroblock(dct_size) (
for (i=0; i<6; i++) (
slave_block[i, dct_size]
}
}

45

9.3.8 Block Layer

5-Mar-92 PWD of Test Model 0

block(i) |

if (pattern_codeli]) {
if { macroblock_intra) {
if (1<4) {
dct_dc_size_luminance
if{dct_dc_size_luminance != 0}
dct_dc_differential
}
else {
dct_dc_size_chrominance
if(dct_dc_size_chrominance 1=0)
dct_dc_differential
}
}
else {
dct_coeff_first
}
if (picture_coding_type !=4) {
while (nextbits{) 1= '10")
dct_coeff_next
end_of_block
)
}

2-7 viclbf
1-8 uimsbf
2-8 viclbf
1-8 uimsbf
2-28 viclbf
3-28 viclbf
2 ”" 10 ”

1 led Block Layer

For scalable bitstreams the following syntax extensions apply:

scaled_block (i} {
if (pattern_code[i]) (
if (macroblock_intra) ({
if (i<4) (
dct_dc_size_luminance

if (dct_dc_size_luminance != 0)

dct_dc_differential

}
else {

dct_dc_size_chrominance

if (dct_dc_size_chrominance != 0)

dct_dc_differential
}

}
if (dect_size > 1) {

2-7 viclbf

1-8 vlclbf

2-8 vlclbf

1-8 vilclbf

while ((nextbits() != eob_code) && more_coefs)

next_dct_coef (dct_size)
if (more_coefs)
end_of_block
}

2-16 vlclbf

2-16 vlclbf

5-Mar-92 PWD of Test Model 0

}

slave_block [i,dct_size] {
if (pattern_code(il]) {
while ((nextbits() != eob_code) && more_coefs) {
next_dct_coef (dct_size) 2-16 vlclbf

)

if (more_coefs) {
end_of_block 2-16 viclbf
}
}
}

pattern_code(i) - For slave_blocks, this code is the same as that of the colocated scaled_block in
the slice layer.

more_coefs - more_coefs is true if we have not already decoded the last coefficient in the block of
DCT coefficients except that, for the 8x8 slave_slice, more_coefs is always true (this is to retain
compatibility with MPEG-1 style of coding 8x8 blocks, which always includes an end_of_block
code).

eob_code - An end_of_block Huffman code specified in the appropriate resolution scale VLC
table.

next_dct_coef - DCT coefficient coded by run/amplitude or run/size VLCs. The VLC table
used depends on "dct_size", as explained in Annex D.

47

5-Mar-92 PWD of Test Model 0

10 RAT L AN ANTIZATION CONTROL

This section describes the procedure for controlling the bit-rate of the Test Model by adapting the
macroblock quantization parameter. The algorithm works in three-steps:

1 Target bit allocation: this step estimates the number of bits available to code the next frame.
It is performed before coding the frame.

2 Rate control: by means of a "virtual buffer”, this step sets the reference value of the
quantization parameter for each macroblock.

3 Adaptive quantization: this step modulates the reference value of the quantization parameter
according to the spatial activity in the macroblock to derive the value of the quantization
parameter, mquant, that is used to quantize the macroblock.

Step 1 - Bit Allocation
Complexity estimation

After a frame of a certain type (I, P, or B) is encoded, the respective "global complexity measure” (X,
Xp, or Xp) is updated as:

Xi=Si Qi, Xp=5pQp, Xb=SpQb
where Sj, Sp, Sp are the number of bits generated by encoding this frame and Qj, Qp and Qp are the
average quantization parameter computed by averaging the actual quantization values used during the
encoding of the all the macroblocks, including the skipped macroblocks.
Initial values
Xj = 160 * bit_rate / 115

Xp = 60 * bit_rate / 115
Xp =42 * bit_rate / 115

bit_rate is measured in bits/s.

48

5-Mar-92 PWD of Test Model 0

Picture Target Setting

The target number of bits for the next frame in the Group of pictures (Tj, Tp, or Tp) is computed as:

R
Ti = max { , bit_rate / (8"picture_rate) }
NpXp NpXp
1+ +
Xi Kp Xi Kb
R
Tp = max { , bit_rate / (8 picture_rate)}
Nb Kp Xb
Np + ——
R
Th = max { , bit_rate / (8"picture_rate)}
Np +

Where:
Kp and Kp are "universal” constants dependent on the quantization matrices. For the
matrices specified in sections 7.1 and 7.2 Kp = 1.0 and Kp = 1.4.

R is the remaining number of bits assigned to the GROUP OF PICTURES. R is updated as
follows:

After encoding a frame ,R=R-Sjp b

Where is Sy p b is the number of bits generated in the picture just encoded (picture type is I, P
or B).

Before encoding the first frame in a GROUP OF PICTURES (an I-frame):
R=G+R
G = bit_rate * N / picture_rate
N is the number of frames in the GROUP OF PICTURES.

At the start of the sequence R = 0.

Np and Ny, are the number of P-frames and B-frames remaining in the current GROUP OF
PICTURES in the encoding order.

(1 IB]lBlP[IBIBIPIBIBIPITBI[B
R-bits

Np=2

Nhp =4

Figure 10.1 - GROUP OF PICTURES structure

49

5-Mar-92 PWD of Test Model 0

Step 2 - Rate Control

¥b Inoex =——e Mb_Cnt

Figure 10.2 : Rate Control for P-frames

Before encoding macroblock j (j >= 1), compute the fullness of the appropriate virtual buffer:

Ti(-1)
dt = do! + Bj-1 -
MB_cnt
or
Tp (-1)
diP = doP + Bj1 -
MB_cnt
or
To (1)
djb = dob + Bj1 -
MB_cnt
depending on the picture type.
where

do!, doP, dob are initial fullnesses of virtual buffers - one for each frame type.

Bj is the number of bits generated by encoding all macroblocks in the frame up to and
including j.

MB_cnt is the number of macroblocks in the frame.
dji, dP, djb are the fullnesses of virtual buffers at macroblock j- one for each frame type.

The final fullness of the virtual buffer (dji , diP, djb: j =MB_cnt) is used as doi dgP, dob for encoding
the next frame of the same type.

Next compute the reference quantization parameter Qj for macroblock j as follows:

dj* 31

50

5-Mar-92 PWD of Test Model 0

Q=
r
where the "reaction parameter” r is given by
r = 2 * bit_rate / picture_rate
and dj is the fullness of the appropriate virtual buffer.

The initial value for the virtual buffer fullness is:

doi=10" r/i?:l
doP = Kp dg
doP = Kp do!

Step 3 - Adaptive Quantization

Compute a spatial activity measure for the macroblock j from the four luminance sub-blocks using the
intra (ie original) pixels values:

actj=1+ min (var_sblk)
sblk=1,4

where
64
var_sblk = SUM (P - P_mean) 2
k=1
1 64
P_mean = — SUM Py
64 k=1
and Py are the pixel values in the original 8*8 block.

Normalize acty:

2 * actj+ avg_act

N_actj =
actj+ 2 * avg_act

avg_act is the average value of actj the last frame to be encoded. On the first frame, avg_act = 400.
Obtain mquantj as:

mquantj = Qj * N_act;
where Qj is the reference quantization parameter obtained in step 2. The final value of mquantj is

clipped to the range [1..31] and is used and coded as described in sections 7, 8 and 9 in either the
slice or macroblock layer.

51

5-Mar-92 PWD of Test Model 0

Known Limitations
- Step 1 does not handle scene changes efficiently.

- Step 3 does not work well on highly interlaced material, since the entire method uses frame
macroblocks.

- A wrong value of avg_act is used in step 3 after a scene change.

- VBV compliance is not guaranteed.

52

5-Mar-92

APPENDIX A: Discr ine Transform (DCT

The 2-dimensional DCT is defined as:

7 7 (2x+ 1)u*pi (2y+1v'pi
F(u,v) = (1/4) C(u) C(v) SUM SUM f(x y)cos{ } cos{ },
x=0 y=0 16 16

withu,v,x,9y=0,1,2, ... 7

where x, y = spatial coordinates in the pel domain
u, v = coordinates in the transform domain

Clu), Cv) = 1/SQRT (2) for u, v=0
1 otherwise

The inverse DCT (IDCT) is defined as:

7 7 (2x+1)u*pi (2y+ 1)v*pi
flx,y) = (1/4) SUM SUM C(u) C(v) F(u,v) cos{ Jcos(8
u=0 v=0 16 16

PWD of Test Model 0

The input to the forward transform and output from the inverse transform is represented with 9 bits.
The coefficients are represented in 12 bits. The dynamic range of the DCT coefficients is (-2048, ...,

2047).

Accuracy Specification

The 8 by 8 inverse discrete transform shall conform to IEEE Draft Standard Specification for the Implementations
of 8 by 8 Inverse Discrete Cosine Transform, P1180/D2, July 18, 1990. Note that Section 2.3 P1180/D2
"Considerations of Specifying IDCT Mismatch Errors" requires the specification of periodic intra-picture coding in
order to control the accumulation of mismatch errors. The maximum refresh period requirement for this standard
shall be 132 pictures, the same as indicated in P1180/D2 for visual telephony according to CCITT

Recommendation H.261 (see Bibliography).

53

APPEN
Introduction

This annex contains the variable length code tables for macroblock addressing,
pattern, motion vectors, and DCT coefficients.

: VARIABL N

B.1 Macroblock Addressing

TH

5-Mar-92 PWD of Test Model 0

DE TABLE

Table B.1. Variable length codes for macroblock_address_increment.

macroblock type, macroblock

macroblock_address_ | increment macroblock_address_ | increment
increment VLC code | value increment VLC code | value
1 1 0000 0101 10 17
011 2 0000 0101 01 18
010 3 0000 0101 00 19
0011 4 0000 0100 11 20
0010 5 0000 0100 10 21
00011 6 0000 0100011 22
00010 7 0000 0100 010 23
0000 111 8 0000 0100 001 24
0000 110 9 0000 0100 000 25
0000 1011 10 00000011111 26
0000 1010 11 0000 0011 110 27
0000 1001 12 0000 0011 101 28
0000 1000 13 0000 0011 100 29
00000111 14 0000 0011 011 30
00000110 15 0000 0011 010 31
0000 0101 11 16 0000 0011 001 32
0000 0011 000 33
0000 0001 111 macroblock_stuffing
0000 0001 000 macroblock_escape

54

B.2 Macroblock Type

5-Mar-92

PWD of Test Model 0

Table B.2a. Variable length codes for macroblock_type in intra-coded pictures (I-pictures).

VLC code || macroblock_ | macroblock_ | macroblock | macroblock_ | macroblock_
quant motion_ motion_ pattern intra
forward backward
1 0 0 0 0 1
01 1 0 0 0 1

Table B.2b. Variable length codes for macroblock_type in predictive-coded pictures (P-pictures).

VLC code | macroblock_ | macroblock . | macroblock | macroblock | macroblock
quant motion_ motion_ pattemm intra
forward backward
1 0 1 0 1 0
01 0 0 0 1 0
001 0 1 0 0 0
00011 0 0 0 0 1
00010 1 1 0 1 0
00001 1 0 0 1 0
000001 1 0 0 0 1

Table B.2¢c. Variable length codes for macroblock_type in bidirectionally predictive-coded pictures (B-pictures).

VLC code | macroblock_ | macroblock_ | macroblock_ | macroblock_ | macroblock_
quant motion_ motion_ pattern intra
forward backward
10 0 1 1 0 0
11 0 1 1 1 0
010 0 0 1 0 0
011 0 0 1 1 0
0010 0 1 0 0 0
0011 0 1 0 1 0
00011 0 0 0 0 1
00010 1 1 1 1 0
000011 1 1 0 1 0
000010 1 0 1 1 0
000001 1 0 0 0 1

Table B.2d. Variable length codes for macroblock_type in DC intra-coded pictures (D-pictures).

VLC code || macroblock_ | macroblock_ | macroblock_ | macroblock_ | macroblock_
quant motion_ motion_ pattern intra
forward backward
1 0 0 0 0 1

55

B.3 Macroblock Pattern

5-Mar-92 PWD of Test Model 0

Table B.3. Variable length codes for coded_block_pattern.

coded_block_pattern coded_block_pattern

VLC code cbp VLC code cbp
111 60 0001 1100 35
1101 4 0001 1011 13
1100 8 0001 1010 49
1011 16 0001 1001 21
1010 32 0001 1000 41
10011 12 0001 0111 14
1001 0 48 0001 0110 50
1000 1 20 0001 0101 22
1000 0 40 0001 0100 42
01111 28 0001 0011 15
01110 44 0001 0010 51
01101 52 0001 0001 23
01100 56 0001 0000 43
01011 1 0000 1111 25
01010 61 0000 1110 37
01001 2 0000 1101 26
01000 62 0000 1100 38
0011.11 24 0000 1011 29
001110 36 0000 1010 45
001101 3 0000 1001 53
0011 00 63 0000 1000 57
0010 111 5 0000 0111 30
0010 110 9 00000110 46
0010 101 17 0000 0101 54
0010 100 33 0000 0100 58
0010011 6 000000111 31
0010010 10 0000 00110 47
0010001 18 0000 0010 1 55
0010 000 34 0000 00100 59
00011111 7 0000 0001 1 27
0001 1110 11 0000 0001 O 39
0001 1101 19

56

5-Mar-92 PWD of Test Model 0

B.4 Motion Vectors

Table B.4. Variable length codes for motion_horizontal_forward_code, motion_vertical_forward_code,
motion_horizontal_backward_code, and motion_vertical_backward_code.

motion
VLC code code

0000 0011001 | -16
0000 0011011 {-15
0000 0011 101 | -14
0000 0011 111 -13
0000 0100001 | -12
0000 0100011 | -11
0000010011 | -10
0000 010101 |} -9

0000010111 |-8

00000111 -7
0000 1001 -6
0000 1011 -5
0000 111 -4
00011 -3
0011 -2
011 -1
1 0
010 1
0010 2
00010 3
0000 110 4
0000 1010 5
0000 1000 6
00000110 7
0000010110 |8
0000010100 |9

0000 010010 f 10
0000 0100 010 | 11
0000 0100 000 | 12
0000 0011 110 f 13
0000 0011 100 | 14
0000 0011010 | 15
0000 0011 000 | 16

57

B.5 DCT Coefficients

5-Mar-92

Table B.5a Variable length codes for dct_dc_size_luminance.

VLC code

dct dc_size luminance

111110
1111110

OO PR WN O

Table B.5b. Variable length codes for dct_dc_size_chrominance.

VLC code

dct_dc_size_chrominance

111110
1111110
11111110

NN HLPWNRO

.

58

PWD of Test Model 0

5-Mar-92 PWD of Test Model 0

Table B.5c. Variable length codes for dct_coeff_first and dct_coeff_next.

" dct_coeff_first and dct_coeff n
variable length code (NOTEH run level

10 end_of_block
ls (NOTE2)
11s (NOTE3)
01ls

0100 s

0101 s

00101s

00111 s

0011 0s

0001 10 s

0001 11
000101
000100 s

0000 110 s

0000 100 s

0000 111 s
0000 101 s
0000 01
00100110
0010 0001 s
00100101 s
00100100 s
00100111 s
00100011 s
0010 0010 s
0010 0000 s
0000 0010 10s 0
0000 001100 s 1
0000 0010 11s 2
0000 0011 11 s 4
0000 001001 s 5
00000011 10s 14
0000001101 s 15
0000 001000 s 16

= DN R = e = DN = QO DN e

8

ape

WH OO0 WONONOULTHFPA,AWONO—~OO

—
wh— O

= =S NN WA N === =NDWwWOO,

NOTEL1 - The last bit 's' denotes the sign of the level, ‘0’ for posi
'1" for negative.

NOTEZ - This code shall be used for dct_coeff_first.

NOTE3 - This code shall be used for dct_coeff next.

59

5-Mar-92 PWD of Test Model 0

Table B.5d. Variable length codes for dct_coeff_first and dct_coeff_next (continued).

dct_coeff_first and dct_coeff_ne

variable length code (NOTE level

=
=

0000 0001 1101 s
0000 0001 1000 s
0000 0001 0011 s
0000 0001 0000 s
0000 0001 1011 s
0000 0001 0100 s
0000 0001 1100 s
0000 0001 0010 s
0000 0001 1110s
0000 0001 0101 s
0000 0001 0001 s
0000 0001 1111 17
0000 0001 1010s 18
0000 0001 1001 s 19
0000 0001 0111 s 20
0000 0001 0110's 21
0000 0000 1101 0s 0
0000 0000 1100 1's 0
0000 0000 11000 s 0
0000 0000 10111 0
0000 0000 1011 0s 1

1

2

3

5

9

ONA L WNFRLROOOO
et = et DD DN DN GO WA O = = O 00
- O

—
ApwWwN

0000 0000 10101 s
0000 0000 10100s
0000 0000 1001 1s
0000 0000 1001 0's
0000 0000 1000 1 s
0000 0000 10000 s 10
0000 0000 11111 22
0000 0000 11110 23
0000 0000 11101s 24
0000 0000 11100 s 25
0000 0000 1101 1s 26

H= R EAENDNWA NN

NOTE - The last bit s’ denotes the sign of the level, ‘0" for positis
'1" for negative.

60

5-Mar-92 PWD of Test Model 0

Table B.5e. Variable length codes for dct_coeff_first and dct_coeff_next (continued).

dct_coeff_first and dct_coeff_ne

variable length code (NOTH| run level
0000 0000 0111 11s 0 16
0000 0000 0111 10s 0 17
0000 0000 011101 s 0 18
0000 0000 011100 s 0 19
0000 0000 0110 11 s 0 20
0000 0000 0110 10 s 0 21
0000 0000 011001 s 0 22
0000 0000 011000 s 0 23
0000 0000 0101 11 s 0 24
0000 0000 0101 10s 0 25
0000 0000 0101 01 s 0 26
0000 0000 0101 00 s 0 27
0000 0000 0100 11 s 0 28
0000 0000 0100 10s 0 29
0000 0000 0100 01 s 0 30
0000 0000 0100 00 s 0 31
0000 0000 0011 000 s 0 32
0000 0000 0010 111 s 0 33
0000 0000 0010110 s 0 34
0000 0000 0010 101 s 0 35
0000 0000 0010 100 s 0 36
0000 0000 0010011 s 0 37
0000 0000 0010 010 s 0 38
0000 0000 0010 001 s 0 39
0000 0000 0010 000 s 0 40
0000 0000 0011 111 s 1 8
0000 0000 0011 110 s 1 9
0000 0000 0011 101 s 1 10
0000 0000 0011 100 s 1 11
0000 0000 0011011 s 1 12
0000 0000 0011 010 s 1 13
0000 0000 0011 001 s 1 14
NOTE - The last bit 's' denotes the sign of the level, ‘0" for positi
'1' for negative.

61

5-Mar-92 PWD of Test Model 0

Table B.5f. Variable length codes for dct_coeff_first and dct_coeff_next (continued).

dct_coeff_first and dct_coeff_nd

variable length code ~ (NOTH run level
0000 0000 0001 0011 s 1 15
0000 0000 0001 0010 s 1 16
0000 0000 0001 0001 s 1 17
0000 0000 0001 0000 s 1 18
0000 0000 0001 0100 s 6 3
0000 0000 0001 1010 s 11 2
0000 0000 0001 1001 s 12 2
0000 0000 0001 1000 s 13 2
0000 0000 0001 0111 s 14 2
0000 0000 0001 0110 s 15 2
0000 0000 0001 0101 s 16 2
0000 0000 0001 1111 s 27 1
0000 0000 0001 1110 s 28 1
0000 0000 0001 1101 s 29 1
0000 0000 0001 1100 s 30 1
0000 0000 0001 1011 s 31 1
NOTE - The last bit 's' denotes the sign of the level, '0' for positis
'1' for negative.

Table B.5g. Encoding of run and level following escape code as a 20-bit fixed length code (-127 <= level <= 127)
or as a 28-bit fixed length code (-255 <= level <= -128, 128 <= level <= 255).

fixed length code run fixed length code level
0000 00 0 forbidden -256
0000 01 1 1000 0000 0000 000] 255
0000 10 2 1000 0000 0000 001 -254
1000 0000 0111 111 -129
1000 0000 1000 0004 -128
1000 0001 127
1000 0010 -126
1111 11 63 11111110 2
11111111 1
forbidden 0
0000 0001 1
01111111 127
0000 0000 1000 000{ 128
0000 0000 1000 000§ 129
0000 0000 1111 1111 255

62

5-Mar-92 PWD of Test Model 0

APPENDIX C : Video Buffering Verifier

Constant rate coded video bit streams shall meet constraints imposed through a Video Buffering Verifier (VBV)
defined in Section C.1.

The VBV is a hypothetical decoder which is conceptually connected to the output of an encoder. Coded data is
placed in the buffer at the constant bit rate that is being used. Coded data is removed from the buffer as defined in
Section C.1.4, below. It is a requirement of the encoder (or editor) that the bit stream it produces will not cause
the VBV to either overflow or underflow.

C.1 Video Butfering Verifier

1. The VBV and the video encoder have the same clock frequency as well as the same picture rate, and are
operated synchronously.

2. The VBV has a receiving buffer of size B, where B is given in the vbv_buffer_size field in the sequence header.

3. The VBV is initlally empty. It is filled from the bitstream for the time specified by the vbv_delay field in the video
bitstream.

4. All of the data for the picture which has been in the buffer longest is instantaneously removed. Then after
each subsequent picture interval all of the data for the picture which (at that time) has been in the buffer longest is
instantaneously removed. Sequence header and group of picture layer data elements which immediately precede a
picture are removed at the same time as that picture. The VBV is examined immediately before removing any
data (sequence header data, group of picture layer or picture) and immediately after each picture is removed. Each
time the VBV is examined its occupancy shall lie between zero bits and B bits where B is the size of the VBV
buffer indicated by vbv_buffer_size in the sequence header.

This is a requirement on the video bit stream including coded picture data, user data and all stuffing.

To meet these requirements the number of bits for the (n+1)'th coded picture dn+1 (including any preceding
sequence header and group of picture layer data elements) must satisfy:

d >Bn+2R/P-B

n+1

d <= Bn + R/P

n+1l

where:

n>=0

B_ is the buffer occupancy just after time t
R'L bitrate

P = number of pictures per second

tn is the time when the n'th coded picture is removed from the VBV buffer

n

Figure C.1 VBV Buffer Occupancy

63

5-Mar-92 PWD of Test Model 0

APPENDI : nsion for scalability experimen

The necessary syntax extensions for scalable bitstreams have been described in Chapter 9. These
extensions implement a hierarchical pyramid in the frequency (DCT) domain. Although the syntax is
flexible, in the Test Model we restrict its application to two layers of spatial resolution; 1/4 and 1/16
of CCIR-601.

In the non-scalable Test Model a MB is subdivided into six 8x8 blocks of luminance and chrominance
information, each block being coded using the 8x8 Discrete Cosine Transform (DCT). The scalability
extensions allow coding of multiple video resolutions by implementing a hierarchy of layers
corresponding to subsets of the 8x8 DCT coefficients. In decoding to a target resolution, we must use
an inverse DCT of a size that matches the size of the subset of coefficients of the target. Finally, to
increase coding efficiency, DCT data for high levels of resolution are coded differentially from DCT
data from lower levels of resolution. This prediction scheme also allows for some degree of bandwidth
control for each of the resolution layers.

D.1.1 MULTIPLEXING OF MULTIRESOLUTION DATA

Data for various resolution scales is multiplexed at the level of the Slice layer. The Slice layer, in a
scaled bitstream, contains data for the lowest resolution scale; it is followed by a variable number of
Slave_slices that contain data for the other resolution scales. The syntax for the scaled Slice layer is
compatible with the syntax for the non-scaled Slice layer.

The Macroblock syntax for a scalable bitstream is also compatible with the corresponding syntax for a
non-scalable bitstream. To preserve the MB structure, all MB attributes are coded with the lowest
resolution scale, using the standard Macroblock syntax (except for the coding of "scaled_blocks"
instead of "blocks"). Thus MB addresses, types, motion vectors, and coded block patterns, are coded
together with the information for the lowest resolution "scaled_blocks". The low resolution
"scaled_blocks" are coded, however, using a modification of the usual "block" syntax, as shown in
Chapter 9.

The "Slave_slices" contain Slave_macroblock data which, in tum, contain additional DCT coefficient
data. These data increase the resolution of the scaled_blocks in the MBs. Because the MB attributes
of the Slice layer are inherited by the Slave_macroblocks, we need only code additional DCT data for
blocks marked by the corresponding Coded Block Pattern.

Two slave_slices are used in the Test Model. The first contains data for 1/4 CCIR resolution, i.e. 4x4
DCT coefficients; the second brings the resolution up to full CCIR resolution, i.e. 8x8 DCT
coefficients.

D.1.2 HIERARCHICAL PREDICTION

DCT coefficients in a low resolution layer are used to predict the corresponding coefficients in the
next (higher) resolution layer. Thus, the 2x2 DCT coefficients of the Test Model's base Slice layer are
used to predict the upper-left 2x2 coefficients of the corresponding coefficients in the 4x4 slave layer.
Similarly, the 4x4 coefficients of the first slave layer are used to predict the upper-left 4x4 coefficients
of the corresponding coefficients in the 8x8 slave layer. After computing the prediction differences,
these differences together with the new (not predicted) coefficient data are coded using a zig-zag scan
pattern as shown in Figure 4.8

D.1.3 DCT AND IDCT DEFINITIONS FOR LOW RESOLUTION SCALES

64

5-Mar-92 PWD of Test Model 0

DCT transforms with non-standard normalization factors should be used to facilitate the process of
quantization and inverse quantization. One can use the same quantization matrix in all resolution
scales, if the following definitions are used:

SCALE FDCT IDCT

8x8 DCT(8x8) IDCT (8x8)
4x4 2*DCT (4x4) IDCT (4x4) /2
2X2 4*DCT(2x2) IDCT(2x2) /4

where DCT(NxN) and IDCT(NxN) are the standard 2-dimensional definitions for the transforms of size
N.

An alternative implementation, not supported in this Test Model, would use the standard DCT
definitions and instead renormalize the quantization matrix.

D.1.4 QUANTIZATION

One quantization matrix is used for all resolution scales. For the 2x2 hierarchical layer, the upper
left 2x2 elements of the 8x8 quantizer matrix are used. Similarly, for the 4x4 layer, the upper left 4x4
elements of the 8x8 matrix are used. In the Test Model, the quantized DCT coefficients in the 2x2
and 4x4 layers are obtained by simply extracting the appropriate coefficients from the corresponding
set of quantized 8x8 coefficients.

In general, to rebuild the DCT coefficients for a target scale, the following steps are needed:

1. partial inverse quantization of the DCT coefficients of the target scale and all lower scales by
the appropriate quantizer scale factor "mquant_x" (mquant_2 for scale 2x2, mquant_4 for scale
dx4, and mquant_8 for scale 8x8),

2. where appropriate, summation of the results of the previous step (hierarchical prediction),

3. final inverse quantization of the DCT coefficients of the target scale using the appropriate
quantization matrix (intra or non-intra).

Note that mquant_2=mquant_4=mquant_8 in this Test Model. The partial and the final inverse
quantizations are defined such that their combined formula corresponds exactly to the formula for
inverse quantization in the Test Model (section 7.3). Thus, except for DC coefficients in intra blocks,
partial inverse quantization is defined by:

if QAC(i,j) = 0 then
partial_inv(i,j) = 0
else

partial_inv(i,j) = (2*QAC(i,j)+k) * mquant_x

where partial_inv is the partial dequantization, k=0 for intra, and k=1 for non-intra macroblocks.
Final inverse quantization is defined by:

rec(i,j) = (partial_inv(i,j) * w(i,j)) / 16

where w=wl for intra, and w=wN for non-intra macroblocks. This reconstruction is then followed by
normal clipping and adjustment of even reconstruction values as described in section 7.3. For the DC
value of intra blocks, the reconstruction is obtained by calculating 8*QDC, for all scaling layers.

D.1.5 PROVISIONS FOR BANDWIDTH CONTROL OF RESOLUTION LAYERS

65

5-Mar-92 PWD of Test Model 0

The Slave_slice layer specification includes the quantizer_delta parameter. This delta is always
specified with reference to the corresponding quantizer scale factor used in the Slice layer, as
explained in section 9.3.6. This parameter is used to derive the "mquant” values used in the slave
layers. For the Test Model the "quantizer_delta" parameter is always zero.

D.1.6 CODING OF MOTION VECTOR INFORMATION

Motion vector data are part of the MB attributes which are coded in the Slice layer. Whereas the pixel
data in the Slice of the scalable Test Model has a 1/16 resolution, the motion vector data are that of a
full resolution video. Motion vector data are the same as that which would be derived for a non-
scalable bitstream; no additional computations are required. To reconstruct resolution scales other
than full resolution, these data must be scaled approprately. For example, the x- and y-motion-vector
components at 1/4 resolution are 1/2 the corresponding full resolution components. Similarly the
1/16 vector components are 1/4 the corresponding full resolution components. After scaling, the
motion vector components should be rounded away from zero to achieve a resolution of 1/2 pixel.

D.1.7 VLC CODING

Coding of 2x2 and 4x4 DCT coefficients is through a set of new VLC tables, described below. For
the final 8x8 layer, coefficients are coded (intra macroblocks included) by using the standard MPEG-1
tables 2-B.5¢c-g, without the special-case treatment of the first run/amplitude event (note that, in
slave_slices, there may be blocks where all prediction differences and all unpredicted coefficients are
zero; in those cases an EOB is the first and only event coded).

The variable-length coding scheme used for coding of DCT coefficients in the lower scales, is a
modified JPEG-style. In the JPEG scheme, VLC codes are assigned to RUNS and SIZE combinations,
followed by a fixed code of length SIZE. The combined VLC and fixed length codes are used to
specify the exact amplitude. The entire (RUN, SIZE) codeword tables can be constructed from
knowledge of the number of codewords of each length, and an ordered list of (RUN, SIZE) pairs. We
provide a pseudo-C program segment to generate the codewords and illustrate its operation below.
Since the maximum RUN is 15, we represent a (RUN, SIZE) pair by

VALUE = 16*RUN + SIZE.

Note that VALUE=0 is reserved for the End of Block (EOB) symbol. The numbers of codewords of
each length and ordered lists of VALUES are given below for tables used in Scales 2, 4, and 8.

SCALE 2 NUMBER OF CODES of EACH LENGTH:
ncodes_2([16] = {

i, 1, o, 2, 2, 2, 3, 0,

3, 1, o0, 2, 2, 0, 0, 15 };

Thus, there is one codeword of length 1, one of length 2, none of length 3, etc.

SCALE 2 VALUES:

values_2{34] = {
0x00, 0Ox01, O0x02, Ox1l, Ox03, 0x21, Oxl1l2, O0x31,
0x04, 0x13, 0Ox22, 0x05, 0x1l4, 0x32, 0x23, O0x06,
0x15, Oxlé6, Ox24, 0x33, 0Ox25, 0x07, 0x08, 0Ox10,
0x17, Ox18, 0x26, 0x27, 0x28, 0x34, 0x35, O0x36,
0x37, 0x38 };

66

5-Mar-92 PWD of Test Mode! 0

Thus, the codeword of length one has VALUE=0 (i.e. EOB), the codeword of length two has
VALUE=1 (l.e. RUN=0, SIZE=1), etc.

SCALE 4 NUMBER of CODES of EACH LENGHT:

ncodes_4[16])
o, 1, 2,
6, 1, 2,

{
3,
2,

SCALE 4 VALUES:

values_4[130]
0x00, O0x01,
0x41l, O0x61,
0x03, 0x22,
0x34, 0x53,
0x23, 0x72,
0x63, 0xB2,
0x15, 0x94,
0x08, 0x10,
0x28, 0x37,
0x56, 0x57,
0x74, 0x75,
0x87, 0x88,
O0xAS, Oxaé6,
OxB7, O0xBS8,
0xD3, 0xD4,
OXES, OXES6,

= {

0x31,
0x81,
0x33,
0x62,
0x14,
0x24,
0xD2,
ox16,
0x38,
0x58,
0x76,
0x95,
OxA7,
0xC3,
0xD5,
0XE7,

OxF7, OxF8 };

0, O,

ox11,
0x91,
0xB1,
0x92,
0x43,
0x83,
0x36,
ox17,
0x44,
0x64,
0x77,
0x96,
0xAS8,
0xC4,
0xD6,
0XES8,

4, 4
0, 95

0x21,
0x12,
0x13,
0xD1,
0xAZ2,
oxCc2,
0x55,
0x18,
0x45,
0x65,
0x78,
0x97,
0xB3,
0xCS5,
0xD7,
0xF3,

’

Y

0x02,
0x71,
0xC1,
0x82,
0x54,
0x73,
OXF2,
0x26,
0x47,
0x67,
0x85,
OxA3,
0xBS5,
oxC7,
0xE3,
OXFS,

0x32,
OxAl,
0xE1l,
0x04,
0x93,
O0xE2,
0x07,
o0x27,
0x48,
0x68,
0x86,
OxA4,
0xB6,
0xC8,
OxE4,
OXF6,

PSEUDO-C CODE TO GENERATE CODEWORD VALUES:

valpt = values_2;
ncodes = ncodes_2;

code=0;

for (length=1;

/* Point to first value in list of values */

/* Initialize Huffman code value */

length<=16;

code = (code<<l) + 1;

for (i=1;
++valpt;
--code;
}
}

i<=ncodes[length-1];

++length)

++1)

{
{

Note: The list of "code"s generated in this fashion are converted to binary codewords by 1) expanding
“code" as an unsigned binary number of length equal to the "length” of code, and 2) bit-wise
complementing the resulting binary codeword.

67

Example from Scale 2 data above:

[y

D.2. IMPLEMENTATIONS

D.2.1 DECODER

10
1100
1101
11100
11101
111100
111101

1111100
1111101
1111110
111111100
111111101
111111110
1111111110
111111111100

111111111101
1111111111100
1111111111101
1111111111110000
1111111111110001
1111111111110010
1111111111110011
1111111111110100

1111111111110101
1111111111110110
1111111111110111
1111111111111000
1111111111111001
1111111111111010
1111111111111011
11111311111111100

1111111111111101
1111111111111110

5-Mar-92 PWD of Test Model 0

A block diagram of the scalable Test Model decoder is shown in Figure D.1. The 3-layer decoder in
the scalable of the Test Model supports 2x2 {low), 4x4 (medium), and 8x8 (high) resolution scales.
After demultiplexing and entropy decoding, there will be for every 8x8 block, corresponding 2x2 and
4x4 blocks, all of which are necessary to build the final 8x8 matrix of DCT coefficients. The low
resolution 2x2 blocks are used as a prediction to the four lowest order coefficients of their
corresponding 4x4 blocks. Similarly, the 4x4 blocks are used as prediction to the 16 lowest order
coefficients of their corresponding 8x8 blocks.

68

5-Mar-92 PWD of Test Model 0

Because the same quantization matrix, Q8, is used for all hierarchical layers, the low resolution DCT
coefficient data are only partially dequantized as we build the target resolution set of coefficients.
Dequantization by Q8 is only needed once we reach the target resolution (an additional simplification
can be achieved in the Test Model. Since the quantizer_delta parameter is always set to zero,
dequantization by the quantizer_scale parameter is needed only at the target resolution. In this case,
no additional multiplies are required over those required in the non-scalable syntax).

Once all 8x8 blocks in a macroblock have been dequantized, they can be used to reconstruct their
corresponding pixels by the same techniques used in the non-scalable Test Model. In this regard,
16x16 motion compensation prediction and interpolation can be used.

For a decoder operating at a lower than 8x8 resolution, only the required DCT coefficients are rebuilt.
Except for the use of IDCTs other than the 8x8 IDCT, and motion compensation for scaled -
macroblocks of 4x4 or 8x8, the reconstruction method is the same as with full resolution video. Of
special note is that motion vectors need to be scaled as explained before.

D.2.2 ENCODER

In summary, the Test Model encoder is a simple one. In this encoder the 2x2, and 4x4 DCT data
are simply extracted from the corresponding quantized coefficients in the 8x8 data. The prediction
differences of the frequency pyramid are, therefore, always zero.

Because there is no feedback loop in the lower resolution scales, this encoder will result in
accumulation of quantization and motion compensation errors at these resolution scales. The error,
however will be naturally reset back to zero whenever a new Group of Frames starts. This limitation
can be overcome by more complex encoders.

D.2.2. TROL AND MQUANT SELECTION

These features are implemented in the same manner as with the non-scalable Test Model, i.e. rate
control and mquant are implemented counting the bits generated by each macroblock together with its
corresponding slave_macroblocks; the quantizer_scale of the macroblock layer is then set using the
mquant value of the full resolution macroblock.

D.2.2.2 IN MPATIBLE, AND OTHER MACROB
TYPES

Only frame prediction and coding are permitted for experiments with scalability. Other macroblock-
type decisions are made using the full resolution video, just as with the non-scalable Test Model
(except for the above restrictions). Motion vector estimation is performed only for the full resolution
video. The MB type, address, and coded block pattern are defined with the full resolution data,
exactly as in the non-scalable Test Model; these attributes are coded, however, together with the
lowest resolution layer and used throughout all resolution scales.

69

5-Mar-92 PWD of Test Model 0

A : nsions for Purely Field B in

TMO(Field)

*SM3 is simply applied to Rec 601(each fields), 1GOP=24fields(60),21fields(50)
BBIBBPBBPBBPBBPBBPBBP(BBP)

*P-pictures are predicted by previous 2P(l)-pictures

forwerd
o{e) P ----> P
/different (field parity)
e (o) P-/

VLC(syntax) is basically same as B-pictures, but only names of prediction mode are changed.
Backward —> Dfferent
Bidirectionally —> Average=(For+Diff)/2

*ME :Full search or Hierachical Method
Range:+/-31(not depend on the field distance)
Accuracy:half-pel

SM3Fi++(optional)

*B-pictures are predicted by 3P(l)-picture
For. Back.
o(e) P-->Bg=----- P
\Diff.
e(o) P

*MB Type (noMC's are rejected)

VLC
Pred.Type For Diff Back non-coded coded

F+B 1 0 1 10 11

F+D 1 1 0 0100 0101
D+B 0 1 1 0110 0111

F 1 0 0 0010 00010

B 0 1 0 0011 00011

D 0 0 1 00001 000001
Intra 0 0 0 - 0000001

Optimizing for field base coding (example)
Format 4:2:0 —> 4:2:2

MBsize 16*16 —> 16°8

Scanning for Y

0 1 5 6 14 15 27 28 0 2 6 12 20 28 36 44
2 4 7 13 16 26 29 42 1 5 11 19 27 35 43 51
3 8 12 17 25 30 41 43 3 7 13 21 29 37 45 52
9 11 18 24 31 40 44 53 ---> 4 10 18 26 34 42 50 57
10 19 23 32 39 45 52 54 8 14 22 30 38 46 53 58
20 22 33 38 46 51 55 60 9 17 25 33 41 49 56 61
21 34 37 47 50 56 59 61 15 23 31 39 47 54 59 62
35 36 48 49 57 58 62 63 16 24 32 40 48 55 60 63

70

5-Mar-92 PWD of Test Model 0

A ngdix F: xperimen

F.1 Cell loss

Cell loss can occur unpredictably in ATM networks. This document proposes a method of simulating
cell loss. A specification for a packetized bitstream has been defined. A model of bursty cell loss is
defined and analysed in order to allow the simulation of bursty cell loss. The proposed specification
and model are simplified; no attempt is made to model actual ATM networks; the main objective of
the model is to allow consistent simulation of the effects of cell loss on video coding.

F.1.1 Bitstream specification

The coded bit stream is packetized into 48 byte cells consisting of a four bit sequence number
(SN), a four bit sequence number protection field (SNP) and 47 bytes of coded data. In the stored
file each cell is preceded by a Cell Identification byte (Cl). The syntax is as follows:

< Cl ><SN><SNP>< 47 bytes of data >

The CI byte consists of the bit string '1011010' followed by the priority bit. The priority bit is set
to '1' for low priority cells and ‘0’ for high priority cells. The cell loss ratio for low priority cells may
be different to that for high priority cells. SN is incremented by one after every cell. The sequence
number protection is set to zero.

For a lost cell the cell is discarded.
F.1.2 Calculation of cell loss probabilities

This section outlines a method for determining whether any cell in a bitstream should be marked
as lost. Cell loss is assumed to be random, with the probability of cell loss depending only on
whether the previous cell of the same priority was lost.

Firstly the mean cell loss rate and the mean burst of consecutive cells lost is calculated from the
probabilities of cell loss. These equations are then rearranged in order to express the cell loss
probabilities in terms of the mean cell loss rate and the mean burst of consecutive cells lost.

The following notation is used. The probability that any cell is lost is given by P, the probability
that a cell is lost given that the previous one was not lost is given by P, and the probability that a
cell is lost given that the previous one was lost is given by P|. These probabilities are illustrated in
the tree diagram below.

71

5-Mar-92 PWD of Test Model 0

| ——=~=~- Lost Cell
Pl |
| -=m - Lost Cell -------- |
| 1-P1 |
P | | ---- Not Lost Cell
Unknown |
Previous ------ |
State |
1-P | | ==-==-- Lost Cell
| Pn |
| == === Not Lost Cell ------ |
1-Pn |

j---- Not Lost Cell

F.1.3 Calculation of mean cell loss rate

The mean cell loss probability is given by P. In this section a relationship between P, P, and Py is
derived, as follows, by finding two equivalent expressions for the probability of a given cell being
lost. A lost cell can occur in two ways: immediately after a cell has been lost and after a cell has
been received. The probability that a cell is lost, P, is the sum of the probability that the cell is lost
given the previous cell was lost multiplied by the probability that the previous cell was lost, P * P,
and the probability that the cell is lost given the previous cell was not lost multiplied by the
probability that the previous cell was not lost, (1 - P) * Pn. So,

P P*Pl + (1-P)*Pp

So
P

(1)

F.1.4 Calculation of mean burst of consecutive cells lost

Pn / (1-P1+Pp)

A burst of lost cells is defined as a sequence of consecutive cells all of which are marked as lost. It
is preceded by and followed by one or more cells that are marked as not lost. The length of the
burst of lost cells is defined as the number of cells in a burst that are marked as lost. The mean
burst of consecutive cells lost is defined as the mean burst length. This number must always be
greater than or equal to one.

A burst starts when a cell is lost after one or more cells have not been lost. The probability that
this is a burst of length one is equal to the probability that the next cell is not lost, that is, 1 - P.
The probability that this is a burst of length two is equal to the probability that the next cell is lost
and the one after that is not lost, that is, P} * (1 - P)). The probability of a burst of length n is P|in-
1) * (1 - P)). The mean burst length, B, is therefore given by:

B = (1-P) + 2°P1*(1-P) + 3*P2*(1-P) + ...
Summing this series leads to the result:

B = 1/(1-P)
@)

72

5-Mar-92 PWD of Test Model 0

F.1.5 Calculation of cell loss probabilities
Rearranging equation (2) gives:

P = 1-1/B
3)

Rearranging equation (1) gives:

Pn = P*(1-P)/(1-P)
Using equation (3) gives:

Pn = P/(B*(1-P))

(4)

F.1.6 Simulation of cell loss

Equations (3) and (4) allow the probabilities of cell loss to be calculated from the average cell loss
rate and the mean length of bursts of lost cells. Cell loss can easily be simulated using these
probabilities: assume that the first cell is received, then the probability that the next will be lost is
given by Pp. The probability that a cell is lost is always Py, unless the previous cell was also lost in
which case the relevant probability is P).

A simulation of cell loss only needs a random number generator, the values of Pp, and P and the
knowledge of whether the previous cell of the same priority was lost or not. Pseudo-Pascal code to
perform cell loss is given below. Random is a function that retums a random number between zero
and one; its implementation is given below.

PreviousCellLost := FALSE;

Write('Enter mean cell loss rate and burst length');
Readln(P,B);

PL := 1 - 1/B

PN := P/ (B * (1-P))

For CellCount := 1 To NumberOfCells DO
- BEGIN
CASE PreviousCelllLost OF
TRUE : IF Random < PL THEN Celllost := TRUE
ELSE CellLost := FALSE;
FALSE : IF Random < PN THEN CellLost := TRUE
ELSE CellLost := FALSE;
END;
Write(CellLost);
PreviousCellLost := CellLost;
END;

END.

If the priority bit is used then the cell loss generator must be implemented separately for each of
the priorities.

F.1.7 Random number generation

73

5-Mar-92 PWD of Test Model 0

To ensure the consistent simulation of cell loss, it is necessary to ensure that the same sequence of
random numbers is generated by all simulations regardless of the machine or programming
language used. This section describes a method for the generation of such random numbers.

Random numbers are generated by use of a 31 bit shift register which cycles pseudo-randomly
through (2431 - 1) states (the value of zero is never achieved). The shift operation is defined by
the pseudo-Pascal code below.

DO 31 times

Begin

Bit30 = {(ShiftRegister & 2730) DIV 2730

Bit2S = (ShiftRegister & 2725) DIV 2725

ShiftRegister := (2*ShiftRegister MOD 2731) + (Bit30 XOR Bit25};
End

To generate a random number, the shift register is first shifted as above and then divided by (2431
- 1). It may be easier to use it as it is, and multiply the probabilities in the program above by (2431
- 1)

A separate random number generator is used for low and high priority cell loss. For each, the shift
register is initialised to a value of 1 and is then shifted 100 times. If this is not done, the first few
random numbers will be small, leading to the loss of the first cells in the bitstream.

F.2 Parameters

This section suggests specific values of the parameters to allow consistent simulation of the effects
of cell loss on video coding.

The cell loss experiment will use a mean cell loss rate of 1 in 1000 and a mean burst length of 2.
Only low priority cells are lost. The following formula gives the value of P to use for low priority
cells.

Total Bit rate
P=103 «x

Total bitrate - Bit rate for high priority cells
For example:
Total bit rate 4Mbits/s
High priority bit rate 2Mbits/s (50% of Total)
then the mean cell loss rate figure for the cell loss simulation program is 2 x 10°3.

Other cell loss experiments at different cell loss rates can also be shown.

For all experiments the following table should be completed.

High priority bit Low priority bit
rate rate

1ayer
2-ayer base
enhance

74

5-Mar-92 PWD of Test Model 0

CONTENTS
Editorial COMMENLES.oooii i 2
LINTRODUCTION ... e e 3
2 GENERAL CODEC QUTLINE ... q
2.1 Arithmetic Precision................ocooiiiiii oo 4
3 SOURCE FORMATS ... OO UR ST OO OUS USSR 6
3.1 Source Input FOrmMats. ..ot 6
3.2 Definition of fields and frames...............ooooovooii e 7
3.3 Conversion of CCIR 601 to the Input formats......................c.ccccccoooiiii 8
3.3.1 Conversion of CCIR 601 to the 4:2:0 formatcoooeeiiiiiirinii. 8
3.3.2 Conversion of CCIR 601 to SIFoovveiiioeeeeee 9
3.4 Conversion of the Input Formats to CCIR 601........ RSO ETRPRTOIY 10
3.4.1 Conversion of the 4:2:0 Formatto CCIR 601cooeii . 10
3.4.2 Conversion of SIFto CCIR 601 ... 11
4 LAYERED STRUCTURE OF VIDEO DATA ..o e 12
4.1 SCQUEINCE..........oiiiii e e 12
4.2 Group oOf PICHUIES 12
G 3PICIUIC ..o 12
4.4 Macro block SCeovvvveee 13
4.4.1 Slave Slice (scalable extension)c.cccoveeiii 13
.5 MACIODIOCK ... 13
4.5.1 Slave_macroblock (scalable extension)cccccoooveveeieiiiiiiiiiii 14
QOBIOCK ..o ST SO PP PP URTRURUR 15
4.6.1 Scaled_block (scalable extension)ccooioiee 15
4.6.2 Slave_block (scalable extension).............cooovveeiee 15
5 MOTION ESTIMATION AND COMPENSATIONooooiiiiiii e 17
5.1 Motion Vector EStImation ... 17
ST FullSearch ... e 18
5.1.2Half pel search.............o.oiiii e 18
5.2 Motion Compensationcoooiiiiiiiiiie e 19
5.2.1 Frame Motion Compensationc.covevmoiiiioieieieeeeeeieeee 19
5.2.2 Field Motion Compensation..................ovueeeeueeeearea 20
6 MODES AND MODE SELECTION ... i e 22
6.1 PICtUIC fYP@Svi e 22
6.2 Macroblock types in an intra picture...................cc.ccooiiiiiiii e 22
6.3 Macroblock types in a predicted pictureoooooiieeeiiie e 23
6.4 Macroblock types in an interpolated picturecoccoeeveiiiiei i 23
6.5 Selecton Criteria........ ..ot 24
6.5.1 Motion Compensation/No Motion Compensation - Frame/Field 24
6.5.2 Forward/Backward/Interpolative - Field/Frame prediction................... 24
6.5.3 Compatible predictionc..ccoiiiiii e 24
6.5.4 Intra/Inter codiNg.............ocoiviiiee e 24
6.5.5 Modified QUantizer...................ooooiie i 25
6.5.6 Field/Frame DCT coding.............oovveiemeoee e 25
6.5.6 Field/Frame DCT coding deciSions...............oovo oo 25
6.5.7 Coded/Not Coded.................oooimiiiiiiie e, 25
7 TRANSFORMATION AND QUANTIZATION ... 26
7.1 Quantization of Intra frames and Intra Macroblocksc.oo i 26
7.1.1 DC CoeffiCients...........c.c.oooviiiiee e 26
7. 1.2 AC Coefficients.oooiiiieeeee e 26
7.2 Quantization of Predicted and Interpolated frames.................oooovevieeeeiieiiiiiiii, 27
7.3 Inverse Quantization ... e 27

75

5-Mar-92 PWD of Test Model 0

7.3.1 Intra-coded macroblocks...............ccooooiviiii i 27

7.3.2 Non-Intra-coded macroblocKs.cccooooviviiiiiiiiiiiiiiiiie e 28

B CODING ..o e 29
8.1 Macroblock AAressing.ccoooviiiiiiiiiee i e 29

8.2 MacroblocK TUPE ..ot 30

8.2.1 Compatible Prediction Flag.................ccccciiieee e 30

8.2.2 Field/Frame Coding FIag...........ccooovieeeeiiiiiiiiiceeeeeeee e 30

8.2.3 Field/Frame Motion Compensation Flagcoooooiiicii . 30

8.3 MOHON VECIOTS . ..o e 30

84 Coded Block Pattern.............ooiiiiiiii e 32

8.5 Intraframe Coeffictent Codingcoooooviiiiiiiiiiiie e 33

8.5 1 DCPredicHOnvoiieii e 33

852 AC Coefficients.oooiiii e 34

8.6 Non-Intraframe Coefficient Codingcooooiiiiiii i 34
8.6.1INtrablocKs........ovviieiiiiiiee e 34
8.6.2Nonintra blOCKS........cooooviiiii e 34

8.6.3Scalable BIOCKSvvvviiii e 34

8.7 Coding of Transform Coefficients..............cc..coooiiiiiiiiivi e 35

9 VIDEO MULTIPLEX CODERot 36
9.1 Method of Describing Bit Stream Syntaxccccooviiiiiii 36
Definition of bytealigned function....................coooieiiii 37

Definition of nextbits function.......................cccoiviiiiiiin, 37

Definition of next_start_code function......................ccccocoooiiii . 37

G2 MNCIMIONICS ..ottt et 37

9.3 Specification of the Coded Video Bit stream Syntax..............c.c.cooovieieiniinn, 38

9.3 1 Start Codes ..o 38

9.3.2 Video Sequence Layerooiouiiiiiiiiiiiiiiiie e 38
9.3.3Sequence Header...................ooooii i 39

9.3.4 Group of Pictures Layeroooiiiiiiiiiiiieeieie 41

9.3, 5 PICHUIE LAYRYoooiieiii e 42

9.3.6 SlCe LaYer.... ... 43

9.36.1Slave Slice Layerccoooiiiiiie e 43

9.3.7 Macroblock Layer..............cocooiiiiiiiei e 44

9.3.7.1 Slave Macroblock Layer.................ooviviiiiiiiiie 45

9.3.8BIoCK LAYLT ...ttt 46

9.3.8.1Scaled Block Layerccccoooiiiiiiiiniii e 46

10 RATE CONTROL AND QUANTIZATION CONTROL..........ccoooiiiiii 48
Step 1 - Bit ANOCAHON.ooiiiiiiieiriiiiie et 48
Complexity eSHMAtONc..oviriviiiiiiie e 48

Picture Target Settingcoocooviiiiiiiiiiii i 49

Step 2 - Rate Controloooviiiiiiiiii i 50

Step 3 - Adaptive QUANtZAtONc..ooiiiiiiiiiiii e 51
Known Limitationsccccooeieiriiieinnn P 52
APPENDIX A.: Discrete Cosine Transform (DCT)oiiiiiii e 53
Accuracy SPeCifiCatONooouuiiiiiiiiiiii i 53
APPENDIX B: VARIABLE LENGTH CODE TABLES ...t 54
INEEOAUCHION ... ettt e 54

B.1 Macroblock Addressingcooooviiiiiiiiiiiiiiee e 54

B.2 Macroblock TYPE.ovviiiiiieeeiee e 55

B.3 Macroblock Patternoviiiiiiiie e 56

B4 MOHON VECIOTS .ottt 57

B.5 DCT COCIfICIENLSoooveeeeeeee e 58
APPENDIX C : Video Buffering Verifier ... 63
C.1 Video Buffering Verifieroooiiiii i 63

5-Mar-92 PWD of Test Model 0

APPENDIX D : Extension for scalability experiments.. 64
D.1.1 MULTIPLEXING OF MULTIRESOLUTION DATAcovvvveii 64
D.1.2 HIERARCHICAL PREDICTIONoooooiiiieeoeeeo e 64
D.1.3 DCT AND IDCT DEFINITIONS FOR LOW RESOLUTION SCALES ... 64
D.1.4 QUANTIZATION.oooiiii e 65
D.1.5 PROVISIONS FOR BANDWIDTH CONTROL OF RESOLUTION

LAYERS L 65
D.1.6 CODING OF MOTION VECTOR INFORMATION ... 66
D1 7VLCCODING........oooviiiiiiie e 66
D.2. IMPLEMENTATIONS ... e 68
D.21DECODER.......cc..ooiiiiiii e 68
D.2.2ZENCODER........coocoiiiiiii e 69
D.2.2.1 RATE CONTROL AND MQUANT SELECTION 69

D.2.2.2 FRAME/FIELD CODING, COMPATIBLE, AND OTHER
MACROBLOCK TYPESot 69
Appendix E : Extensions for Purely Field Based Coding................ccc.coocoooiiiioi 70
Appendix F: Cell loss experimentsccccooccvmmiiiiiee Y 71
FLl CellI0SS. ..o 71
F.1.1 Bitstream specificationc.cccoooiiiiiii 71
F.1.2 Calculation of cell loss probabilitiesc................. 71
F.1.3 Calculation of mean cell loss rate...................ccocoeeviiiiiiii i 72
F.1.4 Calculation of mean burst of consecutive cells lost 72
F.1.5 Calculation of cell loss probabilitiescoccoooiiiniiveio 73
F.1.6 Simulation of cell 108S..............ccccoooviiiiii e 73
F.1.7 Random number generationcccccoovmeiiniiiiieee 73
F2Parametersooovviiiiiii oo 74
CONTENTS ... 75

77

