
	[image: image42.png]


[image: image43.png]


Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11

4th Meeting: Daegu, KR, 20-28 January, 2011
	Document: JCTVC-D503



	Title:
	WD2: Working Draft 2 of High-Efficiency Video Coding

	Status:
	Output Document of JCT-VC

	Purpose:
	Working Draft of HEVC

	Author(s) or
Contact(s):
	Thomas Wiegand
Fraunhofer HHI / TU Berlin
Woo-Jin Han
Samsung Electronics

Benjamin Bross
Fraunhofer HHI

Jens-Rainer Ohm
RWTH Aachen

Gary J. Sullivan
Microsoft
	Email:

Email:


Email:

Email:


Email:

	thomas.wiegand@hhi.fraunhofer.de


wjhan.han@samsung.com


benjamin.bross@hhi.fraunhofer.de

ohm@ient.rwth-aachen.de


garysull@microsoft.com

	Source:
	Editor


_____________________________
Abstract

Working Draft 2 of High-Efficiency Video Coding.

Ed. Notes (WD2): 

· Incorporated Partial Merging according to JCTVC-D441

· removed direct mode

· moved merge to prediction_unit and added candidates
· added partial merge restrictions

· inter NxN partitioning only for smallest coding_unit

· Updated transform_tree and transform_coeff syntax

· Added transform_coeff to coding_unit syntax (Fix)
· Incorporated intra NxN partitioning only for smallest coding_unit according to JCTVC-D432

· Incorporated modified temporal motion vector predition according to JCTVC-D164

· Incorporated simplified motion vector prediction according to JCTVC-D231
· removed median

· removed pruning process

· changed the selection manner of left/top predictor
· 8-tap luma interpolation filter according to JCTVC-D344

· 4-tap chroma interpolation filter according to JCTVC-D347

· Improved deblocking filter text according to JCTVC-D395

· IBDI syntax is removed

· Updated syntax and semantics

· Two tool-enabling flags (adaptive_loop_filter_enabled_flag and cu_qp_delta_enabled_flag) are added in SPS according to software. However, low_delay_coding_enabled_flag is not added – it could be handled by more general reference management scheme. merging_enabled_flag is not added – partial merging (JCTVC-D441) was adopted thus merging cannot be turned off any more. amvp_mode[] is not added since amvp cannot be turned off any more due to absence of median predictor (JCTVC-D231). Note that software has all switches.
· cu_qp_delta (coding unit layer), syntax and semantics are added. (JCTVC-D258)
· collocated_from_l0 (slice header), syntax and semantics are added.
· Clean decoding refresh (CDR) (JCTVC-D234).
· Temporal motion vector memory compression (JCTVC-D072)
· Constrained intra prediction (JCTVC-D086)
· Mode-dependent intra smoothing (JCTVC-D282)
· Mode-dependent 3- scan for intra (JCTVC-D393)
· Merging chroma intra prediction process into luma intra prediction process
· Combined reference list (JCTVC-D421)
· Chroma intra prediction mode reordering (JCTVC-D255/D278/D166)
· Adaptive loop filter text is added
· Entropy slice is added (JCTVC-D070)
· High precision bi-directional averaging (JCTVC-D321)
· Reduction of number of intra prediction modes for 64x64 blocks (JCTVC-D100)
· Misc.
· TPE bits are reduced from 4 to 2
· Clipping is applied to (temporally) scaled mv – revisit
Ed. Notes (WD1): 

· Incorporated the decisions on high-level syntax according to JCTVC-B121

· Incorporated text from JCTVC-B205revision7

· Incorporated text from JCTVC-C319 (as found to be stable)

· Revised coding tree, coding unit and prediction unit syntaxes (coding tree syntax is newly added. needs to be confirmed)
· Initial drafting of decoding process of coding units in intra prediction mode (luma part, JCTVC-B100 and JCTVC-C042)
· Initial drafting of decoding process of coding units in inter prediction mode
· Initial drafting of scaling and transformation process
· Added text, transform 16T and 32T

· Initial drafting of deblocking process

· Improving the text, derivation process for motion vector components and reference indices
· Added text, boundary filtering strength
Open issues:

· Substantial portions of JCTVC-B205 have not been imported so far, as they require significant editorial work

· Should support for monochrome, 4:2:2 and 4:4:4 (with and w/o separate color planes) be included from the start? Currently, it has been left in the text as it doesn't seem to affect much text.

· Handling of the term "frame". We are currently leaning towards changing all occurrences of "frame" to "picture" (removed or marked all occurrences of "field")

· Large size table (zigzag and de-scaling matrices) is not inserted yet.
· Slice-header syntaxes and their semantics are not completed yet. Also possible modifications that maybe necessary because of larger treeblocks (64x64) compared to macroblocks (16x16) are not yet considered.
· 
· Text representing entropy coding named as "LCEC" are missing. The name LCEC needs to be adjusted as it propotes a property ("Low Complexity"). Currently, there is a place holder with CAVLC.

· Text representing CABAC entropy coding needs to be extended.
· Clipping is applied to temporally scaled motion vector in 8.4.2.1.7. Do we need this? (c.f. AVC seems not)
· SPS- and slice-level syntax items are significantly different from software in terms of both meaning and position. Needs to be unified.
· 
CONTENTS


Page

iAbstract


90
Introduction


90.1
Prologue


90.2
Purpose


90.3
Applications


90.4
Publication and versions of this Specification


90.5
Profiles and levels


100.6
Overview of the design characteristics


100.7
How to read this Specification


111
Scope


112
Normative references


113
Definitions


164
Abbreviations


175
Conventions


175.1
Arithmetic operators


175.2
Logical operators


185.3
Relational operators


185.4
Bit-wise operators


185.5
Assignment operators


185.6
Range notation


185.7
Mathematical functions


195.8
Order of operation precedence


205.9
Variables, syntax elements, and tables


215.10
Text description of logical operations


225.11
Processes


226
Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships


226.1
Bitstream formats


226.2
Source, decoded, and output picture formats


256.3
Spatial subdivision of pictures and slices


266.4
Inverse scanning processes and derivation processes for neighbours


266.4.1
Inverse treeblock scanning process


267
Syntax and semantics


267.1
Method of specifying syntax in tabular form


277.2
Specification of syntax functions, categories, and descriptors


297.3
Syntax in tabular form


297.3.1
NAL unit syntax


307.3.2
Raw byte sequence payloads and RBSP trailing bits syntax


307.3.2.1
Sequence parameter set RBSP syntax


307.3.2.2
Picture parameter set RBSP syntax


317.3.2.3
Supplemental enhancement information RBSP syntax


317.3.2.4
Access unit delimiter RBSP syntax


317.3.2.5
Filler data RBSP syntax


327.3.2.6
Slice layer RBSP syntax


327.3.2.7
RBSP slice trailing bits syntax


327.3.2.8
RBSP trailing bits syntax


337.3.3
Slice header syntax


347.3.3.1
Reference picture list modification syntax


347.3.3.2
Reference picture lists combination syntax


357.3.3.3
Decoded reference picture marking syntax


367.3.3.4
Adaptive loop filter parameter syntax


377.3.4
Slice data syntax


387.3.5
Coding tree syntax


387.3.6
Coding unit syntax


407.3.7
Prediction unit syntax


417.3.8
Transform tree syntax


437.3.9
Transform coefficient syntax


447.4
Semantics


447.4.1
NAL unit semantics


457.4.1.1
Encapsulation of an SODB within an RBSP (informative)


467.4.1.2
Order of NAL units and association to coded pictures, access units, and video sequences


507.4.2
Raw byte sequence payloads and RBSP trailing bits semantics


507.4.2.1
Sequence parameter set RBSP semantics


517.4.2.2
Picture parameter set RBSP semantics


527.4.2.3
Supplemental enhancement information RBSP semantics


527.4.2.4
Access unit delimiter RBSP semantics


527.4.2.5
Filler data RBSP semantics


537.4.2.6
Slice layer RBSP semantics


537.4.2.7
RBSP slice trailing bits semantics


537.4.2.8
RBSP trailing bits semantics


537.4.3
Slice header semantics


557.4.3.1
Reference picture list modification semantics


567.4.3.2
Reference picture lists combination semantics


577.4.3.3
Decoded reference picture marking semantics


597.4.3.4
Adaptive loop filter parameter semantics


617.4.4
Slice data semantics


617.4.5
Coding tree semantics


617.4.6
Coding unit semantics


627.4.7
Prediction unit semantics


637.4.8
Transform tree semantics


647.4.9
Transform coefficient semantics


648
Decoding process


658.1
NAL unit decoding process


658.2
Slice decoding process


658.2.1
Decoding process for picture order count


668.2.1.1
Decoding process for picture order count type 0


668.2.1.2
Decoding process for picture order count type 1


668.2.1.3
Decoding process for picture order count type 2


668.2.2
Decoding process for reference picture lists construction


668.2.2.1
Decoding process for picture numbers


678.2.2.2
Initialisation process for reference picture lists


688.2.2.3
Modification process for reference picture lists


708.2.2.4
Mapping process for reference picture lists combination in B slices


718.2.3
Decoded reference picture marking process


718.2.3.1
Sequence of operations for decoded reference picture marking process


718.2.3.2
Decoding process for gaps in frame_num


728.2.3.3
Sliding window decoded reference picture marking process


728.2.3.4
Adaptive memory control decoded reference picture marking process


738.3
Decoding process for coding units coded in intra prediction mode


748.3.1
Derivation process for luma intra prediction mode


768.3.2
Derivation process for chroma intra prediction mode


768.3.3
Decoding process for intra blocks


778.3.3.1
Intra sample prediction


838.4
Decoding process for coding units coded in inter prediction mode


838.4.1
Inter prediction process


858.4.2
Decoding process for prediction units in inter prediction mode


868.4.2.1
Derivation process for motion vector components and reference indices


948.4.2.2
Decoding process for inter prediction samples


1028.4.3
Decoding process for the residual signal of coding units coded in inter prediction mode


1028.4.3.1
Decoding process for luma residual blocks


1038.4.3.2
Decoding process for chroma residual blocks


1048.5
Scaling, transformation and array construction process prior to deblocking filter process


1048.5.1
Scaling and transformation process


1058.5.2
Inverse scanning process for transform coefficients


1068.5.3
Scaling process for transform coefficients


1078.5.4
Transformation process for scaled transform coefficients


1078.5.4.1
Transformation process for 4 samples


1078.5.4.2
Transformation process for 8 samples


1078.5.4.3
Transformation process for 16 samples


1108.5.4.4
Transformation process for 32 samples


1178.5.5
Array construction process


1178.6
In-loop filter process


1178.6.1
Deblocking filter process


1188.6.1.1
Derivation process of transform unit boundary


1188.6.1.2
Derivation process of prediction unit boundary


1198.6.1.3
Derivation process of boundary filtering strength


1208.6.1.4
Filtering process for coding unit


1258.6.2
Adaptive loop filter process


1258.6.2.1
Derivation process for filter coefficients


1268.6.2.2
Derivation process for filter index array for luma samples


1278.6.2.3
Filtering process for luma samples


1288.6.2.4
Filtering process for chroma samples


1289
Parsing process


1299.1
Parsing process for Exp-Golomb codes


1309.1.1
Mapping process for signed Exp-Golomb codes


1319.2
CAVLC parsing process for transform coefficient levels


1319.3
CABAC parsing process for slice data


1319.3.1
Initialisation process


1319.3.1.1
Initialisation process for context variables


1329.3.1.2
Initialisation process for the arithmetic decoding engine


1329.3.2
Binarization process


1329.3.2.1
Binarization process for pred_type


1339.3.3
Decoding process flow


1339.3.3.1
Derivation process for ctxIdx


1349.3.3.2
Arithmetic decoding process


1409.3.4
Arithmetic encoding process (informative)


1409.3.4.1
Initialisation process for the arithmetic encoding engine (informative)


1419.3.4.2
Encoding process for a binary decision (informative)


1429.3.4.3
Renormalization process in the arithmetic encoding engine (informative)


1449.3.4.4
Bypass encoding process for binary decisions (informative)


1459.3.4.5
Encoding process for a binary decision before termination (informative)


1479.3.4.6
Byte stuffing process (informative)


148 Annex A  Profiles and levels


148A.1
Requirements on video decoder capability


148A.2
Profiles


148A.2.1
ABC profile


148A.3
Levels


150 Annex B  Byte stream format


150B.1
Byte stream NAL unit syntax and semantics


150B.1.1
Byte stream NAL unit syntax


150B.1.2
Byte stream NAL unit semantics


151B.2
Byte stream NAL unit decoding process


151B.3
Decoder byte-alignment recovery (informative)


152 Annex C  Hypothetical reference decoder


153C.1
Operation of coded picture buffer (CPB)


153C.1.1
Timing of bitstream arrival


153C.1.2
Timing of coded picture removal


153C.2
Operation of the decoded picture buffer (DPB)


153C.3
Bitstream conformance


153C.4
Decoder conformance


154 Annex D  Supplemental enhancement information


154D.1
SEI payload syntax


154D.2
SEI payload semantics


155 Annex E  Video usability information


155E.1
VUI syntax


155E.1.1
VUI parameters syntax


155E.2
VUI semantics




List of figures
24Figure 6‑1 – Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a picture [Ed. Re-draw figure]


24Figure 6‑2 – Nominal vertical and horizontal locations of 4:2:2 luma and chroma samples in a picture [Ed. Re-draw figure]


25Figure 6‑3 – Nominal vertical and horizontal locations of 4:4:4 luma and chroma samples in a picture [Ed. Re-draw figure]


26Figure 6‑4 – A picture with 11 by 9 treeblocks that is partitioned into two slices


49Figure 7‑1 – Structure of an access unit not containing any NAL units with nal_unit_type equal to 0, 7, 8,  or in the range of 12 to 18, inclusive, or in the range of 20 to 31, inclusive


75Figure 8‑1 – Intra prediction mode directions (informative)


82Figure 8‑2 – Intra prediction angle definition (informative)


90Figure 8‑3 – Spatial neighbours that can be used as merging candidates (informative) illustrates the position of the spatial neighbours A, B, C and D relative to the current prediction unit.


92Figure 8‑4 – Spatial motion vector neighbours


97Figure 8‑5 – Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded blocks with lower-case letters) for quarter sample luma interpolation


99Figure 8‑6 – Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded blocks with lower-case letters) for eighth sample chroma interpolation


128Figure 8‑7 Mapping between geometric position and luma adaptive loop filter index according to alfTap (informative)


134Figure 9‑1 – Overview of the arithmetic decoding process for a single bin (informative)


136Figure 9‑2 – Flowchart for decoding a decision


138Figure 9‑3 – Flowchart of renormalization


139Figure 9‑4 – Flowchart of bypass decoding process


140Figure 9‑5 – Flowchart of decoding a decision before termination


142Figure 9‑6 – Flowchart for encoding a decision


143Figure 9‑7 – Flowchart of renormalization in the encoder


144Figure 9‑8 – Flowchart of PutBit(B)


145Figure 9‑9 – Flowchart of encoding bypass


146Figure 9‑10 – Flowchart of encoding a decision before termination


146Figure 9‑11 – Flowchart of flushing at termination


152Figure C‑9‑12 – Structure of byte streams and NAL unit streams for HRD conformance checks


153Figure C‑9‑13 – HRD buffer model




List of tables

20Table 5‑1 – Operation precedence from highest (at top of table) to lowest (at bottom of table)


23Table 6‑1 – SubWidthC, and SubHeightC values derived from  chroma_format_idc and separate_colour_plane_flag


44Table 7‑1 – NAL unit type codes, syntax element categories, and NAL unit type classes


52Table 7‑2 – Meaning of primary_pic_type


53Table 7‑3 – Name association to slice_type


56Table 7‑4 – modification_of_pic_nums_idc operations for modification of reference picture lists


57Table 7‑5 – Interpretation of adaptive_ref_pic_marking_mode_flag


59Table 7‑6 – Memory management control operation (memory_management_control_operation) values


60Table 7‑7 – Specification of alf_chroma_idc


62Table 7‑7 ‑ Name association to prediction mode and partitioning type


63Table 7‑8 – Name association to inter prediction mode


74Table 8‑1 – Specification of intraPredModeNum


74Table 8‑2 – Specification of mapIntraPredMode5 and mapIntraPredMode9


76Table 8‑3 – Specification of IntraPredModeC according to the values of intra_chroma_pred_mode and IntraPredMode[ xB ][ yB ]


78Table 8‑4 – Specification of intraPredMode and associated names


79Table 8‑5 – Specification of intraFilterType[ nS ][ IntraPredMode ] for various prediction unit sizes


81Table 8‑6 – Specification of intraPredOrder


82Table 8‑7 – Specification of intraPredAngle


82Table 8‑8 – Specification of invAngle


99Table 8‑9 – Assignment of the luma prediction sample predSampleLXL[ xL, yL ]


101Table 8‑10 – Assignment of the chroma prediction sample predSampleLXC[ xC, yC ] for ( X, Y ) being replaced by ( 1, b ), ( 2, c ), ( 3, d ), ( 4, e ), ( 5, f ), ( 6, g ), and ( 7, h ), respectively


105Table 8‑11 – Specification of scanType[ nS ][ IntraPredMode ] for various transform unit sizes


106Table 8‑12 – Specification of scanTypeC[ nS ][ intra_chroma_ pred_mode ] for various transform unit sizes


124Table 8‑13 – Derivation of threshold variables β and tC from input Q


127Table 8‑14 – Specification of horPos[ i ] according to alfTap for adaptive loop filter process of luma samples


127Table 8‑15 – Specification of verPos[ i ] according to alfTap for adaptive loop filter process of luma samples


129Table 9‑1 – Bit strings with "prefix" and "suffix" bits and assignment to codeNum ranges (informative)


130Table 9‑2 – Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative)


130Table 9‑3 – Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(v)


132Table 9‑4 – Syntax elements and associated types of binarization, maxBinIdxCtx, and ctxIdxOffset


132Table 9‑5 – Binarization for pred_type


137Table 9‑6 – Specification of rangeTabLPS depending on pStateIdx and qCodIRangeIdx


138Table 9‑7 – State transition table


149Table A‑9‑8 – Level limits [Ed. (TW) Kept for convenience]





Foreword

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardising telecommunications on a world-wide basis. The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups that, in turn, produce Recommendations on these topics. The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. In some areas of information technology that fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialised system for world-wide standardisation. National Bodies that are members of ISO and IEC participate in the development of International Standards through technical committees established by the respective organisation to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organisations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75% of the national bodies casting a vote.

This Recommendation | International Standard was prepared jointly by ITU-T SG 16 Q.6, also known as VCEG (Video Coding Experts Group), and by ISO/IEC JTC 1/SC 29/WG 11, also known as MPEG (Moving Picture Experts Group). VCEG was formed in 1997 to maintain prior ITU-T video coding standards and develop new video coding standard(s) appropriate for a wide range of conversational and non-conversational services. MPEG was formed in 1988 to establish standards for coding of moving pictures and associated audio for various applications such as digital storage media, distribution, and communication.

In this Recommendation | International Standard Annexes  A through E contain normative requirements and are an integral part of this Recommendation | International Standard.
Rec. / IS
High-Efficiency Video Coding
0 Introduction

This clause does not form an integral part of this Recommendation | International Standard.

0.1 Prologue

This subclause does not form an integral part of this Recommendation | International Standard.

As the costs for both processing power and memory have reduced, network support for coded video data has diversified, and advances in video coding technology have progressed, the need has arisen for an industry standard for compressed video representation with substantially increased coding efficiency and enhanced robustness to network environments. Toward these ends the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG) formed a Joint Collaborative Team on Video Coding (JCT-VC) in 2010 for development of a new Recommendation | International Standard.
0.2 Purpose

This subclause does not form an integral part of this Recommendation | International Standard.

[Ed. TW: revise the following] This Recommendation | International Standard was developed in response to the growing need for higher compression of moving pictures for various applications such as videoconferencing, digital storage media, television broadcasting, internet streaming, and communication. It is also designed to enable the use of the coded video representation in a flexible manner for a wide variety of network environments. The use of this Recommendation | International Standard allows motion video to be manipulated as a form of computer data and to be stored on various storage media, transmitted and received over existing and future networks and distributed on existing and future broadcasting channels.

0.3 Applications

This subclause does not form an integral part of this Recommendation | International Standard.

[Ed. TW: revise the following] This Recommendation | International Standard is designed to cover a broad range of applications for video content including but not limited to the following:

CATV
Cable TV on optical networks, copper, etc.

DBS
Direct broadcast satellite video services

DSL 
Digital subscriber line video services

DTTB
Digital terrestrial television broadcasting

ISM
Interactive storage media (optical disks, etc.)

MMM
Multimedia mailing

MSPN
Multimedia services over packet networks

RTC
Real-time conversational services (videoconferencing, videophone, etc.)

RVS
Remote video surveillance

SSM
Serial storage media (digital VTR, etc.)

0.4 Publication and versions of this Specification

This subclause does not form an integral part of this Recommendation | International Standard.

This Specification has been jointly developed by ITU‑T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group. It is published as technically-aligned twin text in both organizations ITU-T and ISO/IEC.

0.5 Profiles and levels

This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard is designed to be generic in the sense that it serves a wide range of applications, bit rates, resolutions, qualities, and services. Applications should cover, among other things, digital storage media, television broadcasting and real-time communications. In the course of creating this Specification, various requirements from typical applications have been considered, necessary algorithmic elements have been developed, and these have been integrated into a single syntax. Hence, this Specification will facilitate video data interchange among different applications.

Considering the practicality of implementing the full syntax of this Specification, however, a limited number of subsets of the syntax are also stipulated by means of "profiles" and "levels". These and other related terms are formally defined in clause 3.

A "profile" is a subset of the entire bitstream syntax that is specified by this Recommendation | International Standard. Within the bounds imposed by the syntax of a given profile it is still possible to require a very large variation in the performance of encoders and decoders depending upon the values taken by syntax elements in the bitstream such as the specified size of the decoded pictures. In many applications, it is currently neither practical nor economic to implement a decoder capable of dealing with all hypothetical uses of the syntax within a particular profile.

In order to deal with this problem, "levels" are specified within each profile. A level is a specified set of constraints imposed on values of the syntax elements in the bitstream. These constraints may be simple limits on values. Alternatively they may take the form of constraints on arithmetic combinations of values (e.g., picture width multiplied by picture height multiplied by number of pictures decoded per second).

Coded video content conforming to this Recommendation | International Standard uses a common syntax. In order to achieve a subset of the complete syntax, flags, parameters, and other syntax elements are included in the bitstream that signal the presence or absence of syntactic elements that occur later in the bitstream.

0.6 Overview of the design characteristics

This subclause does not form an integral part of this Recommendation | International Standard.

[Ed. TW: revise the following] The coded representation specified in the syntax is designed to enable a high compression capability for a desired image or video quality. The algorithm is typically not lossless, as the exact source sample values are typically not preserved through the encoding and decoding processes. A number of techniques may be used to achieve highly efficient compression. Encoding algorithms (not specified in this Recommendation | International Standard) may select between inter and intra coding for block-shaped regions of each picture. Inter coding uses motion vectors for block-based inter prediction to exploit temporal statistical dependencies between different pictures. Intra coding uses various spatial prediction modes to exploit spatial statistical dependencies in the source signal for a single picture. Motion vectors and intra prediction modes may be specified for a variety of block sizes in the picture. The prediction residual is then further compressed using a transform to remove spatial correlation inside the transform block before it is quantised, producing an irreversible process that typically discards less important visual information while forming a close approximation to the source samples. Finally, the motion vectors or intra prediction modes are combined with the quantised transform coefficient information and encoded using either variable length coding or arithmetic coding.

0.7 How to read this Specification

This subclause does not form an integral part of this Recommendation | International Standard.

It is suggested that the reader starts with clause 1 (Scope) and moves on to clause 3 (Definitions). Clause 6 should be read for the geometrical relationship of the source, input, and output of the decoder. Clause 7 (Syntax and semantics) specifies the order to parse syntax elements from the bitstream. See subclauses 7.1-7.3 for syntactical order and see subclause 7.4 for semantics; i.e., the scope, restrictions, and conditions that are imposed on the syntax elements. The actual parsing for most syntax elements is specified in clause 9 (Parsing process). Finally, clause 8 specifies how the syntax elements are mapped into decoded samples. Throughout reading this Specification, the reader should refer to clauses 2 (Normative references), 4 (Abbreviations), and 5 (Conventions) as needed. Annexes A through E also form an integral part of this Recommendation | International Standard.

Annex A specifies profiles each being tailored to certain application domains, and defines the so-called levels of the profiles. Annex B specifies syntax and semantics of a byte stream format for delivery of coded video as an ordered stream of bytes. Annex C specifies the hypothetical reference decoder and its use to check bitstream and decoder conformance. Annex D specifies syntax and semantics for supplemental enhancement information message payloads. Annex E specifies syntax and semantics of the video usability information parameters of the sequence parameter set.

Throughout this Specification, statements appearing with the preamble "NOTE -" are informative and are not an integral part of this Recommendation | International Standard.

1 Scope

This document specifies High-Efficiency Video Coding.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text, constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid ITU-T Recommendations. [Ed. TW: revise the following]
–
ITU-T Recommendation T.35 (2000), Procedure for the allocation of ITU-T defined codes for non‑standard facilities.
–
ISO/IEC 11578:1996, Annex A, Universal Unique Identifier.
–
ISO/CIE 10527:2007, Colorimetric Observers.

3 Definitions
[Ed. (TW) adpated definitions so far. Needs more work including turning them into 1 sentence each.]

For the purposes of this Recommendation | International Standard, the following definitions apply:

3.1 access unit: A set of NAL units that are consecutive in decoding order and contain exactly one primary coded picture. In addition to the primary coded picture one auxiliary coded picture, or other NAL units not containing slices of a primary coded picture. The decoding of an access unit always results in a decoded picture.

3.2 AC transform coefficient: Any transform coefficient for which the frequency index in one or both dimensions is non-zero.

3.3 adaptive binary arithmetic decoding process: An entropy decoding process that derives the values of bins from a bitstream produced by an adaptive binary arithmetic encoding process.

3.4 adaptive binary arithmetic encoding process: An entropy encoding process, not normatively specified in this Recommendation | International Standard, that codes a sequence of bins and produces a bitstream that can be decoded using the adaptive binary arithmetic decoding process.

3.5 B slice: A slice that may be decoded using intra prediction or inter prediction using at most two motion vectors and reference indices to predict the sample values of each block.

3.6 bin: One bit of a bin string.

3.7 binarization: A set of bin strings for all possible values of a syntax element.

3.8 binarization process: A unique mapping process of all possible values of a syntax element onto a set of bin strings.

3.9 bin string: A string of bins. A bin string is an intermediate binary representation of values of syntax elements from the binarization of the syntax element.

3.10 bi-predictive slice: See B slice.
3.11 bitstream: A sequence of bits that forms the representation of coded pictures and associated data forming one or more coded video sequences. Bitstream is a collective term used to refer either to a NAL unit stream or a byte stream.

3.12 block: An MxN (M-column by N-row) array of samples, or an MxN array of transform coefficients.

3.13 broken link: A location in a bitstream at which it is indicated that some subsequent pictures in decoding order may contain serious visual artefacts due to unspecified operations performed in the generation of the bitstream.
3.14 byte: A sequence of 8 bits, written and read with the most significant bit on the left and the least significant bit on the right. When represented in a sequence of data bits, the most significant bit of a byte is first.

3.15 byte-aligned: A position in a bitstream is byte-aligned when the position is an integer multiple of 8 bits from the position of the first bit in the bitstream. A bit or byte or syntax element is said to be byte-aligned when the position at which it appears in a bitstream is byte-aligned.
3.16 byte stream: An encapsulation of a NAL unit stream containing start code prefixes and NAL units as specified in Annex B.

3.17 can: A term used to refer to behaviour that is allowed, but not necessarily required.
3.18 chroma: An adjective specifying that a sample array or single sample is representing one of the two colour difference signals related to the primary colours. The symbols used for a chroma array or sample are Cb and Cr.

NOTE – The term chroma is used rather than the term chrominance in order to avoid the implication of the use of linear light transfer characteristics that is often associated with the term chrominance.

3.19 clean decoding refresh (CDR) access unit: An access unit in which the primary coded picture is a CDR picture.
3.20 clean decoding refresh (DDR) picture: A coded picture containing only slices with I slice types that causes the decoding process to mark all reference pictures except the current CDR picture as "unused for reference" immediately before the decoding of the first picture following the current CDR with an output order greater than the current CDR picture. All coded pictures that follow a CDR picture in output order can be decoded without inter prediction from any picture that precedes the CDR picture in output order.  All coded pictures with output order smaller than the current CDR are not affected by the deferred marking process.
3.21 coded picture: A coded representation of a picture. 

3.22 coded picture buffer (CPB): A first-in first-out buffer containing access units in decoding order specified in the hypothetical reference decoder in Annex 0.

3.23 coded representation: A data element as represented in its coded form.

3.24 coded slice NAL unit: A NAL unit containing a slice.

3.25 coded video sequence: A sequence of access units that consists, in decoding order, of an IDR access unit followed by zero or more non-IDR access units including all subsequent access units up to but not including any subsequent IDR access unit.

3.26 component: An array or single sample from one of the three arrays (luma and two chroma) that make up a picture in 4:2:0, 4:2:2, or 4:4:4 colour format or the array or a single sample of the array that make up a picture in monochrome format.

3.27 context variable: A variable specified for the adaptive binary arithmetic decoding process of a bin by an equation containing recently decoded bins.

3.28 DC transform coefficient: A transform coefficient for which the frequency index is zero in all dimensions.

3.29 decoded picture: A decoded picture is derived by decoding a coded picture. 

3.30 decoded picture buffer (DPB): A buffer holding decoded pictures for reference, output reordering, or output delay specified for the hypothetical reference decoder in Annex 0.

3.31 decoder: An embodiment of a decoding process.

3.32 decoder under test (DUT): A decoder that is tested for conformance to this Recommendation | International Standard by operating the hypothetical stream scheduler to deliver a conforming bitstream to the decoder and to the hypothetical reference decoder and comparing the values and timing of the output of the two decoders.

3.33 decoding order: The order in which syntax elements are processed by the decoding process.

3.34 decoding process: The process specified in this Recommendation | International Standard that reads a bitstream and derives decoded pictures from it.
3.35 display process: A process not specified in this Recommendation | International Standard having, as its input, the cropped decoded pictures that are the output of the decoding process.
3.36 emulation prevention byte: A byte equal to 0x03 that may be present within a NAL unit. The presence of emulation prevention bytes ensures that no sequence of consecutive byte-aligned bytes in the NAL unit contains a start code prefix.

3.37 encoder: An embodiment of an encoding process.

3.38 encoding process: A process, not specified in this Recommendation | International Standard, that produces a bitstream conforming to this Recommendation | International Standard.

3.39 flag: A variable that can take one of the two possible values 0 and 1.

3.40 frequency index: A one-dimensional or two-dimensional index associated with a transform coefficient prior to an inverse transform part of the decoding process.
3.41 hypothetical reference decoder (HRD): A hypothetical decoder model that specifies constraints on the variability of conforming NAL unit streams or conforming byte streams that an encoding process may produce.

3.42 hypothetical stream scheduler (HSS): A hypothetical delivery mechanism for the timing and data flow of the input of a bitstream into the hypothetical reference decoder. The HSS is used for checking the conformance of a bitstream or a decoder.

3.43 I slice: A slice that is decoded using intra prediction only.

3.44 informative: A term used to refer to content provided in this Recommendation | International Standard that is not an integral part of this Recommendation | International Standard. Informative content does not establish any mandatory requirements for conformance to this Recommendation | International Standard.

3.45 instantaneous decoding refresh (IDR) access unit: An access unit in which the primary coded picture is an IDR picture.

3.46 instantaneous decoding refresh (IDR) picture: A coded picture for which the variable IdrPicFlag is equal to 1. An IDR picture causes the decoding process to mark all reference pictures as "unused for reference" immediately after the decoding of the IDR picture. All coded pictures that follow an IDR picture in decoding order can be decoded without inter prediction from any picture that precedes the IDR picture in decoding order. The first picture of each coded video sequence in decoding order is an IDR picture.

3.47 inter coding: Coding of a block, macroblock, slice, or picture that uses inter prediction.

3.48 inter prediction: A prediction derived from decoded samples of reference pictures other than the current decoded picture.
3.49 intra coding: Coding of a block, macroblock, slice, or picture that uses intra prediction.

3.50 intra prediction: A prediction derived from the decoded samples of the same decoded slice.

3.51 intra slice: See I slice.
3.52 inverse transform: A part of the decoding process by which a set of transform coefficients are converted into spatial-domain values, or by which a set of transform coefficients are converted into DC transform coefficients.

3.53 layer: One of a set of syntactical structures in a non-branching hierarchical relationship. Higher layers contain lower layers. The coding layers are the coded video sequence, picture, slice, and treeblock layers.

3.54 leaf: A terminating node of a tree that is a root node of a tree of depth 0.
3.55 level: A defined set of constraints on the values that may be taken by the syntax elements and variables of this Recommendation | International Standard. The same set of levels is defined for all profiles, with most aspects of the definition of each level being in common across different profiles. Individual implementations may, within specified constraints, support a different level for each supported profile. In a different context, level is the value of a transform coefficient prior to scaling.

3.56 list 0 (list 1) motion vector: A motion vector associated with a reference index pointing into reference picture list 0 (list 1).

3.57 list 0 (list 1, list combination) prediction: Inter prediction of the content of a slice using a reference index pointing into reference picture list 0 (list 1, combination).

3.58 luma: An adjective specifying that a sample array or single sample is representing the monochrome signal related to the primary colours. The symbol or subscript used for luma is Y or L.

NOTE – The term luma is used rather than the term luminance in order to avoid the implication of the use of linear light transfer characteristics that is often associated with the term luminance. The symbol L is sometimes used instead of the symbol Y to avoid confusion with the symbol y as used for vertical location.

3.59 may: A term used to refer to behaviour that is allowed, but not necessarily required. In some places where the optional nature of the described behaviour is intended to be emphasized, the phrase "may or may not" is used to provide emphasis.

3.60 memory management control operation: Seven operations that control reference picture marking.

3.61 motion vector: A two-dimensional vector used for inter prediction that provides an offset from the coordinates in the decoded picture to the coordinates in a reference picture.

3.62 must: A term used in expressing an observation about a requirement or an implication of a requirement that is specified elsewhere in this Recommendation | International Standard. This term is used exclusively in an informative context.

3.63 NAL unit: A syntax structure containing an indication of the type of data to follow and bytes containing that data in the form of an RBSP interspersed as necessary with emulation prevention bytes.

3.64 NAL unit stream: A sequence of NAL units.

3.65 non-reference picture: A picture coded with nal_ref_idc equal to 0. A non-reference picture is not used for inter prediction of any other pictures.

3.66 note: A term used to prefix informative remarks. This term is used exclusively in an informative context.

3.67 output order: The order in which the decoded pictures are output from the decoded picture buffer.

3.68 P slice: A slice that may be decoded using intra prediction or inter prediction using at most one motion vector and reference index to predict the sample values of each block.

3.69 parameter: A syntax element of a sequence parameter set or a picture parameter set. Parameter is also used as part of the defined term quantisation parameter.

3.70 partitioning: The division of a set into subsets such that each element of the set is in exactly one of the subsets.

3.71 picture: [Ed. (TW) define]
3.72 picture parameter set: A syntax structure containing syntax elements that apply to zero or more entire coded pictures as determined by the pic_parameter_set_id syntax element found in each slice header.
3.73 picture order count: [Ed. (TW) re-check] A variable that is associated with each coded picture and has a value that is non-decreasing with increasing picture position in output order relative to the first output picture of the previous IDR picture in decoding order or relative to the first output picture of the previous picture, in decoding order, that contains a memory management control operation that marks all reference pictures as "unused for reference". 
3.74 prediction: An embodiment of the prediction process.

3.75 prediction process: The use of a predictor to provide an estimate of the sample value or data element currently being decoded.

3.76 predictive slice: See P slice.
3.77 predictor: A combination of specified values or previously decoded sample values or data elements used in the decoding process of subsequent sample values or data elements.

3.78 primary coded picture: The coded representation of a picture to be used by the decoding process for a bitstream conforming to this Recommendation | International Standard. The primary coded picture contains all treeblocks of the picture. The only pictures that have a normative effect on the decoding process are primary coded pictures.
3.79 profile: A specified subset of the syntax of this Recommendation | International Standard.

3.80 quadtree: A tree in which a parent node can be split into four child nodes. A child node may become parent node for another plit into four child nodes.
3.81 quantisation parameter: A variable used by the decoding process for scaling of transform coefficient levels.
3.82 random access: The act of starting the decoding process for a bitstream at a point other than the beginning of the stream.

3.83 raster scan: A mapping of a rectangular two-dimensional pattern to a one-dimensional pattern such that the first entries in the one-dimensional pattern are from the first top row of the two-dimensional pattern scanned from left to right, followed similarly by the second, third, etc., rows of the pattern (going down) each scanned from left to right.

3.84 raw byte sequence payload (RBSP): A syntax structure containing an integer number of bytes that is encapsulated in a NAL unit. An RBSP is either empty or has the form of a string of data bits containing syntax elements followed by an RBSP stop bit and followed by zero or more subsequent bits equal to 0.

3.85 raw byte sequence payload (RBSP) stop bit: A bit equal to 1 present within a raw byte sequence payload (RBSP) after a string of data bits. The location of the end of the string of data bits within an RBSP can be identified by searching from the end of the RBSP for the RBSP stop bit, which is the last non-zero bit in the RBSP.
3.86 recovery point: A point in the bitstream at which the recovery of an exact or an approximate representation of the decoded pictures represented by the bitstream is achieved after a random access or broken link.

3.87 reference index: An index into a reference picture list.

3.88 reference picture: A picture with nal_ref_idc not equal to 0. A reference picture contains samples that may be used for inter prediction in the decoding process of subsequent pictures in decoding order.

3.89 reference picture list: A list of reference pictures that is used for uni-prediction of a P or B slice. For the decoding process of a P slice, there is one reference picture list. For the decoding process of a B slice, there are two reference picture lists (list 0 and list 1) and a reference picture lists combination. [Ed. (TW) the latter may not be true anymore]
3.90 reference picture list 0: A reference picture list used for inter prediction of a P or B slice. All inter prediction used for P slices uses reference picture list 0. Reference picture list 0 is one of two reference picture lists used for bi-prediction for a B slice, with the other being reference picture list. [Ed. (TW) the latter may not be true anymore]
3.91 reference picture list 1: A reference picture list used for bi-prediction of a B slice. Reference picture list 1 is one of two reference picture lists used for bi-prediction for a B slice, with the other being reference picture list 0.
3.92 reference picture lists combination: A reference picture list used for uni-prediction of a B slice. Reference picture lists combination is derived from the entries of the reference picture lists 0 and reference picture list 1.
3.93 reference picture marking: Specifies, in the bitstream, how the decoded pictures are marked for inter prediction.

3.94 reserved: The term reserved, when used in the clauses specifying some values of a particular syntax element, are for future use by ITU-T | ISO/IEC. These values shall not be used in bitstreams conforming to this Recommendation | International Standard, but may be used in future extensions of this Recommendation | International Standard by ITU‑T | ISO/IEC.

3.95 residual: The decoded difference between a prediction of a sample or data element and its decoded value.

3.96 sample aspect ratio: Specifies, for assisting the display process, which is not specified in this Recommendation | International Standard, the ratio between the intended horizontal distance between the columns and the intended vertical distance between the rows of the luma sample array in a picture. Sample aspect ratio is expressed as h:v, where h is horizontal width and v is vertical height (in arbitrary units of spatial distance).

3.97 scaling: The process of multiplying transform coefficient levels by a factor, resulting in transform coefficients.

3.98 sequence parameter set: A syntax structure containing syntax elements that apply to zero or more entire coded video sequences as determined by the content of a seq_parameter_set_id syntax element found in the picture parameter set referred to by the pic_parameter_set_id syntax element found in each slice header.
3.99 shall: A term used to express mandatory requirements for conformance to this Recommendation | International Standard. When used to express a mandatory constraint on the values of syntax elements or on the results obtained by operation of the specified decoding process, it is the responsibility of the encoder to ensure that the constraint is fulfilled. When used in reference to operations performed by the decoding process, any decoding process that produces identical results to the decoding process described herein conforms to the decoding process requirements of this Recommendation | International Standard.
3.100 should: A term used to refer to behaviour of an implementation that is encouraged to be followed under anticipated ordinary circumstances, but is not a mandatory requirement for conformance to this Recommendation | International Standard.

3.101 slice: An integer number of treeblocks ordered consecutively in the raster scan. For the primary coded picture, the division of each picture into slices is a partitioning. The treeblock addresses are derived from the first treeblock address in a slice (as represented in the slice header).
3.102 slice header: A part of a coded slice containing the data elements pertaining to the first or all macroblocks represented in the slice.

3.103 source: Term used to describe the video material or some of its attributes before encoding.

3.104 start code prefix: A unique sequence of three bytes equal to 0x000001 embedded in the byte stream as a prefix to each NAL unit. The location of a start code prefix can be used by a decoder to identify the beginning of a new NAL unit and the end of a previous NAL unit. Emulation of start code prefixes is prevented within NAL units by the inclusion of emulation prevention bytes.

3.105 string of data bits (SODB): A sequence of some number of bits representing syntax elements present within a raw byte sequence payload prior to the raw byte sequence payload stop bit. Within an SODB, the left-most bit is considered to be the first and most significant bit, and the right-most bit is considered to be the last and least significant bit.

3.106 syntax element: An element of data represented in the bitstream.

3.107 syntax structure: Zero or more syntax elements present together in the bitstream in a specified order.
3.108 transform coefficient: A scalar quantity, considered to be in a frequency domain, that is associated with a particular one-dimensional or two-dimensional frequency index in an inverse transform part of the decoding process.

3.109 transform coefficient level: An integer quantity representing the value associated with a particular two‑dimensional frequency index in the decoding process prior to scaling for computation of a transform coefficient value.

3.110 tree: A tree is a finite ste of nodes with a unique root node. A terminating node is called a leaf. 
3.111 treeblock: A NxN block of luma samples and two corresponding blocks of chroma samples of a picture that has three sample arrays, or a NxN block of samples of a monochrome picture or a picture that is coded using three separate colour planes. The division of a slice into treeblocks is a partitioning.

3.112 treeblock address: A treeblock address is the index of a treeblock in a treeblock raster scan of the picture starting with zero for the top-left treeblock in a picture. 

3.113 treeblock location: The two-dimensional coordinates of a treeblock in a picture denoted by ( x, y ). For the top left treeblock of the picture ( x, y ) is equal to ( 0, 0 ). x is incremented by 1 for each treeblock column from left to right. The value of y is incremented by 1 for each treeblock row from top to bottom. 

3.114 treeblock partition: A block of luma samples and two corresponding blocks of chroma samples resulting from a partitioning of a treeblock for inter prediction for a picture that has three sample arrays or a block of luma samples resulting from a partitioning of a treeblock for inter prediction for a monochrome picture or a picture that is coded using three separate colour planes.

3.115 universal unique identifier (UUID): An identifier that is unique with respect to the space of all universal unique identifiers.

3.116 unspecified: The term unspecified, when used in the clauses specifying some values of a particular syntax element, indicates that the values have no specified meaning in this Recommendation | International Standard and will not have a specified meaning in the future as an integral part of this Recommendation | International Standard.

3.117 variable length coding (VLC): A reversible procedure for entropy coding that assigns shorter bit strings to symbols expected to be more frequent and longer bit strings to symbols expected to be less frequent.

3.118 VCL NAL unit: A collective term for coded slice NAL units.
3.119 zig-zag scan: A specific sequential ordering of transform coefficient levels from (approximately) the lowest spatial frequency to the highest. 
4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:
CABAC
Context-based Adaptive Binary Arithmetic Coding

CAVLC
Context-based Adaptive Variable Length Coding
CBR
Constant Bit Rate
CDR
Clean Decoding Refresh
CPB
Coded Picture Buffer
DPB
Decoded Picture Buffer

DUT
Decoder under test

FIFO
First-In, First-Out

HRD
Hypothetical Reference Decoder

HSS
Hypothetical Stream Scheduler

IDR
Instantaneous Decoding Refresh

LSB
Least Significant Bit

MSB
Most Significant Bit

NAL
Network Abstraction Layer

RBSP
Raw Byte Sequence Payload

SEI
Supplemental Enhancement Information

SODB
String Of Data Bits

TB
Treeblock

UUID
Universal Unique Identifier

VBR
Variable Bit Rate

VCL
Video Coding Layer

VLC
Variable Length Coding
VUI
Video Usability Information
5 Conventions

NOTE – The mathematical operators used in this Specification are similar to those used in the C programming language. However, integer division and arithmetic shift operations are specifically defined. Numbering and counting conventions generally begin from 0.

5.1 Arithmetic operators

The following arithmetic operators are defined as follows:


Addition

−
Subtraction (as a two-argument operator) or negation (as a unary prefix operator)

*
Multiplication, including matrix multiplication

x y
Exponentiation. Specifies x to the power of y. In other contexts, such notation is used for superscripting not intended for interpretation as exponentiation.

/
Integer division with truncation of the result toward zero. For example, 7/4 and −7/−4 are truncated to 1 and −7/4 and 7/−4 are truncated to −1.


Used to denote division in mathematical equations where no truncation or rounding is intended.


[image: image1.wmf]y

x


Used to denote division in mathematical equations where no truncation or rounding is intended.


[image: image2.wmf]å

=

y

x

i

i

f

)

(


The summation of f( i ) with i taking all integer values from x up to and including y.

x % y
Modulus. Remainder of x divided by y, defined only for integers x and y with x >= 0 and y > 0.

5.2 Logical operators

The following logical operators are defined as follows:

x  &&  y
Boolean logical "and" of x and y.

x  | |  y
Boolean logical "or" of x and y.

!
Boolean logical "not".

x ? y : z
If x is TRUE or not equal to 0, evaluates to the value of y; otherwise, evaluates to the value of z.

5.3 Relational operators

The following relational operators are defined as follows:


Greater than.


Greater than or equal to.


Less than.


Less than or equal to.

 
Equal to.

!
Not equal to.

When a relational operator is applied to a syntax element or variable that has been assigned the value "na" (not applicable), the value "na" is treated as a distinct value for the syntax element or variable. The value "na" is considered not to be equal to any other value.

5.4 Bit-wise operators

The following bit-wise operators are defined as follows:

&
Bit-wise "and". When operating on integer arguments, operates on a two's complement representation of the integer value. When operating on a binary argument that contains fewer bits than another argument, the shorter argument is extended by adding more significant bits equal to 0.

|
Bit-wise "or". When operating on integer arguments, operates on a two's complement representation of the integer value. When operating on a binary argument that contains fewer bits than another argument, the shorter argument is extended by adding more significant bits equal to 0.

^
Bit-wise "exclusive or". When operating on integer arguments, operates on a two's complement representation of the integer value. When operating on a binary argument that contains fewer bits than another argument, the shorter argument is extended by adding more significant bits equal to 0.

x >> y
Arithmetic right shift of a two's complement integer representation of x by y binary digits. This function is defined only for positive integer values of y. Bits shifted into the MSBs as a result of the right shift have a value equal to the MSB of x prior to the shift operation.

x << y
Arithmetic left shift of a two's complement integer representation of x by y binary digits. This function is defined only for positive integer values of y. Bits shifted into the LSBs as a result of the left shift have a value equal to 0.

5.5 Assignment operators

The following arithmetic operators are defined as follows:


Assignment operator.

 
Increment, i.e., x  is equivalent to x  x  1; when used in an array index, evaluates to the value of the variable prior to the increment operation.

− −
Decrement, i.e., x− − is equivalent to x  x − 1; when used in an array index, evaluates to the value of the variable prior to the decrement operation.

+=
Increment by amount specified, i.e., x += 3 is equivalent to x = x + 3, and x += (−3) is equivalent to x = x + (−3).

−=
Decrement by amount specified, i.e., x −= 3 is equivalent to x = x − 3, and x −= (−3) is equivalent to x = x − (−3).

5.6 Range notation

The following notation is used to specify a range of values:

x = y..z
x takes on integer values starting from y to z, inclusive, with x, y, and z being integer numbers.

5.7 Mathematical functions

The following mathematical functions are defined as follows:

Abs( x )  
[image: image3.wmf]î

í

ì

<

-

>=

0

x

;

x

0

x

;

x



(5‑1)

Ceil( x ) 
the smallest integer greater than or equal to x.
(5‑2)

Clip1Y( x ) = Clip3( 0, ( 1 << BitDepthY ) − 1, x )

(5‑3)

Clip1C( x ) = Clip3( 0, ( 1 << BitDepthC ) − 1, x )

(5‑4)

Clip3( x, y, z ) = 
[image: image4.wmf]ï

î

ï

í

ì

>

<

otherwise

;

;

;

z

y

z

y

x

z

x



(5‑5)

Floor( x )
the greatest integer less than or equal to x.

(5‑6)

InverseRasterScan( a, b, c, d, e ) = 
[image: image5.wmf]î

í

ì

=

=

=

=

1

;

*

)

)

/

(

/

(

0

;

*

)

)

/

(

%

(

e

c

b

d

a

e

b

b

d

a


(5‑7)

Log2( x ) returns the base-2 logarithm of x.

(5‑8)

Log10( x ) returns the base-10 logarithm of x.

(5‑9)

Median( x, y, z ) = x + y + z − Min( x, Min( y, z ) ) − Max( x, Max( y, z ) )
(5‑10)

Min( x, y ) = 
[image: image6.wmf]î

í

ì

>

<=

y

x

;

y

y

x

;

x



(5‑11)

Max( x, y ) = 
[image: image7.wmf]î

í

ì

<

>=

y

x

;

y

y

x

;

x



(5‑12)

Round( x ) = Sign( x ) * Floor( Abs( x ) + 0.5 )

(5‑13)

Sign( x )  
[image: image8.wmf]î

í

ì

<

>=

y

x

;

y

y

x

;

x



(5‑14)

Sqrt( x ) = 
[image: image9.wmf]x



(5‑15)

5.8 Order of operation precedence

When order of precedence in an expression is not indicated explicitly by use of parentheses, the following rules apply:

–
operations of a higher precedence are evaluated before any operation of a lower precedence,

–
operations of the same precedence are evaluated sequentially from left to right.

Table 5‑1 specifies the precedence of operations from highest to lowest; a higher position in the table indicates a higher precedence.

NOTE – For those operators that are also used in the C programming language, the order of precedence used in this Specification is the same as used in the C programming language.

Table 5‑1 – Operation precedence from highest (at top of table) to lowest (at bottom of table)

	operations (with operands x, y, and z)

	"x++", "x− −"

	"!x", "−x" (as a unary prefix operator)

	xy

	"x * y", "x / y", "x  y""
[image: image10.wmf]y

x

", "x % y"

	"x + y", "x − y" (as a two-argument operator), "
[image: image11.wmf]å

=

y

x

i

i

f

)

(

"

	"x << y", "x >> y"

	"x < y", "x <= y", "x > y", "x >= y"

	"x = = y", "x != y"

	"x & y"

	"x | y"

	"x && y"

	"x | | y"

	"x ? y : z"

	"x = y", "x += y", "x −= y"


5.9 Variables, syntax elements, and tables

Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its name (all lower case letters with underscore characters), its one or two syntax categories, and one or two descriptors for its method of coded representation. The decoding process behaves according to the value of the syntax element and to the values of previously decoded syntax elements. When a value of a syntax element is used in the syntax tables or the text, it appears in regular (i.e., not bold) type. 

In some cases the syntax tables may use the values of other variables derived from syntax elements values. Such variables appear in the syntax tables, or text, named by a mixture of lower case and upper case letter and without any underscore characters. Variables starting with an upper case letter are derived for the decoding of the current syntax structure and all depending syntax structures. Variables starting with an upper case letter may be used in the decoding process for later syntax structures without mentioning the originating syntax structure of the variable. Variables starting with a lower case letter are only used within the subclause in which they are derived. 

In some cases, "mnemonic" names for syntax element values or variable values are used interchangeably with their numerical values. Sometimes "mnemonic" names are used without any associated numerical values. The association of values and names is specified in the text. The names are constructed from one or more groups of letters separated by an underscore character. Each group starts with an upper case letter and may contain more upper case letters.

NOTE – The syntax is described in a manner that closely follows the C-language syntactic constructs. 

Functions that specify properties of the current position in the bitstream are referred to as syntax functions. These functions are specified in subclause 0 and assume the existence of a bitstream pointer with an indication of the position of the next bit to be read by the decoding process from the bitstream. Syntax functions are described by their names, which are constructed as syntax element names and end with left and right round parentheses including zero or more variable names (for definition) or values (for usage), separated by commas (if more than one variable).

Functions that are not syntax functions (including mathematical functions specified in subclause 5.7) are described by their names, which start with an upper case letter, contain a mixture of lower and upper case letters without any underscore character, and end with left and right parentheses including zero or more variable names (for definition) or values (for usage) separated by commas (if more than one variable).

A one-dimensional array is referred to as a list. A two-dimensional array is referred to as a matrix. Arrays can either be syntax elements or variables. Subscripts or square parentheses are used for the indexing of arrays. In reference to a visual depiction of a matrix, the first subscript is used as a row (vertical) index and the second subscript is used as a column (horizontal) index. The indexing order is reversed when using square parentheses rather than subscripts for indexing. Thus, an element of a matrix s at horizontal position x and vertical position y may be denoted either as s[ x, y ] or as syx.

Binary notation is indicated by enclosing the string of bit values by single quote marks. For example, '01000001' represents an eight-bit string having only its second and its last bits (counted from the most to the least significant bit) equal to 1.

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead of binary notation when the number of bits is an integer multiple of 4. For example, 0x41 represents an eight-bit string having only its second and its last bits (counted from the most to the least significant bit) equal to 1.

Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values.

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by any value different from zero.

5.10 Text description of logical operations

In the text, a statement of logical operations as would be described in pseudo-code as

if( condition 0 )
  statement 0
else if ( condition 1 )
  statement 1
…
else /* informative remark on remaining condition */
  statement n

may be described in the following manner:

... as follows / ... the following applies.

–
If condition 0, statement 0

–
Otherwise, if condition 1, statement 1

–
…

–
Otherwise (informative remark on remaining condition), statement n

Each "If ... Otherwise, if ... Otherwise, ..." statement in the text is introduced with "... as follows" or "... the following applies" immediately followed by "If ... ". The last condition of the "If ... Otherwise, if ... Otherwise, ..." is always an "Otherwise, ...". Interleaved "If ... Otherwise, if ... Otherwise, ..." statements can be identified by matching "... as follows" or "... the following applies" with the ending "Otherwise, ...".

In the text, a statement of logical operations as would be described in pseudo-code as

if( condition 0a  &&  condition 0b )
  statement 0
else if ( condition 1a  | |  condition 1b )
  statement 1
…
else
  statement n

may be described in the following manner:

... as follows / ... the following applies.

–
If all of the following conditions are true, statement 0

–
condition 0a

–
condition 0b

–
Otherwise, if any of the following conditions are true, statement 1

–
condition 1a

–
condition 1b

–
…

–
Otherwise, statement n

In the text, a statement of logical operations as would be described in pseudo-code as:
if( condition 0 )
  statement 0
if ( condition 1 )
  statement 1

may be described in the following manner:

When condition 0, statement 0

When condition 1, statement 1

5.11 Processes

Processes are used to describe the decoding of syntax elements. A process has a separate specification and invoking. All syntax elements and upper case variables that pertain to the current syntax structure and depending syntax structures are available in the process specification and invoking. A process specification may also have a lower case variable explicitly specified as the input. Each process specification has explicitly specified an output. The output is a variable that can either be an upper case variable or a lower case variable.

When invoking a process, the assignment of variables is specified as follows.

–
If the variables at the invoking and the process specification do not have the same name, the variables are explicitly assigned to lower case input or output variables of the process specification.

–
Otherwise (the variables at the invoking and the process specification have the same name), assignment is implied.

In the specification of a process, a specific macroblock may be referred to by the variable name having a value equal to the address of the specific macroblock.

6 Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships

6.1 Bitstream formats

This subclause specifies the relationship between the NAL unit stream and byte stream, either of which are referred to as the bitstream.

The bitstream can be in one of two formats: the NAL unit stream format or the byte stream format. The NAL unit stream format is conceptually the more "basic" type. It consists of a sequence of syntax structures called NAL units. This sequence is ordered in decoding order. There are constraints imposed on the decoding order (and contents) of the NAL units in the NAL unit stream. 

The byte stream format can be constructed from the NAL unit stream format by ordering the NAL units in decoding order and prefixing each NAL unit with a start code prefix and zero or more zero-valued bytes to form a stream of bytes. The NAL unit stream format can be extracted from the byte stream format by searching for the location of the unique start code prefix pattern within this stream of bytes. Methods of framing the NAL units in a manner other than use of the byte stream format are outside the scope of this Recommendation | International Standard. The byte stream format is specified in Annex B. 

6.2 Source, decoded, and output picture formats

This subclause specifies the relationship between source and decoded pictures that is given via the bitstream.

The video source that is represented by the bitstream is a sequence of pictures in decoding order.

The source and decoded pictures are each comprised of one or more sample arrays:

–
Luma (Y) only (monochrome).

–
Luma and two chroma (YCbCr or YCgCo).
–
Green, Blue and Red (GBR, also known as RGB).

–
Arrays representing other unspecified monochrome or tri-stimulus colour samplings (for example, YZX, also known as XYZ).

For convenience of notation and terminology in this Specification, the variables and terms associated with these arrays are referred to as luma (or L or Y) and chroma, where the two chroma arrays are referred to as Cb and Cr; regardless of the actual colour representation method in use. The actual colour representation method in use can be indicated in syntax that is specified in Annex E. 

The variables SubWidthC, and SubHeightC are specified in Table 6‑1, depending on the chroma format sampling structure, which is specified through chroma_format_idc and separate_colour_plane_flag. An entry marked as "-" in Table 6‑1 denotes an undefined value for SubWidthC or SubHeightC. Other values of chroma_format_idc, SubWidthC, and SubHeightC may be specified in the future by ITU‑T | ISO/IEC.

Table 6‑1 – SubWidthC, and SubHeightC values derived from 
chroma_format_idc and separate_colour_plane_flag

	chroma_format_idc
	separate_colour_plane_flag
	Chroma Format
	SubWidthC
	SubHeightC

	0
	0
	monochrome
	-
	-

	1
	0
	4:2:0
	2
	2

	2
	0
	4:2:2
	2
	1

	3
	0
	4:4:4
	1
	1

	3
	1
	4:4:4
	-
	-


In monochrome sampling there is only one sample array, which is nominally considered the luma array.

In 4:2:0 sampling, each of the two chroma arrays has half the height and half the width of the luma array.

In 4:2:2 sampling, each of the two chroma arrays has the same height and half the width of the luma array.

In 4:4:4 sampling, depending on the value of separate_colour_plane_flag, the following applies.

–
If separate_colour_plane_flag is equal to 0, each of the two chroma arrays has the same height and width as the luma array.

–
Otherwise (separate_colour_plane_flag is equal to 1), the three colour planes are separately processed as monochrome sampled pictures.

The number of bits necessary for the representation of each of the samples in the luma and chroma arrays in a video sequence is in the range of 8 to 14, and the number of bits used in the luma array may differ from the number of bits used in the chroma arrays.

When the value of chroma_format_idc is equal to 1, the nominal vertical and horizontal relative locations of luma and chroma samples in pictures are shown in Figure 6‑1. Alternative chroma sample relative locations may be indicated in video usability information (see Annex E).


[image: image12.wmf]H.264(09)_F6-1

Location of luma sample

Location of chroma sample

Frame


Figure 6‑1 – Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a picture [Ed. Re-draw figure]
When the value of chroma_format_idc is equal to 2, the chroma samples are co-sited with the corresponding luma samples and the nominal locations in a picture are as shown in Figure 6‑2.


[image: image13.wmf]H.264(09)_F6-3

Location of luma sample

Location of chroma sample

Frame


Figure 6‑2 – Nominal vertical and horizontal locations of 4:2:2 luma and chroma samples in a picture [Ed. Re-draw figure]
When the value of chroma_format_idc is equal to 3, all array samples are co-sited for all cases of pictures and the nominal locations in a picture are as shown in Figure 6‑3. 


[image: image14.wmf]H.264(09)_F6-5

Location of luma sample

Location of chroma sample

Frame


Figure 6‑3 – Nominal vertical and horizontal locations of 4:4:4 luma and chroma samples in a picture [Ed. Re-draw figure]
The samples are processed in units of treeblocks. The luma array for each treeblock in samples in both width and height is 
TbSize = 64

(6‑1)
Log2TbSize = 7

(6‑2)
The variables TbWidthC and TbHeightC, which specify the width and height, respectively, of the chroma arrays for each treeblock, are derived as follows.

–
If chroma_format_idc is equal to 0 (monochrome) or separate_colour_plane_flag is equal to 1, TbWidthC and TbHeightC are both equal to 0.

–
Otherwise, TbWidthC and TbHeightC are derived as

TbWidthC = TbSize / SubWidthC

(6‑3)
TbHeightC = TbSize / SubHeightC

(6‑4)
6.3 Spatial subdivision of pictures and slices

This subclause specifies how a picture is partitioned into slices and treeblocks. Pictures are divided into slices. A slice is a sequence of treeblocks. 

Each treeblock is comprised of one Ntb x Ntb luma array and, when the chroma sampling format is not equal to 4:0:0 and separate_colour_plane_flag is equal to 0, two corresponding chroma sample arrays. When separate_colour_plane_flag is equal to 1, each treeblock is comprised of one Ntb x Ntb luma or chroma sample array. For example, a picture may be divided into two slices as shown in Figure 6‑4. 

When a picture is coded using three separate colour planes (separate_colour_plane_flag is equal to 1), a slice contains only treeblocks of one colour component being identified by the corresponding value of colour_plane_id, and each colour component array of a picture consists of slices having the same colour_plane_id value. Coded slices with different values of colour_plane_id within an access unit can be interleaved with each other under the constraint that for each value of colour_plane_id, the coded slice NAL units with that value colour_plane_id shall be in the order of increasing treeblock address for the first treeblock of each coded slice NAL unit.

NOTE – When separate_colour_plane_flag is equal to 0, each treeblock of a picture is contained in exactly one slice. When separate_colour_plane_flag is equal to 1, each treeblock of a colour component is contained in exactly one slice (i.e., information for each treeblock of a picture is present in exactly three slices and these three slices have different values of colour_plane_id).


[image: image15.wmf]
Figure 6‑4 – A picture with 11 by 9 treeblocks that is partitioned into two slices
Each treeblock is assigned a partition signalling to identify the block sizes for intra or inter prediction and for transform coding. The partitioning is a recursive quadtree partitioning. The root of the quadtree is associated with the treeblock. The quadtree is split until a leaf is reached, which is referred to as the coding node. The coding node is the root node of two trees, the prediction tree and the transform tree.

[Ed. (TW) What is a "unit"?]

The prediction tree specifies the position and size of prediction blocks. The prediction tree and associated prediction data are referred to as prediction unit.

The transform tree specifies the position and size of transform blocks. The transform tree and associated transform data are referred to as transform unit.

The splitting information for luma and chroma is identical for the prediction tree and may or may not be identical for the transform tree.

The coding node and the associated prediction and transform units form together a coding unit.

6.4 Inverse scanning processes and derivation processes for neighbours

This subclause specifies inverse scanning processes; i.e., the mapping of indices to locations, and derivation processes for neighbours.

6.4.1 Inverse treeblock scanning process

Input to this process is a treeblock address tbAddr.

Output of this process is the location ( x, y ) of the upper-left luma sample for the treeblock with address tbAddr relative to the upper-left sample of the picture.

The inverse treeblock scanning process is specified as follows.

x = InverseRasterScan( tbAddr, 16, 16, PicWidthInSamplesL, 0 ) 
(6‑5)

y = InverseRasterScan( tbAddr, 16, 16, PicWidthInSamplesL, 1 ) 
(6‑6)

[Ed. (TW): The text found in JCVTVC-B205 that relates to the rest of this clause requires substantial editorial and formatting work. It cannot be imported as is.]
7 Syntax and semantics

7.1 Method of specifying syntax in tabular form
The syntax tables specify a superset of the syntax of all allowed bitstreams. Additional constraints on the syntax may be specified, either directly or indirectly, in other clauses.

NOTE – An actual decoder should implement means for identifying entry points into the bitstream and means to identify and handle non-conforming bitstreams. The methods for identifying and handling errors and other such situations are not specified here.

The following table lists examples of pseudo code used to describe the syntax. When syntax_element appears, it specifies that a syntax element is parsed from the bitstream and the bitstream pointer is advanced to the next position beyond the syntax element in the bitstream parsing process.

	
	C
	Descriptor

	/* A statement can be a syntax element with an associated syntax category and descriptor or can be an expression used to specify conditions for the existence, type, and quantity of syntax elements, as in the following two examples */
	
	

	syntax_element
	3
	ue(v)

	conditioning statement
	
	

	
	
	

	/* A group of statements enclosed in curly brackets is a compound statement and is treated functionally as a single statement. */
	
	

	{
	
	

	
statement
	
	

	
statement
	
	

	
…
	
	

	}
	
	

	
	
	

	/* A "while" structure specifies a test of whether a condition is true, and if true, specifies evaluation of a statement (or compound statement) repeatedly until the condition is no longer true */
	
	

	while( condition )
	
	

	
statement
	
	

	
	
	

	/* A "do … while" structure specifies evaluation of a statement once, followed by a test of whether a condition is true, and if true, specifies repeated evaluation of the statement until the condition is no longer true */
	
	

	do
	
	

	
statement
	
	

	while( condition )
	
	

	
	
	

	/* An "if … else" structure specifies a test of whether a condition is true, and if the condition is true, specifies evaluation of a primary statement, otherwise, specifies evaluation of an alternative statement. The "else" part of the structure and the associated alternative statement is omitted if no alternative statement evaluation is needed */
	
	

	if( condition )
	
	

	
primary statement
	
	

	else
	
	

	
alternative statement
	
	

	
	
	

	/* A "for" structure specifies evaluation of an initial statement, followed by a test of a condition, and if the condition is true, specifies repeated evaluation of a primary statement followed by a subsequent statement until the condition is no longer true. */
	
	

	for( initial statement; condition; subsequent statement )
	
	

	
primary statement
	
	


7.2 Specification of syntax functions, categories, and descriptors

The functions presented here are used in the syntactical description. These functions assume the existence of a bitstream pointer with an indication of the position of the next bit to be read by the decoding process from the bitstream. 

byte_aligned( ) is specified as follows.

–
If the current position in the bitstream is on a byte boundary, i.e., the next bit in the bitstream is the first bit in a byte, the return value of byte_aligned( ) is equal to TRUE. 

–
Otherwise, the return value of byte_aligned( ) is equal to FALSE.

more_data_in_byte_stream( ), which is used only in the byte stream NAL unit syntax structure specified in Annex B, is specified as follows.

–
If more data follow in the byte stream, the return value of more_data_in_byte_stream( ) is equal to TRUE. 

–
Otherwise, the return value of more_data_in_byte_stream( ) is equal to FALSE.

more_rbsp_data( ) is specified as follows.

–
If there is no more data in the RBSP, the return value of more_rbsp_data( ) is equal to FALSE.

–
Otherwise, the RBSP data is searched for the last (least significant, right-most) bit equal to 1 that is present in the RBSP. Given the position of this bit, which is the first bit (rbsp_stop_one_bit) of the rbsp_trailing_bits( ) syntax structure, the following applies.

–
If there is more data in an RBSP before the rbsp_trailing_bits( ) syntax structure, the return value of more_rbsp_data( ) is equal to TRUE. 

–
Otherwise, the return value of more_rbsp_data( ) is equal to FALSE. 

The method for enabling determination of whether there is more data in the RBSP is specified by the application (or in Annex B for applications that use the byte stream format).

more_rbsp_trailing_data( ) is specified as follows.

–
If there is more data in an RBSP, the return value of more_rbsp_trailing_data( ) is equal to TRUE.

–
Otherwise, the return value of more_rbsp_trailing_data( ) is equal to FALSE.

next_bits( n ) provides the next bits in the bitstream for comparison purposes, without advancing the bitstream pointer. Provides a look at the next n bits in the bitstream with n being its argument. When used within the byte stream as specified in Annex B, next_bits( n ) returns a value of 0 if fewer than n bits remain within the byte stream.

read_bits( n ) reads the next n bits from the bitstream and advances the bitstream pointer by n bit positions. When n is equal to 0, read_bits( n ) is specified to return a value equal to 0 and to not advance the bitstream pointer.

The following descriptors specify the parsing process of each syntax element. For some syntax elements, two descriptors, separated by a vertical bar, are used. In these cases, the left descriptors apply when entropy_coding_mode_flag is equal to 0 and the right descriptor applies when entropy_coding_mode_flag is equal to 1. 

–
ae(v): context-adaptive arithmetic entropy-coded syntax element. The parsing process for this descriptor is specified in subclause 9.3.

–
b(8): byte having any pattern of bit string (8 bits). The parsing process for this descriptor is specified by the return value of the function read_bits( 8 ).

–
ce(v): context-adaptive variable-length entropy-coded syntax element with the left bit first. The parsing process for this descriptor is specified in subclause 9.2.

–
f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit first. The parsing process for this descriptor is specified by the return value of the function read_bits( n ).

–
i(n): signed integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the return value of the function read_bits( n ) interpreted as a two's complement integer representation with most significant bit written first.

–
me(v): mapped Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor is specified in subclause 9.1.

–
se(v): signed integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor is specified in subclause 9.1.

–
te(v): truncated Exp-Golomb-coded syntax element with left bit first. The parsing process for this descriptor is specified in subclause 9.1.

–
u(n): unsigned integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the return value of the function read_bits( n ) interpreted as a binary representation of an unsigned integer with most significant bit written first.

–
ue(v): unsigned integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor is specified in subclause 9.1.

7.3 Syntax in tabular form

7.3.1 NAL unit syntax

	nal_unit( NumBytesInNALunit ) {
	Descriptor

	
forbidden_zero_bit
	f(1)

	
nal_ref_idc
	u(2)

	
nal_unit_type
	u(5)

	
NumBytesInRBSP = 0
	

	
nalUnitHeaderBytes = 1
	

	
if( nal_unit_type  = =  1  | |  nal_unit_type  = =  5 ) {
	

	

temporal_id
	u(3)

	

output_flag
	u(1)

	

reserved_zero_4bits
	u(4)

	

nalUnitHeaderBytes += 1
	

	
}
	

	
for( i = nalUnitHeaderBytes; i < NumBytesInNALunit; i++ ) {
	

	

if( i + 2 < NumBytesInNALunit && next_bits( 24 )  = =  0x000003 ) {
	

	


rbsp_byte[ NumBytesInRBSP++ ]
	b(8)

	


rbsp_byte[ NumBytesInRBSP++ ]
	b(8)

	


i += 2
	

	


emulation_prevention_three_byte  /* equal to 0x03 */
	f(8)

	

} else
	

	


rbsp_byte[ NumBytesInRBSP++ ]
	b(8)

	
}
	

	}
	


7.3.2 Raw byte sequence payloads and RBSP trailing bits syntax

7.3.2.1 Sequence parameter set RBSP syntax
	seq_parameter_set_rbsp( ) {
	Descriptor

	
profile_idc
	u(8)

	
reserved_zero_8bits  /* equal to 0 */
	u(8)

	
level_idc
	u(8)

	
seq_parameter_set_id
	ue(v)

	
pic_width_in_luma_samples
	u(16)

	
pic_height_in_luma_samples
	u(16)

	
bit_depth_luma_minus8
	ue(v)

	
bit_depth_chroma_minus8
	ue(v)

	
log2_max_frame_num_minus4
	ue(v)

	
pic_order_cnt_type
	ue(v)

	
if( pic_order_cnt_type  = =  0 )
	

	

log2_max_pic_order_cnt_lsb_minus4
	ue(v)

	
else if( pic_order_cnt_type  = =  1 ) {
	

	

delta_pic_order_always_zero_flag
	u(1)

	

offset_for_non_ref_pic
	se(v)

	

num_ref_frames_in_pic_order_cnt_cycle
	ue(v)

	

for( i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; i++ )
	

	


offset_for_ref_frame[ i ]
	se(v)

	
}
	

	
max_num_ref_frames
	ue(v)

	
gaps_in_frame_num_value_allowed_flag
	u(1)

	
log2_min_coding_block_size_minus3
	ue(v)

	
log2_diff_max_min_coding_block_size
	ue(v)

	
log2_min_transform_block_size_minus2
	ue(v)

	
log2_diff_max_min_transform_block_size
	ue(v)

	
max_transform_hierarchy_depth_inter
	ue(v)

	
max_transform_hierarchy_depth_intra
	ue(v)

	
adaptive_loop_filter_enabled_flag
	u(1)

	
cu_qp_delta_enabled_flag
	u(1)

	
rbsp_trailing_bits( )
	

	}
	


7.3.2.2 Picture parameter set RBSP syntax
	pic_parameter_set_rbsp( ) {
	Descriptor

	
pic_parameter_set_id
	ue(v)

	
seq_parameter_set_id
	ue(v)

	
entropy_coding_mode_flag
	u(1)

	
num_ref_idx_l0_default_active_minus1
	ue(v)

	
num_ref_idx_l1_default_active_minus1
	ue(v)

	
pic_init_qp_minus26  /* relative to 26 */
	se(v)

	
constrained_intra_pred_flag
	u(1)

	
rbsp_trailing_bits( )
	

	}
	


7.3.2.3 Supplemental enhancement information RBSP syntax
	sei_rbsp( ) {
	Descriptor

	do
	

	sei_message( )
	

	while( more_rbsp_data( ) )
	

	rbsp_trailing_bits( )
	

	}
	


7.3.2.3.1 Supplemental enhancement information message syntax

	sei_message( ) {
	Descriptor

	payloadType = 0
	

	while( next_bits( 8 )  = =  0xFF ) {
	

	ff_byte  /* equal to 0xFF */
	f(8)

	payloadType += 255
	

	}
	

	last_payload_type_byte
	u(8)

	payloadType += last_payload_type_byte
	

	payloadSize = 0
	

	while( next_bits( 8 )  = =  0xFF ) {
	

	ff_byte  /* equal to 0xFF */
	f(8)

	payloadSize += 255
	

	}
	

	last_payload_size_byte
	u(8)

	payloadSize += last_payload_size_byte
	

	sei_payload( payloadType, payloadSize )
	

	}
	


7.3.2.4 Access unit delimiter RBSP syntax
	access_unit_delimiter_rbsp( ) {
	Descriptor

	
primary_pic_type
	u(3)

	
rbsp_trailing_bits( )
	

	}
	


7.3.2.5 Filler data RBSP syntax
	filler_data_rbsp( ) {
	Descriptor

	
while( next_bits( 8 )  = =  0xFF )
	

	

ff_byte  /* equal to 0xFF */
	f(8)

	
rbsp_trailing_bits( )
	

	}
	


7.3.2.6 Slice layer RBSP syntax
	slice_layer_rbsp( ) {
	Descriptor

	
slice_header( )
	

	
slice_data( )
	

	
rbsp_slice_trailing_bits( )
	

	}
	


7.3.2.7 RBSP slice trailing bits syntax
	rbsp_slice_trailing_bits( ) {
	Descriptor

	
rbsp_trailing_bits( )
	

	
if( entropy_coding_mode_flag )
	

	

while( more_rbsp_trailing_data( ) )
	

	


cabac_zero_word  /* equal to 0x0000 */
	f(16)

	}
	


7.3.2.8 RBSP trailing bits syntax
	rbsp_trailing_bits( ) {
	Descriptor

	
rbsp_stop_one_bit  /* equal to 1 */
	f(1)

	
while( !byte_aligned( ) )
	

	

rbsp_alignment_zero_bit  /* equal to 0 */
	f(1)

	}
	


7.3.3 Slice header syntax

	slice_header( ) {
	Descriptor

	
first_tb_in_slice
	ue(v)

	
entropy_slice_flag
	u(1)

	
if( !entropy_slice_flag ) {
	

	

slice_type
	ue(v)

	

pic_parameter_set_id
	ue(v)

	

frame_num
	u(v)

	

if( IdrPicFlag )
	

	


idr_pic_id
	ue(v)

	

if( pic_order_cnt_type  = =  0 )
	

	


pic_order_cnt_lsb /* 
	u(v)

	

if( slice_type  = =  P  | |  slice_type  = =  B ) {
	

	


num_ref_idx_active_override_flag
	u(1)

	


if( num_ref_idx_active_override_flag ) {
	

	



num_ref_idx_l0_active_minus1
	ue(v)

	



if( slice_type  = =  B )
	

	




num_ref_idx_l1_active_minus1
	ue(v)

	


}
	

	

}
	

	

ref_pic_list_modification( )
	

	

ref_pic_list_combination( )
	

	

if( nal_ref_idc != 0 )
	

	


dec_ref_pic_marking( )
	

	

if( entropy_coding_mode_flag  &&  slice_type  !=  I)
	

	


cabac_init_idc
	ue(v)

	

slice_qp_delta
	se(v)

	

if( adaptive_loop_filter_enabled_flag )
	

	


alf_param()
	

	

if( deblocking_filter_control_present_flag ) {
	

	


disable_deblocking_filter_idc
	

	


if( disable_deblocking_filter_idc  !=  1 ) {
	

	



slice_alpha_c0_offset_div2
	

	



slice_beta_offset_div2
	

	


}
	

	

}
	

	

if( slice_type = = B )
	

	


collocated_from_l0_flag
	u(1)

	
} else
	

	

if( entropy_coding_mode_flag  &&  slice_type  !=  I)
	

	


cabac_init_idc
	ue(v)

	}
	


7.3.3.1 Reference picture list modification syntax
	ref_pic_list_modification( ) {
	Descriptor

	
if( slice_type % 5  !=  2  &&  slice_type % 5  !=  4 ) { 
	

	

ref_pic_list_modification_flag_l0
	u(1)

	

if( ref_pic_list_modification_flag_l0 )
	

	


do {
	

	



modification_of_pic_nums_idc
	ue(v)

	



if( modification_of_pic_nums_idc  = =  0  | |





modification_of_pic_nums_idc  = =  1 )
	

	




abs_diff_pic_num_minus1
	ue(v)

	



else if( modification_of_pic_nums_idc  = =  2 )
	

	




long_term_pic_num
	ue(v)

	


} while( modification_of_pic_nums_idc  !=  3 )
	

	
}
	

	
if( slice_type % 5  = =  1 ) { 
	

	

ref_pic_list_modification_flag_l1
	u(1)

	

if( ref_pic_list_modification_flag_l1 )
	

	


do {
	

	



modification_of_pic_nums_idc
	ue(v)

	



if( modification_of_pic_nums_idc  = =  0  | |





modification_of_pic_nums_idc  = =  1 )
	

	




abs_diff_pic_num_minus1
	ue(v)

	



else if( modification_of_pic_nums_idc  = =  2 )
	

	




long_term_pic_num
	ue(v)

	


} while( modification_of_pic_nums_idc  !=  3 )
	

	
}
	

	}
	


7.3.3.2 Reference picture lists combination syntax

	ref_pic_list_combination( ) {
	C
	Descriptor

	
if( slice_type % 5 = =  1 ) { // b slice
	
	

	

ref_pic_list_combination_flag
	2
	u(1)

	

if( ref_pic_list_combination_flag ) {
	
	

	


num_ref_idx lc_active_minus1
	2
	ue(v)

	


ref_pic_list_modification_flag_lc
	2
	u(1)

	


if( ref_pic_list_modification_flag_lc )
	
	

	



for ( i =0; i <= num_ref_idx_lc_active_minus1; i++ ) {
	
	

	




pic_from_list_0_flag
	2
	u(1)

	




ref_idx_list_curr
	2
	ue(v)

	



} 
	
	

	

}
	
	

	
}
	
	

	}
	
	


7.3.3.3 Decoded reference picture marking syntax
	dec_ref_pic_marking( ) {
	Descriptor

	
if( IdrPicFlag ) { 
	

	

no_output_of_prior_pics_flag
	u(1)

	

long_term_reference_flag
	u(1)

	
} else {
	

	

adaptive_ref_pic_marking_mode_flag
	u(1)

	

if( adaptive_ref_pic_marking_mode_flag )
	

	


do {
	

	



memory_management_control_operation
	ue(v)

	



if( memory_management_control_operation  = =  1  | |





memory_management_control_operation  = =  3 )
	

	




difference_of_pic_nums_minus1
	ue(v)

	



if(memory_management_control_operation  = =  2  )
	

	




long_term_pic_num
	ue(v)

	


 
if( memory_management_control_operation  = =  3  | |





memory_management_control_operation  = =  6 )
	

	




long_term_frame_idx
	ue(v)

	



if( memory_management_control_operation  = =  4 )
	

	




max_long_term_frame_idx_plus1
	ue(v)

	


} while( memory_management_control_operation  !=  0 )
	

	
}
	

	}
	


7.3.3.4 Adaptive loop filter parameter syntax
	alf_param() {
	C
	Descriptor

	
adaptive_loop_filter_flag
	2
	u(1)

	
if ( adaptive_loop_filter_flag ) {
	
	

	

alf_length_luma_minus_5_div2
	2
	ue(v)

	

alf_no_filters_minus1
	2
	ue(v)

	

if (alf_no_filters_minus1 == 1)
	
	

	


alf_start_second_filter
	2
	ue(v)

	

else if (alf_no_filters_minus1 > 1) {
	
	

	


for (i=0; i< 16; i++)
	
	

	



alf_filter_pattern[i]
	2
	u(1)

	

}
	
	

	

if (AlfNumFilters > 1)
	
	

	


alf_pred_method
	2
	u(1)

	

alf_min_kstart_minus1
	2
	ue(v)

	

for (i=0; i < AlfMaxDepth; i++)
	
	

	


alf_golomb_index_bit[i]
	2
	u(1)

	

for (i=0; i< AlfNumFilters; i++) 
	
	

	


for (j=0; j< AlfCodedLengthLuma; j++) 
	
	

	



alf_coeff_luma[i][j]
	
	ge(v)

	

alf_chroma_idc
	2
	ue(v)

	

if ( alf_chroma_idc ) {
	
	

	


alf_length_chroma_minus_5_div2
	2
	ue(v)

	


for( i = 0; i< AlfCodedLengthChroma; i++ )
	
	

	



alf_coeff_chroma[i]
	
	se(v)

	

}
	
	

	

alf_cu_control_flag
	2
	u(1)

	

if ( alf_cu_control_flag ) {
	
	

	


alf_cu_control_max_depth
	2
	ue(v)

	


if ( alf_cu_control_max_depth )
	
	

	



alf_length_cu_control_info
	2
	u(v)

	


for( i = 0; i< NumAlfCuFlag; i++ )
	
	

	


alf_cu_flag [i]
	2
	u(1) | ae(v)

	

}
	
	

	
}
	
	

	}
	
	


7.3.4 Slice data syntax

	slice_data( ) {
	Descriptor

	
CurrTbAddr = first_tb_in_slice
	

	
moreDataFlag = 1
	

	
if( adaptive_loop_filter_flag && alf_cu_control_flag )
	

	

AlfCuFlagIdx = -1
	

	
do {
	

	

xCU = HorLumaLocation( CurrTbAddr )
	

	

yCU = VerLumaLocation( CurrTbAddr )
	

	

IsCuQpDeltaCoded = 0
	

	

coding_tree( xCU, yCU, Log2TbSize )
	

	

if( !entropy_coding_mode_flag )
	

	


moreDataFlag = more_rbsp_data( )
	

	

else {
	

	


end_of_slice_flag
	ae(v)

	


moreDataFlag = !end_of_slice_flag
	

	

}
	

	

CurrTbAddr = NextTbAddress( CurrTbAddr )
	

	
} while( moreDataFlag )
	

	}
	


7.3.5 Coding tree syntax

	coding_tree( x0, y0, log2CUSize ) {
	Descriptor

	
if( x0 + ( 1 << log2CUSize )  <=  PicWidthInSamplesL  &&


y0 + ( 1 << log2CUSize )  <=  PicHeightInSamplesL  &&


log2CUSize > Log2MinCUSize )
	

	

split_coding_unit_flag[ x0 ][ y0 ]
	u(1) | ae(v)

	
if( adaptive_loop_filter_flag && alf_cu_control_flag ) {
	

	

cuDepth = Log2MaxCUSize – log2CUSize
	

	

if( cuDepth  <= alf_cu_control_max_depth )
	

	


if( cuDepth == alf_cu_control_max_depth ||
	

	



split_coding_unit_flag[ x0 ][ y0 ] == 0 )
	

	



AlfCuFlagIdx++
	

	
}
	

	
if( split_coding_unit_flag[ x0 ][ y0 ] ) {
	

	

x1 = x0 + ( ( 1 << log2CUSize ) >> 1 )
	

	

y1 = y0 + ( ( 1 << log2CUSize ) >> 1 )
	

	

coding_tree( x0, y0, log2CUSize – 1 )
	

	

if( x1 < PicWidthInSamplesL )
	

	


coding_tree( x1, y0, log2CUSize − 1 )
	

	

if( y1 < PicHeightInSamplesL )  {
	

	


coding_tree( x0, y1, log2CUSize − 1 )
	

	

if( x1 < PicWidthInSamplesL  &&  y1 < PicHeightInSamplesL )
	

	


coding_tree( x1, y1, log2CUSize − 1 )
	

	
} else {
	

	

if(adaptive_loop_filter_flag && alf_cu_control_flag )
	

	


AlfCuFlag[ x0 ][ y0 ] = alf_cu_flag[ AlfCuFlagIdx ]
	

	

coding_unit( x0, y0, log2CUSize )
	

	
}
	

	}
	


7.3.6 Coding unit syntax

	coding_unit( x0, y0, log2CUSize ) {
	Descriptor

	
if( slice_type  !=  I )
	

	

skip_flag[ x0 ][ y0 ]
	u(1) | ae(v)

	
if( skip_flag[ x0 ][ y0 ] )
	

	

prediction_unit( x0, y0, log2CUSize, log2CUSize, 0 , 0 )
	

	
else {
	

	

if( cu_qp_delta_enabled_flag && !IsCuQpDeltaCoded ) {
	

	


cu_qp_delta
	se(v) | ae(v)

	


IsCuQpDeltaCoded = 1
	

	

}
	

	

if( slice_type  != I  | |  log2CUSize  = =  Log2MinCUSize )
	

	


pred_type
	u(v) | ae(v)

	

x1 = x0 + ( ( 1 << log2CUSize ) >> 1 )
	

	

y1 = y0 + ( ( 1 << log2CUSize ) >> 1 )
	

	

if( PartMode == PART_2Nx2N ) {
	

	


prediction_unit( x0, y0, log2CUSize, log2CUSize, 0 , 0 )
	

	

} else if( PartMode == PART_2NxN ) {
	

	


prediction_unit( x0, y0, log2CUSize, log2CUSize – 1, 0 , 









log2CUSize > Log2MinCUSize )
	

	


prediction_unit( x0, y1, log2CUSize, log2CUSize – 1, 1 , 0 )
	

	

} else if( PartMode == PART_Nx2N ) {
	

	


prediction_unit( x0, y0, log2CUSize - 1, log2CUSize, 0 , 









log2CUSize > Log2MinCUSize )
	

	


prediction_unit( x1, y0, log2CUSize - 1, log2CUSize, 1 , 0 )
	

	

} else { /* PART_NxN */
	

	


prediction_unit( x0, y0, log2CUSize – 1, log2CUSize – 1, 0 , 0 )
	

	


prediction_unit( x1, y0, log2CUSize – 1, log2CUSize – 1, 1 , 0 )
	

	


prediction_unit( x0, y1, log2CUSize – 1, log2CUSize – 1, 2 , 0 )
	

	


prediction_unit( x1, y1, log2CUSize – 1, log2CUSize – 1, 3 , 0 )
	

	

}
	

	
}
	

	
transform_tree( x0, y0, log2CUSize, 0, 0 )
	

	
transform_coeff( x0, y0, log2CUSize, 0, 0 )
	

	
transform_coeff( x0, y0, log2CUSize, 0, 1 )
	

	
transform_coeff( x0, y0, log2CUSize, 0, 2 )
	

	}
	


7.3.7 Prediction unit syntax
	prediction_unit( x0, y0, log2PUWidth, log2PUHeight, PartIdx , 






 InferredMergeFlag ) {
	Descriptor

	
if( skip_flag[ x0 ][ y0 ] ) {
	

	

if( NumMVPCand( L0 )  >  1 )
	

	


mvp_idx_l0[ x0 ][ y0 ]
	ue(v) | ae(v)

	

if( NumMVPCand( L1 ) > 1 )
	

	


mvp_idx_l1[ x0 ][ y0 ]
	ue(v) | ae(v)

	
} else if( PredMode  = =  MODE_INTRA ) {
	

	

prev_intra_luma_pred_flag[ x0 ][ y0 ]
	u(1) | ae(v)

	

if( !prev_intra_luma_pred_flag[ x0 ][ y0 ] )
	

	


rem_intra_luma_pred_mode[ x0 ][ y0 ]
	ue(v) | ae(v)

	

intra_chroma_pred_mode[ x0 ][ y0 ]
	ue(v) | ae(v)

	
} else { /* MODE_INTER */
	

	

if( !InferredMergeFlag  &&



NumMergeCand  >  0 )
	

	


merge_flag[ x0 ][ y0 ]
	u(1) | ae(v)

	

if( merge_flag[ x0 ][ y0 ]  &&  NumMergeCand  >  1 ) {
	

	


merge_idx[ x0 ][ y0 ]
	ue(v) | ae(v)

	

} else {
	

	


if( slice_type  = =  B )
	

	



inter_pred_idc[ x0 ][ y0 ]
	ue(v) | ae(v)

	


if( inter_pred_idc[ x0 ][ y0 ]  = =  Pred_LC ) {
	

	



if( num_ref_idx_lc_active_minus1  >  0 )
	

	




ref_idx_lc[ x0 ][ y0 ]
	ue(v) | ae(v)

	



mvd_lc[ x0 ][ y0 ][ 0 ]
	se(v) | ae(v)

	



mvd_lc[ x0 ][ y0 ][ 1 ]
	se(v) | ae(v)

	



if( NumMVPCand( LcToLx )  >  1 )
	

	




mvp_idx_lc[ x0 ][ y0 ]
	ue(v) | ae(v)

	


}
	

	


else { /* Pred_L0 or Pred_BI */
	

	



if( num_ref_idx_l0_active_minus1  >  0 )
	

	




ref_idx_l0[ x0 ][ y0 ]
	ue(v) | ae(v)

	



mvd_l0[ x0 ][ y0 ][ 0 ]
	se(v) | ae(v)

	



mvd_l0[ x0 ][ y0 ][ 1 ]
	se(v) | ae(v)

	



if( NumMVPCand( L0 )  >  1 )
	

	




mvp_idx_l0[ x0 ][ y0 ]
	ue(v) | ae(v)

	


}
	

	


if( inter_pred_idc[ x0 ][ y0 ]  = =  Pred_BI ) {
	

	



if( num_ref_idx_l1_active_minus1  >  0 )
	

	




ref_idx_l1[ x0 ][ y0 ]
	ue(v) | ae(v)

	



mvd_l1[ x0 ][ y0 ][ 0 ]
	se(v) | ae(v)

	



mvd_l1[ x0 ][ y0 ][ 1 ]
	se(v) | ae(v)

	



if( NumMVPCand( L1 )  >  1 )
	

	




mvp_idx_l1[ x0 ][ y0 ]
	ue(v) | ae(v)

	


}
	

	

}
	

	
}
	

	}
	


[Ed: (BB) NumMergeCand needs to be defined. Decoding processes of neighboring blocks have to be finished to derive NumMergeCand. Same applies for NumMVPCand]
7.3.8 Transform tree syntax
	transform_tree( x0, y0, log2TrafoSize, trafoDepth, blkIdx )  {
	Descriptor

	
if (trafoDepth  = =  0 && IntraSplitFlag  = =  0){
	

	

if( !entropy_coding_mode_flag  &&  PredMode != MODE_INTRA ) {
	

	


cbp_yuv_root 
	vlc(n,v)

	


cbf_luma[ x0 ][ y0 ] [trafoDepth ] = cbp_yuv_root & 1
	

	


cbf_cb[x0][y0] [trafoDepth ] = (cbp_yuv_root >> 1) & 1
	

	


cbf_cr[x0][y0] [trafoDepth ] = (cbp_yuv_root >> 2) & 1
	

	


residualDataPresentFlag  =  (cbp_yuv_root != 0)
	

	

}
	

	

else {
	

	


if( PredMode  !=  MODE_INTRA )
	

	



no_residual_data_flag
	u(1) | ae(v)

	


residualDataPresentFlag  =  !no_residual_data_flag
	

	

}
	

	
}


else {
	

	

residualDataPresentFlag = TRUE
	

	
}
	

	
if ( residualDataPresentFlag)  {
	

	

intraSplitFlag = ( IntraSplitFlag  &&  trafoDepth  = =  0  ?  1  :  0 )
	

	

maxDepth = ( PredMode  = =  MODE_INTRA ?  









max_transform_hierarchy_depth_intra  +  IntraSplitFlag  :  









max_transform_hierarchy_depth_inter )
	

	

if( log2TrafoSize <= Log2MaxTrafoSize  && 




log2TrafoSize > Log2MinTrafoSize  &&



trafoDepth < maxDepth  &&  !intraSplitFlag )
	

	


split_transform_flag[ x0 ][ y0 ][ trafoDepth ]
	u(1) | ae(v)

	

if( PredMode  !=  MODE_INTRA  &&



log2TrafoSize  <=  Log2MaxTrafoSize  &&




entropy_coding_mode_flag ) {
	

	


firstChromaCbf = ( log2TrafoSize  = =  Log2MaxTrafoSize  | |










trafoDepth  = =  0  ?  1  :  0 )
	

	


if( firstChromaCbf  | |  log2TrafoSize  >  Log2MinTrafoSize )  {
	

	



xBase = x0 − ( x0 & ( ( 1 << log2TrafoSize ) − 1 ) )
	

	



yBase = y0 − ( y0 & ( ( 1 << log2TrafoSize ) − 1 ) )
	

	



if( firstChromaCbf  | |





cbf_cb[ xBase ][ yBase ][ trafoDepth − 1 ] )
	

	




cbf_cb[ x0 ][ y0 ][ trafoDepth ]
	u(1) | ae(v)

	



if( firstChromaCbf  | |





cbf_cr[ xBase ][ yBase ][ trafoDepth − 1 ] )
	

	




cbf_cr[ x0 ][ y0 ][ trafoDepth ]
	u(1) | ae(v)

	


}
	

	

}
	

	

if( split_transform_flag[ x0 ][ y0 ][ trafoDepth ] )  {
	

	


x1 = x0 + ( ( 1 << log2TrafoSize ) >> 1 )
	

	


y1 = y0 + ( ( 1 << log2TrafoSize ) >> 1 )
	

	


transform_tree( x0, y0, log2TrafoSize − 1, trafoDepth + 1, 0 )
	

	


transform_tree( x1, y0, log2TrafoSize − 1, trafoDepth + 1, 1 )
	

	


transform_tree( x0, y1, log2TrafoSize − 1, trafoDepth + 1, 2 )
	

	


transform_tree( x1, y1, log2TrafoSize − 1, trafoDepth + 1, 3 )
	

	

}
	

	

else  if( entropy_coding_mode_flag ){
	

	


if( PredMode  = =  MODE_INTRA  | |  trafoDepth  !=  0  | |




cbf_cb[ x0 ][ y0 ][ trafoDepth ]  | |




cbf_cr[ x0 ][ y0 ][ trafoDepth ] )
	

	



cbf_luma[ x0 ][ y0 ][ trafoDepth ]
	u(1) | ae(v)

	


if( PredMode  = =  MODE_INTRA )
	

	



if( log2TrafoSize  >  Log2MinTrafoSize )  {
	

	




cbf_cb[ x0 ][ y0 ][ trafoDepth ]
	u(1) | ae(v)

	




cbf_cr[ x0 ][ y0 ][ trafoDepth ]
	u(1) | ae(v)

	



}  else if( blkIdx  = =  0 )  {
	

	




cbf_cb[ x0 ][ y0 ][ trafoDepth − 1 ]
	u(1) | ae(v)

	




cbf_cr[ x0 ][ y0 ][ trafoDepth − 1 ]
	u(1) | ae(v)

	



}
	

	

}
	

	
}
	

	
if( !entropy_coding_mode_flag && PredMode == MODE_INTRA) {
	

	

cbp_yuv_root 
	vlc(n,v)

	

cbf_luma[ x0 ][ y0 ] [ 0 ] = cbp_yuv_root & 1
	

	

cbf_cb[x0][y0] [ 0 ] = (cbp_yuv_root >> 1) & 1
	

	

cbf_cr[x0][y0] [ 0 ] = (cbp_yuv_root >> 2) & 1
	

	
}
	

	}
	


7.3.9 Transform coefficient syntax

	transform_coeff( x0, y0, log2TrafoSize, trafoDepth, cIdx ) {
	Descriptor

	
if( ( ( cIdx = = 0  &&  cbf_luma[ x0 ][ y0 ][ trafoDepth ] )  | |



( cIdx = = 1  &&  cbf_cb[ x0 ][ y0 ][ trafoDepth ] )  | |



( cIdx = = 2  &&  cbf_cr[ x0 ][ y0 ][ trafoDepth ] ) ) ) {
	

	

if( split_transform_flag[ x0 ][ y0 ][ trafoDepth ] ) {
	

	


x1 = x0 + ( ( 1 << log2TrafoSize ) >> 1 )
	

	


y1 = y0 + ( ( 1 << log2TrafoSize ) >> 1 )
	

	


if( !entropy_coding_mode_flag]  &&




( cIdx  = =  0  | |  log2TrafoSize > Log2MinTrafoSize + 1 ) ) {
	

	



if (cIdx==0) {
	

	




cbp_luma[ trafoDepth + 1 ]
	vlc(n,v)

	




cbf_luma[ x0 ][ y0 ][ trafoDepth + 1 ]  =  














cbp_luma[ trafoDepth + 1 ] >> 3
	

	




cbf_luma[ x1 ][ y0 ][ trafoDepth + 1 ]  =  














cbp_luma[ trafoDepth+1 ] >> 2
	

	




cbf_luma[ x0 ][ y1 ][ trafoDepth + 1 ]  =  














cbp_luma[ trafoDepth + 1 ] >> 1
	

	




cbf_luma[ x1 ][ y1 ][ trafoDepth + 1 ]  =  














cbp_luma[ trafoDepth + 1 ]
	

	



}
	

	



else if(cIdx ==1) {
	

	




cbp_cb[ trafoDepth + 1 ]
	vlc(n,v)

	




cbf_cb[ x0 ][ y0 ][ trafoDepth + 1 ]  =  














cbp_cb[ trafoDepth + 1 ] >> 3
	

	




cbf_cb[ x1 ][ y0 ][ trafoDepth + 1 ]  =  














cbp_cb[ trafoDepth+1 ] >> 2
	

	




cbf_cb[ x0 ][ y1 ][ trafoDepth + 1 ]  =  














cbp_cb[ trafoDepth + 1 ] >> 1
	

	




cbf_cb[ x1 ][ y1 ][ trafoDepth + 1 ]  =  














cbp_cb[ trafoDepth + 1 ]
	

	



}
	

	



else if(cIdx==2) {
	

	




cbp_cr[ trafoDepth + 1 ]
	vlc(n,v)

	




cbf_cr[ x0 ][ y0 ][ trafoDepth + 1 ]  =  














cbp_cr[ trafoDepth + 1 ] >> 3
	

	




cbf_cr[ x1 ][ y0 ][ trafoDepth + 1 ]  =  














cbp_cr[ trafoDepth+1 ] >> 2
	

	




cbf_cr[ x0 ][ y1 ][ trafoDepth + 1 ]  =  














cbp_cr[ trafoDepth + 1 ] >> 1
	

	




cbf_cr[ x1 ][ y1 ][ trafoDepth + 1 ]  =  














cbp_cr[ trafoDepth + 1 ]
	

	



}
	

	


}
	

	


transform_coeff( x0, y0, log2TrafoSize − 1, trafoDepth + 1, cIdx )
	

	


transform_coeff( x1, y0, log2TrafoSize − 1, trafoDepth + 1, cIdx )
	

	


transform_coeff( x0, y1, log2TrafoSize − 1, trafoDepth + 1, cIdx )
	

	


transform_coeff( x1, y1, log2TrafoSize − 1, trafoDepth + 1, cIdx )
	

	

}  else  {
	

	


nMax = ( 1 << ( log2TrafoSize << 1 ) ) >> ( cIdx > 0  ?  2  :  0 )
	

	


for( n = 0;  n < nMax;  n++ )
	

	



transCoeffLevel[ x0 ][ y0 ][ trafoDepth ][ cIdx ][ n ] = 0
	

	


if ( entropy_coding_mode_flag )
	

	



residual_coding_cabac( x0, y0, log2TrafoSize, trafoDepth, cIdx )
	

	

else if ( !entropy_coding_mode_flag )
	

	



residual_coding_cavlc( x0, y0, log2TrafoSize, trafoDepth, cIdx )
	

	

}
	

	
}
	

	}
	


[Ed: (BB) residual_coding_cabac and residual_coding_cavlc syntax tables missing]
7.4 Semantics

Semantics associated with the syntax structures and with the syntax elements within these structures are specified in this subclause. When the semantics of a syntax element are specified using a table or a set of tables, any values that are not specified in the table(s) shall not be present in the bitstream unless otherwise specified in this Recommendation | International Standard.

7.4.1 NAL unit semantics

NOTE 1 – The VCL is specified to efficiently represent the content of the video data. The NAL is specified to format that data and provide header information in a manner appropriate for conveyance on a variety of communication channels or storage media. All data are contained in NAL units, each of which contains an integer number of bytes. A NAL unit specifies a generic format for use in both packet-oriented and bitstream systems. The format of NAL units for both packet-oriented transport and byte stream is identical except that each NAL unit can be preceded by a start code prefix and extra padding bytes in the byte stream format.

NumBytesInNALunit specifies the size of the NAL unit in bytes. This value is required for decoding of the NAL unit. Some form of demarcation of NAL unit boundaries is necessary to enable inference of NumBytesInNALunit. One such demarcation method is specified in Annex B for the byte stream format. Other methods of demarcation may be specified outside of this Recommendation | International Standard.

forbidden_zero_bit shall be equal to 0.

Table 7‑1 – NAL unit type codes, syntax element categories, and NAL unit type classes

	nal_unit_type
	Content of NAL unit and RBSP syntax structure
	NAL unit
type class

	0
	Unspecified
	non-VCL

	1
	Coded slice of a non-IDR picture
slice_layer_without_partitioning_rbsp( )
	VCL

	2-3
	Reserved
	n/a

	4
	Coded slice of a CDR picture

slice_layer_without_partitioning_rbsp( )
	VCL

	5
	Coded slice of an IDR picture
slice_layer_without_partitioning_rbsp( )
	VCL

	6
	Supplemental enhancement information (SEI)
sei_rbsp( )
	non-VCL

	7
	Sequence parameter set
seq_parameter_set_rbsp( )
	non-VCL

	8
	Picture parameter set
pic_parameter_set_rbsp( )
	non-VCL

	9
	Access unit delimiter
access_unit_delimiter_rbsp( )
	non-VCL

	10-11
	Reserved
	n/a

	12
	Filler data
filler_data_rbsp( )
	non-VCL

	13-23
	Reserved
	n/a

	24..31
	Unspecified
	non-VCL


In the text, coded slice NAL unit collectively refers to a coded slice of a non-IDR picture NAL unit or to a coded slice of an IDR picture NAL unit. The variable IdrPicFlag is specified as

IdrPicFlag = ( ( nal_unit_type  = =  5 )  ?  1  :  0 )

(7‑1)

When the value of nal_unit_type is equal to 5 for a NAL unit containing a slice of a particular picture, the picture shall not contain NAL units with nal_unit_type equal to 1. For coded video sequences conforming to one or more of the profiles specified in Annex A that are decoded using the decoding process specified in clauses 2-9, such a picture is referred to as an IDR picture. 

rbsp_byte[ i ] is the i-th byte of an RBSP. An RBSP is specified as an ordered sequence of bytes as follows.

The RBSP contains an SODB as follows.

–
If the SODB is empty (i.e., zero bits in length), the RBSP is also empty.

–
Otherwise, the RBSP contains the SODB as follows:

1)
The first byte of the RBSP contains the (most significant, left-most) eight bits of the SODB; the next byte of the RBSP shall contain the next eight bits of the SODB, etc., until fewer than eight bits of the SODB remain.

2)
rbsp_trailing_bits( ) are present after the SODB as follows:

i)
The first (most significant, left-most) bits of the final RBSP byte contains the remaining bits of the SODB (if any).

ii)
The next bit consists of a single rbsp_stop_one_bit equal to 1.

iii)
When the rbsp_stop_one_bit is not the last bit of a byte-aligned byte, one or more rbsp_alignment_zero_bit is present to result in byte alignment.

3)
One or more cabac_zero_word 16-bit syntax elements equal to 0x0000 may be present in some RBSPs after the rbsp_trailing_bits( ) at the end of the RBSP.

Syntax structures having these RBSP properties are denoted in the syntax tables using an "_rbsp" suffix. These structures shall be carried within NAL units as the content of the rbsp_byte[ i ] data bytes. The association of the RBSP syntax structures to the NAL units shall be as specified in Table 7‑1.

NOTE 6 – When the boundaries of the RBSP are known, the decoder can extract the SODB from the RBSP by concatenating the bits of the bytes of the RBSP and discarding the rbsp_stop_one_bit, which is the last (least significant, right-most) bit equal to 1, and discarding any following (less significant, farther to the right) bits that follow it, which are equal to 0. The data necessary for the decoding process is contained in the SODB part of the RBSP.

emulation_prevention_three_byte is a byte equal to 0x03. When an emulation_prevention_three_byte is present in the NAL unit, it shall be discarded by the decoding process.

The last byte of the NAL unit shall not be equal to 0x00.

Within the NAL unit, the following three-byte sequences shall not occur at any byte-aligned position:

–
0x000000

–
0x000001

–
0x000002

Within the NAL unit, any four-byte sequence that starts with 0x000003 other than the following sequences shall not occur at any byte-aligned position:

–
0x00000300

–
0x00000301

–
0x00000302

–
0x00000303

NOTE 7 – When nal_unit_type is equal to 0, particular care must be exercised in the design of encoders to avoid the presence of the above-listed three-byte and four-byte patterns at the beginning of the NAL unit syntax structure, as the syntax element emulation_prevention_three_byte cannot be the third byte of a NAL unit.

7.4.1.1 Encapsulation of an SODB within an RBSP (informative)
This subclause does not form an integral part of this Recommendation | International Standard.

The form of encapsulation of an SODB within an RBSP and the use of the emulation_prevention_three_byte for encapsulation of an RBSP within a NAL unit is specified for the following purposes:

–
to prevent the emulation of start codes within NAL units while allowing any arbitrary SODB to be represented within a NAL unit,

–
to enable identification of the end of the SODB within the NAL unit by searching the RBSP for the rbsp_stop_one_bit starting at the end of the RBSP,

–
to enable a NAL unit to have a size larger than that of the SODB under some circumstances (using one or more cabac_zero_word).

The encoder can produce a NAL unit from an RBSP by the following procedure:

1. The RBSP data is searched for byte-aligned bits of the following binary patterns:


'00000000 00000000 000000xx'  (where xx represents any 2 bit pattern: 00, 01, 10, or 11),

and a byte equal to 0x03 is inserted to replace these bit patterns with the patterns:


'00000000 00000000 00000011 000000xx',

and finally, when the last byte of the RBSP data is equal to 0x00 (which can only occur when the RBSP ends in a cabac_zero_word), a final byte equal to 0x03 is appended to the end of the data. The last zero byte of a byte‑aligned three-byte sequence 0x000000 in the RBSP (which is replaced by the four-byte sequence 0x00000300) is taken into account when searching the RBSP data for the next occurrence of byte-aligned bits with the binary patterns specified above.

2. The resulting sequence of bytes is then prefixed as follows.

–
If nal_unit_type is not equal to 14 or 20, the sequence of bytes is prefixed with the first byte of the NAL unit containing the syntax elements forbidden_zero_bit, nal_ref_idc, and nal_unit_type, where nal_unit_type indicates the type of RBSP data structure the NAL unit contains.

–
Otherwise (nal_unit_type is equal to 14 or 20), the sequence of bytes is prefixed with the first four bytes of the NAL unit, where the first byte contains the syntax elements forbidden_zero_bit, nal_ref_idc, and nal_unit_type and the following three bytes contain the syntax structure nal_unit_header_svc_extension( ). The syntax element nal_unit_type in the first byte indicates the presence of the syntax structure nal_unit_header_svc_extension( ) in the following three bytes and the type of RBSP data structure the NAL unit contains.

The process specified above results in the construction of the entire NAL unit.

This process can allow any SODB to be represented in a NAL unit while ensuring that

–
no byte-aligned start code prefix is emulated within the NAL unit,

· no sequence of 8 zero-valued bits followed by a start code prefix, regardless of byte-alignment, is emulated within the NAL unit.

7.4.1.2 Order of NAL units and association to coded pictures, access units, and video sequences
This subclause specifies constraints on the order of NAL units in the bitstream.

Any order of NAL units in the bitstream obeying these constraints is referred to in the text as the decoding order of NAL units. Within a NAL unit, the syntax in subclauses 7.3, D.1, and E.1 specifies the decoding order of syntax elements. Decoders shall be capable of receiving NAL units and their syntax elements in decoding order.

7.4.1.2.1 Order of sequence and picture parameter set RBSPs and their activation

This subclause specifies the activation process of picture and sequence parameter sets for coded video sequences that conform to one or more of the profiles specified in Annex A that are decoded using the decoding process specified in clauses 2-9.

NOTE 1 – The sequence and picture parameter set mechanism decouples the transmission of infrequently changing information from the transmission of coded macroblock data. Sequence and picture parameter sets may, in some applications, be conveyed "out-of-band" using a reliable transport mechanism. 

A picture parameter set RBSP includes parameters that can be referred to by the coded slice NAL units or coded slice data partition A NAL units of one or more coded pictures. Each picture parameter set RBSP is initially considered not active at the start of the operation of the decoding process. At most one picture parameter set RBSP is considered active at any given moment during the operation of the decoding process, and the activation of any particular picture parameter set RBSP results in the deactivation of the previously-active picture parameter set RBSP (if any).

When a picture parameter set RBSP (with a particular value of pic_parameter_set_id) is not active and it is referred to by a coded slice NAL unit or coded slice data partition A NAL unit (using that value of pic_parameter_set_id), it is activated. This picture parameter set RBSP is called the active picture parameter set RBSP until it is deactivated by the activation of another picture parameter set RBSP. A picture parameter set RBSP, with that particular value of pic_parameter_set_id, shall be available to the decoding process prior to its activation. 

Any picture parameter set NAL unit containing the value of pic_parameter_set_id for the active picture parameter set RBSP for a coded picture shall have the same content as that of the active picture parameter set RBSP for the coded picture unless it follows the last VCL NAL unit of the coded picture and precedes the first VCL NAL unit of another coded picture.

A sequence parameter set RBSP includes parameters that can be referred to by one or more picture parameter set RBSPs or one or more SEI NAL units containing a buffering period SEI message. Each sequence parameter set RBSP is initially considered not active at the start of the operation of the decoding process. At most one sequence parameter set RBSP is considered active at any given moment during the operation of the decoding process, and the activation of any particular sequence parameter set RBSP results in the deactivation of the previously-active sequence parameter set RBSP (if any).

When a sequence parameter set RBSP (with a particular value of seq_parameter_set_id) is not already active and it is referred to by activation of a picture parameter set RBSP (using that value of seq_parameter_set_id) or is referred to by an SEI NAL unit containing a buffering period SEI message (using that value of seq_parameter_set_id), it is activated. This sequence parameter set RBSP is called the active sequence parameter set RBSP until it is deactivated by the activation of another sequence parameter set RBSP. A sequence parameter set RBSP, with that particular value of seq_parameter_set_id, shall be available to the decoding process prior to its activation. An activated sequence parameter set RBSP shall remain active for the entire coded video sequence.

NOTE 2 – Because an IDR access unit begins a new coded video sequence and an activated sequence parameter set RBSP must remain active for the entire coded video sequence, a sequence parameter set RBSP can only be activated by a buffering period SEI message when the buffering period SEI message is part of an IDR access unit.

Any sequence parameter set NAL unit containing the value of seq_parameter_set_id for the active sequence parameter set RBSP for a coded video sequence shall have the same content as that of the active sequence parameter set RBSP for the coded video sequence unless it follows the last access unit of the coded video sequence and precedes the first VCL NAL unit and the first SEI NAL unit containing a buffering period SEI message (when present) of another coded video sequence.

NOTE 3 – If picture parameter set RBSP or sequence parameter set RBSP are conveyed within the bitstream, these constraints impose an order constraint on the NAL units that contain the picture parameter set RBSP or sequence parameter set RBSP, respectively. Otherwise (picture parameter set RBSP or sequence parameter set RBSP are conveyed by other means not specified in this Recommendation | International Standard), they must be available to the decoding process in a timely fashion such that these constraints are obeyed.

When present, a sequence parameter set extension RBSP includes parameters having a similar function to those of a sequence parameter set RBSP. For purposes of establishing constraints on the syntax elements of the sequence parameter set extension RBSP and for purposes of determining activation of a sequence parameter set extension RBSP, the sequence parameter set extension RBSP shall be considered part of the preceding sequence parameter set RBSP with the same value of seq_parameter_set_id. When a sequence parameter set RBSP is present that is not followed by a sequence parameter set extension RBSP with the same value of seq_parameter_set_id prior to the activation of the sequence parameter set RBSP, the sequence parameter set extension RBSP and its syntax elements shall be considered not present for the active sequence parameter set RBSP.

All constraints that are expressed on the relationship between the values of the syntax elements (and the values of variables derived from those syntax elements) in sequence parameter sets and picture parameter sets and other syntax elements are expressions of constraints that apply only to the active sequence parameter set and the active picture parameter set. If any sequence parameter set RBSP is present that is not activated in the bitstream, its syntax elements shall have values that would conform to the specified constraints if it were activated by reference in an otherwise‑conforming bitstream. If any picture parameter set RBSP is present that is not ever activated in the bitstream, its syntax elements shall have values that would conform to the specified constraints if it were activated by reference in an otherwise-conforming bitstream.

During operation of the decoding process (see clause 0), the values of parameters of the active picture parameter set and the active sequence parameter set shall be considered in effect. For interpretation of SEI messages, the values of the parameters of the picture parameter set and sequence parameter set that are active for the operation of the decoding process for the VCL NAL units of the primary coded picture in the same access unit shall be considered in effect unless otherwise specified in the SEI message semantics.

7.4.1.2.2 Order of access units and association to coded video sequences

A bitstream conforming to this Recommendation | International Standard consists of one or more coded video sequences.

A coded video sequence consists of one or more access units. For coded video sequences that conform to one or more of the profiles specified in Annex A that are decoded using the decoding process specified in clauses 2-9, the order of NAL units and coded pictures and their association to access units is described in subclause 7.4.1.2.3.

The first access unit of each coded video sequence is an IDR access unit. All subsequent access units in the coded video sequence are non-IDR access units.

The values of picture order count for the coded pictures in consecutive access units in decoding order containing non‑reference pictures shall be non-decreasing.

When present, an access unit following an access unit that contains an end of sequence NAL unit shall be an IDR access unit.

When an SEI NAL unit contains data that pertain to more than one access unit (for example, when the SEI NAL unit has a coded video sequence as its scope), it shall be contained in the first access unit to which it applies.

When an end of stream NAL unit is present in an access unit, this access unit shall be the last access unit in the bitstream and the end of stream NAL unit shall be the last NAL unit in that access unit.

7.4.1.2.3 Order of NAL units and coded pictures and association to access units

This subclause specifies the order of NAL units and coded pictures and association to access unit for coded video sequences that conform to one or more of the profiles specified in Annex A that are decoded using the decoding process specified in clauses 2-9.

An access unit consists of one primary coded picture, zero or more corresponding redundant coded pictures, and zero or more non-VCL NAL units. The association of VCL NAL units to primary or redundant coded pictures is described in subclause 7.4.1.2.5. 

The first access unit in the bitstream starts with the first NAL unit of the bitstream.

The first of any of the following NAL units after the last VCL NAL unit of a primary coded picture specifies the start of a new access unit:

–
access unit delimiter NAL unit (when present),

–
sequence parameter set NAL unit (when present),

–
picture parameter set NAL unit (when present),

–
SEI NAL unit (when present),

–
NAL units with nal_unit_type in the range of 14 to 18, inclusive (when present),

–
first VCL NAL unit of a primary coded picture (always present).

The constraints for the detection of the first VCL NAL unit of a primary coded picture are specified in subclause 7.4.1.2.4.

The following constraints shall be obeyed by the order of the coded pictures and non-VCL NAL units within an access unit:

–
When an access unit delimiter NAL unit is present, it shall be the first NAL unit. There shall be at most one access unit delimiter NAL unit in any access unit.

–
When any SEI NAL units are present, they shall precede the primary coded picture.

–
When an SEI NAL unit containing a buffering period SEI message is present, the buffering period SEI message shall be the first SEI message payload of the first SEI NAL unit in the access unit.

–
The primary coded picture shall precede the corresponding redundant coded pictures.

–
NAL units having nal_unit_type equal to 0, 12, or in the range of 20 to 31, inclusive, shall not precede the first VCL NAL unit of the primary coded picture.

NOTE 1 – Sequence parameter set NAL units or picture parameter set NAL units may be present in an access unit, but cannot follow the last VCL NAL unit of the primary coded picture within the access unit, as this condition would specify the start of a new access unit.

The structure of access units not containing any NAL units with nal_unit_type equal to 0, 7, 8, or in the range of 12 to 18, inclusive, or in the range of 20 to 31, inclusive, is shown in Figure 7‑1. [Ed. (TW):adjust text and figure]


[image: image16.wmf]Access unit delimiter

SEI

Primary coded picture

Redundant coded picture

End of sequence

End of stream

end

start

Auxiliary coded picture


Figure 7‑1 – Structure of an access unit not containing any NAL units with nal_unit_type equal to 0, 7, 8, 
or in the range of 12 to 18, inclusive, or in the range of 20 to 31, inclusive
7.4.1.2.4 Detection of the first VCL NAL unit of a primary coded picture

This subclause specifies constraints on VCL NAL unit syntax that are sufficient to enable the detection of the first VCL NAL unit of each primary coded picture for coded video sequences that conform to one or more of the profiles specified in Annex A that are decoded using the decoding process specified in clauses 2-9.

Any coded slice NAL unit or coded slice data partition A NAL unit of the primary coded picture of the current access unit shall be different from any coded slice NAL unit or coded slice data partition A NAL unit of the primary coded picture of the previous access unit in one or more of the following ways:

–
frame_num differs in value. The value of frame_num used to test this condition is the value of frame_num that appears in the syntax of the slice header, regardless of whether that value is inferred to have been equal to 0 for subsequent use in the decoding process due to the presence of memory_management_control_operation equal to 5.

NOTE 1 – A consequence of the above statement is that a primary coded picture having frame_num equal to 1 cannot contain a memory_management_control_operation equal to 5 unless some other condition listed below is fulfilled for the next primary coded picture that follows after it (if any).

–
pic_parameter_set_id differs in value.

–
nal_ref_idc differs in value with one of the nal_ref_idc values being equal to 0.

–
pic_order_cnt_type is equal to 0 for both and either pic_order_cnt_lsb differs in value, or delta_pic_order_cnt_bottom differs in value.

–
pic_order_cnt_type is equal to 1 for both and either delta_pic_order_cnt[ 0 ] differs in value, or delta_pic_order_cnt[ 1 ] differs in value.

–
IdrPicFlag differs in value.

–
IdrPicFlag is equal to 1 for both and idr_pic_id differs in value.

7.4.1.2.5 Order of VCL NAL units and association to coded pictures
[Ed. (TW): insert text]
7.4.2 Raw byte sequence payloads and RBSP trailing bits semantics
7.4.2.1 Sequence parameter set RBSP semantics
profile_idc and level_idc indicate the profile and level to which the coded video sequence conforms.

reserved_zero_8bits shall be equal to 0. Decoders shall ignore the value of reserved_zero_8bits.

seq_parameter_set_id identifies the sequence parameter set that is referred to by the picture parameter set. The value of seq_parameter_set_id shall be in the range of 0 to 31, inclusive.
pic_width_in_luma_samples specifies the width of each decoded picture in luma samples. The value of pic_width_in_luma_samples shall be in the range of 0 to 216-1, inclusive.
pic_height_in_luma_samples specifies the height of each decoded picture in luma samples. The value of pic_height_in_luma_samples shall be in the range of 0 to 216-1, inclusive.

bit_depth_luma_minus8 specifies the bit depth of the samples of the luma array and the value of the luma quantisation parameter range offset QpBdOffsetY, as specified by

BitDepthY      = 8 + bit_depth_luma_minus8

(7‑2)
QpBdOffsetY = 6 * bit_depth_luma_minus8

(7‑3)
bit_depth_luma_minus8 shall be in the range of 0 to 6, inclusive.

bit_depth_chroma_minus8 specifies the bit depth of the samples of the chroma arrays and the value of the chroma quantisation parameter range offset QpBdOffsetC, as specified by

BitDepthC      = 8 + bit_depth_chroma_minus8

(7‑4)
QpBdOffsetC = 6 * bit_depth_chroma_minus8

(7‑5)
bit_depth_chroma_minus8 shall be in the range of 0 to 6, inclusive.
log2_max_frame_num_minus4 specifies the value of the variable MaxFrameNum that is used in frame_num related derivations as follows:

MaxFrameNum = 2( log2_max_frame_num_minus4 + 4 )

(7‑6)
The value of log2_max_frame_num_minus4 shall be in the range of 0 to 12, inclusive.
pic_order_cnt_type specifies the method to decode picture order count (as specified in subclause XX). The value of pic_order_cnt_type shall be in the range of 0 to 2, inclusive. 

pic_order_cnt_type shall not be equal to 2 in a coded video sequence that contains an access unit containing a non-reference frame followed immediately by an access unit containing a non-reference picture,

log2_max_pic_order_cnt_lsb_minus4 specifies the value of the variable MaxPicOrderCntLsb that is used in the decoding process for picture order count as follows:

MaxPicOrderCntLsb = 2( log2_max_pic_order_cnt_lsb_minus4 + 4 )
(7‑7)
The value of log2_max_pic_order_cnt_lsb_minus4 shall be in the range of 0 to 12, inclusive.
delta_pic_order_always_zero_flag equal to 1 specifies that delta_pic_order_cnt[ 0 ] and delta_pic_order_cnt[ 1 ] are not present in the slice headers of the sequence and shall be inferred to be equal to 0. delta_pic_order_always_zero_flag equal to 0 specifies that delta_pic_order_cnt[ 0 ] is present in the slice headers of the sequence and delta_pic_order_cnt[ 1 ] may be present in the slice headers of the sequence.
offset_for_non_ref_pic is used to calculate the picture order count of a non-reference picture as specified in subclause XX. The value of offset_for_non_ref_pic shall be in the range of −231+1 to 231−1, inclusive.
num_ref_frames_in_pic_order_cnt_cycle is used in the decoding process for picture order count as specified in subclause XX. The value of num_ref_frames_in_pic_order_cnt_cycle shall be in the range of 0 to 255, inclusive.
offset_for_ref_frame[ i ] is an element of a list of num_ref_frames_in_pic_order_cnt_cycle values used in the decoding process for picture order count as specified in subclause XX. The value of offset_for_ref_frame[ i ] shall be in the range of −231+1 to 231−1, inclusive.

When pic_order_cnt_type is equal to 1, the variable ExpectedDeltaPerPicOrderCntCycle is derived by

ExpectedDeltaPerPicOrderCntCycle = 0
for( i = 0;  i < num_ref_frames_in_pic_order_cnt_cycle;  i++ )


ExpectedDeltaPerPicOrderCntCycle += offset_for_ref_frame[ i ]
(7‑8)
max_num_ref_frames specifies the maximum number of short-term and long-term reference frames, complementary reference field pairs, and non-paired reference fields that may be used by the decoding process for inter prediction of any picture in the sequence. max_num_ref_frames also determines the size of the sliding window operation. The value of max_num_ref_frames shall be in the range of 0 to MaxDpbFrames, inclusive.

gaps_in_frame_num_value_allowed_flag specifies the allowed values of frame_num and the decoding process in case of an inferred gap between values of frame_num.
log2_min_coding_block_size_minus3 specifies the minimum size of a coding block.

The variable Log2MinCUSize is set equal to log2_min_coding_block_size_minus3 + 3.
log2_diff_max_min_coding_block_size specifies the difference between the maximum and minimum coding block size.

The variable Log2MaxCUSize is set equal to log2_min_coding_block_size_minus 3 + 3 + log2_diff_max_min_coding_block_size.

log2_min_transform_block_size_minus2 specifies the minimum size of a transform block.

The variable Log2MinTrafoSize is set equal to log2_min_transform_block_size_minus2 + 2.
log2_diff_max_min_transform_block_size specifies the difference between the maximum and minimum transform size.

The variable Log2MaxTrafoSize is set equal to log2_min_transform_block_size_minus 2 + 2 + log2_diff_max_min_transform_block_size.

The bitstream shall not contain data that result in Log2MaxTrafoSize greater than Log2MaxCUSize.

max_transform_hierarchy_depth_intra specifies the maximum hierarchy depth for transform blocks of coding blocks coded in intra prediction mode.

Depending on profile_idc, the following applies:

–
If profile_idc is equal to "low-complexity profile", the value of max_transform_hierarchy_depth_intra shall be equal to 0.

–
Otherwise (profile_idc is not equal to "low-complexity profile"), the value of max_transform_hierarchy_depth_intra shall not be greater than 2.

max_transform_hierarchy_depth_inter specifies the maximum hierarchy depth for transform units of coding units coded in inter prediction mode.

Depending on profile_idc, the following applies:

–
If profile_idc is equal to "low-complexity profile", the value of max_transform_hierarchy_depth_inter shall not be greater than 1.

–
Otherwise (profile_idc is not equal to "low-complexity profile"), the value of max_transform_hierarchy_depth_inter shall not be greater than 2.
adaptive_loop_filter_enabled_flag equal to 1 specifies the adaptive loop filter process is applied to the reconstructed picture after the deblocking filter process.
cu_qp_delta_enabled_flag equal to 1 specifies cu_qp_delta presents in coding unit layer to further modify the value of QPY.
7.4.2.2 Picture parameter set RBSP semantics
pic_parameter_set_id identifies the picture parameter set that is referred to in the slice header. The value of pic_parameter_set_id shall be in the range of 0 to 255, inclusive.
seq_parameter_set_id refers to the active sequence parameter set. The value of seq_parameter_set_id shall be in the range of 0 to 31, inclusive.
entropy_coding_mode_flag selects the entropy decoding method to be applied for the syntax elements for which two descriptors appear in the syntax tables as follows.

–
If entropy_coding_mode_flag is equal to 0, the method specified by the left descriptor in the syntax table is applied.

–
Otherwise (entropy_coding_mode_flag is equal to 1), the method specified by the right descriptor in the syntax table is applied.

num_ref_idx_l0_default_active_minus1 specifies how num_ref_idx_l0_active_minus1 is inferred for P and B slices with num_ref_idx_active_override_flag equal to 0. The value of num_ref_idx_l0_default_active_minus1 shall be in the range of 0 to 31, inclusive. 

num_ref_idx_l1_default_active_minus1 specifies how num_ref_idx_l1_active_minus1 is inferred for B slices with num_ref_idx_active_override_flag equal to 0. The value of num_ref_idx_l1_default_active_minus1 shall be in the range of 0 to 31, inclusive.

pic_init_qp_minus26 specifies the initial value minus 26 of SliceQPY for each slice. The initial value is modified at the slice layer when a non-zero value of slice_qp_delta is decoded, and is modified further when a non-zero value of cu_qp_delta is decoded at the coding unit layer. The value of pic_init_qp_minus26 shall be in the range of −(26 + QpBdOffsetY ) to +25, inclusive.

constrained_intra_pred_flag equal to 0 specifies that intra prediction allows usage of residual data and decoded samples of neighbouring macroblocks coded using Inter macroblock prediction modes for the prediction of macroblocks coded using Intra macroblock prediction modes. constrained_intra_pred_flag equal to 1 specifies constrained intra prediction, in which case prediction of macroblocks coded using Intra macroblock prediction modes only uses residual data and decoded samples from I macroblock types.

7.4.2.3 Supplemental enhancement information RBSP semantics
Supplemental Enhancement Information (SEI) contains information that is not necessary to decode the samples of coded pictures from VCL NAL units.

7.4.2.3.1 Supplemental enhancement information message semantics

An SEI RBSP contains one or more SEI messages. Each SEI message consists of the variables specifying the type payloadType and size payloadSize of the SEI payload. SEI payloads are specified in Annex D. The derived SEI payload size payloadSize is specified in bytes and shall be equal to the number of RBSP bytes in the SEI payload. 

NOTE – The NAL unit byte sequence containing the SEI message might include one or more emulation prevention bytes (represented by emulation_prevention_three_byte syntax elements). Since the payload size of an SEI message is specified in RBSP bytes, the quantity of emulation prevention bytes is not included in the size payloadSize of an SEI payload.

ff_byte is a byte equal to 0xFF identifying a need for a longer representation of the syntax structure that it is used within.

last_payload_type_byte is the last byte of the payload type of an SEI message.

last_payload_size_byte is the last byte of the payload size of an SEI message.

7.4.2.4 Access unit delimiter RBSP semantics
The access unit delimiter may be used to indicate the type of slices present in a primary coded picture and to simplify the detection of the boundary between access units. There is no normative decoding process associated with the access unit delimiter.

primary_pic_type indicates that the slice_type values for all slices of the primary coded picture are members of the set listed in Table 7‑2 for the given value of primary_pic_type.

Table 7‑2 – Meaning of primary_pic_type

	primary_pic_type
	slice_type values that may be present in the primary coded picture

	0
	2

	1
	0, 2

	2
	0, 1, 2


7.4.2.5 Filler data RBSP semantics
The filler data RBSP contains bytes whose value shall be equal to 0xFF. No normative decoding process is specified for a filler data RBSP.

ff_byte is a byte equal to 0xFF.

7.4.2.6 Slice layer RBSP semantics
The slice layer RBSP consists of a slice header and slice data. 
[Ed. (TW): insert text]
7.4.2.7 RBSP slice trailing bits semantics
cabac_zero_word is a byte-aligned sequence of two bytes equal to 0x0000.

Let NumBytesInVclNALunits be the sum of the values of NumBytesInNALunit for all VCL NAL units of a coded picture.

Let BinCountsInNALunits be the number of times that the parsing process function DecodeBin( ), specified in subclause 9.3.3.2, is invoked to decode the contents of all VCL NAL units of a coded picture. When entropy_coding_mode_flag is equal to 1, BinCountsInNALunits shall not exceed ( 32 ÷ 3 ) * NumBytesInVclNALunits + ( RawMbBits * PicSizeInMbs ) ( 32.

NOTE – The constraint on the maximum number of bins resulting from decoding the contents of the slice layer NAL units can be met by inserting a number of cabac_zero_word syntax elements to increase the value of NumBytesInVclNALunits. Each cabac_zero_word is represented in a NAL unit by the three-byte sequence 0x000003 (as a result of the constraints on NAL unit contents that result in requiring inclusion of an emulation_prevention_three_byte for each cabac_zero_word).

7.4.2.8 RBSP trailing bits semantics
rbsp_stop_one_bit shall be equal to 1.

rbsp_alignment_zero_bit shall be equal to 0.

7.4.3 Slice header semantics

When present, the value of the slice header syntax elements pic_parameter_set_id, frame_num, field_pic_flag, bottom_field_flag, idr_pic_id, pic_order_cnt_lsb, delta_pic_order_cnt[ 0 ], delta_pic_order_cnt[ 1 ], and slice_group_change_cycle shall be the same in all slice headers of a coded picture. 

first_tb_in_slice specifies the address of the first treeblock in the slice.

The first treeblock address of the slice is derived as follows.

–
TBD.

entropy_slice_flag equal to 1 specifies the slice is an entropy slice. The entropy slice denotes that the entropy decoding process shall use an alternative definition of neighbor availability than the reconstruction process whereas entropy_slice_flag equal to 0 denotes that the entropy decoding and reconstruction processes shall use the same definition of neighbor availability. [Ed.: (WJ) needs to be clarified more]
slice_type specifies the coding type of the slice according to Table 7‑3.

Table 7‑3 – Name association to slice_type

	slice_type
	Name of slice_type

	0
	P (P slice)

	1
	B (B slice)

	2
	I (I slice)


When nal_unit_type is equal to 5 (IDR picture), slice_type shall be equal to 2.

When max_num_ref_frames is equal to 0, slice_type shall be equal to 2.

pic_parameter_set_id specifies the picture parameter set in use. The value of pic_parameter_set_id shall be in the range of 0 to 255, inclusive.

frame_num is used as an identifier for pictures and shall be represented by log2_max_frame_num_minus4 + 4 bits in the bitstream. frame_num is constrained as follows:

The variable PrevRefFrameNum is derived as follows.

–
If the current picture is an IDR picture, PrevRefFrameNum is set equal to 0.

–
Otherwise (the current picture is not an IDR picture), PrevRefFrameNum is set as follows.

–
If the decoding process for gaps in frame_num was invoked by the decoding process for an access unit that contained a non-reference picture that followed the previous access unit in decoding order that contained a reference picture, PrevRefFrameNum is set equal to the value of frame_num for the last of the "non-existing" reference frames inferred by the decoding process for gaps in frame_num.

–
Otherwise, PrevRefFrameNum is set equal to the value of frame_num for the previous access unit in decoding order that contained a reference picture.

The value of frame_num is constrained as follows.

–
If the current picture is an IDR picture, frame_num shall be equal to 0.

–
Otherwise (the current picture is not an IDR picture), referring to the primary coded picture in the previous access unit in decoding order that contains a reference picture as the preceding reference picture, the value of frame_num for the current picture shall not be equal to PrevRefFrameNum unless both of the following conditions are true.

–
the current picture and the preceding reference picture belong to consecutive access units in decoding order

–
one or more of the following conditions is true

–
the preceding reference picture is an IDR picture

–
the preceding reference picture includes a memory_management_control_operation syntax element equal to 5

NOTE 1 – When the preceding reference picture includes a memory_management_control_operation syntax element equal to 5, PrevRefFrameNum is equal to 0.

–
there is a primary coded picture that precedes the preceding reference picture and the primary coded picture that precedes the preceding reference picture does not have frame_num equal to PrevRefFrameNum

–
there is a primary coded picture that precedes the preceding reference picture and the primary coded picture that precedes the preceding reference picture is not a reference picture

When the value of frame_num is not equal to PrevRefFrameNum, the following applies.

–
There shall not be any previous frame in decoding order that is currently marked as "used for short-term reference" that has a value of frame_num equal to any value taken on by the variable UnusedShortTermFrameNum in the following:

UnusedShortTermFrameNum = ( PrevRefFrameNum + 1 ) % MaxFrameNum
while( UnusedShortTermFrameNum  !=  frame_num ) 


UnusedShortTermFrameNum = ( UnusedShortTermFrameNum + 1 ) % MaxFrameNum

–
The value of frame_num is constrained as follows.

–
If gaps_in_frame_num_value_allowed_flag is equal to 0, the value of frame_num for the current picture shall be equal to ( PrevRefFrameNum + 1 ) % MaxFrameNum.

–
Otherwise (gaps_in_frame_num_value_allowed_flag is equal to 1), the following applies.

–
If frame_num is greater than PrevRefFrameNum, there shall not be any non-reference pictures in the bitstream that follow the previous reference picture and precede the current picture in decoding order in which either of the following conditions is true.

–
The value of frame_num for the non-reference picture is less than PrevRefFrameNum.

–
The value of frame_num for the non-reference picture is greater than the value of frame_num for the current picture.

–
Otherwise (frame_num is less than PrevRefFrameNum), there shall not be any non-reference pictures in the bitstream that follow the previous reference picture and precede the current picture in decoding order in which both of the following conditions are true.

–
The value of frame_num for the non-reference picture is less than PrevRefFrameNum.

–
The value of frame_num for the non-reference picture is greater than the value of frame_num for the current picture.

A picture including a memory_management_control_operation equal to 5 shall have frame_num constraints as described above and, after the decoding of the current picture and the processing of the memory management control operations, the picture shall be inferred to have had frame_num equal to 0 for all subsequent use in the decoding process.

idr_pic_id identifies an IDR picture. The values of idr_pic_id in all the slices of an IDR picture shall remain unchanged. When two consecutive access units in decoding order are both IDR access units, the value of idr_pic_id in the slices of the first such IDR access unit shall differ from the idr_pic_id in the second such IDR access unit. The value of idr_pic_id shall be in the range of 0 to 65535, inclusive.

pic_order_cnt_lsb specifies the picture order count modulo MaxPicOrderCntLsb for the top field of a coded frame or for a coded field. The length of the pic_order_cnt_lsb syntax element is log2_max_pic_order_cnt_lsb_minus4 + 4 bits. The value of the pic_order_cnt_lsb shall be in the range of 0 to MaxPicOrderCntLsb − 1, inclusive.

num_ref_idx_active_override_flag equal to 1 specifies that the syntax element num_ref_idx_l0_active_minus1 is present for P and B slices and that the syntax element num_ref_idx_l1_active_minus1 is present for B slices. num_ref_idx_active_override_flag equal to 0 specifies that the syntax elements num_ref_idx_l0_active_minus1 and num_ref_idx_l1_active_minus1 are not present.

When the current slice is a P or B slice and field_pic_flag is equal to 0 and the value of num_ref_idx_l0_default_active_minus1 in the picture parameter set exceeds 15, num_ref_idx_active_override_flag shall be equal to 1.

When the current slice is a B slice and field_pic_flag is equal to 0 and the value of num_ref_idx_l1_default_active_minus1 in the picture parameter set exceeds 15, num_ref_idx_active_override_flag shall be equal to 1.

num_ref_idx_l0_active_minus1 specifies the maximum reference index for reference picture list 0 that shall be used to decode the slice. 

When the current slice is a P or B slice and num_ref_idx_l0_active_minus1 is not present, num_ref_idx_l0_active_minus1 shall be inferred to be equal to num_ref_idx_l0_default_active_minus1.

The range of num_ref_idx_l0_active_minus1 is specified as follows.p

–
If field_pic_flag is equal to 0, num_ref_idx_l0_active_minus1 shall be in the range of 0 to 15, inclusive. When MbaffFrameFlag is equal to 1, num_ref_idx_l0_active_minus1 is the maximum index value for the decoding of frame macroblocks and 2 * num_ref_idx_l0_active_minus1 + 1 is the maximum index value for the decoding of field macroblocks.

–
Otherwise (field_pic_flag is equal to 1), num_ref_idx_l0_active_minus1 shall be in the range of 0 to 31, inclusive. 

num_ref_idx_l1_active_minus1 specifies the maximum reference index for reference picture list 1 that shall be used to decode the slice. 

When the current slice is a B slice and num_ref_idx_l1_active_minus1 is not present, num_ref_idx_l1_active_minus1 shall be inferred to be equal to num_ref_idx_l1_default_active_minus1.

The range of num_ref_idx_l1_active_minus1 is constrained as specified in the semantics for num_ref_idx_l0_active_minus1 with l0 and list 0 replaced by l1 and list 1, respectively.

cabac_init_idc specifies the index for determining the initialisation table used in the initialisation process for context variables. The value of cabac_init_idc shall be in the range of 0 to 2, inclusive.

slice_qp_delta specifies the initial value of QPY to be used for all the macroblocks in the slice until modified by the value of cu_qp_delta in the coding unit layer. The initial QPY quantisation parameter for the slice is computed as

SliceQPY = 26 + pic_init_qp_minus26 + slice_qp_delta
(7‑9)

The value of slice_qp_delta shall be limited such that SliceQPY is in the range of −QpBdOffsetY to +51, inclusive.
collocated_from_l0_flag equal to 1 specifies the picture that contains the co-located partition shall be derived from list 0, otherwise the picture shall be derived from list 1.
7.4.3.1 Reference picture list modification semantics
The syntax elements modification_of_pic_nums_idc, abs_diff_pic_num_minus1, and long_term_pic_num specify the change from the initial reference picture lists to the reference picture lists to be used for decoding the slice.

ref_pic_list_modification_flag_l0 equal to 1 specifies that the syntax element modification_of_pic_nums_idc is present for specifying reference picture list 0. ref_pic_list_modification_flag_l0 equal to 0 specifies that this syntax element is not present.

When ref_pic_list_modification_flag_l0 is equal to 1, the number of times that modification_of_pic_nums_idc is not equal to 3 following ref_pic_list_modification_flag_l0 shall not exceed num_ref_idx_l0_active_minus1 + 1.

When RefPicList0[ num_ref_idx_l0_active_minus1 ] in the initial reference picture list produced as specified in subclause 8.2.2.2 is equal to "no reference picture", ref_pic_list_modification_flag_l0 shall be equal to 1 and modification_of_pic_nums_idc shall not be equal to 3 until RefPicList0[ num_ref_idx_l0_active_minus1 ] in the modified list produced as specified in subclause 8.2.2.3 is not equal to "no reference picture".

ref_pic_list_modification_flag_l1 equal to 1 specifies that the syntax element modification_of_pic_nums_idc is present for specifying reference picture list 1. ref_pic_list_modification_flag_l1 equal to 0 specifies that this syntax element is not present.

When ref_pic_list_modification_flag_l1 is equal to 1, the number of times that modification_of_pic_nums_idc is not equal to 3 following ref_pic_list_modification_flag_l1 shall not exceed num_ref_idx_l1_active_minus1 + 1.

When decoding a slice with slice_type equal to 1 or 6 and RefPicList1[ num_ref_idx_l1_active_minus1 ] in the initial reference picture list produced as specified in subclause 8.2.2.2 is equal to "no reference picture", ref_pic_list_modification_flag_l1 shall be equal to 1 and modification_of_pic_nums_idc shall not be equal to 3 until RefPicList1[ num_ref_idx_l1_active_minus1 ] in the modified list produced as specified in subclause 8.2.2.3 is not equal to "no reference picture". 

modification_of_pic_nums_idc together with abs_diff_pic_num_minus1 or long_term_pic_num specifies which of the reference pictures are re-mapped. The values of modification_of_pic_nums_idc are specified in Table 7‑4. The value of the first modification_of_pic_nums_idc that follows immediately after ref_pic_list_modification_flag_l0 or ref_pic_list_modification_flag_l1 shall not be equal to 3.

Table 7‑4 – modification_of_pic_nums_idc operations for modification of reference picture lists

	modification_of_pic_nums_idc
	modification specified

	0
	abs_diff_pic_num_minus1 is present and corresponds to a difference to subtract from a picture number prediction value

	1
	abs_diff_pic_num_minus1 is present and corresponds to a difference to add to a picture number prediction value

	2
	long_term_pic_num is present and specifies the long-term picture number for a reference picture

	3
	End loop for modification of the initial reference picture list


abs_diff_pic_num_minus1 plus 1 specifies the absolute difference between the picture number of the picture being moved to the current index in the list and the picture number prediction value. abs_diff_pic_num_minus1 shall be in the range of 0 to MaxPicNum − 1. The allowed values of abs_diff_pic_num_minus1 are further restricted as specified in subclause 8.2.2.3.1.

[Ed. (TW): clarify the following paragraph]

long_term_pic_num specifies the long-term picture number of the picture being moved to the current index in the list. When decoding a coded frame, long_term_pic_num shall be equal to a LongTermPicNum assigned to one of the reference frames or complementary reference field pairs marked as "used for long-term reference". When decoding a coded field, long_term_pic_num shall be equal to a LongTermPicNum assigned to one of the reference fields marked as "used for long-term reference".

7.4.3.2 Reference picture lists combination semantics

ref_pic_list_combination_flag equal to 1 indicates that the reference picture list 0 and the reference picture list 1 are combined to be an additional reference picture lists combination used for the prediction units being uni-directional predicted. This flag equal to 0 indicates that the reference picture list 0 and reference picture list 1 are identical thus reference picture list 0 is used as the reference picture lists combination. The reference picture lists combination is set to be empty at the start of the loop defined in this table. 

num_ref_idx lc_active_minus1+1 specifies the number of reference pictures selected from reference picture list 0 or reference picture list 1 in the reference picture lists combination. 

ref_pic_list_modification_flag_lc equal to 1 specifies that the syntax element pic_from_list_0_flag and ref_idx_list_curr are present for specifying the mapping for the entries of the reference picture lists combination to the entries of reference picture list 0 and reference picture list 1. 

ref_pic_list_modification_flag_lc equal to 0 specifies that these syntax elements are not present. The reference picture lists combination is initialized as specified in subsclause X.X.X.X.

pic_from_list_0_flag indicates the current reference picture added into the reference picture lists combination is from reference picture list 0 or reference picture list 1. When this flag is equal to 1, the picture is from the reference picture list 0, and the CurrRefPicList is reference picture list 0; when this flag is equal to 0, the picture is from the reference picture list 1, and the CurrRefPicList is reference picture list 1; 

ref_idx_list_curr indicates the reference index of the picture in the CurrRefPicList to be appended at the end of the reference picture lists combination.
7.4.3.3 Decoded reference picture marking semantics
[Ed. (TW): clarify the following paragraphs wrt frame/field/picture]

The syntax elements no_output_of_prior_pics_flag, long_term_reference_flag, adaptive_ref_pic_marking_mode_flag, memory_management_control_operation, difference_of_pic_nums_minus1, long_term_frame_idx, long_term_pic_num, and max_long_term_frame_idx_plus1 specify marking of the reference pictures. 

The marking of a reference picture can be "unused for reference", "used for short-term reference", or "used for long-term reference", but only one among these three. When a reference picture is referred to as being marked as "used for reference", this collectively refers to the picture being marked as "used for short-term reference" or "used for long-term reference" (but not both). A reference picture that is marked as "used for short-term reference" is referred to as a short‑term reference picture. A reference picture that is marked as "used for long-term reference" is referred to as a long‑term reference picture.
The content of the decoded reference picture marking syntax structure shall be the same in all slice headers of the primary coded picture. 

The syntax category of the decoded reference picture marking syntax structure shall be inferred as follows.

–
If the decoded reference picture marking syntax structure is in a slice header, the syntax category of the decoded reference picture marking syntax structure is inferred to be equal to 2.

–
Otherwise (the decoded reference picture marking syntax structure is in a decoded reference picture marking repetition SEI message as specified in Annex D), the syntax category of the decoded reference picture marking syntax structure is inferred to be equal to 5.

no_output_of_prior_pics_flag specifies how the previously-decoded pictures in the decoded picture buffer are treated after decoding of an IDR picture. When the IDR picture is the first IDR picture in the bitstream, the value of no_output_of_prior_pics_flag has no effect on the decoding process. When the IDR picture is not the first IDR picture in the bitstream and the value of PicWidthInMbs, FrameHeightInMbs, or max_dec_frame_buffering derived from the active sequence parameter set is different from the value of PicWidthInMbs, FrameHeightInMbs, or max_dec_frame_buffering derived from the sequence parameter set active for the preceding picture, no_output_of_prior_pics_flag equal to 1 may (but should not) be inferred by the decoder, regardless of the actual value of no_output_of_prior_pics_flag.

long_term_reference_flag equal to 0 specifies that the MaxLongTermFrameIdx variable is set equal to "no long-term picture indices" and that the IDR picture is marked as "used for short-term reference". long_term_reference_flag equal to 1 specifies that the MaxLongTermFrameIdx variable is set equal to 0 and that the current IDR picture is marked "used for long-term reference" and is assigned LongTermFrameIdx equal to 0. When max_num_ref_frames is equal to 0, long_term_reference_flag shall be equal to 0.

adaptive_ref_pic_marking_mode_flag selects the reference picture marking mode of the currently decoded picture as specified in Table 7‑5. adaptive_ref_pic_marking_mode_flag shall be equal to 1 when the number of pictures that are currently marked as "used for long-term reference" is equal to Max( max_num_ref_frames, 1 ).

Table 7‑5 – Interpretation of adaptive_ref_pic_marking_mode_flag

	adaptive_ref_pic_marking_mode_flag
	Reference picture marking mode specified

	0
	Sliding window reference picture marking mode: A marking mode providing a first-in first-out mechanism for short-term reference pictures.

	1
	Adaptive reference picture marking mode: A reference picture marking mode providing syntax elements to specify marking of reference pictures as "unused for reference" and to assign long-term frame indices.


memory_management_control_operation specifies a control operation to be applied to affect the reference picture marking. The memory_management_control_operation syntax element is followed by data necessary for the operation specified by the value of memory_management_control_operation. The values and control operations associated with memory_management_control_operation are specified in Table 7‑6. The memory_management_control_operation syntax elements are processed by the decoding process in the order in which they appear in the slice header, and the semantics constraints expressed for each memory_management_control_operation apply at the specific position in that order at which that individual memory_management_control_operation is processed.

memory_management_control_operation shall not be equal to 1 in a slice header unless the specified reference picture is marked as "used for short-term reference" when the memory_management_control_operation is processed by the decoding process.

memory_management_control_operation shall not be equal to 2 in a slice header unless the specified long-term picture number refers to a reference picture that is marked as "used for long-term reference" when the memory_management_control_operation is processed by the decoding process.

memory_management_control_operation shall not be equal to 3 in a slice header unless the specified reference picture is marked as "used for short-term reference" when the memory_management_control_operation is processed by the decoding process.

memory_management_control_operation shall not be equal to 3 or 6 if the value of the variable MaxLongTermFrameIdx is equal to "no long-term picture indices" when the memory_management_control_operation is processed by the decoding process.

Not more than one memory_management_control_operation equal to 4 shall be present in a slice header.

Not more than one memory_management_control_operation equal to 5 shall be present in a slice header.

Not more than one memory_management_control_operation equal to 6 shall be present in a slice header.

memory_management_control_operation shall not be equal to 5 in a slice header unless no memory_management_control_operation in the range of 1 to 3 is present in the same decoded reference picture marking syntax structure.

A memory_management_control_operation equal to 5 shall not follow a memory_management_control_operation equal to 6 in the same slice header.

When a memory_management_control_operation equal to 6 is present, any memory_management_control_operation equal to 2, 3, or 4 that follows the memory_management_control_operation equal to 6 within the same slice header shall not specify the current picture to be marked as "unused for reference".

NOTE 2 – These constraints prohibit any combination of multiple memory_management_control_operation syntax elements that would specify the current picture to be marked as "unused for reference". However, some other combinations of memory_management_control_operation syntax elements are permitted that may affect the marking status of other reference pictures more than once in the same slice header. In particular, it is permitted for a memory_management_control_operation equal to 3 that specifies a long-term frame index to be assigned to a particular short-term reference picture to be followed in the same slice header by a memory_management_control_operation equal to 2, 3, 4 or 6 that specifies the same reference picture to subsequently be marked as "unused for reference".

Table 7‑6 – Memory management control operation (memory_management_control_operation) values

	memory_management_control_operation
	Memory Management Control Operation

	0
	End memory_management_control_operation syntax element loop

	1
	Mark a short-term reference picture as
"unused for reference"

	2
	Mark a long-term reference picture as
"unused for reference"

	3
	Mark a short-term reference picture as
"used for long-term reference" and assign a long-term frame index to it

	4
	Specify the maximum long-term frame index and mark all long-term reference pictures having long-term frame indices greater than the maximum value as "unused for reference"

	5
	Mark all reference pictures as
"unused for reference" and set the MaxLongTermFrameIdx variable to
"no long-term frame indices"

	6
	Mark the current picture as
"used for long-term reference" and assign a long-term frame index to it


difference_of_pic_nums_minus1 is used (with memory_management_control_operation equal to 3 or 1) to assign a long-term frame index to a short-term reference picture or to mark a short-term reference picture as "unused for reference". When the associated memory_management_control_operation is processed by the decoding process, the resulting picture number derived from difference_of_pic_nums_minus1 shall be a picture number assigned to one of the reference pictures marked as "used for reference" and not previously assigned to a long-term frame index.

The resulting picture number shall be one of the set of picture numbers assigned to reference pictures.

long_term_pic_num is used (with memory_management_control_operation equal to 2) to mark a long-term reference picture as "unused for reference". When the associated memory_management_control_operation is processed by the decoding process, long_term_pic_num shall be equal to a long-term picture number assigned to one of the reference pictures that is currently marked as "used for long-term reference".

The resulting long-term picture number shall be one of the set of long-term picture numbers assigned to reference pictures.

long_term_frame_idx is used (with memory_management_control_operation equal to 3 or 6) to assign a long-term picture index to a picture. When the associated memory_management_control_operation is processed by the decoding process, the value of long_term_frame_idx shall be in the range of 0 to MaxLongTermFrameIdx, inclusive.

max_long_term_frame_idx_plus1 minus 1 specifies the maximum value of long-term picture index allowed for long‑term reference pictures (until receipt of another value of max_long_term_frame_idx_plus1). The value of max_long_term_frame_idx_plus1 shall be in the range of 0 to max_num_ref_frames, inclusive.

7.4.3.4 Adaptive loop filter parameter semantics

adaptive_loop_filter_flag specifies whether adaptive loop filter applies or not for the current slice.

alf_length_luma_minus5_div2 specifies the filter length in horizontal direction for the luma component alfTap used in the adaptive loop filter process as specified by
alfTap = ( alf_length_luma_minus5_div2 << 1 ) + 5

(7‑10)
The number of coded luma filter coefficients AlfCodedLengthLuma and the number of luma filter coefficients AlfLengthLuma are derived as follows:
· If alfTap is equal to 9,  [Ed.: (WJ) truncated diamond shape]
· AlfCodedLengthLuma = ( ( alfTap * alfTap ) >> 2 ) + 1
(7‑11)
· AlfLengthLuma = ( ( alfTap * alfTap ) >> 1 )

(7‑12)
· Otherwise (alfTap is less than 9), [Ed.: (WJ) diamond shape]
AlfCodedLengthLuma = ( ( alfTap * alfTap ) >> 2 ) + 2
(7‑13)
AlfLengthLuma = ( ( alfTap * alfTap ) >> 1 ) + 2

(7‑14)
alf_no_filters_minus1 plus 1 specifies the number of filter sets for the current slice.
alf_start_second_filter specifies the variance index of luma samples where the second filter is applied, when alf_no_filters_minus1 is equal to 1.

alf_filter_pattern[ i ] specifies the filter index array corresponding to i-th variance index of luma samples, when alf_no_filters_minus1 is greater than 1. The number of filter sets AlfNumFilters is derived as follows:

· If alf_no_filters_minus1 is less than 2,
AlfNumFilters = alf_no_filters_minus1 + 1

(7‑15)
· Otherwise (alf_no_filters_minus1 is greater than 2)
AlfNumFilters = (i alf_filter_pattern[ i ] with i = 0..15
(7‑15)
alf_pred_method specifies whether the filter coefficients are coded in a predictive way.
alf_min_kstart_minus1 plus 1 specifies the minimum order k of k-th order exponential golomb code for the luma filter coefficients for the adaptive loop filter.
alf_golomb_index_bit specifies the difference in order k of k-th order exponential golomb code for the different groups of the luma filter coefficients. Note that there are several groups of the luma filter coefficients where each group may have different order k.

alf_coeff_luma[ i ][ j ] specifies the j-th filter coefficient of i-th filter for the adaptive loop filtering process for luma samples.
alf_chroma_idc specifies which chroma components are to be filtered.

Table 7‑7 – Specification of alf_chroma_idc
	alf_chroma_idc
	chroma component to be filtered

	0
	None

	1
	Cr

	2
	Cb

	3
	Cb and Cr


alf_length_chroma_minus5_div2 specifies the filter length in horizontal direction for the luma component alfTapC used in the adaptive loop filter process as specified by

alfTapC = ( alf_length_chroma_minus5_div2 << 1 ) + 5
(7‑10)
The number of coded chroma filter coefficients AlfCodedLengthChroma and the number of chroma filter coefficients AlfLengthChroma are derived as follows:

AlfCodedLengthChroma = ( ( alfTapC * alfTapC – 1 ) >> 1 ) + 2
(7‑11)
AlfLengthChroma = ( alfTapC * alfTapC ) + 1

(7‑12)
alf_coeff_chroma[ i ] specifies the i-th filter coefficient for the adaptive loop filtering process for chroma samples.

alf_cu_control_flag specifies whether the adaptive loop filter process for luma component shall be applied adaptively according to the coding unit. If alf_cu_control_flag is equal to 1, the filtering process shall be applied only when alf_cu_flag is equal to 1, otherwise, the filtering process shall be applied to all luma samples in the current slice.
alf_cu_control_max_depth specifies the maximum split depth from treeblock for transmitting the flag indicating the application of the adaptive loop filter process.

alf_length_cu_control_info specifies the information of the number of alf_cu_flag succeeding this information. alf_length_cu_control_info shall present unless alf_cu_control_max_depth is 0, otherwise, it shall be inferred to be equal to 0. When The variable specifying the number of alf_cu_flag shall be computed as
NumAlfCuFlag = alf_length_cu_control_info + NumTBsInPicture
(7‑12)
[Ed.: (WJ) NumTBsInPicture should be dependent on multiple slice structure]
alf_cu_flag[i] specifies the information whether a coding unit is filtered when the adaptive loop filter is applied.
7.4.4 Slice data semantics

end_of_slice_flag equal to 0 specifies that another macroblock is following in the slice. end_of_slice_flag equal to 1 specifies the end of the slice and that no further macroblock follows.
7.4.5 Coding tree semantics

split_coding_unit_flag[ x0 ][ y0 ] specifies whether a coding unit is split into coding units with half horizontal and vertical size. The array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the picture.
When split_coding_unit_flag[ x0 ][ y0 ] is not present, the following applies:

–
If log2CUSize is greater than Log2MinCUSize, the value of split_coding_unit_flag[ x0 ][ y0 ] is inferred to be equal to 1.

–
Otherwise (log2CUSize is equal to Log2MinCUSize), the value of split_coding_unit_flag[ x0 ][ y0 ] is inferred to be equal to 0.
7.4.6 Coding unit semantics

skip_flag[ x0 ][ y0 ] equal to 1 specifies that for the current coding unit, when decoding a P or B slice, no more syntax elements except the motion vector predictor indices are parsed after skip_flag[ x0 ][ y0 ]. skip_flag[ x0 ][ y0 ] equal to 1 specifies that the coding unit is not skipped. The array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the picture.
When skip_flag[ x0 ][ y0 ] is not present, it shall be inferred to be equal to 0.
cu_qp_delta can change the value of QPY in the coding unit layer. The decoded value of cu_qp_delta shall be in the range of –( 26+ QpBdOffsetY / 2 ) to +( 25+ QpBdOffsetY / 2 ), inclusive. cu_qp_delta shall be inferred to be equal to 0 when it is not present for any coding unit.

The value of QPY is derived as

QPY = ( ( ( QPY,PREV + cu_qp_delta +52+ 2*QpBdOffsetY )%( 52 + QpBdOffsetY ) ) - QpBdOffsetY
(7‑10)
where QPY,PREV is the luma quantization parameter, QPY, of the previous treeblock in decoding order in the current slice. For the first treeblock in the slice QPY,PREV is initially set equal to SliceQPY at the start of each slice.
The value of QP’Y is derived as

QP’Y = QPY + QpBdOffsetY

(7‑11)
pred_type specifies prediction mode and partitioning type of the current coding unit. The semantics of pred_type depend on the slice type. The variables PredMode, PartMode and IntraSplitFlag are derived from the value of pred_type as defined in Table 7‑7. The value of pred_type shall not be equal to 3 or 5 when slice_type is equal to P or B and log2CUSize is greater than Log2MinCUSize. 

When pred_type is not present, the variables PredMode and PartMode are derived as follows.

· If slice_type is equal to I and log2CUSize is greater than Log2MinCUSize, 
· PredMode is inferred to be equal to MODE_INTRA

· PartMode is inferred to be equal to PART_2Nx2N

· IntraSplitFlag is inferred to be equal to 0
· Otherwise (slice_type is equal to P or B), if skip_flag[ x0 ][ y0 ] is equal to 1, 
· PredMode is inferred to be equal to MODE_SKIP
· PartMode is inferred to be equal to PART_2Nx2N
Table 7‑7 ‑ Name association to prediction mode and partitioning type

	slice_type
	pred_type
	IntraSplitFlag
	PredMode
	PartMode

	I
	0
	0
	MODE_INTRA
	PART_2Nx2N

	
	1
	1
	MODE_INTRA
	PART_NxN

	P or B
	0
	-
	MODE_INTER
	PART_2Nx2N

	
	1
	-
	MODE_INTER
	PART_2NxN

	
	2
	-
	MODE_INTER
	PART_Nx2N

	
	3
	-
	MODE_INTER
	PART_NxN

	
	4
	0
	MODE_INTRA
	PART_2Nx2N

	
	5
	1
	MODE_INTRA
	PART_NxN

	
	inferred
	-
	MODE_SKIP
	PART_2Nx2N


7.4.7 Prediction unit semantics
mvp_idx_l0[ x0 ][ y0 ] specifies the motion vector predictor index of list 0 where x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered prediction block relative to the top-left luma sample of the picture. 
When mvp_idx_l0[ x0 ][ y0 ] is not present, it shall be inferred to be equal to 0.
mvp_idx_l1[ x0 ][ y0 ] has the same semantics as mvp_idx_l0, with l0 and list 0 replaced by l1 and list 1, respectively.
mvp_idx_lc[ x0 ][ y0 ] has the same semantics as mvp_idx_l0, with l0 and list 0 replaced by lc and list combination, respectively.
prev_intra_luma_pred_flag[ x0 ][ y0 ] and rem_intra_luma_pred_mode[ x0 ][ y0 ] specifies the intra prediction mode of the ith prediction unit for luma samples with index i = 0 when IntraSplitFlag is equal to 0 or i =0..3 when IntraSplitFlag is equal to 1. When prev_intra_luma_pred_flag[ i ] is equal to 1, the intra prediction mode is inferred from a neighbouring intra-predicted prediction unit. The number of bins/bits indicating the rem_intra_luma_pred_mode[ i ] depends on the size of the prediction unit and limits the number of available prediction modes as follows:

	PuSize
	Bins/bins
	Number of

Modes

	PU_2x2
	1
	3

	PU_4x4
	4
	17

	PU_8x8
	5
	34

	PU_16x16
	5
	34

	PU_32x32
	5
	34

	PU_64x64
	2
	5

	PU_128x128
	2
	5


In the case of PU_8x8, PU_16x16 and PU_32x32 when all the 5 bins/bins are set to 1, an additional bin/bit is read to distinguish between modes 32 (the additional bin/bit set to 0) and 33 (the additional bin/bit set to 1).
[Ed: (BB) these semantics have to be revised]
merge_flag[ x0 ][ y0 ] specifies whether the inter prediction parameters for the current prediction unit are inferred from a neighbouring inter-predicted partition. The array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered prediction block relative to the top-left luma sample of the picture.
When merge_flag[ x0 ][ y0 ] is not present, it is inferred as follows.
–
If InferredMergeFlag is equal to 1, merge_flag[ x0][ y0] is inferred to be equal to 1 and NumMergeCand shall be greater than 0.
–
Otherwise, merge_flag[ x0][ y0] is inferred to be equal to 0.

merge_idx[ x0 ][ y0 ] specifies the merging candidate index of the merging candidate list where x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered prediction block relative to the top-left luma sample of the picture.
When merge_idx[ x0 ][ y0 ] is not present, it is inferred to be equal to 0.
inter_pred_idc[ x0 ][ y0 ] specifies whether uni-prediction, or bi-prediction is used for the current prediction unit according to Table 7‑8. The array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered prediction block relative to the top-left luma sample of the picture. 

Table 7‑8 – Name association to inter prediction mode

	slice_type
	inter_pred_idc
	Name of inter_pred_idc

	P
	inferred
	Pred_L0

	B
	0
	Pred_LC

	
	1
	Pred_BI


When inter_pred_idc[ x0 ][ y0 ] is not present, it shall be inferred to be equal to Pred_L0 when slice_type is equal to P and Pred_BI when slice_type is equal to B.

ref_idx_l0[ x0 ][ y0 ] specifies the list 0 reference picture index for the current prediction unit. The array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered prediction block relative to the top-left luma sample of the picture.
ref_idx_l1[ x0 ][ y0 ] has the same semantics as ref_idx_l0, with l0 and list 0 replaced by l1 and list 1, respectively.
ref_idx_lc[ x0 ][ y0 ] has the same semantics as ref_idx_l0, with l0 and list 0 replaced by lc and list combination, respectively.
mvd_l0[ x0 ][ y0 ][ compIdx ], specifies the difference between a list 0 vector component to be used and its prediction. The array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered prediction block relative to the top-left luma sample of the picture. The horizontal motion vector component difference is assigned compIdx = 0 and the vertical motion vector component is assigned compIdx = 1.
When any of the two components is not present, the inferred value is 0. 
mvd_l1[ x0 ][ y0 ][ compIdx ] has the same semantics as mvd_l0, with l0 and list 0 replaced by l1 and list 1, respectively.
mvd_lc[ x0 ][ y0 ][ compIdx ] has the same semantics as mvd_l0, with l0 and list 0 replaced by lc and list combination, respectively.
7.4.8 Transform tree semantics

no_residual_data_flag equal to 1 specifies that no residual data are present for the current coding unit. no_residual_data_flag equal to 0 specifies that residual data are present for the current coding unit.

When no_residual_data_flag is not present, its value shall be inferred to be equal to 0.

split_transform_flag[ x0 ][ y0 ][ trafoDepth ] specifies whether a block is split into blocks with half horizontal and vertical size for the purpose of transform coding. The array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered block relative to the top-left luma sample of the picture. The array index trafoDepth specifies the current subdivision level of a coding unit into blocks for the purpose of transform coding. trafoDepth is equal to 0 for blocks that correspond to coding units.

When split_transform_flag[ x0 ][ y0 ][ trafoDepth ] is not present, it is inferred as follows:

· If log2TrafoSize is greater than Log2MaxTrafoSize or intraSplitFlag is equal to 1, the value of split_transform_flag[ x0 ][ y0 ][ trafoDepth ] is inferred to be equal to 1.

· Otherwise (log2TrafoSize is less than or equal to Log2MaxTrafoSize and intraSplitFlag is equal to 0), the value of split_transform_flag[ x0 ][ y0 ][ trafoDepth ] is inferred to be equal to 0.

cbf_luma[ x0 ][ y0 ][ trafoDepth ] equal to 1 specifies that the luma transform block contains one or more transform coefficient levels not equal to 0. The array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered transform block relative to the top-left luma sample of the picture. The array index trafoDepth specifies the current subdivision level of a coding unit into blocks for the purpose of transform coding. trafoDepth is equal to 0 for blocks that correspond to coding units.
When cbf_luma[ x0 ][ y0 ][ trafoDepth ] is not present, it is inferred to be equal to 1.
cbf_cb[ x0 ][ y0 ][ trafoDepth ] equal to 1 specifies that the Cb transform block contains one or more transform coefficient levels not equal to 0. The array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered transform block relative to the top-left luma sample of the picture. The array index trafoDepth specifies the current subdivision level of a coding unit into blocks for the purpose of transform coding. trafoDepth is equal to 0 for blocks that correspond to coding units.

When cbf_cb[ x0 ][ y0 ][ trafoDepth ] is not present and PredMode is not equal to MODE_INTRA, the value of cbf_cb[ x0 ][ y0 ][ trafoDepth ] is inferred to be equal to 0.

cbf_cr[ x0 ][ y0 ][ trafoDepth ] equal to 1 specifies that the Cr transform block contains one or more transform coefficient levels not equal to 0. The array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered transform block relative to the top-left luma sample of the picture. The array index trafoDepth specifies the current subdivision level of a coding unit into blocks for the purpose of transform coding. trafoDepth is equal to 0 for blocks that correspond to coding units.

When cbf_cr[ x0 ][ y0 ][ trafoDepth ] is not present and PredMode is not equal to MODE_INTRA, the value of cbf_cr[ x0 ][ y0 ][ trafoDepth ] is inferred to be equal to 0.

cbp_yuv_root equal to 1 specifies that the coding unit contains at least one transform block with one or more transform coefficients not equal to 0.

cbp_luma[ trafoDepth] is a 4-bit value with each bit equal to cbf_luma of one of the four luma transform blocks at the subdivision level trafoDepth. The array index trafoDepth specifies the current subdivision level of a coding unit into blocks for the purpose of transform coding. trafoDepth is equal to 0 for blocks that correspond to coding units.

cbp_cb[ trafoDepth] is a 4-bit value with each bit equal to cbf_cb of one of the four cb transform blocks at the subdivision level trafoDepth. The array index trafoDepth specifies the current subdivision level of a coding unit into blocks for the purpose of transform coding. trafoDepth is equal to 0 for blocks that correspond to coding units.

cbp_cr[ trafoDepth] is a 4-bit value with each bit equal to cbf_cr of one of the four cr transform blocks at the subdivision level trafoDepth. The array index trafoDepth specifies the current subdivision level of a coding unit into blocks for the purpose of transform coding. trafoDepth is equal to 0 for blocks that correspond to coding units.

7.4.9 Transform coefficient semantics

The transform coefficient levels are parsed into the arrays transCoeffLevel[ x0 ][ y0 ][ trafoDepth ][ cIdx ][ n ]. The array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered transform block relative to the top-left luma sample of the picture. The array index trafoDepth specifies the current subdivision level of a coding unit into blocks for the purpose of transform coding. trafoDepth is equal to 0 for blocks that correspond to coding units. The array index cIdx specifies an indicator for the colour component; it is equal to 0 for luma, equal to 1 for Cb, and equal to 2 for Cr. The array index n specifies the scanning position of the transform coefficient levels.

8 Decoding process

Outputs of this process are decoded samples of the current picture (sometimes referred to by the variable CurrPic).

Depending on the value of chroma_format_idc, the number of sample arrays of the current picture is as follows.

–
If chroma_format_idc is equal to 0, the current picture consists of 1 sample array SL.

–
Otherwise (chroma_format_idc is not equal to 0), the current picture consists of 3 sample arrays SL, SCb, SCr.

This clause describes the decoding process, given syntax elements and upper-case variables from clause 7. 

The decoding process is specified such that all decoders shall produce numerically identical results. Any decoding process that produces identical results to the process described here conforms to the decoding process requirements of this Recommendation | International Standard.

Each picture referred to in this clause is a complete primary coded picture or part of a primary coded picture. Each slice referred to in this clause is a slice of a primary coded picture. Each slice data partition referred to in this clause is a slice data partition of a primary coded picture.

Depending on the value of separate_colour_plane_flag, the decoding process is structured as follows.

–
If separate_colour_plane_flag is equal to 0, the decoding process is invoked a single time with the current picture being the output.

–
Otherwise (separate_colour_plane_flag is equal to 1), the decoding process is invoked three times. Inputs to the decoding process are all NAL units of the primary coded picture with identical value of colour_plane_id. The decoding process of NAL units with a particular value of colour_plane_id is specified as if only a coded video sequence with monochrome colour format with that particular value of colour_plane_id would be present in the bitstream. The output of each of the three decoding processes is assigned to the 3 sample arrays of the current picture with the NAL units with colour_plane_id equal to 0 being assigned to SL, the NAL units with colour_plane_id equal to 1 being assigned to SCb, and the NAL units with colour_plane_id equal to 2 being assigned to SCr.

NOTE – The variable ChromaArrayType is derived as 0 when separate_colour_plane_flag is equal to 1 and chroma_format_idc is equal to 3. In the decoding process, the value of this variable is evaluated resulting in operations identical to that of monochrome pictures with chroma_format_idc being equal to 0.

An overview of the decoding process is given as follows:

1. The decoding of NAL units is specified in subclause 8.1.

2. The processes in subclause 8.2 specify decoding processes using syntax elements in the slice layer and above:

–
Variables and functions relating to picture order count are derived in subclause 8.2.1. (only needed to be invoked for one slice of a picture) 

–
[Ed. (TW): clarify the following paragraph] When the frame_num of the current picture is not equal to PrevRefFrameNum and is not equal to ( PrevRefFrameNum + 1 ) % MaxFrameNum, the decoding process for gaps in frame_num is performed according to subclause 8.2.3.2 prior to the decoding of any slices of the current picture.

–
At the beginning of the decoding process for each P, SP, or B slice, the decoding process for reference picture lists construction specified in subclause 8.2.2 is invoked for derivation of reference picture list 0 (RefPicList0), and when decoding a B slice, reference picture list 1 (RefPicList1).

–
When the current picture is a reference picture and after all slices of the current picture have been decoded, the decoded reference picture marking process in subclause 8.2.2.4 specifies how the current picture is used in the decoding process of inter prediction in later decoded pictures.

3. The processes in subclauses 8.3, ABC specify decoding processes using syntax elements in the treeblock layer and above.

[Ed. (TW): insert corresponding text]
8.1 NAL unit decoding process

Inputs to this process are NAL units.

Outputs of this process are the RBSP syntax structures encapsulated within the NAL units.

The decoding process for each NAL unit extracts the RBSP syntax structure from the NAL unit and then operates the decoding processes specified for the RBSP syntax structure in the NAL unit as follows.

Subclause 8.2 describes the decoding process for NAL units with nal_unit_type equal to 1 and 5.

NAL units with nal_unit_type equal to 7 and 8 contain sequence parameter sets and picture parameter sets, respectively. Picture parameter sets are used in the decoding processes of other NAL units as determined by reference to a picture parameter set within the slice headers of each picture. Sequence parameter sets are used in the decoding processes of other NAL units as determined by reference to a sequence parameter set within the picture parameter sets of each sequence.

8.2 Slice decoding process

8.2.1 Decoding process for picture order count

[Ed. (TW): clarify the following paragraphs]

8.2.1.1 Decoding process for picture order count type 0
8.2.1.2 Decoding process for picture order count type 1
8.2.1.3 Decoding process for picture order count type 2
8.2.2 Decoding process for reference picture lists construction

[Ed. (TW): clarify the following paragraphs]

This process is invoked at the beginning of the decoding process for each P, SP, or B slice.

Decoded reference pictures are marked as "used for short-term reference" or "used for long-term reference" as specified by the bitstream and specified in subclause 8.2.2.4. Short-term reference pictures are identified by the value of frame_num. Long-term reference pictures are assigned a long-term picture index as specified by the bitstream and specified in subclause 8.2.2.4.

Subclause 8.2.2.1 is invoked to specify

–
the assignment of variables FrameNum, FrameNumWrap, and PicNum to each of the short-term reference pictures, and

–
the assignment of variable LongTermPicNum to each of the long-term reference pictures.

Reference pictures are addressed through reference indices as specified in subclause Error! Reference source not found.. A reference index is an index into a reference picture list. When decoding a P or SP slice, there is a single reference picture list RefPicList0. When decoding a B slice, there is a second independent reference picture list RefPicList1 in addition to RefPicList0.

At the beginning of the decoding process for each slice, reference picture list RefPicList0, and for B slices RefPicList1, are derived as specified by the following ordered steps:

1. An initial reference picture list RefPicList0 and for B slices RefPicList1 are derived as specified in subclause 8.2.2.2.

2. When ref_pic_list_modification_flag_l0 is equal to 1 or, when decoding a B slice, ref_pic_list_modification_flag_l1 is equal to 1, the initial reference picture list RefPicList0 and, for B slices, RefPicList1 are modified as specified in subclause 8.2.2.3.

NOTE – The modification process for reference picture lists specified in subclause 8.2.2.3 allows the contents of RefPicList0 and for B slices RefPicList1 to be modified in a flexible fashion. In particular, it is possible for a picture that is currently marked "used for reference" to be inserted into RefPicList0 and for B slices RefPicList1 even when the picture is not in the initial reference picture list derived as specified in subclause 8.2.2.2.

The number of entries in the modified reference picture list RefPicList0 is num_ref_idx_l0_active_minus1 + 1, and for B slices the number of entries in the modified reference picture list RefPicList1 is num_ref_idx_l1_active_minus1 + 1. A reference picture may appear at more than one index in the modified reference picture lists RefPicList0 or RefPicList1.

8.2.2.1 Decoding process for picture numbers
This process is invoked when the decoding process for reference picture lists construction specified in subclause 8.2.2, the decoded reference picture marking process specified in subclause 8.2.2.4, or the decoding process for gaps in frame_num specified in subclause 8.2.3.2 is invoked.

The variables FrameNum, FrameNumWrap, PicNum, LongTermFrameIdx, and LongTermPicNum are used for the initialisation process for reference picture lists in subclause 8.2.2.2, the modification process for reference picture lists in subclause 8.2.2.3, the decoded reference picture marking process in subclause 8.2.2.4, and the decoding process for gaps in frame_num in subclause 8.2.3.2.

To each short-term reference picture the variables FrameNum and FrameNumWrap are assigned as follows. First, FrameNum is set equal to the syntax element frame_num that has been decoded in the slice header(s) of the corresponding short-term reference picture. Then the variable FrameNumWrap is derived as

if( FrameNum > frame_num )

FrameNumWrap = FrameNum − MaxFrameNum

(8‑1)
else

FrameNumWrap = FrameNum

where the value of frame_num used in Equation 8‑1 is the frame_num in the slice header(s) for the current picture. 

Each long-term reference picture has an associated value of LongTermFrameIdx (that was assigned to it as specified in subclause 8.2.2.4).

To each short-term reference picture a variable PicNum is assigned, and to each long-term reference picture a variable LongTermPicNum is assigned. 

PicNum = FrameNumWrap

(8‑2)

LongTermPicNum = LongTermFrameIdx
(8‑3)

8.2.2.2 Initialisation process for reference picture lists
This initialisation process is invoked when decoding a P or B slice header. 

RefPicList0 and RefPicList1 have initial entries as specified in subclauses 8.2.2.2.1 through 8.2.2.2.2.

When the number of entries in the initial RefPicList0 or RefPicList1 produced as specified in subclauses 8.2.2.2.1 through 8.2.2.2.2 is greater than num_ref_idx_l0_active_minus1 + 1 or num_ref_idx_l1_active_minus1 + 1, respectively, the extra entries past position num_ref_idx_l0_active_minus1 or num_ref_idx_l1_active_minus1 are discarded from the initial reference picture list. 

When the number of entries in the initial RefPicList0 or RefPicList1 produced as specified in subclauses 8.2.2.2.1 through 8.2.2.2.2 is less than num_ref_idx_l0_active_minus1 + 1 or num_ref_idx_l1_active_minus1 + 1, respectively, the remaining entries in the initial reference picture list are set equal to "no reference picture".

8.2.2.2.1 Initialisation process for the reference picture list for P slices 

This initialisation process is invoked when decoding a P slice in a coded picture.

When this process is invoked, there shall be at least one reference picture that is currently marked as "used for reference" (i.e., as "used for short-term reference" or "used for long-term reference") and is not marked as "non-existing".

The reference picture list RefPicList0 is ordered so that short-term reference pictures have lower indices than long-term reference pictures.

The short-term reference pictures are ordered starting with the picture with the highest PicNum value and proceeding through in descending order to the picture with the lowest PicNum value.

The long-term reference pictures are ordered starting with the picture with the lowest LongTermPicNum value and proceeding through in ascending order to the picture with the highest LongTermPicNum value.

For example, when three reference pictures are marked as "used for short-term reference" with PicNum equal to 300, 302, and 303 and two reference pictures are marked as "used for long-term reference" with LongTermPicNum equal to 0 and 3, the initial index order is:

–
RefPicList0[0] is set equal to the short-term reference picture with PicNum = 303,

–
RefPicList0[1] is set equal to the short-term reference picture with PicNum = 302,

–
RefPicList0[2] is set equal to the short-term reference picture with PicNum = 300,

–
RefPicList0[3] is set equal to the long-term reference picture with LongTermPicNum = 0,

–
RefPicList0[4] is set equal to the long-term reference picture with LongTermPicNum = 3.

8.2.2.2.2 Initialisation process for reference picture lists for B slices

This initialisation process is invoked when decoding a B slice in a coded picture.

For purposes of the formation of the reference picture lists RefPicList0 and RefPicList1 the term reference entry refers in the following to decoded reference pictures.

When this process is invoked, there shall be at least one reference entry that is currently marked as "used for reference" (i.e., as "used for short-term reference" or "used for long-term reference") and is not marked as "non-existing".

For B slices, the order of short-term reference entries in the reference picture lists RefPicList0 and RefPicList1 depends on output order, as given by PicOrderCnt( ). When pic_order_cnt_type is equal to 0, reference pictures that are marked as "non-existing" as specified in subclause 8.2.3.2 are not included in either RefPicList0 or RefPicList1.

NOTE 1 – When gaps_in_frame_num_value_allowed_flag is equal to 1, encoders should use reference picture list modification to ensure proper operation of the decoding process (particularly when pic_order_cnt_type is equal to 0, in which case PicOrderCnt( ) is not inferred for "non-existing" pictures).

The reference picture list RefPicList0 is ordered such that short-term reference entries have lower indices than long-term reference entries. It is ordered as follows:

1. Let entryShortTerm be a variable ranging over all reference entries that are currently marked as "used for short‑term reference". When some values of entryShortTerm are present having PicOrderCnt( entryShortTerm ) less than PicOrderCnt( CurrPic ), these values of entryShortTerm are placed at the beginning of refPicList0 in descending order of PicOrderCnt( entryShortTerm ). All of the remaining values of entryShortTerm (when present) are then appended to refPicList0 in ascending order of PicOrderCnt( entryShortTerm ).

2. The long-term reference entries are ordered starting with the long-term reference entry that has the lowest LongTermPicNum value and proceeding through in ascending order to the long-term reference entry that has the highest LongTermPicNum value.

The reference picture list RefPicList1 is ordered so that short-term reference entries have lower indices than long-term reference entries. It is ordered as follows:

1. Let entryShortTerm be a variable ranging over all reference entries that are currently marked as "used for short‑term reference". When some values of entryShortTerm are present having PicOrderCnt( entryShortTerm ) greater than PicOrderCnt( CurrPic ), these values of entryShortTerm are placed at the beginning of refPicList1 in ascending order of PicOrderCnt( entryShortTerm ). All of the remaining values of entryShortTerm (when present) are then appended to refPicList1 in descending order of PicOrderCnt( entryShortTerm ).

2. Long-term reference entries are ordered starting with the long-term reference picture that has the lowest LongTermPicNum value and proceeding through in ascending order to the long‑term reference entry that has the highest LongTermPicNum value.

3. When the reference picture list RefPicList1 has more than one entry and RefPicList1 is identical to the reference picture list RefPicList0, the first two entries RefPicList1[ 0 ] and RefPicList1[ 1 ] are switched.

8.2.2.3 Modification process for reference picture lists
When ref_pic_list_modification_flag_l0 is equal to 1, the following applies:

1. Let refIdxL0 be an index into the reference picture list RefPicList0. It is initially set equal to 0.

2. The corresponding syntax elements modification_of_pic_nums_idc are processed in the order they occur in the bitstream. For each of these syntax elements, the following applies.

–
If modification_of_pic_nums_idc is equal to 0 or equal to 1, the process specified in subclause 8.2.2.3.1 is invoked with refIdxL0 as input, and the output is assigned to refIdxL0.

–
Otherwise, if modification_of_pic_nums_idc is equal to 2, the process specified in subclause 8.2.2.3.2 is invoked with refIdxL0 as input, and the output is assigned to refIdxL0.

–
Otherwise (modification_of_pic_nums_idc is equal to 3), the modification process for reference picture list RefPicList0 is finished.

When the current slice is a B slice and ref_pic_list_modification_flag_l1 is equal to 1, the following applies:

1. Let refIdxL1 be an index into the reference picture list RefPicList1. It is initially set equal to 0.

2. The corresponding syntax elements modification_of_pic_nums_idc are processed in the order they occur in the bitstream. For each of these syntax elements, the following applies.

–
If modification_of_pic_nums_idc is equal to 0 or equal to 1, the process specified in subclause 8.2.2.3.1 is invoked with refIdxL1 as input, and the output is assigned to refIdxL1.

–
Otherwise, if modification_of_pic_nums_idc is equal to 2, the process specified in subclause 8.2.2.3.2 is invoked with refIdxL1 as input, and the output is assigned to refIdxL1.

–
Otherwise (modification_of_pic_nums_idc is equal to 3), the modification process for reference picture list RefPicList1 is finished.

8.2.2.3.1 Modification process of reference picture lists for short-term reference pictures

Input to this process is an index refIdxLX (with X being 0 or 1).

Output of this process is an incremented index refIdxLX.

The variable picNumLXNoWrap is derived as follows.

–
If modification_of_pic_nums_idc is equal to 0,

if( picNumLXPred − ( abs_diff_pic_num_minus1 + 1 ) < 0 )

picNumLXNoWrap = picNumLXPred − ( abs_diff_pic_num_minus1 + 1 ) + MaxPicNum
(8‑4)
else

picNumLXNoWrap = picNumLXPred − ( abs_diff_pic_num_minus1 + 1 )

–
Otherwise (modification_of_pic_nums_idc is equal to 1),

if( picNumLXPred + ( abs_diff_pic_num_minus1 + 1 )  >=  MaxPicNum )

picNumLXNoWrap = picNumLXPred + ( abs_diff_pic_num_minus1 + 1 ) − MaxPicNum
(8‑5)
else

picNumLXNoWrap = picNumLXPred + ( abs_diff_pic_num_minus1 + 1 )

picNumLXPred is the prediction value for the variable picNumLXNoWrap. When the process specified in this subclause is invoked the first time for a slice (that is, for the first occurrence of modification_of_pic_nums_idc equal to 0 or 1 in the ref_pic_list_modification( ) syntax), picNumL0Pred and picNumL1Pred are initially set equal to CurrPicNum. After each assignment of picNumLXNoWrap, the value of picNumLXNoWrap is assigned to picNumLXPred.

The variable picNumLX is derived as specified by the following pseudo-code:

if( picNumLXNoWrap > CurrPicNum )

picNumLX = picNumLXNoWrap − MaxPicNum
(8‑6)
else

picNumLX = picNumLXNoWrap

picNumLX shall be equal to the PicNum of a reference picture that is marked as "used for short-term reference" and shall not be equal to the PicNum of a short-term reference picture that is marked as "non-existing".
The following procedure is conducted to place the picture with short-term picture number picNumLX into the index position refIdxLX, shift the position of any other remaining pictures to later in the list, and increment the value of refIdxLX.

for( cIdx = num_ref_idx_lX_active_minus1 + 1; cIdx > refIdxLX; cIdx− − )

RefPicListX[ cIdx ] = RefPicListX[ cIdx − 1]
RefPicListX[ refIdxLX++ ] = short-term reference picture with PicNum equal to picNumLX
nIdx = refIdxLX
for( cIdx = refIdxLX; cIdx <= num_ref_idx_lX_active_minus1 + 1; cIdx++ ) 
(8‑7)

if( PicNumF( RefPicListX[ cIdx ] ) != picNumLX )


RefPicListX[ nIdx++ ] = RefPicListX[ cIdx ]

where the function PicNumF( RefPicListX[ cIdx ] ) is derived as follows.

–
If the picture RefPicListX[ cIdx ] is marked as "used for short-term reference", PicNumF( RefPicListX[ cIdx ] ) is the PicNum of the picture RefPicListX[ cIdx ].

–
Otherwise (the picture RefPicListX[ cIdx ] is not marked as "used for short-term reference"), PicNumF( RefPicListX[ cIdx ] ) is equal to MaxPicNum.

NOTE 1 – A value of MaxPicNum can never be equal to picNumLX.

NOTE 2 – Within this pseudo-code procedure, the length of the list RefPicListX is temporarily made one element longer than the length needed for the final list. After the execution of this procedure, only elements 0 through num_ref_idx_lX_active_minus1 of the list need to be retained.

8.2.2.3.2 Modification process of reference picture lists for long-term reference pictures

Input to this process is an index refIdxLX (with X being 0 or 1).

Output of this process is an incremented index refIdxLX.

The following procedure is conducted to place the picture with long-term picture number long_term_pic_num into the index position refIdxLX, shift the position of any other remaining pictures to later in the list, and increment the value of refIdxLX.

for( cIdx = num_ref_idx_lX_active_minus1 + 1; cIdx > refIdxLX; cIdx− − )

RefPicListX[ cIdx ] = RefPicListX[ cIdx − 1]
RefPicListX[ refIdxLX++ ] = long-term reference picture with LongTermPicNum equal to long_term_pic_num
nIdx = refIdxLX
for( cIdx = refIdxLX; cIdx <= num_ref_idx_lX_active_minus1 + 1; cIdx++ )
(8‑8)

if( LongTermPicNumF( RefPicListX[ cIdx ] ) != long_term_pic_num )


RefPicListX[ nIdx++ ] = RefPicListX[ cIdx ]

where the function LongTermPicNumF( RefPicListX[ cIdx ] ) is derived as follows.

–
If the picture RefPicListX[ cIdx ] is marked as "used for long-term reference", LongTermPicNumF( RefPicListX[ cIdx ] ) is the LongTermPicNum of the picture RefPicListX[ cIdx ].

–
Otherwise (the picture RefPicListX[ cIdx ] is not marked as "used for long-term reference"), LongTermPicNumF( RefPicListX[ cIdx ] ) is equal to 2 * ( MaxLongTermFrameIdx + 1 ).

NOTE 1 – A value of 2 * ( MaxLongTermFrameIdx + 1 ) can never be equal to long_term_pic_num.

NOTE 2 – Within this pseudo-code procedure, the length of the list RefPicListX is temporarily made one element longer than the length needed for the final list. After the execution of this procedure, only elements 0 through num_ref_idx_lX_active_minus1 of the list need to be retained.

8.2.2.4 Mapping process for reference picture lists combination in B slices

[Ed.: (WJ) needs to be checked once again. Try to find better way to represent]

This initialization process is invoked when decoding a B slice header.

Input to this process are the reference picture list RefPicListX and num_ref_idx_lX_active_minus1 with X being 0 or 1.
Outputs of this process are arrays PredLCToPredLx and RefIdxLCToRefIdxLx.

When the current slice is a B slice and ref_pic_list_modification_flag_lc is equal to 0, the following ordered steps apply:
1. Let refIdxL0 and refIdxL1 be indices into the reference picture lists RefPicListL0 and RefPicListL1. They are initially set equal to 0.
2. Let refIdxLC be an index into PredLCToPredLx and RefIdxLCToRefIdxLx. It is initially set equal to 0.
3. The following process is repeated until refIdxL0 and refIdxL1 are both greater than num_ref_idx_l0_active_minus1 and num_ref_idx_l1_active_minus1, respectively:

–
If refIdxL0 is less than or equal to num_ref_idx_l0_active_minus1,
–
If the entry RefPicListL0[ refIdxL0 ] is the first occurance of the reference picture, 




PredLCToPredLx[ refIdxLC ] = Pred_L0, 
(8‑9)



RefIdxLCToRefIdxLx[ refIdxLC++ ] = refIdxL0.
–
refIdxL0++.

–
If refIdxL1 is less than or equal to num_ref_idx_l1_active_minus1 and ref_pic_list_combination_flag equal to 1,
–
If the entry RefPicListL1[ refIdxL1 ] is the first occurance of the reference picture, 




PredLCToPredLx[ refIdxLC ] = Pred_L1, 
(8‑10)


RefIdxLCToRefIdxLx[ refIdxLC++ ] = refIdxL1.
–
refIdxL1++.
When the current slice is a B slice and ref_pic_list_modification_flag_lc is equal to 1, the following ordered steps apply:

1. Let refIdxLC be an index into the reference picture list PredLCToPredLx and RefIdxLCToRefIdxLx. It is initially set equal to 0.
2. The corresponding syntax elements pic_from_list_0_flag and ref_idx_list_curr are processed in the order they occur in the bitstream. For each of these syntax elements pairs, the following applies.
–
If pic_from_list_0_flag is equal to 1,


PredLCToPredLx[ refIdxLC ] = Pred_L0, 
(8‑11)

–
Otherwise,



PredLCToPredLx[ refIdxLC ] = Pred_L1
(8‑12)
–
RefIdxLCToRefIdxLx[ refIdxLC++ ] = ref_idx_list_curr
When refIdxLC is greater than num_com_ref_list_active_minus1+ 1, the extra entries past position num_com_ref_list_active_minus1 are discarded from PredLCToPredLx and RefIdxLCToRefIdxLx. 

When refIdxLC is less than num_com_ref_list_active_minus1 + 1, the remaining entries in PredLCToPredLx and RefIdxLCToRefIdxLx are set equal to Pred_L0 and 0, respectively.
8.2.3 Decoded reference picture marking process

This process is invoked for decoded pictures when nal_ref_idc is not equal to 0.

NOTE 1 – The decoding process for gaps in frame_num that is specified in subclause 8.2.3.2 may also be invoked when nal_ref_idc is equal to 0, as specified in clause 0.

A decoded picture with nal_ref_idc not equal to 0, referred to as a reference picture, is marked as "used for short-term reference" or "used for long-term reference". A picture that is marked as "used for short-term reference" is identified by its FrameNum. A picture that is marked as "used for long-term reference" is identified by its LongTermFrameIdx.

Pictures marked as "used for short-term reference" or as "used for long-term reference" can be used as a reference for inter prediction when decoding a picture until the picture is marked as "unused for reference". 

A picture can be marked as "unused for reference" by the sliding window reference picture marking process, a first-in, first-out mechanism specified in subclause 8.2.3.3 or by the adaptive memory control reference picture marking process, a customised adaptive marking operation specified in subclause 8.2.3.4.

A short-term reference picture is identified for use in the decoding process by its variables FrameNum and FrameNumWrap and its picture number PicNum, and a long-term reference picture is identified for use in the decoding process by its long-term picture number LongTermPicNum. When the current picture is not an IDR picture, subclause 8.2.2.1 is invoked to specify the assignment of the variables FrameNum, FrameNumWrap, PicNum and LongTermPicNum.

8.2.3.1 Sequence of operations for decoded reference picture marking process
Decoded reference picture marking proceeds in the following ordered steps:

4. All slices of the current picture are decoded.

5. Depending on whether the current picture is an IDR picture, the following applies.

–
If the current picture is an IDR picture, the following ordered steps are specified:

a. All reference pictures are marked as "unused for reference"

b. Depending on long_term_reference_flag, the following applies.

–
If long_term_reference_flag is equal to 0, the IDR picture is marked as "used for short-term reference" and MaxLongTermFrameIdx is set equal to "no long-term picture indices".

–
Otherwise (long_term_reference_flag is equal to 1), the IDR picture is marked as "used for long‑term reference", the LongTermFrameIdx for the IDR picture is set equal to 0, and MaxLongTermFrameIdx is set equal to 0.

–
Otherwise (the current picture is not an IDR picture), the following applies.

–
If adaptive_ref_pic_marking_mode_flag is equal to 0, the process specified in subclause 8.2.3.3 is invoked.

–
Otherwise (adaptive_ref_pic_marking_mode_flag is equal to 1), the process specified in subclause 8.2.3.4 is invoked.

6. When the current picture is not an IDR picture and it was not marked as "used for long-term reference" by memory_management_control_operation equal to 6, it is marked as "used for short-term reference".

It is a requirement of bitstream conformance that, after marking the current decoded reference picture, the total number of pictures marked as "used for reference" shall not be greater than Max( max_num_ref_frames, 1 ).

8.2.3.2 Decoding process for gaps in frame_num
[Ed. (TW): insert text]

8.2.3.3 Sliding window decoded reference picture marking process
This process is invoked when adaptive_ref_pic_marking_mode_flag is equal to 0.

Depending on the properties of the current picture as specified below, the following applies.

1. Let numShortTerm be the total number of reference pictures that are marked as "used for short-term reference". Let numLongTerm be the total number of reference pictures that are marked as "used for long-term reference".

2. When numShortTerm + numLongTerm is equal to Max( max_num_ref_frames, 1 ), the condition that numShortTerm is greater than 0 shall be fulfilled, and the short-term reference picture that has the smallest value of FrameNumWrap is marked as "unused for reference". 

8.2.3.4 Adaptive memory control decoded reference picture marking process
This process is invoked when adaptive_ref_pic_marking_mode_flag is equal to 1.

The memory_management_control_operation commands with values of 1 to 6 are processed in the order they occur in the bitstream after the current picture has been decoded. For each of these memory_management_control_operation commands, one of the processes specified in subclauses 8.2.3.4.1 to 8.2.3.4.6 is invoked depending on the value of memory_management_control_operation. The memory_management_control_operation command with value of 0 specifies the end of memory_management_control_operation commands.

8.2.3.4.1 Marking process of a short-term reference picture as "unused for reference"

This process is invoked when memory_management_control_operation is equal to 1.

Let picNumX be specified by

picNumX = CurrPicNum − ( difference_of_pic_nums_minus1 + 1 ). 
(8‑13)

The value of picNumX is used to mark the corresponding short-term reference picture as "unused for reference".

8.2.3.4.2 Marking process of a long-term reference picture as "unused for reference"

This process is invoked when memory_management_control_operation is equal to 2.

The value of LongTermPicNum is used to mark the corresponding long-term reference picture as "unused for reference".

8.2.3.4.3 Assignment process of a LongTermFrameIdx to a short-term reference picture

This process is invoked when memory_management_control_operation is equal to 3.

Given the syntax element difference_of_pic_nums_minus1, the variable picNumX is obtained as specified in subclause 8.2.3.4.1. picNumX shall refer to a picture marked as "used for short-term reference" and not marked as "non-existing".

When LongTermFrameIdx equal to long_term_frame_idx is already assigned to a long-term reference picture, that picture is marked as "unused for reference". 

The value of LongTermFrameIdx is used to mark the corresponding picture from "used for short-term reference" to "used for long-term reference".

8.2.3.4.4 Decoding process for MaxLongTermFrameIdx

This process is invoked when memory_management_control_operation is equal to 4. 

All pictures for which LongTermFrameIdx is greater than max_long_term_frame_idx_plus1 − 1 and that are marked as "used for long-term reference" are marked as "unused for reference".

The variable MaxLongTermFrameIdx is derived as follows.

–
If max_long_term_frame_idx_plus1 is equal to 0, MaxLongTermFrameIdx is set equal to "no long-term picture indices".

–
Otherwise (max_long_term_frame_idx_plus1 is greater than 0), MaxLongTermFrameIdx is set equal to max_long_term_frame_idx_plus1 − 1.

NOTE – The memory_management_control_operation command equal to 4 can be used to mark long-term reference pictures as "unused for reference". The frequency of transmitting max_long_term_frame_idx_plus1 is not specified by this Recommendation | International Standard. However, the encoder should send a memory_management_control_operation command equal to 4 upon receiving an error message, such as an intra refresh request message.

8.2.3.4.5 Marking process of all reference pictures as "unused for reference" and setting MaxLongTermFrameIdx to "no long-term picture indices"
This process is invoked when memory_management_control_operation is equal to 5.

All reference pictures are marked as "unused for reference" and the variable MaxLongTermFrameIdx is set equal to "no long-term picture indices".

8.2.3.4.6 Process for assigning a long-term picture index to the current picture

This process is invoked when memory_management_control_operation is equal to 6.

When a variable LongTermFrameIdx equal to long_term_frame_idx is already assigned to a long-term reference picture, that picture is marked as "unused for reference". 

The current picture is marked as "used for long-term reference" and assigned LongTermFrameIdx equal to long_term_frame_idx.

After marking the current decoded reference picture, the total number of pictures that are marked as "used for reference" shall not be greater than Max( max_num_ref_frames, 1 ).

NOTE – Under some circumstances, the above statement may impose a constraint on the order in which a memory_management_control_operation syntax element equal to 6 can appear in the decoded reference picture marking syntax relative to a memory_management_control_operation syntax element equal to 1, 2, 3, or 4.

8.3 Decoding process for coding units coded in intra prediction mode

Inputs to this process are:

–
a luma location ( xB, yB ) specifying the top-left luma sample of the current coding unit relative to the top‑left luma sample of the current picture,

–
a variable log2CUSize specifying the size of the current coding unit.

Output of this process is:

–
a modified reconstructed picture before deblocking filtering.

Depending on IntraSplitFlag, the decoding process for luma samples is specified as follows.
–
If IntraSplitFlag is equal to 0, the following ordered steps apply:

1. The derivation process for the intra prediction mode as specified in subclause 8.3.1 is invoked with the luma location ( xB, yB ) and the variable log2TrafoSize set equal to log2CUSize as well as IntraPredMode that is previously (in decoding order) derived for adjacent coding units as the input and the output is the variable IntraPredMode[ xB ][ yB ].
2. The decoding process for intra blocks as specified in subclause 8.3.3 is invoked with the luma location ( xB, yB ), the variable log2TrafoSize set equal to log2CUSize, the variable trafoDepth set equal to 0, the luma intra prediction mode IntraPredMode[ xB ][ yB ] and the variable cIdx set equal to 0 as the inputs and the output is a modified reconstructed picture before deblocking filtering.

–
Otherwise (IntraSplitFlag is equal to 1), for the variable blkIdx proceeding over the values 0..3, the following ordered steps apply:

1. The variable xBS is set equal to xB + ( (1 << log2CUSize ) >> 1 ) * ( blkIdx % 2 ).

2. The variable yBS is set equal to yB + ( (1 << log2CUSize ) >> 1 ) * ( blkIdx / 2 ).

3. The derivation process for the intra prediction mode as specified in subclause 8.3.1 is invoked with the luma location ( xBS, yBS ) and the variable log2TrafoSize set equal to log2CUSize – 1 as well as IntraPredMode that is previously (in decoding order) derived for adjacent coding units as the input and the output is the variable IntraPredMode[ xBS ][ yBS ].

4. The decoding process for intra blocks as specified in subclause 8.3.3 is invoked with the luma location ( xBS, yBS ), the variable log2TrafoSize set equal to log2CUSize − 1, the variable trafoDepth set equal to 1, the luma intra prediction mode IntraPredMode[ xBS ][ yBS ] and the variable cIdx set equal to 0 as the inputs and the output is a modified reconstructed picture before deblocking filtering.

The decoding process for chroma samples is specified as follows in the following ordered steps:
1. The derivation process for the chroma intra prediction mode as specified in 8.3.2 is invoked with the luma location ( xB, yB ) as input and the output is the variable IntraPredModeC.
2. The decoding process for intra blocks as specified in subclause 8.3.3 is invoked with the chroma location ( xB/2, yB/2 ), the variable log2TrafoSize set equal to log2CUSize-1, the variable trafoDepth set equal to 0, the chroma intra prediction mode IntraPredModeC, and the variable cIdx set equal to 1 as the inputs and the output is a modified reconstructed picture before deblocking filtering.
3. The decoding process for intra blocks as specified in subclause 8.3.3 is invoked with the chroma location ( xB/2, yB/2 ), the variable log2TrafoSize set equal to log2CUSize-1, the variable trafoDepth set equal to 0, the chroma intra prediction mode IntraPredModeC, and the variable cIdx set equal to 2 as the inputs and the output is a modified reconstructed picture before deblocking filtering.

8.3.1 Derivation process for luma intra prediction mode
Inputs to this process are:

–
a luma location ( xB, yB ) specifying the top-left luma sample of the current block relative to the top‑left luma sample of the current picture,
–
a variable log2TrafoSize specifying the size of the current prediction unit,
–
variable arrays IntraPredMode (If available) that are previously (in decoding order) derived for adjacent coding units.
Output of this process is the variable IntraPredMode[ xB ][ yB ].
Table 8‑1 specifies the number of luma intra prediction modes intraPredModeNum depending on log2TrafoSize.
Table 8‑1 – Specification of intraPredModeNum
	log2TrafoSize
	intraPredModeNum

	2
	17

	3
	34

	4
	34

	5
	34

	6
	3


Table 8‑2 specifies the mapping table used for converting the number of intra prediction modes.
Table 8‑2 – Specification of mapIntraPredMode5 and mapIntraPredMode9
	value
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	mapIntraPredMode5[ value ]
	0
	1
	2
	3
	4
	0
	2
	1
	1
	2
	2
	0
	0
	2
	2
	1
	1

	mapIntraPredMode9[ value ]
	0
	1
	2
	3
	4
	5
	6
	7
	8
	2
	2
	2
	2
	2
	2
	2
	2

	value
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33

	mapIntraPredMode5[ value ]
	2
	3
	4
	4
	0
	0
	0
	2
	2
	2
	2
	1
	1
	1
	1
	2
	2

	mapIntraPredMode9[ value ]
	2
	3
	4
	4
	0
	0
	5
	5
	6
	3
	7
	7
	1
	1
	8
	8
	2


IntraPredMode[ xB ][ yB ] labelled 0, 1, 2, .., 33 represents directions of predictions as illustrated in Figure 8‑1.
[image: image17.emf]3 18 10 19 4 20 1121022 12 23 5 24 25 13 6

2: DC mode

26

14

27

7

28

15

29

1

30

16

31

8

32

17

33

9


Figure 8‑1 – Intra prediction mode directions (informative)
IntraPredMode[ xB ][ yB ] is derived as follows.
–
The derivation process for neighbouring treeblocks specified in subclause XXX with ( xB,  yB ) given as input and the output is assigned to tbAddrA and tbAddrB specifying the treeblock addresses of treeblocks covering ( xBA,  yBA ) and ( xBB, yBB ) respectively where ( xBA,  yBA ) is set to ( xB-1,  yB ) and ( xBB,  yBB ) is set to ( xB,  yB-1 ).
–
For N being either replaced A or B, the variables intraPredModeN are derived as follows.
· If the treeblock with address tbAddrN is not available, intraPredModeN is set equal to -1
· Otherwise, if the coding unit covering ( xBN,  yBN ) is not coded as intra mode, intraPredModeN is set equal to 2
· Otherwise, intraPredModeN is set equal to IntraPredMode[ xBN ][ yBN ], where IntraPredMode is the variable array assigned to the coding unit covering the luma location ( xBN, yBN ).
· IntraPredMode[ xB ][ yB ] is derived by applying the following procedure. [Ed: (WJ) text rather than pseudo-code?]
predIntraPredMode = Min( intraPredModeA,  intraPredModeB )
if( predIntraPredMode >= intraPredModeNum )

if( intraPredModeNum == 5 )


predIntraPredMode = mapIntraPredMode5[ predIntraPredMode ]

else


predIntraPredMode = mapIntraPredMode9[ predIntraPredMode ]
if( predIntraPredMode == -1 )

predIntraPredMode = 2
if( prev_intra_pred_flag[ xB ][ yB ] )

IntraPredMode[ xB ][ yB ] = predIntraPredMode
else

if( rem_intra_pred_mode < predIntraPredMode )


IntraPredMode[ xB ][ yB ] = rem_intra_pred_mode

else


IntraPredMode[ xB][ yB ] = rem_intra_pred_mode + 1
8.3.2 Derivation process for chroma intra prediction mode
[Ed.: (WJ) this subclause may be moved to the semantics of intra_chroma_pred_mode syntax]

Input to this process is a luma location ( xB, yB ) specifying the top-left luma sample of the current block relative to the top‑left luma sample of the current picture.

Output of this process is the variable IntraPredModeC.
The chronma intra prediction mode IntraPredModeC is derived as specifed in Table 8‑3 with intra_chroma_pred_mode and IntraPredMode[ xB ][ yB ] as inputs.
Table 8‑3 – Specification of IntraPredModeC according to the values of intra_chroma_pred_mode and IntraPredMode[ xB ][ yB ]
	intra_chroma_pred_mode
	IntraPredMode[ xB ][ yB ]

	
	0
	1
	2
	3
	X ( 4 <= X < 34 )

	0
	0
	1
	2
	3
	X

	1
	1
	0
	0
	0
	0

	2
	2
	2
	1
	1
	1

	3
	3
	3
	2
	2
	2

	4
	n/a
	n/a
	n/a
	n/a
	3


8.3.3 Decoding process for intra blocks

Inputs to this process are:

–
a luma location ( xB, yB ) specifying the top-left sample of the current block relative to the top‑left sample of the current picture,

–
a variable log2TrafoSize specifying the size of the current block,

–
a variable trafoDepth specifying the hierarchy depth of the current block relative to the coding unit,

–
a variable intraPredMode specifying the intra prediction mode.
–
a variable cIdx specifying the chroma component of the current block,

Output of this process is:

–
a modified reconstructed picture before deblocking filtering.

Depending split_transform_flag[ xB ][ yB ][ trafoDepth ], the following applies:

–
If split_transform_flag[ xB ][ yB ][ trafoDepth ] is equal to 1, the following ordered steps apply:

1. The variable xB1 is set equal to xB + ( ( 1 << log2TrafoSize ) >> 1 ).

2. The variable yB1 is set equal to yB + ( ( 1 << log2TrafoSize ) >> 1 ).

3. The decoding process for intra blocks as specified in this subclause is invoked with the location ( xB, yB ), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the intra prediction mode intraPredMode, and the variable cIdx as the inputs and the output is a modified reconstructed picture before deblocking filtering.

4. The decoding process for intra blocks as specified in this subclause is invoked with the location ( xB1, yB ), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the intra prediction mode intraPredMode, and the variable cIdx as the inputs and the output is a modified reconstructed picture before deblocking filtering.

5. The decoding process for intra blocks as specified in this subclause is invoked with the location ( xB, yB1 ), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the intra prediction mode intraPredMode, and the variable cIdx as the inputs and the output is a modified reconstructed picture before deblocking filtering.

6. The decoding process for intra blocks as specified in this subclause is invoked with the location ( xB1, yB1 ), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the intra prediction mode intraPredMode, and the variable cIdx as the inputs and the output is a modified reconstructed picture before deblocking filtering.

–
Otherwise (split_transform_flag[ xB ][ yB ][ trafoDepth ] is equal to 0), the following ordered steps apply:

1. The variable nS is set equal to 1 << log2TrafoSize.

2. The intra sample prediction process as specified in subclause 8.3.3.1 is invoked with the location ( xB, yB ), the intra prediction mode intraPredMode, the prediction size nS and the variable cIdx as the inputs and the output is a (nS)x(nS) array predSamples.

3. The scaling and transformation process as specified in subclause 8.5.1 is invoked with the location ( xB, yB ), the variable trafoDepth, the variable cIdx, and the transform size trafoSize set equal to nS as the inputs and the output is a (nS)x(nS) array resSamples.

4. The residual signal accumulation process as specified in subclause XXX is invoked with the variable arraySize set equal to nS, the (nS)x(nS) array predSamples, and the (nS)x(nS) array resSamples as the inputs and the output is a (nS)x(nS) array recSamples.

5. The picture reconstruction process for a component before deblocking filtering as specified in subclause XXX is invoked with the location ( xB, yB ), the variable arraySize set equal to nS, the variable cIdx set equal to 0, and the (nS)x(nS) array recSamples as the inputs and the output is a modified reconstructed picture before deblocking filtering.
8.3.3.1 Intra sample prediction
Inputs to this process are:

–
a sample location ( xB, yB ) specifying the top-left sample of the current block relative to the top‑left sample of the current picture,

–
a variable intraPredMode specifying the luma intra prediction mode,
–
a variable nS specifying the prediction size.
–
a variable cIdx specifying the chroma component of the current block,

Output of this process is:

–
the predicted samples predSamples[ x, y ], with x, y =0..nS-1.
The nS*4+1 neighbouring samples p[ x, y ] that are constructed luma samples prior to the deblocking filter process, with x = -1, y = -1..nS*2-1 and x = 0..nS*2-1, y=-1, are derived as follows.
–
The luma location ( xBN, yBN ) is specified by
xBN = xB + x 

(8‑14)
yBN = yB +y 

(8‑15)
–
The derivation process for neighbouring locations in subclause XXX is invoked for sample location with ( xBN, yBN ) as input and the treeblock address tbAddrN as output.
–
Each sample p[ x, y ] with x = -1, y= -1..nS*2-1  and x = 0, y = -1 is derived as follows
· If any of the following condition is true, the sample p[ x, y ] is marked as “not available for intra prediction”
· tbAddrN is not available
· the coding unit covering ( xBN, yBN ) is not coded as intra mode and constrained_intra_pred_flag is equal to 1
· Otherwise, the sample p[ x, y ] is marked as “available for intra prediction” and the sample at the location ( xBN, yBN ) inside the treeblock tbAddrN is assigned to p[ x, y ]
When any samples p[ x, -1 ], with x = 0..nS-1 are marked as “not available for intra prediction,” samples p[ x, -1 ], with x = 0..nS-1 are marked as “not available for intra prediction.”

When any samples p[ -1, y ], with y = 0..nS-1 are marked as “not available for intra prediction,” samples p[ -1, y ], with y = 0.. nS-1 are marked as “not available for intra prediction.”
When any samples p[ x, -1 ], with x = nS..nS*2-1 are marked as “not available for intra prediction” and the sample p[ nS-1, -1 ] is marked as “available for intra prediction” the sample value of p[ nS-1, -1 ] is substituted for samples p[ x, -1 ], with x = nS..nS*2-1 and samples p[ x, -1 ], with x = nS..nS*2-1 are marked as “available for intra prediction”.
When any samples p[ -1, y ], with y = nS..nS*2-1 are marked as “not available for intra prediction” and the sample p[ -1, nS-1 ] is marked as “available for intra prediction” the sample value of p[ -1, nS-1 ] is substituted for samples p[ -1, y ], with y = nS..nS*2-1 and samples p[ -1, y ], with y = nS..nS*2-1 are marked as “available for intra prediction”.
For all remaining samples p[ x, y ] marked as “not available for intra prediction,” the following applies.
p[ x, y ] = 1 << ( ( BitDepthY + increased_bit_depth_luma ) – 1 )
(8‑16)
Table 8‑4 specifies the value for intraPredMode and the associated names.
Table 8‑4 – Specification of intraPredMode and associated names
	intraPredMode
	Name of intraPredMode

	0
	Intra_Vertical

	1
	Intra_Horizontal

	2
	Intra_DC

	Otherwise (3..33)
	Intra_Angular


Depending on intraPredMode, the following ordered steps apply:

1. If cIdx is equal to 0, filtering process of neighbouring samples specified in 8.3.3.1.1 is invoked with the sample array p and the prediction size nS as the inputs and the output is a (2*nS+1)x(2*nS+1) filtered sample array pF.
2. One of the intra prediction modes specified in subclause 8.3.3.1.1 to 8.3.3.1.5 is invoked with the sample array pF and the prediction size nS as the inputs and the output is the predicted sample array predSamples.
8.3.3.1.1 Filtering process of neighbouring samples

Inputs to this process are:

–
neighbouring samples p[ x, y ], with x, y = -1..2*nS-1,

–
a variable nS specifying the prediction size.
Output of this process is:

–
filtered samples pF[ x, y ],. with x, y = -1..2*nS-1.
Table 8‑5 – Specification of intraFilterType[ nS ][ IntraPredMode ] for various prediction unit sizes
	IntraPredMode
	intraFilterType

for nS = 4
	intraFilterType

for nS = 8
	intraFilterType

for nS = 16
	intraFilterType

for nS = 32
	intraFilterType

for nS = 64

	0
	0
	0
	0
	0
	0

	1
	0
	0
	0
	0
	0

	2
	0
	0
	0
	0
	0

	3
	1
	1
	2
	2
	2

	4
	0
	1
	2
	2
	2

	5
	0
	2
	2
	2
	0

	6
	1
	2
	2
	2
	0

	7
	0
	2
	2
	2
	0

	8
	0
	1
	2
	2
	0

	9
	1
	1
	2
	2
	0

	10
	0
	0
	2
	2
	0

	11
	0
	0
	2
	2
	0

	12
	0
	0
	2
	2
	0

	13
	0
	0
	2
	2
	0

	14
	0
	0
	2
	2
	0

	15
	0
	0
	2
	2
	0

	16
	0
	0
	2
	2
	0

	17
	0
	0
	2
	2
	0

	18-33
	0
	0
	0
	2
	0


Filtered sample array pF[ x, y ] with x = -1..nS*2-1 and y = -1..nS*2-1  are derived as follows:

–
If intraFilterType[ nS ][ IntraPredMode ] is equal to 1, the following applies:

pF[ -1, nS*2-1 ] = p[ -1, nS*2-1 ]

(8‑17)
pF[ nS*2-1, -1 ] = p[ nS*2-1, -1 ]

(8‑18)
pF[ -1, y ] = ( p[ -1, y+1 ] + 2*p[ -1, y ] + p[ -1, y-1 ] + 2 ) >> 2 for y = nS*2-2..0
(8‑19)
pF[ -1, -1] = ( p[ -1, 0 ] + 2*p[ -1, -1] + p[ 0, -1 ] + 2) >> 2
(8‑20)
pF[ x, -1 ] = ( p[ x-1, -1 ] + 2*p[ x, -1 ] + p[ x+1, -1 ] + 2 ) >> 2 for x = 0..nS*2-2
(8‑21)
–
Otherwise, intraFilterType[ nS ][ IntraPredMode ] is equal to 2, the following applies:
pF[ -1, nS*2-1 ] = p[ -1, nS*2-1 ]

(8‑22)
pF[ nS*2-1, -1 ] = p[ nS*2-1, -1 ]

(8‑23)
pF1[ -1, y ] = ( p[ -1, y+1 ] + 2*p[ -1, y ] + p[ -1, y-1 ] + 2 ) >> 2 for y = nS*2-2..0
(8‑24)
pF1[ -1, -1] = ( p[ -1, 0 ] + 2*p[ -1, -1] + p[ 0, -1 ] + 2) >> 2
(8‑25)
pF1[ x, -1 ] = ( p[ x-1, -1 ] + 2*p[ x, -1 ] + p[ x+1, -1 ] + 2 ) >> 2 for x = 0..nS*2-2
(8‑26)
pF[ -1, y ] = ( pF1[ -1, y+1 ] + 2*pF1[ -1, y ] + pF1[ -1, y-1 ] + 2 ) >> 2 for y = nS*2-2..0
(8‑27)
pF[ -1, -1] = ( pF1 [ -1, 0 ] + 2*pF1 [ -1, -1] + pF1 [ 0, -1 ] + 2) >> 2
(8‑28)
pF[ x, -1 ] = ( pF1 [ x-1, -1 ] + 2* pF1 [ x, -1 ] + pF1 [ x+1, -1 ] + 2 ) >> 2 for x = 0..nS*2-2
(8‑29)
8.3.3.1.2 Specification of Intra_Vertical prediction mode
Inputs to this process are:

–
neighbouring samples p[ x, y ], with x, y = -1..2*nS-1,

–
a variable nS specifying the prediction size.
Output of this process is:

–
predicted samples predSamples[ x, y ], with x, y =0..nS-1.
This intra prediction mode is invoked when intraPredMode is equal to 0.
This mode shall be used only when the samples p[ x, -1 ] with x = 0..nS-1 are marked as “available for intra prediction”.
The values of the prediction samples predSamples[ x, y ], with x, y = 0..nS-1, are derived by
predSamples[ x, y ] = p[ x, -1 ], with x, y = 0..nS-1
(8‑30)
8.3.3.1.3 Specification of Intra_Horizontal prediction mode
Inputs to this process are:

–
neighbouring samples p[ x, y ], with x, y = -1..2*nS-1,

–
a variable nS specifying the prediction size.
Output of this process is:

–
predicted samples predSamples[ x, y ], with x, y =0..nS-1.
This intra prediction mode is invoked when intraPredMode is equal to 1.

This mode shall be used only when the samples p[ -1, y ] with y = 0..nS-1 are marked as “available for intra prediction”.

The values of the prediction samples predSamples[ x, y ], with x, y = 0..nS-1, are derived by

predSamples[ x, y ] = p[ -1, y ], with x, y = 0..nS-1
(8‑31)
8.3.3.1.4 Specification of Intra_DC prediction mode
Inputs to this process are:

–
neighbouring samples p[ x, y ], with x, y = -1..2*nS-1,

–
a variable nS specifying the prediction size.
Output of this process is:

–
predicted samples predSamples[ x, y ], with x, y =0..nS-1.
This intra prediction mode is invoked when intraPredMode is equal to 2.
The values of the prediction samples predSamples[ x, y ], with x, y = 0..nS-1, are derived as follows.
–
If all samples p[ x, -1 ], with x=0..nS-1 and p[ -1, y ], with y=0..nS-1 are marked as “available for intra prediction,” the values of the prediction samples predSamples[ x, y ], with x, y = 0..nS-1 are derived by
predSamples[ x, y ] = 
[image: image18.wmf])

1

(

]

'

,

1

[

]

1

,

'

[

1

0

'

1

0

'

+

>>

÷

÷

ø

ö

ç

ç

è

æ

+

-

+

-

å

å

-

=

-

=

k

nS

y

p

x

p

nS

y

nS

x

, with x, y = 0..nS-1
(8‑32)
where k=log2(nS)
–
Otherwise, If all samples p[ x, -1 ], with x=0..nS-1 are marked as “not available for intra prediction” and all samples p[ -1, y ], with y=0..nS-1 are marked as “available for intra prediction,” the values of the prediction samples predSamples[ x, y ], with x, y = 0..nS-1 are derived by
predSamples[ x, y ] = 
[image: image19.wmf](

)

k

nS

y

p

nS

y

>>

÷

÷

ø

ö

ç

ç

è

æ

>>

+

-

å

-

=

1

]

'

,

1

[

1

0

'

, with x, y = 0..nS-1
(8‑33)
where k=log2(nS)
–
Otherwise, If all samples p[ x, -1 ], with x=0..nS-1 are marked as “available for intra prediction” and all samples p[ -1, y ], with y=0..nS-1 are marked as “not available for intra prediction,” the values of the prediction samples predSamples[ x, y ], with x, y = 0..nS-1 are derived by
predSamples[ x, y ] = 
[image: image20.wmf](

)

k

nS

x

p

nS

x

>>

÷

ø

ö

ç

è

æ

>>

+

-

å

-

=

1

]

1

,

'

[

1

0

'

, with x, y = 0..nS-1
(8‑34)
where k=log2(nS)
–
Otherwise, the values of the prediction samples predSamples[ x, y ], with x, y = 0..nS-1 are derived by
predSamples[ x, y ] = 1 << ( ( BitDepthY + increased_bit_depth_luma ) – 1 )
(8‑35)
[Ed: (WJ) current software implementation seems different. It uses division operation and may have a bug when both above and left samples are not available]
8.3.3.1.5 Specification of Intra_Angular prediction mode
[Ed: (WJ) provided text from JCTVC-C042 was modified. It still needs to be improved]
Inputs to this process are:

–
neighbouring samples p[ x, y ], with x, y = -1..2*nS-1,

–
a variable nS specifying the prediction size.
Output of this process is:

–
predicted samples predSamples[ x, y ], with x, y =0..nS-1.
This intra prediction mode is invoked when intraPredMode is not equal to 0, 1, and 2.
Table 8‑6 specifies the mapping table between intraPredMode and the rearranged intra prediction order intraPredOrder. 
Table 8‑6 – Specification of intraPredOrder
	intraPredMode
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	intraPredOrder
	-
	-
	-
	1
	5
	13
	17
	21
	29
	33
	3
	7
	11
	15
	19
	23
	27

	intraPredMode
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33

	intraPredOrder
	31
	2
	4
	6
	8
	10
	12
	14
	16
	18
	20
	22
	24
	26
	28
	30
	32


Figure 8‑2 illustrates the total 33 intra angles and Table 8‑7 specifies the mapping table between intraPredOrder and the angle parameter intraPredAngle.
[image: image21.emf]0 -5 -10 -15 -20 -25 -30

-30

-25

-20

-15

-10

-5

0

5 10 15 20 25 30

5

10

15

20

25

30


Figure 8‑2 – Intra prediction angle definition (informative)

Table 8‑7 – Specification of intraPredAngle
	intraPredOrder
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	intraPredAngle
	-
	-32
	-26
	-21
	-17
	-13
	-9
	-5
	-2
	-
	2
	5
	9
	13
	17
	21
	26

	intraPredOrder
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33

	intraPredAngle
	32
	-26
	-21
	-17
	-13
	-9
	-5
	-2
	-
	2
	5
	9
	13
	17
	21
	26
	32


Table 8‑8 further specifies the mapping table between intraPredOrder and the inverse angle parameter invAngle.
Table 8‑8 – Specification of invAngle
	intraPredOrder
	1
	2
	3
	4
	5
	6
	7
	8

	invAngle
	-256
	-315
	-390
	-482
	-630
	-910
	-1638
	-4096

	intraPredOrder
	18
	19
	20
	21
	22
	23
	24
	25

	invAngle
	-315
	-390
	-482
	-630
	-910
	-1638
	-4096
	-


The reference pixel array refMain[ x ], with x=-1..2*nS is specified as follows.
–
If intraPredOrder is less than 18, 
refMain[ x ] = p[ -1+x, -1 ], with x=0..nS

(8‑36)
· If intraPredAngle is less than 0,
refMain[ x ] = p[ -1, -1+( ( x*invAngle+128 )>>8 ) ], with x=( nS*intraPredAngle ) >>5..-1
(8‑37)
· Otherwise,
refMain[ x ] = p[ -1+x, -1 ], with x=nS+1..2*nS

(8‑38)

Otherwise, 
refMain[ x ] = p[ -1, -1+x ], with x=0..nS

(8‑39)
· If intraPredAngle is less than 0,
refMain[ x ] = p[ -1+( ( x*invAngle+128 )>>8 ), -1 ], with x=( nS*intraPredAngle ) >>5..-1
(8‑40)
· Otherwise,
refMain[ x ] = p[ -1, -1+x ], with x=nS+1..2*nS

(8‑41)
The values of the prediction samples predSamples[ x, y ], with x, y = 0..nS-1 are derived by the following procedures.
–
The index variable iIdx and the multiplication factor iFact are derived by
iIdx = ( ( y + 1 )*intraPredAngle ) >> 5

(8‑42)
iFact = ( ( y + 1 )*intraPredAngle ) && 31

(8‑43)
–
Depending on the value of iFact, the following applies.

· If iFact is not equal to 0, the value of the prediction samples predSamples[ x, y ] is derived by
predSamples[ x, y ] = ( ( 32 – iFact )*refMain[ x+iIdx+1 ] + iFact*refMain[ x+iIdx+2] + 16 ) >> 5
(8‑44)
· Otherwise, the value of the prediction samples predSamples[ x, y ] is derived by
predSamples[ x, y ] = refMain[ x+iIdx+1 ]

(8‑45)
8.4 Decoding process for coding units coded in inter prediction mode
Inputs to this process are:

–
a luma location ( xC, yC ) specifying the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture,
–
a variable log2CUSize specifying the size of the current coding unit.
Output of this process is a modified reconstructed picture before deblocking filtering.

The variable nCSL is set equal to 1 << log2CUSize and the variable nCSC is set equal to ( 1 << log2CUSize ) >> 1.
Decoding process for coding units coded in inter prediction mode consists of following ordered steps:

1. The inter prediction process as specified in subclause 8.4.1 is invoked with the luma location ( xC, yC ), coding unit size log2CUSize, inter prediction mode PredMode, and prediction partition mode PartMode as the inputs and the outputs are 3 arrays predSamplesL, predSamplesCb, predSamplesCr.
2. The decoding process for the residual signal of coding units coded in inter prediction mode specified in subclause 8.4.3 is invoked with the luma location ( xC, yC ), the size of the current coding unit log2CUSize as inputs and the outputs are 3 arrays resSamplesL, resSamplesCb, resSamplesCr.
3. The residual signal accumulation process as specified in subclause XXXX is invoked with arrays predSamplesL, predSamplesCb, predSamplesCr, and the arrays resSamplesL, resSamplesCb, resSamplesCr as the inputs and the outputs are 3 arrays recSamplesL, recSamplesCb, recSamplesCr. [Ed: (WJ) it may be split per each color component. Revisit after writing residual signal accumulation process]
4. The picture reconstruction process for a component before deblocking filtering as specified in subclause XXXX is invoked with the luma location ( xB, yB ), and 3 arrays recSamplesL, recSamplesCb, recSamplesCr as the inputs and the output is a modified reconstructed picture before deblocking filtering. [Ed: (WJ) it may be split per each color component. Revisit after writing picture reconstruction process]
8.4.1 Inter prediction process
This process is invoked when decoding coding unit whose PredMode is not equal to MODE_INTRA.
Inputs to this process are:
–
a luma location ( xC, yC ) specifying the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture,
–
a variable log2CUSize specifying the size of the current coding unit,
–
a variable PredMode specifying prediction mode of current coding unit,
–
a variable PartMode specifying prediction partition mode of current coding unit.
Outputs of this process are:
–
a (nCSL)x(nCSL) array predSamplesL of luma prediction samples, where nCSL is derived as specified below,
–
a (nCSC)x(nCSC) array predSamplesCb of chroma prediction samples for the component Cb, where nCSC is derived as specified below,
–
a (nCSC)x(nCSC) array predSamplesCr of chroma prediction samples for the component Cr, where nCSC is derived as specified below.
The variable nCSL is set equal to 1 << log2CUSize and the variable nCSC is set equal to ( 1 << log2CUSize ) >> 1. [Ed: (WJ) revisit for supporting other chroma formats]
The variable nCS1L is set equal to nCSL >> 1.
Depending on PartMode, the following applies: [Ed: (WJ) is PUType better?]
–
If PartMode is equal to PART_2Nx2N, the following ordered steps apply:

1. The decoding process for prediction units in inter prediction mode as specified in subclause 8.4.2 is invoked with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( 0, 0 ), the size of the coding unit nCSL, the width of the luma prediction samples nPSW set equal to nCSL, the height of the luma prediction samples nPSH set equal to nCSL and a partition index PartIdx set equal to 0 as inputs, and the outputs are a (nCSL)x(nCSL) array predSamplesL and two (nCSC)x(nCSC) arrays predSamplesCb and predSamplesCr.
–
Otherwise, if PartMode is equal to PART_2NxN, the following ordered steps apply:

1. The decoding process for prediction units in inter prediction mode as specified in subclause 8.4.2 is invoked with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( 0, 0 ), the size of the coding unit nCSL, the width of the luma prediction samples nPSW set equal to nCSL, the height of the luma prediction samples nPSH set equal to nCS1L and a partition index PartIdx set equal to 0 as inputs, and the outputs are a (nCSL)x(nCSL) array predSamplesL and two (nCSC)x(nCSC) arrays predSamplesCb and predSamplesCr.
2. The decoding process for prediction units in inter prediction mode as specified in subclause 8.4.2  is invoked with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( 0, nCS1L ), the size of the coding unit nCSL, the width of the luma prediction samples nPSW set equal to nCSL, the height of the luma prediction samples nPSH set equal to nCS1L and a partition index PartIdx set equal to 1 as inputs, and the outputs are a (nCSL)x(nCSL) array predSamplesL and two (nCSC)x(nCSC) arrays predSamplesCb and predSamplesCr.
Otherwise, if PartMode is equal to PART_Nx2N, the following ordered steps apply:

1. The decoding process for prediction units in inter prediction mode as specified in subclause 8.4.2  is invoked with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( 0, 0 ), the size of the coding unit nCSL, the width of the luma prediction samples nPSW set equal to nCS1L, the height of the luma prediction samples nPSH set equal to nCSL and a partition index PartIdx set equal to 0 as inputs, and the outputs are a (nCSL)x(nCSL) array predSamplesL and two (nCSC)x(nCSC) arrays predSamplesCb and predSamplesCr.
2. The decoding process for prediction units in inter prediction mode as specified in subclause 8.4.2  is invoked with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( nCS1L, 0 ), the size of the coding unit nCSL, the width of the luma prediction samples nPSW set equal to nCS1L, the height of the luma prediction samples nPSH set equal to nCSL and a partition index PartIdx set equal to 1 as inputs, and the outputs are a (nCSL)x(nCSL) array predSamplesL and two (nCSC)x(nCSC) arrays predSamplesCb and predSamplesCr.
Otherwise, if PartMode is equal to PART_NxN, the following ordered steps apply:

1. The decoding process for prediction units in inter prediction mode as specified in subclause 8.4.2  is invoked with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( 0, 0 ), the size of the coding unit nCSL, the width of the luma prediction samples nPSW set equal to nCS1L, the height of the luma prediction samples nPSH set equal to nCS1L as and a partition index PartIdx set equal to 0 inputs, and the outputs are a (nCSL)x(nCSL) array predSamplesL and two (nCSC)x(nCSC) arrays predSamplesCb and predSamplesCr.
2. The decoding process for prediction units in inter prediction mode as specified in subclause 8.4.2  is invoked with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( nCS1L, 0 ), the size of the coding unit nCSL, the width of the luma prediction samples nPSW set equal to nCS1L, the height of the luma prediction samples nPSH set equal to nCS1L and a partition index PartIdx set equal to 1 as inputs, and the outputs are a (nCSL)x(nCSL) array predSamplesL and two (nCSC)x(nCSC) arrays predSamplesCb and predSamplesCr.
3. The decoding process for prediction units in inter prediction mode as specified in subclause 8.4.2  is invoked with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( 0, nCS1L ), the size of the coding unit nCSL, the width of the luma prediction samples nPSW set equal to nCS1L, the height of the luma prediction samples nPSH set equal to nCS1L and a partition index PartIdx set equal to 2 as inputs, and the outputs are a (nCSL)x(nCSL) array predSamplesL and two (nCSC)x(nCSC) arrays predSamplesCb and predSamplesCr.
4. The decoding process for inter prediction units as specified in subclause 8.4.2  is invoked with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( nCS1L, nCS1L ), the size of the coding unit nCSL, the width of the luma prediction samples nPSW set equal to nCS1L, the height of the luma prediction samples nPSH set equal to nCS1L and a partition index PartIdx set equal to 3 as inputs, and the outputs are a (nCSL)x(nCSL) array predSamplesL and two (nCSC)x(nCSC) arrays predSamplesCb and predSamplesCr.
8.4.2 Decoding process for prediction units in inter prediction mode
Inputs to this process are:
–
a luma location ( xC, yC ) specifying the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture,
–
a luma location ( xB, yB ) specifying the top-left luma sample of the current prediction unit relative to the top left luma sample of the current coding unit,
–
a variable nCS specifying the size of the current coding unit,
–
a variable nPSW specifying the width of the current prediction unit,
–
a variable nPSH specifying the width of the current prediction unit,
· a variable PartIdx specifying the index of the current prediction unit within the current coding unit.
Outputs of this process are:
–
a (nCSL)x(nCSL) array predSamplesL of luma prediction samples, where nCSL is derived as specified below,
–
a (nCSC)x(nCSC) array predSamplesCb of chroma prediction samples for the component Cb, where nCSC is derived as specified below,
–
a (nCSC)x(nCSC) array predSamplesCr of chroma prediction samples for the component Cr, where nCSC is derived as specified below.
The variable nCSL is set equal to nCS and the variable nCSC is set equal to nCS >> 1. [Ed: (WJ) revisit for supporting other chroma formats]
The decoding process for prediction units in inter prediction mode consists of the following ordered steps:
1. Derivation process for motion vector components and reference indices as specified in subclause 8.4.2.1.

Inputs to this process are
–
a luma location ( xC, yC ) of the top-left luma sample of the current coding unit relative to the top-left luma sample of the current picture,

–
a luma location ( xB, yB ) of the top-left luma sample of the current prediction unit relative to the top-left luma sample of the current coding unit,
–
variables specifying the width and the height of the prediction unit for luma, nPSW and nPSH,
· a variable PartIdx specifying the index of the current prediction unit within the current coding unit.


Outputs of this process are
–
luma motion vectors mvL0 and mvL1, and chroma motion vectors mvCL0 and mvCL1,
–
reference indices refIdxL0 and refIdxL1,
–
prediction list utilization flags predFlagL0 and predFlagL1.
2. Decoding process for inter sample prediction as specified in subclause 8.4.2.2.

Inputs to this process are
–
a luma location ( xC, yC ) of the top-left luma sample of the current coding unit relative to the top-left luma sample of the current picture,
–
a luma location ( xB, yB ) of the top-left luma sample of the current prediction unit relative to the top-left luma sample of the current coding unit,
–
a variable nCS specifying the size of the current coding unit,
–
variables specifying the width and the height of the prediction unit for luma, nPSW and nPSH.
–
luma motion vectors mvL0 and mvL1, and chroma motion vectors mvCL0 and mvCL1,
–
reference indices refIdxL0 and refIdxL1,
–
prediction list utilization flags predFlagL0 and prefFlagL1.

Outputs of this process are
–
inter prediction samples (predSamples); which are a (nCSL)x(nCSL) array predSamplesL of prediction luma samples and two (nCSC)x(nCSC) arrays predSamplesCr, and predSamplesCr of prediction chroma samples, one for each of the chroma components Cb and Cr.
For use in derivation processes of variables invoked later in the decoding process, the following assignments are made:
MvL0[ xB, yB ] = mvL0

(8‑46)
MvL1[ xB, yB ] = mvL1

(8‑47)
RefIdxL0[ xB, yB ] = refIdxL0

(8‑48)
RefIdxL1[ xB, yB ] = refIdxL1

(8‑49)
PredFlagL0[ xB, yB ] = predFlagL0

(8‑50)
PredFlagL1[ xB, yB ] = predFlagL1

(8‑51)
8.4.2.1 Derivation process for motion vector components and reference indices
Input to this process are
· a luma location ( xC, yC ) of the top-left luma sample of the current coding unit relative to the top-left luma sample of the current picture,
· a luma location ( xB, yB ) of the top-left luma sample of the current prediction unit relative to the top-left luma sample of the current coding unit,
· variables specifying the width and the height of the prediction unit for luma, nPSW and nPSH,
· a variable PartIdx specifying the index of the current prediction unit within the current coding unit.

Outputs of this process are

· luma motion vectors mvL0 and mvL1 and chroma motion vectors mvCL0 and mvCL1,

· reference indices refIdxL0 and refIdxL1,

· prediction list utilization flags predFlagL0 and predFlagL1.
Let ( xP, yP ) specify the top-left luma sample of the current prediction unit relative to the top-left luma sample of the current picture where xP = xC + xB and yP = yC + yB.
For the derivation of the variables mvL0 and mvL1, refIdxL0 and refIdxL1 as well as PredFlagL0 and PredFlagL1, the following applies.

· If PredMode is equal to MODE_SKIP and slice_type is equal to P, the derivation process for luma motion vectors for skipped prediction units in P slices in subclause 8.4.2.1.1 is invoked with the luma location ( xP, yP ), variables nPSW and , nPSH as inputs and the output being the luma motion vector mvL0 and reference index refIdxL0, and the prediction list utilization flag predFlagL0 is set equal to 1. Both components of mvL1 are set to 0, refIdxL1 is set equal to -1 and predFlagL1 is set equal to 0.

· Otherwise, if PredMode is equal to MODE_SKIP and slice_type is equal to B, the derivation process for luma motion vectors for skipped prediction units in B slices in subclause 8.4.2.1.2 is invoked with the luma location ( xP, yP ), variables nPSW and nPSH as inputs and the output being the luma motion vectors mvL0, mvL1, the reference indices refIdxL0, refIdxL1, and the prediction list utilization flags predFlagL0 and predFlagL1.
· Otherwise, if PredMode is equal to MODE_INTER and merge_flag[ xP ][ yP ] is equal to 1,, the derivation process for luma motion vectors for merge mode as specified in subclause 8.4.2.1.3 is invoked with the luma location ( xP, yP ), variables nPSW and nPSH and the partition index PartIdx as inputs and the outputs being the luma motion vectors mvL0 and mvL1, the reference indices refIdxL0 and refIdxL1, the prediction utilization flags predFlagL0 and predFlagL1.
· Otherwise, for X being replaced by either 0 or 1 in the variables predFlagLX, mvLX, refIdxLX and in Pred_LX and in the syntax elements ref_idx_lX and mvd_lX, the following applies.

1. The variables LcToLx, refIdxLX and predFlagLX are derived as follows.
· If inter_pred_idc[ xP ][ yP ] is equal to Pred_LC and PredLCToPredLx[ ref_idx_lc[ xP ][ yP ] ] is equal to Pred_LX, 





refIdxLX = RefIdxLCToRefIdxLx[ ref_idx_lc[ xP ][ yP ] ]
(8‑52)




predFlagLX = 1

(8‑53)




mvd_lX[ xP ][ yP ][ 0 ] = mvd_lc[ xP ][ yP ][ 0 ]
(8‑54)





mvd_lX[ xP ][ yP ][ 1 ] = mvd_lc[ xP ][ yP ][ 1 ]
(8‑55)





mvp_idx_lX[ xP ][ yP ][ 0 ] = mvp_idx_lc[ xP ][ yP ]
(8‑56)





LcToLx = LX

(8‑57)
· Otherwise, if inter_pred_idc[ xP ][ yP ] is equal to Pred_LX or Pred_BI, 





refIdxLX = ref_idx_lX[ xP ][ yP ]

(8‑58)





predFlagLX = 1

(8‑59)
· Otherwise, the variables refIdxLX and predFlagLX are specified by





refIdxLX = -1

(8‑60)





predFlagLX = 0

(8‑61)
2. The variable mvdLX is derived as follows.





mvdLX[ 0 ] = mvd_lX[ xP ][ yP ][ 0 ]

(8‑62)




mvdLX[ 1 ] = mvd_lX[ xP ][ yP ][ 1 ]

(8‑63)
3. When predFlagLX is equal to 1, the variable mvpLX is derived as follows. 

· The derivation process for luma motion vector prediction in subclause 8.4.2.1.5 is invoked with the luma location ( xP, yP ), variables nPSW and nPSH and refIdxLX as the inputs and the output being mvpLX.

4. When predFlagLX is equal to 1, the luma motion vector mvLX is derived as




mvLX[ 0 ] = mvpLX[ 0 ] + mvdLX[ 0 ]
(8‑64)




mvLX[ 1 ] = mvpLX[ 1 ] + mvdLX[ 1 ]
(8‑65)
When ChromaArrayType is not equal to 0 and predFlagLX (with X being either 0 or 1) is equal to 1, the derivation process for chroma motion vectors in subclause 8.4.2.1.8 is invoked with mvLX and refIdxLX as inputs and the output being mvCLX.

8.4.2.1.1 Derivation process for luma motion vectors for skipped prediction units in P slices

This process is invoked when PredMode is equal to MODE_SKIP and slice_type is equal to P.

Inputs of this process are

· a luma location ( xP, yP ) of the top-left luma sample of the current prediction unit relative to the top-left luma sample of the current picture,
· variables specifying the width and the height of the prediction unit for luma, nPSW and nPSH.
Outputs of this process are 
· the motion vector mvL0,

· the reference index refIdxL0.

The reference index refIdxL0 for a skipped prediction unit is derived as

refIdxL0 = 0

(8‑66)
For the derivation of the motion vector mvL0 of a MODE_SKIP in P, the process specified in subclause 8.4.2.1.5 is invoked with the luma location ( xP, yP ), variables nPSW and nPSH and refIdxL0 as inputs and the output is assigned to mvL0, since the predictor is equal to the actual motion vector.

8.4.2.1.2 Derivation process for luma motion vectors for skipped prediction units in B slices

This process is invoked when PredMode is equal to MODE_SKIP and slice_type is equal to B.
Inputs of this process are

· a luma location ( xP, yP ) of the top-left luma sample of the current prediction unit relative to the top-left luma sample of the current picture,
· variables specifying the width and the height of the prediction unit for luma, nPSW and nPSH.
Outputs of this process are
· the reference indices refIdxL0, refIdxL1,
· the motion vectors mvL0 and mvL1, 
· the prediction list utilization flags, predFlagL0 and predFlagL1.

For X being replaced by either 0 or 1 in the variables predFlagLX, mvLX, refIdxLX, and in Pred_LX and in the syntax elements ref_idx_lX and mvd_lX, the following applies.

The variables refIdxLX and predFlagLX are derived as follows.

· If inter_pred_idc[ xP ][ yP ] is equal to Pred_LX or to Pred_BI, the variables refIdxLX and predFlagLX are specified by
refIdxLX = 0

(8‑67)
predFlagLX = 1
(8‑68)
· Otherwise, the variables refIdxLX and predFlagLX are specified by

refIdxLX = -1
(8‑69)
predFlagLX = 0
(8‑70)
The variable mvLX is derived as follows.
· If predFlagLX is equal to 1, the derivation process for luma motion vector prediction in subclause 8.4.2.1.5 is invoked with luma location ( xP, yP ), nPSW, nPSH and refIdxLX as the inputs and the output is directly assigned to mvLX, since the predictor is equal to the actual motion vector.
· Otherwise (predFlagLX is equal to 0), both components of mvLX are set equal to 0.

8.4.2.1.3 Derivation process for luma motion vectors for merge mode
This process is only invoked when PredMode is equal to MODE_ INTER and merge_flag [ xP ][ yP ] is equal to 1, where ( xP, yP ) specify the top-left luma sample of the current prediction unit relative to the top-left luma sample of the current picture.
Inputs of this process are

· a luma location ( xP, yP ) of the top-left luma sample of the current prediction unit relative to the top-left luma sample of the current picture,
· variables specifying the width and the height of the prediction unit for luma, nPSW and nPSH,
· a variable PartIdx specifying the index of the current prediction unit within the current coding unit.
Outputs of this process are

–
the luma motion vectors mvL0 and mvL1,

–
the reference indices refIdxL0 and refIdxL1,

–
the prediction list utilization flags predFlagL0 and predFlagL1.
The motion vectors mvL0 and mvL1, the reference indices refIdxL0 and refIdxL1, and the prediction utilization flags predFlagL0 and predFlagL1 are derived as specified by the following ordered steps:
1. The derivation process for merging candidates from neighboring prediction unit partitions in subclause 8.4.2.1.4 is invoked with luma location ( xP, yP ), the width and the height of the prediction unit nPSW and nPSH and the partition index PartIdx as inputs and the output is assigned to the availability flags availableFlagN, the motion vectors mvL0N and mvL1N, the reference indices refIdxL0N and refIdxL1N and the prediction list utilization flags predFlagL0N and predFlagL1N with N being replaced by A, B, C or D.
2. The derivation process for temporal luma motion vector prediction in subclause 8.4.2.1.7 is invoked with luma location ( xP, yP ), refIdxLXCol (with X being 0 or 1, respectively) equal to 0 as the inputs and with the output being the availability flag availableFlagLXCol and the temporal motion vector mvLXCol. The variables availableFlagCol and predFlagLXCol (with X being 0 or 1, respectively) are derived as specified below.
availableFlagCol = availableFlagL0Col || availableFlagL1Col
(8‑71)
predFlagLXCol = availableFlagLXCol
(8‑72)
3. The merging candidate list, mergeCandList, is constructed of which elements are given as specified order:

1. A, if availableFlagA is equal to 1
2. B, if availableFlagB is equal to 1
3. Col, if availableFlagCol is equal to 1
4. C, if availableFlagC is equal to 1
5. D, if availableFlagD is equal to 1
4. If several merging candidates have the motion vectors and the same reference indices, the merging candidates are removed from the list except the merging candidate which has the smallest order in the mergeCandList.
5. If the number of elements NumMergeCand within the mergeCandList is equal to 1, mergeIdx is set equal to 0, otherwise, mergeIdx is set equal to merge_idx[ xP][ yP ].
6. The following assignments are made with N being the candidate at position mergeIdx in the merging candidate list mergeCandList ( N = mergeCandList[ mergeIdx ] ) and X being replaced by 0 or 1:
mvLX[ 0 ] = mvLXN[ 0 ]
(8‑73)
mvLX[ 1 ] = mvLXN[ 1 ]
(8‑74)

refIdxLX = refIdxLXN
(8‑75)
predFlagLX = predFlagLXN
(8‑76)
8.4.2.1.4 Derivation process for spatial merging candidates

Inputs to this process are

· a luma location ( xP, yP ) specifying the top-left luma sample of the current prediction unit relative to the top-left sample of the current picture,
· variables specifying the width and the height of the prediction unit for luma, nPSW and nPSH,
· a variable PartIdx specifying the index of the current prediction unit within the current coding unit.
Outputs of this process are (with N being replaced by A, B, C, or D and with X being replaced by 0 or 1)

· the availability flags availableFlagN of the neighbouring prediction units,
· the reference indices refIdxLXN of the neighbouring prediction units,

· the prediction list utilization flags predFlagLXN of the neighbouring prediction units,
· the motion vectors mvLXN of the neighbouring prediction units.

[image: image22.emf]A

D

B C


Figure 8‑3 – Spatial neighbours that can be used as merging candidates (informative) illustrates the position of the spatial neighbours A, B, C and D relative to the current prediction unit.
For the derivation of availableFlagN, with N being A, B, C or D and ( xN, yN ) being ( xP – 1,  yP ), ( xP,  yP – 1 ), ( xP + nPSW,  yP – 1 ) or ( xP – 1,  yP+nPSH ) the following applies.
–
If one of the following conditions is true, the availableFlagN is set equal to 0, both components mvLXN are set equal to 0, refIdxLXN and predFlagLX[ xN, yN ] of the prediction unit covering luma location ( xN, yN ) are assigned respectively to mvLXN, refIdxLXN and predFlagLXN.
· The prediction unit covering luma location ( xN, yN ) is not available or PredMode is MODE_INTRA.

· PartMode of the current prediction unit is PART_2NxN and PartIdx is equal to 1 and the prediction units covering luma location ( xP,  yP – 1 ) ( PartIdx = 0 ) and luma location ( xN, yN ) (Cand. N) have identical motion parameters:

·  mvLX[ xP,  yP – 1 ]  = =  mvLX[ xN, yN ]

· refIdxLX[ xP,  yP – 1 ]  = =  refIdxLX[ xN, yN ]
· predFlagLX[ xP,  yP – 1 ]  = =  predFlagLX[ xN, yN ]
· PartMode of the current prediction unit is PART_Nx2N and PartIdx is equal to 1 and the prediction units covering luma location ( xP – 1,  yP ) ( PartIdx = 0 ) and luma location ( xN, yN ) (Cand. N) have identical motion parameters:

·  mvLX[ xP – 1,  yP ]  = =  mvLX[ xN, yN ]

· refIdxLX[ xP – 1,  yP ]  = =  refIdxLX[ xN, yN ]
·  predFlagLX[ xP – 1,  yP ]  = =  predFlagLX[ xN, yN ]
· PartMode of the current prediction unit is PART_NxN and PartIdx is equal to 3 and the prediction units covering luma location ( xP – 1,  yP ) ( PartIdx = 2 ) and luma location ( xP – 1,  yP – 1 ) ( PartIdx = 0 )  have identical motion parameters:

·  mvLX[ xP – 1,  yP ]  = =  mvLX[ xP – 1,  yP – 1 ]

· refIdxLX[ xP – 1,  yP ]  = =  refIdxLX[ xP – 1,  yP – 1 ]
·  predFlagLX[ xP – 1,  yP ]  = =  predFlagLX[ xP – 1,  yP – 1 ]
and the prediction units covering luma location ( xP,  yP – 1 ) ( PartIdx = 1 ) and luma location ( xN, yN ) (Cand. N) have identical motion parameters:

·  mvLX[ xP,  yP – 1 ]  = =  mvLX[ xN, yN ]

· refIdxLX[ xP,  yP – 1 ]  = =  refIdxLX[ xN, yN ]
· predFlagLX[ xP,  yP – 1 ]  = =  predFlagLX[ xN, yN ]
· PartMode of the current prediction unit is PART_NxN and PartIdx is equal to 3 and the prediction units covering luma location ( xP,  yP – 1 ) ( PartIdx = 1 ) and luma location ( xP – 1,  yP – 1 ) ( PartIdx = 0 ) have identical motion parameters:

·  mvLX[ xP,  yP – 1 ]  = =  mvLX[ xP – 1,  yP – 1 ]

· refIdxLX[ xP,  yP – 1 ]  = =  refIdxLX[ xP – 1,  yP – 1 ]
· predFlagLX[ xP,  yP – 1 ]  = =  predFlagLX[ xP – 1,  yP – 1 ]
and the prediction units covering luma location ( xP – 1,  yP ) ( PartIdx = 2 ) and luma location ( xN, yN ) (Cand. N) have identical motion parameters:

·  mvLX[ xP – 1,  yP ]  = =  mvLX[ xN, yN ]

· refIdxLX[ xP – 1,  yP ]  = =  refIdxLX[ xN, yN ]
· predFlagLX[ xP – 1,  yP ]  = =  predFlagLX[ xN, yN ]
–
Otherwise, availableFlagN is set equal to 1 and the variables mvLX[ xN, yN ], refIdxLX[ xN, yN ] and predFlagLX[ xN, yN ] of the prediction unit covering luma location ( xN, yN ) are assigned respectively to mvLXN, refIdxLXN and predFlagLXN.
8.4.2.1.5 Derivation process for luma motion vector prediction

Inputs to this process are

· a luma location ( xP, yP ) specifying the top-left luma sample of the current prediction unit relative to the top-left sample of the current picture,
· variables specifying the width and the height of the prediction unit for luma, nPSW and nPSH.
· the reference index of the current prediction unit partition refIdxLX (with X being 0 or 1).
Output of this process is 
· the prediction mvpLX of the motion vector mvLX (with X being 0 or 1).

The motion vector predictor mvpLX is derived in the following ordered steps.

1. The derivation process for motion vector predictor candidates from neighboring prediction unit partitions in subclause 8.4.2.1.6 is invoked with luma location ( xP, yP ), the width and the height of the prediction unit nPSW and nPSH, and refIdxLX (with X being 0 or 1, respectively) as inputs and the availability flags availableFlagLXN and the motion vectors mvLXN with N being replaced by A, B as the output.
2. The derivation process for temporal luma motion vector prediction in subclause 8.4.2.1.7 is invoked with luma location ( xP, yP ) , the width and the height of the prediction unit nPSW and nPSH, and refIdxLX (with X being 0 or 1, respectively) as the inputs and with the output being the availability flag availableFlagLXCol and the temporal motion vector predictor mvLXCol.
3. The motion vector predictor list, mvpListLX, is constructed of which elements are given as specified order:
1. mvLXCol, if availableFlagLXCol is equal to 1
2. mvLXA, if availableFlagLXA is equal to 1
3. mvLXB, if availableFlagLXB is equal to 1
4. If several motion vectors have the same value, the motion vectors are removed from the list except the motion vector which has the smallest order in the mvpListLX.
5. If the number of elements NumMVPCand( LX ) within the mvpListLX is equal to 1, mvpIdx is set equal to 0, otherwise, mvpIdx is set equal to mvp_idx_lX[ xP, yP ].
6. The motion vector of mvListLX[ mvpIdx ] is assigned to mvpLX.
8.4.2.1.6 Derivation process for motion vector predictor candidates

Inputs to this process are

· a luma location ( xP, yP ) specifying the top-left luma sample of the current prediction unit relative to the top-left sample of the current picture,
· variables specifying the width and the height of the prediction unit for luma, nPSW and nPSH,
· the reference index of the current prediction unit partition refIdxLX (with X being 0 or 1).
Outputs of this process are (with N being replaced by A,or B)

· the motion vectors mvLXN of the neighbouring prediction units,

· the availability flags availableFlagLXN of the neighbouring prediction units.
[image: image23.png]Bn51 BnB





Figure 8‑4 – Spatial motion vector neighbours
The motion vector mvLXA and the availability flag availableFlagLXA are derived in the following ordered steps:

1. Let a set of nA sample locations be (xAk, yAk), with k = 0 .. nA, specifies sample locations with xAk = xP – 1, yA0 = yP and yAk-1 = yAk - MinPuSize. The set of sample locations ( xAk, yAk ) represent the sample locations immediately to the left side of the left partition boundary and it’s extended line. [Ed.: (WJ) MinPuSize should be defined somewhere, nA = nPSH / MinPuSize]
2. Let the availability flag availableFlagLXA be initially set equal to 0 and the both components of mvLXA are set equal to 0.

3. For ( xAk, yAk ) from ( xAnA, yAnA ) to ( xA0, yA0 ) where yAk-1 = yAk - MinPuSize, the following applies repeatedly until availableFlagLXA is equal to 1:

· If the prediction unit covering luma location ( xAk, yAk ) is available, PredMode is not MODE_INTRA, predFlagLX[ xAk ][ yAk ] is equal to 1 and the reference index refIdxLX[ xAk ][ yAk ] is equal to the reference index of the current prediction unit refIdxLX, availableFlagLXA is set equal to 1 and the motion vector mvLXA is set equal to the motion vector mvLX[ xAk ][ yAk ].
The motion vector mvLXB and the availability flag availableFlagLXB are derived in the following ordered steps:

1. Let a set of nB sample location (xBk, yBk), with k = -1,0 .. nB, specifies sample locations with xB‑1 = xP ‑ MinPuSize, xB0 = xP , yBk = yP – 1, and xBk-1 = xBk - MinPuSize. The set of sample locations ( xBk, yBk ) represent the sample locations immediately to the upper side of the above partition boundary and it’s extended line. [Ed.: (WJ) MinPuSize should be defined somewhere, nB = nPSW / MinPuSize]
2. Let the availability flag availableFlagLXB be initially set equal to 0 and the both components of mvLXB are set equal to 0.

3. For ( xBk, yBk ) from ( xB0, yB0 ) to ( xBnB-1, yBnB-1 ) where xBk‑1 = xBk ‑ MinPuSize, the following applies repeatedly until availableFlagLXB is equal to 1:

· If the prediction unit covering luma location ( xBk, yBk ) is available, PredMode is not MODE_INTRA, predFlagLX[ xBk ][ yBk ] is equal to 1, the reference index refIdxLX[ xBk ][ yBk ] is equal to the reference index of the current prediction unit refIdxLX and mvLX[ xBk ][ yBk ] is not identical to mvLXA, availableFlagLXB is set equal to 1 and the motion vector mvLXB is set equal to the motion vector mvLX[ xBk ][ yBk ].
8.4.2.1.7 Derivation process for temporal luma motion vector prediction

Inputs to this process are

· a luma location ( xP, yP ) specifying the top-left luma sample of the current prediction unit relative to the top-left sample of the current picture,
· variables specifying the width and the height of the prediction unit for luma, nPSW and nPSH,
· the reference index of the current prediction unit partition refIdxLX (with X being 0 or 1).
Outputs of this process are

· the motion vector prediction mvLXCol,

· the availability flag availableFlagLXCol.
The function RefPicOrderCnt( pic, refidx, LX ) is specified by the value of PicOrderCnt of the picture that is the reference picture RefPicListX[ refidx ] of pic with X being 0 or 1. PicOrderCnt of the reference picture shall be maintained until the picture is marked as “non-exisiting.”

Depending on the values of slice_type and collocated_from_l0_flag, the variable colPic, specifying the picture that contains the co-located partition, is derived as follows.

· If slice_type is equal to B and collocated_from_l0_flag is equal to 0, the variable colPic specifies the picture that contains the co-located partition as specified by RefPicList1[ 0 ].

· Otherwise (slice_type is equal to B and collocated_from_l0_flag is equal to 1 or slice_type is equal to P) , the variable colPic specifies the picture that contains the co-located partition as specified by RefPicList0[ 0 ].
Variable colPu and its position ( xPCol, yPCol ) are derived in the following ordered steps:

1. Central luma position of the current prediction unit is defined by

xPCtr = ( xP + ( nPSW >> 1 ) – 1
(8‑77)
yPCtr = ( yP + ( nPSH >> 1 ) – 1
(8‑78)
2. The variable colPu is set as the prediction unit covering the modified position given by ( ( xPCtr >> 4 ) << 4, ( yPCtr >> 4 ) << 4 ) inside the colPic.
[Ed.: (WJ) it implies memory compression of motion information at a grid of 16x16. Double-check consistency after software implementation]

3. ( xPCol, yPCol ) is set to the top-left luma sample of the colPu relative to the top-left luma sample of the colPic.
The variables mvLXCol and availableFlagLXCol are derived as follows.
· If colPu is coded in an intra prediction mode, both components of mvLXCol are set equal to 0 and availableFlagLXCol is set equal to 0.

· Otherwise (colPu is not coded in an intra prediction mode), the variables mvCol and refIdxCol are derived as follows,
· If PredFlagL0[ xPCol ][ yPCol ] is equal to 0, the motion vector mvCol and the reference index refIdxCol are set equal to MvL1[ xPCol ][ yPCol ] and RefIdxL1[ xPCol ][ yPCol ], respectively. 

· Otherwise (PredFlagL0[ xPCol ][ yPCol ] is equal to 1), the following applies.
· If PredFlagL1[ xPCol ][ yPCol ] is equal to 0, the motion vector mvCol and the reference index refIdxCol are set equal to MvL0[ xPCol ][ yPCol ] and RefIdxL0[ xPCol ][ yPCol ], respectively.

· Otherwise (PredFlagL1[ xPCol ][ yPCol ] is equal to 1), the following applies.
a. The following asignments are made with X being 0 or 1.

· RefIdxColLX = RefIdxLX[ xPCol ][ yPCol ]
· ColDistX = abs(RefPicOrderCnt( colPic, RefIdxColLX, LX ) - PicOrderCnt( colPic ))
· If PicOrderCnt( colPic ) is less than PicOrderCnt( currPic ) and RefPicOrderCnt( colPic, RefIdxColLX, LX ) is greater than PicOrderCnt( currPic ) or PicOrderCnt( colPic ) is greater than PicOrderCnt( currPic ) and RefPicOrderCnt( colPic, RefIdxColLX, LX ) is less than PicOrderCnt( currPic ), the variable MvXCross is derived as follows.
· MvXCross = 1
· Otherwise (PicOrderCnt( colPic ) is less than PicOrderCnt( currPic ) and RefPicOrderCnt( colPic, RefIdxColLX, LX ) is less than or equal to PicOrderCnt( currPic ) or PicOrderCnt( colPic ) is greater than PicOrderCnt( currPic ) and RefPicOrderCnt( colPic, RefIdxColLX, LX ) is greater than or equal to PicOrderCnt( currPic )), the variable MvXCross is derived as follows.
· MvXCross = 0

b. If one of the following conditions is true, the motion vector mvCol and the reference index refIdxCol are set equal to MvL1[ xPCol ][ yPCol ] and RefIdxColL1, respectively. 
· Mv0Cross is equal to 0 and Mv1Cross is equal to 1

· Mv0Cross is equal to Mv1Cross and ColDist1 is less than ColDist0

c. Otherwise, the motion vector mvCol and the reference index refIdxCol are set equal to MvL0[ xPCol ][ yPCol ] and RefIdxColL0, respectively.

and the variable availableFlagLXCol is set equal to 1 and the following applies.
· If PicOrderCnt( colPic ) – RefPicOrderCnt( colPic, refIdxCol, L0 ) is equal to PicOrderCnt( currPic ) - RefPicOrderCnt( currPic, refIdxCol, LX ),
mvLXCol = mvCol
(8‑79)
· Otherwise, mvLXCol is derived as scaled version of the motion vector mvCol as specified below

tx = ( 16384 + Abs( td / 2 ) ) / td
(8‑80)
DistScaleFactor = Clip3( -1024, 1023, ( tb * tx + 32 ) >> 6 )
(8‑81)
mvLXCol = ClipMv( ( DistScaleFactor * mvCol + 128 ) >> 8 )
(8‑82)
[Ed. (WJ): software has a clip function for scaled motion vector. Do we need this? AVC does not have it]

where td and tb are derived as

td = Clip3( -128, 127, PicOrderCnt( colPic ) – RefPicOrderCnt( colPic, refIdxCol, L0 ) )
(8‑83)
tb = Clip3( -128, 127, PicOrderCnt( currPic ) – RefPicOrderCnt( currPic, refIdxCol, LX ) )
(8‑84)
8.4.2.1.8 Derivation process for chroma motion vectors
[Ed.: (WJ) 4:2:0 assumption yet]

Inputs to this process are a luma motion vector mvLX and a reference index refIdLX.
Output of this process is a chroma motion vector mvCLX.
A chroma motion vector is derived from the corresponding luma motion vector.

For the derivation of the chroma motion vector mvCLX, the following applies.
mvCLX[ 0 ] = mvLX[ 0 ]
(8‑85)
mvCLX[ 1 ] = mvLX[ 1 ]
(8‑86)
8.4.2.2 Decoding process for inter prediction samples
Inputs to this process are:
–
a luma location ( xC, yC ) specifying the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture,
–
a luma location ( xB, yB ) specifying the top-left luma sample of the current prediction unit relative to the top‑left luma sample of the current coding unit,
–
a variable nCS specifying the size of the current coding unit,
–
variables specifying the width and the height of the prediction unit, nPSW and nPSH,
–
luma motion vectors mvL0 and mvL1, and chroma motion vectors mvCL0 and mvCL1,
–
reference indices refIdxL0 and refIdxL1,
–
prediction list utilization flags, predFlagL0 and predFlagL1.
Outputs of this process are:
–
a (nCSL)x(nCSL) array predSamplesL of luma prediction samples, where nCSL is derived as specified below,
–
a (nCSC)x(nCSC) array preSamplesCb of chroma prediction samples for the component Cb, where nCSC is derived as specified below,
–
a (nCSC)x(nCSC) array predSamplesCr of chroma residual samples for the component Cr, where nCSC is derived as specified below.
The variable nCSL is set equal to nCS and the variable nCSC is set equal to nCS >> 1. [Ed: (WJ) revisit for supporting other chroma formats]
Let predSamplesL0L and predSamplesL1L be (nPSW)x(nPSH) arrays of predicted luma sample values and predSampleL0Cb, predSampleL1Cb, predSampleL0Cr, and predSampleL1Cr be (nPSW/2)x(nPSH/2) arrays of predicted chroma sample values.
For LX being replaced by either L0 or L1 in the variables predFlagLX, RefPicListX, refIdxLX, refPicLX, and predPartLX, the following is specified.
When predFlagLX is equal to 1, the following applies.
–
The reference picture consisting of an ordered two-dimensional array refPicLXL of luma samples and two ordered two-dimensional arrays refPicLXCb and refPicLXCr of chroma samples is derived by invoking the process specified in subclause 8.4.2.2.1 with refIdxLX and RefPicListX given as input. 
–
The arrays predSamplesLXL, predSamplesLXCb, and predSamplesLXCr are derived by invoking the fractional sample interpolation process specified in subclause 8.4.2.2.2 with the luma locations ( xC, yC ), ( xB, yB ), the width an the height of the current prediction unit nPSW, nPSH, the motion vectors mvLX, mvCLX, and the reference arrays with refPicLXL, refPicLXCb and refPicLXCr given as input.
The array predSampleL of the prediction samples of luma component is derived by invoking the weighted sample prediction process specified in subclause 8.4.2.2.3 with the luma location ( xB, yB ), the width an the height of the current prediction unit nPSW, nPSH, and the sample arrays predSamplesL0L and predSamplesL1L as well as predFlagL0, predFlagL1 and BitDepthY given as input.
For C being replaced by Cb, or Cr, the array predSampleC of the prediction samples of component C is derived by invoking the weighted sample prediction process specified in subclause 8.4.2.2.3 with the chroma location ( xB/2, yB/2 ), the width an the height of the current prediction unit nPSWC set equal to nPSW/2, nPSHC set equal to nPSH/2, and the sample arrays predSamplesL0C and predSamplesL1C as well as predFlagL0, predFlagL1 and BitDepthC given as input.
8.4.2.2.1 Reference picture selection process
[Ed: (WJ) same as AVC]
8.4.2.2.2 Fractional sample interpolation process
Inputs to this process are:

–
a luma location ( xC, yC ) specifying the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture,

–
a luma location ( xB, yB ) specifying the top-left luma sample of the current prediction unit relative to the top left luma sample of the current coding unit,
–
the width and height of this prediction unit, nPSW and nPSH, in luma-sample units,
–
a luma motion vector mvLX given in quarter-luma-sample units,
–
a chroma motion vector mvCLX given in eighth-chroma-sample units,
–
the selected reference picture sample arrays refPicLXL, refPicLXCb, and refPicLXCr.
Outputs of this process are:
–
a (nPSW)x(nPSH) array predSampleLXL of prediction luma sample values,
–
two (nPSW/2)x(nPSH/2) arrays predSampleLXCb, and predSampleLXCr of prediction chroma sample values.
The location ( xP, yP ) given in full-sample units of the upper-left luma samples of the current prediction unit relative to the upper-left luma sample location of the given reference sample arrays is derived by
xP = xC + xB

(8‑87)
yP = yC + yB

(8‑88)
Let ( xIntL, yIntL ) be a luma location given in full-sample units and ( xFracL, yFracL ) be an offset given in quarter-sample units. These variables are used only inside this subclause for specifying general fractional-sample locations inside the reference sample arrays refPicLXL, refPicLXCb, and refPicLXCr.
For each luma sample location ( 0 <= xL < nPSW, 0 <= yL < nPSH ) inside the prediction luma sample array predSampleLXL, the corresponding prediction luma sample value predSampleLXL[xL, yL] is derived as follows:
–
The variables xIntL, yIntL, xFracL, and yFracL are derived by
xIntL = xP + ( mvLX[ 0 ] >> 2 ) + xL

(8‑89)
yIntL = yP + ( mvLX[ 1 ] >> 2 ) + yL

(8‑90)
xFracL = mvLX[ 0 ] & 3

(8‑91)
yFracL = mvLX[ 1 ] & 3

(8‑92)
–
The prediction luma sample value predSampleLXL[ xL, yL ] is derived by invoking the process specified in subclause 8.4.2.2.2.1 with ( xIntL, yIntL ), ( xFracL, yFracL ) and refPicLXL given as input.

Let ( xIntC, yIntC ) be a chroma location given in full-sample units and ( xFracC, yFracC ) be an offset given in one-eighth sample units. These variables are used only inside this subclause for specifying general fractional-sample locations inside the reference sample arrays refPicLXCb and refPicLXCr.
For each chroma sample location ( 0 <= xC < nPSW/2, 0 <= yC < nPSH/2) inside the prediction chroma sample arrays predSampleLXCb and predSampleLXCr, the corresponding prediction chroma sample values predSampleLXCb[ xC, yC ] and predSampleLXCr[ xC, yC ] are derived asfollows:
–
The variables xIntC, yIntC, xFracC, and yFracC are derived by
xIntC = ( xP / 2 ) + ( mvCLX[ 0 ] >> 3 ) + xC

(8‑93)
yIntC = ( yP / 2 ) + ( mvCLX[ 1 ] >> 3 ) + yC

(8‑94)
xFracC = mvLX[ 0 ] & 7

(8‑95)
yFracC = mvLX[ 1 ] & 7

(8‑96)
–
The prediction sample value predSampleLXCb[ xC, yC ] is derived by invoking the process specified in subclause 8.4.2.2.2.2 with ( xIntC, yIntC ), ( xFracC, yFracC ) and refPicLXCb given as input.
–
The prediction sample value predSampleLXCr[ xC, yC ] is derived by invoking the process specified in subclause 8.4.2.2.2.2 with ( xIntC, yIntC ), ( xFracC, yFracC ) and refPicLXCr given as input.

8.4.2.2.2.1 Luma sample interpolation process
Inputs to this process are:
–
a luma location in full-sample units ( xIntL, yIntL ),
–
a luma location in fractional-sample units ( xFracL, yFracL ),

–
the luma reference sample array refPicLXL.
Output of this process is a predicted luma sample value predSampleLXL[ xL, yL ]
[image: image24.emf]A

-1,-1

A

0,-1

a

0,-1

b

0,-1

c

0,-1

A

1,-1

A

-1,0

A

0,0

A

1,0

A

-1,1

A

0,1

A

1,1

a

0,1

b

0,1

c

0,1

a

0,0

b

0,0

c

0,0

d

0,0

h

0,0

n

0,0

e

0,0

i

0,0

p

0,0

f

0,0

j

0,0

q

0,0

g

0,0

k

0,0

r

0,0

d

-1,0

h

-1,0

n

-1,0

d

1,0

h

1,0

n

1,0

A

2,-1

A

2,0

A

2,1

d

2,0

h

2,0

n

2,0

A

-1,2

A

0,2

A

1,2

a

0,2

b

0,2

c

0,2

A

2,2


Figure 8‑5 – Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded blocks with lower-case letters) for quarter sample luma interpolation
In Figure 8‑5, the positions labelled with upper-case letters Ai, j within shaded blocks represent luma samples at full-sample locations inside the given two-dimensional array refPicLXL of luma samples. These samples may be used for generating the predicted luma sample value predSampleLXL[ xL, yL ]. The locations ( xAi, j, yAi, j ) for each of the corresponding luma samples Ai, j inside the given array refPicLXL of luma samples are derived as follows:
xAi, j = Clip3( 0, PicWidthInSamplesL – 1, xIntL +i )

(8‑97)
yAi, j = Clip3( 0, PicHeightInSamplesL – 1, yIntL +j )

(8‑98)
Variables shift1, shift2, shift3, offset1 and offset2 are derived as follows.

–
The variable shift1 is set equal to BitDepthY – 8, the variable shift2 is set equal to BitDepthY – 2, and the variable shift3 is set equal to 14 – BitDepthY.
–
If the variable shift1 is equal to 0, the variable offset1 is set equal to 0, otherwise, the variable offset1 is set equal to 1 << ( shift1 – 1 ).

–
The variable offset2 is set equal to 1 << ( shift2 – 1 ).
Given the luma samples Ai, j at full-sample locations ( xAi, j, yAi, j ), the luma samples ‘a0,0’ to ‘r0,0’ at fractional sample positions are derived by the following rules.
–
The samples labelled a0,0, b0,0, c0,0, d0,0, h0,0, and n0,0 shall be derived by applying the 8-tap filter to the nearest integer position samples and clipping the filtered value:
a0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -A-3,0 + 4*A-2,0 - 10*A-1,0 + 57*A0,0 +





 19*A1,0 - 7*A2,0 + 3*A3,0 - A4,0 + offset1 ) >> shift1 )
(8‑99)
b0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -A-3,0 + 4*A-2,0 - 11*A-1,0 + 40*A0,0 +





 40*A1,0 - 11*A2,0 + 4*A3,0 - A4,0 + offset1 ) >> shift1 )
(8‑100)
c0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -A-3,0 + 3*A-2,0 - 7*A-1,0 + 19*A0,0 +





 57*A1,0 - 10*A2,0 + 4*A3,0 - A4,0 + offset1 ) >> shift1 )
(8‑101)
d0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -A0,-3 + 4*A0,-2 - 10*A0,-1 + 57*A0,0 +





 19*A0,1 - 7*A0,2 + 3*A0,3 - A0,4 + offset1 ) >> shift1 )
(8‑102)
h0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -A0,-3 + 4*A0,-2 - 11*A0,-1 + 40*A0,0 +





 40*A0,1 - 11*A0,2 + 4*A0,3 - A0,4 + offset1 ) >> shift1 )
(8‑103)
n0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -A0,-3 + 3*A0,-2 - 7*A0,-1 + 19*A0,0 +





 57*A0,1 - 10*A0,2 + 4*A0,3 - A0,4 + offset1 ) >> shift1 )
(8‑104)
–
The samples labelled e0,0, f0,0, g0,0, i0,0, j0,0, k0,0, p0,0, q0,0 and r0,0 shall be derived by first calculating intermediate values denoted as d1i,0, h1i,0 and n1i,0 where i = -3..4 by applying the 8-tap filter to the nearest integer position samples in vertical direction: [Ed: (WJ) horizontal first yields the same result]
d1i,0 =  -Ai,-3 + 4*Ai,-2 - 10*Ai,-1 + 57*Ai,0 + 19*Ai,1 - 7*Ai,2 + 3*Ai,3 - Ai,4
(8‑105)
h1i,0 =  -Ai,-3 + 4*Ai,-2 - 11*Ai,-1 + 40*Ai,0 +
 40*Ai,1 - 11*Ai,2 + 4*Ai,3 - Ai,4
(8‑106)
n1i,0 =  -Ai,-3 + 3*Ai,-2 - 7*Ai,-1 + 19*Ai,0 +
 57*Ai,1 - 10*Ai,2 + 4*Ai,3 - Ai,4
(8‑107)
–
The final prediction values e0,0, f0,0, g0,0, i0,0, j0,0, k0,0, p0,0, q0,0 and r0,0 shall be derived by applying the 8-tap filter to the intermediate values d1i,0, h1i,0 and n1i,0 where i = -3..4 in horizontal direction:
e0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -d1-3,0 + 4*d1-2,0 - 10*d1-1,0 + 57*d10,0 +





 19*d11,0 - 7*d12,0 + 3*d13,0 - d14,0 + offset2 ) >> shift2 )
(8‑108)
f0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( - d1-3,0 + 4*d1-2,0 - 11*d1-1,0 + 40*d10,0 +





 40*d11,0 - 11*d12,0 + 4*d13,0 - d14,0 + offset2 ) >> shift2 )
(8‑109)
g0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( - d1-3,0 + 3*d1-2,0 - 7*d1-1,0 + 19*d10,0 +





 57*d11,0 - 10*d12,0 + 4*d13,0 - d14,0 + offset2 ) >> shift2 )
(8‑110)
i0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( - h1-3,0 + 4*h1-2,0 - 10*h1-1,0 + 57*h10,0 +





 19*h11,0 - 7*h12,0 + 3*h13,0 - h14,0 + offset2 ) >> shift2 )
(8‑111)
j0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( - h1-3,0 + 4*h1-2,0 - 11*h1-1,0 + 40*h10,0 +





 40*h11,0 - 11*h12,0 + 4*h13,0 - h14,0 + offset2 ) >> shift2 )
(8‑112)
k0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( - h1-3,0 + 3*h1-2,0 - 7*h1-1,0 + 19*h10,0 +





 57*h11,0 - 10*h12,0 + 4*h13,0 - h14,0 + offset2 ) >> shift2 )
(8‑113)
p0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( - n1-3,0 + 4*n1-2,0 - 10*n1-1,0 + 57*n10,0 +





 19*n11,0 - 7*n12,0 + 3*n13,0 - n14,0 + offset2 ) >> shift2 )
(8‑114)
q0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( - n1-3,0 + 4*n1-2,0 - 11*n1-1,0 + 40*n10,0 +





 40*n11,0 - 11*n12,0 + 4*n13,0 - n14,0 + offset2 ) >> shift2 )
(8‑115)
r0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( - n1-3,0 + 3*n1-2,0 - 7*n1-1,0 + 19*n10,0 +





 57*n11,0 - 10*n12,0 + 4*n13,0 - n14,0 + offset2 ) >> shift2 )
(8‑116)
The positions labelled with lower-case letters within un-shaded blocks represent luma samples at quarter-pel sample fractional locations. The luma location offset in fractional-sample units ( xFracL, yFracL ) specifies which of the generated luma samples at full-sample and fractional-sample locations is assigned to the predicted luma sample value predSampleLXL[ xL, yL ]. This assignment is done according to Table 8‑9. The value of predSampleLXL[ xL, yL ] shall be the output.
Table 8‑9 – Assignment of the luma prediction sample predSampleLXL[ xL, yL ]
	xFracL
	0
	0
	0
	0
	1
	1
	1
	1
	2
	2
	2
	2
	3
	3
	3
	3

	yFracL
	0
	1
	2
	3
	0
	1
	2
	3
	0
	1
	2
	3
	0
	1
	2
	3

	predSampleLXL[ xL, yL ]
	A << shift3
	d
	h
	n
	a
	e
	i
	p
	b
	f
	j
	q
	c
	g
	k
	r


8.4.2.2.2.2 Chroma sample interpolation process
Inputs to this process are:
–
a chroma location in full-sample units ( xIntC, yIntC ),
–
a chroma location in fractional-sample units ( xFracC, yFracC ),

–
the chroma reference sample array refPicLXC.
Output of this process is a predicted chroma sample value predSampleLXC[ xC, yC ]
[image: image25.emf]B

0,0

ae

0,0

ag

0,0

ah

0,0

ab

0,0

ac

0,0

ad

0,0

af

0,0

B

1,0

B

1,1

B

0,1

be

0,0

bg

0,0

bh

0,0

bb

0,0

bc

0,0

bd

0,0

bf

0,0

ba

0,0

ce

0,0

cg

0,0

ch

0,0

cb

0,0

cc

0,0

cd

0,0

cf

0,0

ca

0,0

de

0,0

dg

0,0

dh

0,0

db

0,0

dc

0,0

dd

0,0

df

0,0

da

0,0

ee

0,0

eg

0,0

eh

0,0

eb

0,0

ec

0,0

ed

0,0

ef

0,0

ea

0,0

fe

0,0

fg

0,0

fh

0,0

fb

0,0

fc

0,0

fd

0,0

ff

0,0

fa

0,0

ge

0,0

gg

0,0

gh

0,0

gb

0,0

gc

0,0

gd

0,0

gf

0,0

ga

0,0

he

0,0

hg

0,0

hh

0,0

hb

0,0

hc

0,0

hd

0,0

hf

0,0

ha

0,0

ah

-1,0

bh

-1,0

ch

-1,0

dh

-1,0

eh

-1,0

fh

-1,0

gh

-1,0

hh

-1,0

he

0,-1

hg

0,-1

hh

0,-1

hb

0,-1

hc

0,-1

hd

0,-1

hf

0,-1

ha

0,-1

ba

1,0

ca

1,0

da

1,0

ea

1,0

fa

1,0

ga

1,0

ha

1,0

ae

0,1

ag

0,1

ah

0,1

ab

0,1

ac

0,1

ad

0,1

af

0,1


Figure 8‑6 – Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded blocks with lower-case letters) for eighth sample chroma interpolation
In Figure 8‑5, the positions labelled with upper-case letters Bi, j within shaded blocks represent chroma samples at full-sample locations inside the given two-dimensional array refPicLXC of chroma samples. These samples may be used for generating the predicted chroma sample value predSampleLXC[ xC, yC ]. The locations ( xBi, j, yBi, j ) for each of the corresponding chroma samples Bi, j inside the given array refPicLXC of chroma samples are derived as follows:
xBi, j = Clip3( 0, PicWidthInSamplesC – 1, xIntC +i )

(8‑117)
yBi, j = Clip3( 0, PicHeightInSamplesC – 1, yIntC +j )

(8‑118)
Variables shift1, shift2, shift3, offset1 and offset2 are derived as follows.

–
The variable shift1 is set equal to BitDepthC – 8, the variable shift2 is set equal to BitDepthC – 2, and the variable shift3 is set equal to 14 – BitDepthC.

–
If the variable shift1 is equal to 0, the variable offset1 is set equal to 0, otherwise, the variable offset1 is set equal to 1 << ( shift1 – 1 ).

–
The variable offset2 is set equal to 1 << ( shift2 – 1 ).
Given the chroma samples Bi, j at full-sample locations ( xBi, j, yBi, j ), the chroma samples ‘ab0,0’ to ‘hh0,0’ at fractional sample positions are derived by the following rules.
–
The samples labelled ab0,0, ac0,0, ad0,0, ae0,0, af0,0, ag0,0, and ah0,0 shall be derived by applying the 4-tap filter to the nearest integer position samples and clipping the filtered value:
ab0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -3*B-1,0 + 60*B0,0 + 8*B1,0 – B2,0 + offset1 ) >> shift1 )
(8‑119)
ac0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -4*B-1,0 + 54*B0,0 + 16*B1,0 – 2*B2,0 + offset1 ) >> shift1 )
(8‑120)
ad0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -5*B-1,0 + 46*B0,0 + 27*B1,0 – 4*B2,0 + offset1 ) >> shift1 )
(8‑121)
ae0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -4*B-1,0 + 36*B0,0 + 36*B1,0 – 4*B2,0 + offset1 ) >> shift1 )
(8‑122)
af0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -4*B-1,0 + 27*B0,0 + 46*B1,0 – 5*B2,0 + offset1 ) >> shift1 )
(8‑123)
ag0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -2*B-1,0 + 16*B0,0 + 54*B1,0 – 4*B2,0 + offset1 ) >> shift1 )
(8‑124)
ah0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -B-1,0 + 8*B0,0 + 60*B1,0 – 3*B2,0 + offset1 ) >> shift1 )
(8‑125)
–
The samples labelled ba0,0, ca0,0, da0,0, ea0,0, fa0,0, ga0,0, and ha0,0 shall be derived by applying the 4-tap filter to the nearest integer position samples and clipping the filtered value:
ba0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -3*B0,-1 + 60*B0,0 + 8*B0,1 – B0,2 + offset1 ) >> shift1 )
(8‑126)
ca0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -4*B0,-1 + 54*B0,0 + 16*B0,1 – 2*B0,2 + offset1 ) >> shift1 )
(8‑127)
da0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -5*B0,-1 + 46*B0,0 + 27*B0,1 – 4*B0,2 + offset1 ) >> shift1 )
(8‑128)
ea0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -4*B0,-1 + 36*B0,0 + 36*B0,1 – 4*B0,2 + offset1 ) >> shift1 )
(8‑129)
fa0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -4*B0,-1 + 27*B0,0 + 46*B0,1 – 5*B0,2 + offset1 ) >> shift1 )
(8‑130)
ga0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -2*B0,-1 + 16*B0,0 + 54*B0,1 – 4*B0,2 + offset1 ) >> shift1 )
(8‑131)
ha0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -B0,-1 + 8*B0,0 + 60*B0,1 – 3*B0,2 + offset1 ) >> shift1 )
(8‑132)
–
The samples labelled Xb0,0, Xc0,0, Xd0,0, Xe0,0, Xf0,0, Xg0,0 and Xh0,0 for X being replaced by b, c, d, e, f, g and h, respectively, shall be derived by first calculating intermediate values denoted as bai,0, cai,0, dai,0, eai,0, fai,0, gai,0 and hai,0 where i = -1..2 by applying the 4-tap filter to the nearest integer position samples in vertical direction: [Ed: (WJ) horizontal first yields the same result]

bai,0 =  -3*B0,-1 + 60*B0,0 + 8*B0,1 – B0,2 

(8‑133)
cai,0 =  -4*B0,-1 + 54*B0,0 + 16*B0,1 – 2*B0,2 

(8‑134)
dai,0 =  -5*B0,-1 + 46*B0,0 + 27*B0,1 – 4*B0,2 

(8‑135)
eai,0 =  -4*B0,-1 + 36*B0,0 + 36*B0,1 – 4*B0,2 

(8‑136)
fai,0 =  -4*B0,-1 + 27*B0,0 + 46*B0,1 – 5*B0,2 

(8‑137)
gai,0 =  -2*B0,-1 + 16*B0,0 + 54*B0,1 – 4*B0,2 

(8‑138)
hai,0 =  -B0,-1 + 8*B0,0 + 60*B0,1 – 3*B0,2 

(8‑139)
–
The final prediction values Xb0,0, Xc0,0, Xd0,0, Xe0,0, Xf0,0, Xg0,0 and Xh0,0 for X being replaced by b, c, d, e, f, g and h, respectively, shall be derived by applying the 4-tap filter to the intermediate values Xai,0 where i = -1..2 in horizontal direction:

Xb0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -3*Xa-1,0 + 60*Xa0,0 + 8*Xa1,0 – Xa2,0 + offset2 ) >> shift2 )
(8‑140)
Xc0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -4*Xa-1,0 + 54*Xa0,0 + 16*Xa1,0 – 2*Xa2,0 + offset2 ) >> shift2 )
(8‑141)
Xd0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -5*Xa-1,0 + 46*Xa0,0 + 27*Xa1,0 – 4*Xa2,0 + offset2 ) >> shift2 )
(8‑142)
Xe0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -4*Xa-1,0 + 36*Xa0,0 + 36*Xa1,0 – 4*Xa2,0 + offset2 ) >> shift2 )
(8‑143)
Xf0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -4*Xa-1,0 + 27*Xa0,0 + 46*Xa1,0 – 5*Xa2,0 + offset2 ) >> shift2 )
(8‑144)
Xg0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -2*Xa-1,0 + 16*Xa0,0 + 54*Xa1,0 – 4*Xa2,0 + offset2 ) >> shift2 )
(8‑145)
Xh0,0 = Clip3( 0, ( 1 << 14 ) – 1, ( -Xa-1,0 + 8*Xa0,0 + 60*Xa1,0 – 3*Xa2,0 + offset2 ) >> shift2 )
(8‑146)
The positions labelled with lower-case letters within un-shaded blocks represent chroma samples at eighth-pel sample fractional locations. The chroma location offset in fractional-sample units ( xFracC, yFracC ) specifies which of the generated chroma samples at full-sample and fractional-sample locations is assigned to the predicted chroma sample value predSampleLXC[ xC, yC ]. This assignment is done according to Table 8‑10. The value of predSampleLXC[ xC, yC ] shall be the output.
Table 8‑10 – Assignment of the chroma prediction sample predSampleLXC[ xC, yC ] for ( X, Y ) being replaced by ( 1, b ), ( 2, c ), ( 3, d ), ( 4, e ), ( 5, f ), ( 6, g ), and ( 7, h ), respectively
	xFracC
	0
	0
	0
	0
	0
	0
	0
	0
	X
	X
	X
	X
	X
	X
	X
	X

	yFracC
	0
	1
	2
	3
	4
	5
	6
	7
	0
	1
	2
	3
	4
	5
	6
	7

	predSampleLXC[ xC, yC ]
	B << shift3
	ba
	ca
	da
	ea
	fa
	ga
	ha
	aY
	bY
	cY
	dY
	eY
	fY
	gY
	hY


8.4.2.2.3 Weighted sample prediction process
[Ed.: (KU) only the default weighted prediction part is added for bi-directional averaging]

Inputs to this process are:

–
a location ( xB, yB ) specifying the top-left sample of the current prediction unit relative to the top left sample of the current coding unit,

–
the width and height of this prediction unit, nPSW and nPSH,
–
two (nPSW)x(nPSH) arrays predSamplesL0 and predSamplesL1,
–
prediction list utilization flags, predFlagL0 and predFlagL1,
–
the bit-depth of the chroma component, bitDepth.

Outputs of this process are:

–
the (nPSW)x(nPSH) array predSamples of prediction sample values.
Variables shift1, shift2, offset1 and offset2 are derived as follows.

–
The variable shift1 is set equal to 14 – bitDepth and the variable shift2 is set equal to 15 – bitDepth,
–
The variable offset1 is set equal to 1 << ( shift1 – 1 ) and the variable offset2 is set equal to 1 << ( shift2 – 1 ).

Depending on the value of predFlagL0 and predFlagL1, the prediction samples predSamples[ x, y ] with x = 0..(nPSW)-1 and y = 0..(nPSH)-1 are derived as follows.
–
If predFlagL0 is equal to 1 and predFlagL1 is equal to 0,

predSamples[ x, y ] = ( predSamplesL0[ x, y ] + offset1 ) >> shift1
(8‑147)
–
Otherwise, if predFlagL0 is equal to 0 and predFlagL1 is equal to 1,

predSamples[ x, y ] = ( predSamplesL1[ x, y ] + offset1 ) >> shift1
(8‑148)
–
Otherwise (both predFlagL0 and predFlagL1 are equal to 1),

predSamples[ x, y ] = 
( predSamplesL0[ x, y ] + predSamplesL1[ x, y ] + offset2 ) >> shift2
(8‑149)
8.4.3 Decoding process for the residual signal of coding units coded in inter prediction mode

Inputs to this process are:

–
a luma location ( xC, yC ) specifying the top-left luma sample of the current coding unit relative to the top‑left luma sample of the current picture,

–
a variable log2CUSize specifying the size of the current coding unit.

Outputs of this process are:

–
a (nCSL)x(nCSL) array resSamplesL of luma residual samples, where nCSL is derived as specified below,

–
a (nCSC)x(nCSC) array resSamplesCb of chroma residual samples for the component Cb, where nCSC is derived as specified below,

–
a (nCSC)x(nCSC) array resSamplesCr of chroma residual samples for the component Cr, where nCSC is derived as specified below.

The variable nCSL is set equal to 1 << log2CUSize and the variable nCSC is set equal to ( 1 << log2CUSize ) >> 1.

Let resSamplesL be a (nCSL)x(nCSL) array of luma residual samples and let resSamplesCb and resSamplesCr be two (nCSC)x(nCSC) arrays of chroma residual samples.

Depending on no_residual_data_flag, the following applies:

–
If no_residual_data_flag is equal to 1, all samples of the (nCSL)x(nCSL) array resSamplesL and all samples of the two (nCSC)x(nCSC) arrays resSamplesCb and resSamplesCr are set equal to 0.
–
Otherwise (no_residual_data_flag is equal to 0), the following ordered steps apply:
1. The decoding process for luma residual blocks as specified in subclause 8.4.3.1 below is invoked with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( 0, 0 ), the variable log2TrafoSize set equal to log2CUSize, the variable trafoDepth set equal to 0, the variable nCS set equal to nCSL, and the (nCSL)x(nCSL) array resSamplesL as the inputs and the output is a modified version of the (nCSL)x(nCSL) array resSamplesL.
2. The decoding process for chroma residual blocks as specified in subclause 8.4.3.2 below is invoked with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( 0, 0 ), the variable log2TrafoSize set equal to log2CUSize, the variable trafoDepth set equal to 0, the variable cIdx set equal to 1, the variable nCS set equal to nCSC, and the (nCSC)x(nCSC) array resSamplesCb as the inputs and the output is a modified version of the (nCSC)x(nCSC) array resSamplesCb.
3. The decoding process for chroma residual blocks as specified in subclause 8.4.3.2 below is invoked with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( 0, 0 ), the variable log2TrafoSize set equal to log2CUSize, the variable trafoDepth set equal to 0, the variable cIdx set equal to 2, the variable nCS set equal to nCSC, and the (nCSC)x(nCSC) array resSamplesCr as the inputs and the output is a modified version of the (nCSC)x(nCSC) array resSamplesCr.
8.4.3.1 Decoding process for luma residual blocks

Inputs to this process are:

–
a luma location ( xC, yC ) specifying the top-left luma sample of the current coding unit relative to the top‑left luma sample of the current picture,

–
a luma location ( xB, yB ) specifying the top-left luma sample of the current block relative to the top‑left luma sample of the current coding unit,

–
a variable log2TrafoSize specifying the size of the current block,

–
a variable trafoDepth specifying the hierarchy depth of the current block relative to the coding unit,

–
a variable nCS specifying the size, in luma samples, of the current coding unit,

–
a (nCS)x(nCS) array resSamples of luma residual samples.

Output of this process is:

–
a modified version of the (nCS)x(nCS) array of luma residual samples.

Depending split_transform_flag[ xB ][ yB ][ trafoDepth ], the following applies:

–
If split_transform_flag[ xB ][ yB ][ trafoDepth ] is equal to 1, the following ordered steps apply:

1. The variable xB1 is set equal to xB + ( ( 1 << log2TrafoSize ) >> 1 ).

2. The variable yB1 is set equal to yB + ( ( 1 << log2TrafoSize ) >> 1 ).

3. The decoding process for luma residual blocks as specified in this subclause is invoked with the luma location ( xC, yC ), the luma location ( xB, yB ), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable nCS, and the (nCS)x(nCS) array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples.

4. The decoding process for luma residual blocks as specified in this subclause is invoked with the luma location ( xC, yC ), the luma location ( xB1, yB ), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable nCS, and the (nCS)x(nCS) array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples.

5. The decoding process for luma residual blocks as specified in this subclause is invoked with the luma location ( xC, yC ), the luma location ( xB, yB1 ), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable nCS, and the (nCS)x(nCS) array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples.

6. The decoding process for luma residual blocks as specified in this subclause is invoked with the luma location ( xC, yC ), the luma location ( xB1, yB1 ), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable nCS, and the (nCS)x(nCS) array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples.

–
Otherwise (split_transform_flag[ xB ][ yB ][ trafoDepth ] is equal to 0), the following ordered steps apply:

1. The variable nS is set equal to 1 << log2TrafoSize.

2. The scaling and transformation process as specified in subclause 8.5.1 is invoked with the luma location ( xC + xB, yC +yB ), the variable trafoDepth, the variable cIdx set equal to 0, and the transform size trafoSize set equal to nS as the inputs and the output is a (nS)x(nS) array resSamplesBlock.

3. The array construction process as specified in subclause 8.5.5 is invoked with the luma location ( xB, yB ), the variable cIdx set equal to 0, the variable inputArraySize set equal to nS, the variable outputArraySize set equal to nCS, the (nS)x(nS) array resSamplesBlock, and the (nCS)x(nCS) array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples.

8.4.3.2 Decoding process for chroma residual blocks

Inputs to this process are:

–
a luma location ( xC, yC ) specifying the top-left luma sample of the current coding unit relative to the top‑left luma sample of the current picture,

–
a luma location ( xB, yB ) specifying the top-left luma sample of the current block relative to the top‑left luma sample of the current coding unit,

–
a variable log2TrafoSize specifying the size of the current block,

–
a variable trafoDepth specifying the hierarchy depth of the current block relative to the coding unit,

–
a variable cIdx specifying the chroma component of the current block,

–
a variable nCS specifying the size, in chroma samples, of the current coding unit,

–
a (nCS)x(nCS) array resSamples of chroma residual samples.

Output of this process is:

–
a modified version of the (nCS)x(nCS) array of chroma residual samples.

The variable splitChromaFlag is derived as follows:

–
If split_transform_flag[ xB ][ yB ][ trafoDepth ] is equal to 1 and log2TrafoSize is greater than Log2MinTrafoSize + 1, splitChromaFlag is set equal to 1.

–
Otherwise (split_transform_flag[ xB ][ yB ][ trafoDepth ] is equal to 0 or log2TrafoSize is equal to Log2MinTrafoSize + 1), splitChromaFlag is set equal to 0.

Depending splitChromaFlag, the following applies:

–
If splitChromaFlag is equal to 1, the following ordered steps apply:

1. The variable xB1 is set equal to xB + ( ( 1 << log2TrafoSize ) >> 1 ).

2. The variable yB1 is set equal to yB + ( ( 1 << log2TrafoSize ) >> 1 ).

3. The decoding process for residual chroma blocks as specified in this subclause is invoked with the luma location ( xC, yC ), the luma location ( xB, yB ), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable cIdx, the variable nCS, and the (nCS)x(nCS) array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples.

4. The decoding process for residual chroma blocks as specified in this subclause is invoked with the luma location ( xC, yC ), the luma location ( xB1, yB ), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable cIdx, the variable nCS, and the (nCS)x(nCS) array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples.

5. The decoding process for residual chroma blocks as specified in this subclause is invoked with the luma location ( xC, yC ), the luma location ( xB, yB1 ), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable cIdx, the variable nCS, and the (nCS)x(nCS) array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples.

6. The decoding process for residual chroma blocks as specified in this subclause is invoked with the luma location ( xC, yC ), the luma location ( xB1, yB1 ), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable cIdx, the variable nCS, and the (nCS)x(nCS) array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples.

–
Otherwise (splitChromaFlag is equal to 0), the following ordered steps apply:

1. The variable nS is set equal to ( 1 << log2TrafoSize ) >> 1.

2. The scaling and transformation process as specified in subclause 8.5.1 is invoked with the luma location ( xC + xB, yC +yB ), the variable trafoDepth, the variable cIdx, and the transform size trafoSize set equal to nS as the inputs and the output is a (nS)x(nS) array resSamplesBlock.

3. The array construction process as specified in subclause 8.5.5 is invoked with the luma location ( xB, yB ), the variable cIdx, the variable inputArraySize set equal to nS, the variable outputArraySize set equal to nCS, the (nS)x(nS) array resSamplesBlock, and the (nCS)x(nCS) array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples.

8.5 Scaling, transformation and array construction process prior to deblocking filter process
8.5.1 Scaling and transformation process
Inputs to this process are:
–
a luma location ( xT, yT ) specifying the top-left luma sample of the current transform unit relative to the top‑left luma sample of the current picture,
–
a variable trafoDepth specifying the hierarchy depth of the current block relative to the coding unit,
–
a variable cIdx specifying the chroma component of the current block,
–
a variable nS specifying the size of the current transform unit.
Output of this process is:

–
a modified version of the (nS)x(nS) array of residual samples r with elements rij.
The quantization parameter qP is derived as follows.
–
If cIdx is equal to 0,
qP = QP’Y


(8‑150)
–
Otherwise,
qP = QP’C


(8‑151)
The (nS)x(nS) array of residual samples r are derived as specified in the following ordered steps.
1. The inverse scanning process for transform coefficients as specified in subclause 8.5.2 is invoked with the size of the current transform unit nS, the list of transform coefficients listTrCoeffs and the variable cIdx as the inputs and the output is a (nS)x(nS) array cij. [Ed: (WJ) listTrCoeffs should be replaced after specifying syntax elements of level information]
2. The scaling process for transform coefficients as specified in subclause 8.5.3 is invoked with the size of the transform unit nS, the (nS)x(nS) array c, the chroma component variable cIdx and the quantization parameter qP as the inputs and the output is a scaled transform coefficient (nS)x(nS) array d.
3. The transformation process for scaled transform coefficients as specified in subclause 8.5.4 is invoked with the size of the transform unit nS, the scaled transform coefficient (nS)x(nS) array d and the chroma component variable cIdx as the inputs and the output is a residual samples (nS)x(nS) array r.
8.5.2 Inverse scanning process for transform coefficients
Inputs to this process are:

–
a variable nS specifying the size of the current transform unit,
–
a list of (nS)x(nS) values listTrCoeffs.
–
a variable cIdx specifying the chroma component of the current block,

Output of this process is a variable c containing a two-dimensional array of (nS)x(nS) values.

Table 8‑11 – Specification of scanType[ nS ][ IntraPredMode ] for various transform unit sizes
	IntraPredMode
	scanType

for nS = 4
	scanType

for nS = 8
	scanType

for nS = 16
	scanType

for nS = 32

	0
	1
	1
	0
	0

	1
	2
	2
	0
	0

	2-3
	0
	0
	0
	0

	4-5
	1
	1
	0
	0

	6
	0
	0
	0
	0

	7-8
	2
	2
	0
	0

	9-10
	0
	0
	0
	0

	11-12
	1
	1
	0
	0

	13-14
	0
	0
	0
	0

	15-16
	2
	2
	0
	0

	17-19
	0
	0
	0
	0

	20-23
	1
	1
	0
	0

	24-27
	0
	0
	0
	0

	28-31
	2
	2
	0
	0

	32-33
	0
	0
	0
	0


Table 8‑12 – Specification of scanTypeC[ nS ][ intra_chroma_ pred_mode ] for various transform unit sizes
	intra_chroma_pred_mode
	scanTypeC
for nS = 4
	scanTypeC
for nS = 8
	scanTypeC
for nS = 16
	scanTypeC
for nS = 32

	0
	1
	0
	0
	0

	1
	2
	0
	0
	0

	2-3
	0
	0
	0
	0

	4
	scanType[ nS << 1 ][ IntraPredMode ]


Depending on the values of IntraPredMode and nS, the variable cij which is located in the ( j, i ) position in the array c is derived as follows.

· If cIdx is equal to 0, the following applies:
· If PredMode is not equal to MODE_INTRA or scanType[ nS ][ IntraPredMode ] is equal to 0,
cij = listTrCoeff[ zigzagTable(nS)x(nS)[ i, j ] ], with i, j = 0..(nS)-1
(8‑152)
· Otherwise, if scanType[ nS ][ IntraPredMode ] is equal to 1,
cij = listTrCoeff[ j + i*nS ], with i, j = 0..(nS)-1

(8‑153)
· Otherwise (scanType[ nS ][ IntraPredMode ] is equal to 2), 
cij = listTrCoeff[ i + j*nS ], with i, j = 0..(nS)-1

(8‑154)
· Otherwise (cIdx is not equal to 0), the following applies:
· If PredMode is not equal to MODE_INTRA or scanTypeC[ nS ][ intra_chroma_pred_mode ] is equal to 0,
cij = listTrCoeff[ zigzagTable(nS)x(nS)[ i, j ] ], with i, j = 0..(nS)-1
(8‑155)
· Otherwise, if scanTypeC[ nS ][ intra_chroma_pred_mode ] is equal to 1,
cij = listTrCoeff[ j + i*nS ], with i, j = 0..(nS)-1

(8‑156)
· Otherwise (scanTypeC[ nS ][ intra_chroma_pred_mode ] is equal to 2), 
cij = listTrCoeff[ i + j*nS ], with i, j = 0..(nS)-1

(8‑157)
[Ed: (WJ) zigzagTable(nS)x(nS) should be very large table up to 32x32. Is there any better way? E.g. function?]
8.5.3 Scaling process for transform coefficients
Inputs of this process are:
–
a variable nS specifying the size of the current transform unit,
–
a (nS)x(nS) array c of transform coefficients with elements cij,
–
a variable cIdx specifying the chroma component of the current block,

–
a variable qP specifying the quantization parameter.

Output of this process is scaled transform coefficients as a (nS)x(nS) array of d with elements dij.
The variable trafoPrecisionExt is derived as follows:

–
If nS is greater than 4, 

· If cIdx is equal to 0 and bit_depth_luma_minus8 is equal to 0, trafoPrecisionExt is set to 2.

· Otherwise, if cIdx is not equal to 0 and bit_depth_chroma_minus8 is equal to 0, trafoPrecisionExt is set to 2.

· Otherwise, trafoPrecisionExt is set equal to 0.
–
Otherwise, trafoPrecisionExt is set equal to 0.
The scaled transform coefficient array dij is derived as follows.
dij = ( cij * LevelScale(nS)x(nS)[ qP%6 ][ i ][ j ] ) << ( qP/6 + trafoPrecisionExt ), with i, j = 0..nS-1
(8‑158)
[Ed: (WJ) LevelScale(nS)x(nS) should be very large table up to 32x32. Recent contributions (JCTVC-C209 and JCTVC-C255) shown that this matrix could be replaced by one constants per qP without coding efficiency penalty. Maybe it is better to wait.]
8.5.4 Transformation process for scaled transform coefficients
Inputs of this process are:
–
a variable nS specifying the size of the current transform unit,
–
a (nS)x(nS) array d of scaled transform coefficients with elements dij.

–
a variable cIdx specifying the chroma component of the current block,
Output of this process is residual samples as a (nS)x(nS) array r with elements rij.

The variable trafoPrecisionExt is derived as follows:

–
If nS is greater than 4, 

· If cIdx is equal to 0 and bit_depth_luma_minus8 is equal to 0, trafoPrecisionExt is set to 4.

· Otherwise, if cIdx is not equal to 0 and bit_depth_chroma_minus8 is equal to 0, trafoPrecisionExt is set to 4.

· Otherwise, trafoPrecisionExt is set equal to 0.
–
Otherwise, trafoPrecisionExt is set equal to 0.
[Ed: (WJ) derivation of trafoPrecisionExt is duplicated to that of the scaling process. Better to remove one of two.]

The constructed residual samples are derived as specified in the following ordered steps.
1. Each (horizontal) row of scaled transform coefficients dij (i, j=0..nS-1) is transformed to eij (i, j=0..nS-1) by invoking the one-dimensional transformation process as specified in subclause 8.5.4.1 to 8.5.4.4 according to the size of the transform unit nS, with the (nS)x(nS) array d as the input and the output is the (nS)x(nS) array e.
2. Each (vertical) column of the resulting matrix eij (i, j=0..nS-1) is transformed to fij (i, j=0..nS-1) by invoking the one-dimensional transformation process as specified in subclause 8.5.4.1 to 8.5.4.4 according to the size of the transform unit nS, with the (nS)x(nS) array e as the input and the output is the (nS)x(nS) array f.
3. If nS is equal to 4 or 8, the residual sample value rij is derived by
rij = ( fij + 25+trafoPrecisionExt ) >> ( 6 + trafoPrecisionExt ), with i, j=0.. (nS)x(nS)-1
(8‑159)
4. Otherwise (nS is equal to 16 or 32), the residual sample value rij is derived by
rij = ( fij + 29+trafoPrecisionExt ) >> ( 10 + trafoPrecisionExt ), with i, j=0.. (nS)x(nS)-1
(8‑160)
8.5.4.1 Transformation process for 4 samples
[Ed: (WJ) same as AVC]
8.5.4.2 Transformation process for 8 samples
[Ed: (WJ) same as AVC]
8.5.4.3 Transformation process for 16 samples
Input of this process is an array of 16 samples of the scaled transform coefficients x with elements xi, with i = 0..15.
Output of this process is an array of 16 samples of the residual samples y with elements yi, with i = 0..15.
16-point one-dimensional inverse transformation process is defined as following.
–
A set of intermedite values fi is derived by

f8 = ( 6*x1 – 63*x15 ) >> 6

(8‑161)
f9 = ( 49*x9 – 40*x7 ) >> 6

(8‑162)
f10 = ( 30*x5 – 56*x11 ) >> 6

(8‑163)
f11 = ( 61*x13 – 18*x3 ) >> 6

(8‑164)
f12 = ( 61*x3 + 18*x13 ) >> 6

(8‑165)
f13 = ( 30*x11 + 56*x5 ) >> 6

(8‑166)
f14 = ( 49*x7 + 40*x9 ) >> 6

(8‑167)
f15 = ( 6*x15 + 63*x1 ) >> 6

(8‑168)
–
A second set of intermedite values ei is derived by

e4 = ( 12*x2 - 62*x14 ) >> 6

(8‑169)
e5 = ( 53*x10 - 35*x6 ) >> 6

(8‑170)
e6 = ( 53*x6 + 35*x10 ) >> 6

(8‑171)
e7 = ( 12*x14 + 62*x2 ) >> 6

(8‑172)
e8 = f8 + f9


(8‑173)

e9 = f8 - f9


(8‑174)
e10 = f11 – f10

(8‑175)
e11 = f11 + f10

(8‑176)
e12 = f12 + f13

(8‑177)
e13 = f12 - f13

(8‑178)
e14 = f15 - f14

(8‑179)
e15 = f15 + f14

(8‑180)
–
A third set of intermedite values di is derived by

d0 = ( 45*( x0 + x8 ) ) >> 6

(8‑181)
d1 = ( 45*( x0 - x8 ) ) >> 6

(8‑182)
d2 = ( 24*x4 – 59*x12 ) >> 6

(8‑183)
d3 = ( 59*x4 + 24*x12 ) >> 6

(8‑184)
d4 = e4 + e5

(8‑185)

d5 = e4 - e5

(8‑186)
d6 = e7 – e6

(8‑187)
d7 = e7 + e6

(8‑188)
d9 = ( 24*e14 - 59*e9 ) >> 6

(8‑189)
d10 = ( -59*e13 - 24*e10 ) >> 6

(8‑190)
d13 = ( 24*e13 - 59*e10 ) >> 6

(8‑191)
d14 = ( 59*e14 + 24*e9 ) >> 6

(8‑192)
–
A fourth set of intermedite values ci is derived by

c0 = d0 + d3

(8‑193)
c3 = d0 - d3

(8‑194)
c8 = e8 + e11

(8‑195)
c11 = e8 - e11

(8‑196)
c12 = e15 - e12

(8‑197)
c15 = e15 + e12

(8‑198)
c1 = d1 + d2

(8‑199)
c2 = d1 - d2

(8‑200)
c9 = d9 + d10

(8‑201)
c10 = d9 - d10

(8‑202)
c13 = d14 - d13

(8‑203)
c14 = d14 + d13

(8‑204)
c5 = ( 45*( d6 – d5 ) ) >> 6

(8‑205)
c6 = ( 45*( d6 + d5 ) ) >> 6

(8‑206)
–
A fifth set of intermedite values bi is derived by

b0 = c0 + d7

(8‑207)
b7 = c0 - d7

(8‑208)
b1 = c1 + c6

(8‑209)
b6 = c1 - c6

(8‑210)
b2 = c2 + c5

(8‑211)
b5 = c2 - c5

(8‑212)
b3 = c3 + d4

(8‑213)
b4 = c3 - d4

(8‑214)
b10 = ( 45*( c13 – c10 ) ) >> 6

(8‑215)
b13 = ( 45*( c13 + c10 ) ) >> 6

(8‑216)
b11 = ( 45*( c12 - c11 ) ) >> 6

(8‑217)
b12 = ( 45*( c12 + c11 ) ) >> 6

(8‑218)
–
Then, the transformed results yi (i = 0..15) is computed from these intermediate values as

y0 = b0 + c15

(8‑219)
y15 = b0 - c15

(8‑220)
y1 = b1 + c14

(8‑221)
y14 = b1 - c14

(8‑222)
y2 = b2 + b13

(8‑223)
y13 = b2 - b13

(8‑224)
y3 = b3 + b12

(8‑225)
y12 = b3 - b12

(8‑226)
y4 = b4 + b11

(8‑227)
y11 = b4 - b11

(8‑228)
y5 = b5 + b10

(8‑229)
y10 = b5 - b10

(8‑230)
y6 = b6 + c9

(8‑231)
y9 = b6 - c9

(8‑232)
y7 = b7 + c8

(8‑233)
y8 = b7 - c8

(8‑234)
8.5.4.4 Transformation process for 32 samples
Input of this process is an array of 32 samples of the scaled transform coefficients x with elements xi, with i=0..31.
Output of this process is an array of 32 samples of the residual samples y with elements yi, with i=0..31.

32-point one-dimensional inverse transformation process is defined as following.

–
A set of intermediate values gi is derived by

g16 = ( 12*x1 – 255*x31 ) >> 8

(8‑235)
g17 = ( 189*x17 – 171*x15 ) >> 8

(8‑236)
g18 = ( 109*x9 – 231*x23 ) >> 8

(8‑237)
g19 = ( 241*x25 – 86*x7 ) >> 8

(8‑238)
g20 = ( 62*x5 – 248*x27 ) >> 8

(8‑239)
g21 = ( 219*x21 – 131*x11 ) >> 8

(8‑240)
g23 = ( 253*x29 – 37*x3 ) >> 8

(8‑241)
g24 = ( 253*x29 + 37*x29 ) >> 8

(8‑242)
g25 = ( 152*x19 + 205*x13 ) >> 8

(8‑243)
g26 = ( 219*x11 + 131*x21 ) >> 8

(8‑244)
g27 = ( 62*x27 + 248*x5 ) >> 8

(8‑245)
g28 = ( 241*x7 + 86*x25 ) >> 8

(8‑246)
g29 = ( 109*x23 + 231*x9 ) >> 8

(8‑247)
g30 = ( 189*x15 + 171*x17 ) >> 8

(8‑248)
g31 = ( 12*x31 + 255*x1 ) >> 8

(8‑249)
–
A second set of intermediate values fi is derived by

f8 = ( 25*x2 - 254*x30 ) >> 8

(8‑250)
f9 = ( 197*x18 - 162*x14 ) >> 8

(8‑251)
f10 = ( 120*x10 - 225*x22 ) >> 8

(8‑252)
f11 = ( 244*x26 - 74*x6 ) >> 8

(8‑253)
f12 = ( 244*x6 + 74*x26 ) >> 8

(8‑254)
f13 = ( 120*x22 + 225*x10 ) >> 8

(8‑255)
f14 = ( 197*x14 + 162*x18 ) >> 8

(8‑256)
f15 = ( 25*x30 + 254*x2 ) >> 8

(8‑257)
f16 = g16 + g17

(8‑258)
f17 = g16 - g17

(8‑259)
f18 = g19 - g18

(8‑260)
f19 = g19 + g18

(8‑261)
f20 = g20 + g21

(8‑262)
f21 = g20 - g21

(8‑263)
f22 = g23 - g22

(8‑264)
f23 = g23 + g22

(8‑265)
f24 = g24 + g25

(8‑266)
f25 = g24 - g25

(8‑267)
f26 = g27 - g26

(8‑268)
f27 = g27 + g26

(8‑269)
f28 = g28 + g29

(8‑270)
f29 = g28 - g29

(8‑271)
f30 = g31 - g30

(8‑272)
f31 = g31 + g30

(8‑273)
–
A third set of intermediate values ei is derived by

e4 = ( 49*x4 - 251*x28 ) >> 8

(8‑274)
e5 = ( 212*x20 - 142*x12 ) >> 8

(8‑275)
e6 = ( 212*x12 + 142*x20 ) >> 8

(8‑276)
e7 = ( 49*x28 + 251*x4 ) >> 8

(8‑277)
e8 = f8 + f9


(8‑278)
e9 = f8 - f9


(8‑279)
e10 = f11 - f10

(8‑280)
e11 = f11 + f10

(8‑281)
e12 = f12 + f13

(8‑282)
e13 = f12 - f13

(8‑283)
e14 = f15 - f14

(8‑284)
e15 = f15 + f14

(8‑285)
e17 = ( 49*f30 - 251*f17 ) >> 8

(8‑286)
e18 = ( -251*f29 - 49*f18 ) >> 8

(8‑287)
e21 = ( 212*f26 - 142*f21 ) >> 8

(8‑288)
e22 = ( -142*f25 - 212*f22 ) >> 8

(8‑289)
e25 = ( 212*f25 - 142*f22 ) >> 8

(8‑290)
e26 = ( 142*f26 + 212*f21 ) >> 8

(8‑291)
e29 = ( 49*f29 - 251*f18 ) >> 8

(8‑292)
e30 = ( 251*f30 + 49*f17 ) >> 8

(8‑293)
–
A fourth set of intermediate values di is derived by

d0 = ( 181*( x0 + x16 ) ) >> 8

(8‑294)
d1 = ( 181*( x0 - x16 ) ) >> 8

(8‑295)
d2 = ( 97*x8 - 236*x24 ) >> 8

(8‑296)
d3 = ( 236*x8 + 97*x24 ) >> 8

(8‑297)
d4 = e4 + e5

(8‑298)
d5 = e4 - e5

(8‑299)
d6 = e7 - e6

(8‑300)
d7 = e7 + e6

(8‑301)
d9 = ( 97*e14 - 236*e9 ) >> 8

(8‑302)
d10 = ( -236*e13 - 97*e10 ) >> 8

(8‑303)
d13 = ( 97*e13 - 236*e10 ) >> 8

(8‑304)
d14 = ( 236*e14 + 97*e9 ) >> 8

(8‑305)
d16 = f16 + f19

(8‑306)
d19 = f16 - f19

(8‑307)
d20 = f23 - f20

(8‑308)
d23 = f23 + f20

(8‑309)
d24 = f24 + f27

(8‑310)
d27 = f24 - f27

(8‑311)
d28 = f31 - f28

(8‑312)
d31 = f31 + f28

(8‑313)
d17 = e17 + e18

(8‑314)
d18 = e17 - e18

(8‑315)
d21 = e22 - e21

(8‑316)
d22 = e22 + e21

(8‑317)
d25 = e25 + e26

(8‑318)
d26 = e25 - e26

(8‑319)
d29 = e30 - e29

(8‑320)
d30 = e30 + e29

(8‑321)
–
A fifth set of intermediate values ci is derived by

c0 = d0 + d3

(8‑322)
c3 = d0 - d3

(8‑323)
c8 = e8 + e11

(8‑324)
c11 = e8 - e11

(8‑325)
c12 = e15 - e12

(8‑326)
c15 = e15 + e12

(8‑327)
c1 = d1 + d2

(8‑328)
c2 = d1 - d2

(8‑329)
c9 = d9 + d10

(8‑330)
c10 = d9 - d10

(8‑331)
c13 = d14 - d13

(8‑332)
c14 = d14 + d13

(8‑333)
c5 = ( 181*( d6 - d5 ) ) >> 8

(8‑334)
c6 = ( 181*( d6 + d5 ) ) >> 8

(8‑335)
c18 = ( 97*d29 - 236*d18 ) >> 8

(8‑336)
c20 = ( -236*d27 - 97*d20 ) >> 8

(8‑337)
c26 = ( -236*d21 + 97*d26 ) >> 8

(8‑338)
c28 = ( 97*d19 + 236*d28 ) >> 8

(8‑339)
c19 = ( 97*d28 - 236*d19 ) >> 8

(8‑340)
c21 = ( -236*d26 - 97*d21 ) >> 8

(8‑341)
c27 = ( -236*d20 + 97*d27 ) >> 8

(8‑342)
c29 = ( 97*d18 + 236*d29 ) >> 8

(8‑343)
–
A sixth set of intermediate values bi is derived by

b7 = c0 - d7

(8‑344)
b1 = c1 + c6

(8‑345)
b6 = c1 - c6

(8‑346)
b2 = c2 + c5

(8‑347)
b5 = c2 - c5

(8‑348)
b3 = c3 + d4

(8‑349)
b4 = c3 - d4

(8‑350)
b10 = ( 181*( c13 - c10 ) ) >> 8

(8‑351)
b13 = ( 181*( c13 + c10 ) ) >> 8

(8‑352)
b11 = ( 181*( c12 - c11 ) ) >> 8

(8‑353)
b12 = ( 181*( c12 + c11 ) ) >> 8

(8‑354)
b16 = d16 + d23

(8‑355)
b23 = d16 - d23

(8‑356)
b24 = d31 - d24

(8‑357)
b31 = d31 + d24

(8‑358)
b17 = d17 + d22

(8‑359)
b22 = d17 - d22

(8‑360)
b25 = d30 - d25

(8‑361)
b30 = d30 + d25

(8‑362)
b18 = c18 + c21

(8‑363)
b21 = c18 - c21

(8‑364)
b26 = c29 - c26

(8‑365)
b29 = c29 + c26

(8‑366)
b19 = c19 + c20

(8‑367)
b20 = c19 - c20

(8‑368)
b27 = c28 - c27

(8‑369)
b28 = c28 + c27

(8‑370)
–
A seventh set of intermediate values ai is derived by

a0 = b0 + c15

(8‑371)
a15 = b0 - c15

(8‑372)
a1 = b1 + c14

(8‑373)
a14 = b1 - c14

(8‑374)
a2 = b2 + b13

(8‑375)
a13 = b2 - b13

(8‑376)
a3 = b3 + b12

(8‑377)
a12 = b3 - b12

(8‑378)
a4 = b4 + b11

(8‑379)
a11 = b4 - b11

(8‑380)
a5 = b5 + b10

(8‑381)
a10 = b5 - b10

(8‑382)
a6 = b6 + c9

(8‑383)
a9 = b6 - c9

(8‑384)
a7 = b7 + c8

(8‑385)
a8 = b7 - c8

(8‑386)
a20 = ( 181*( b27 - b20 ) ) >> 8

(8‑387)
a27 = ( 181*( b27 + b20 ) ) >> 8

(8‑388)
a21 = ( 181*( b26 - b21 ) ) >> 8

(8‑389)
a26 = ( 181*( b26 + b21 ) ) >> 8

(8‑390)
a22 = ( 181*( b25 - b22 ) ) >> 8

(8‑391)
a25 = ( 181*( b25 + b22 ) ) >> 8

(8‑392)
a23 = ( 181*( b24 - b23 ) ) >> 8

(8‑393)
a24 = ( 181*( b24 + b23 ) ) >> 8

(8‑394)
–
Then, the transformed results yi (i = 0..31) is computed from these intermediate values as

y0 = ( a0 + b31 ) 

(8‑395)
y31 = ( a0 - b31 ) 

(8‑396)
y1 = ( a1 + b30 ) 

(8‑397)
y30 = ( a1 - b30 ) 

(8‑398)
y2 = ( a2 + b29 ) 

(8‑399)
y29 = ( a2 - b29 ) 

(8‑400)
y3 = ( a3 + b28 ) 

(8‑401)
y28 = ( a3 - b28 ) 

(8‑402)
y4 = ( a4 + a27 ) 

(8‑403)
y27 = ( a4 - a27 ) 

(8‑404)
y5 = ( a5 + a26 ) 

(8‑405)
y26 = ( a5 - a26 ) 

(8‑406)
y6 = ( a6 + a25 ) 

(8‑407)
y25 = ( a6 - a25 ) 

(8‑408)
y7 = ( a7 + a24 ) 

(8‑409)
y24 = ( a7 - a24 ) 

(8‑410)
y8 = ( a8 + a23 ) 

(8‑411)
y23 = ( a8 - a23 ) 

(8‑412)
y9 = ( a9 + a22 ) 

(8‑413)
y22 = ( a9 - a22 ) 

(8‑414)
y10 = ( a10 + a21 ) 

(8‑415)
y21 = ( a10 - a21 ) 

(8‑416)
y11 = ( a11 + a20 ) 

(8‑417)
y20 = ( a11 - a20 ) 

(8‑418)
y12 = ( a12 + b19 ) 

(8‑419)
y19 = ( a12 - b19 ) 

(8‑420)
y13 = ( a13 + b18 ) 

(8‑421)
y18 = ( a13 - b18 ) 

(8‑422)
y14 = ( a14 + b17 ) 

(8‑423)
y17 = ( a14 - b17 ) 

(8‑424)
y15 = ( a15 + b16 ) 

(8‑425)
y16 = ( a15 - b16 ) 

(8‑426)
8.5.5 Array construction process
Inputs of this process are:
–
a luma location ( xB, yB ) specifying the top-left luma sample of the current block relative to the top‑left luma sample of the current coding unit,
–
a variable cIdx specifying the chroma component of the current block,
–
a variable nS specifying the size of the current block,
–
a variable nCS specifying the size of the current coding unit,
–
a (nS)x(nS) array resSampleBlock specifying the current block samples,
–
a (nCS)x(nCS) array resSample specifying the samples of the current coding unit.
Output of this process is a modified (nCS)x(nCS) array resSample specifying the samples of the current coding unit.
The modified array resSample is derived as follows.
resSample[ xB+i, yB+j ] += resSampleBlock[ i, j ], with i, j = 0..nS-1
(8‑427)
8.6 In-loop filter process
[Ed: (WJ) overall process description need to be inserted]
8.6.1 Deblocking filter process
A conditional filtering process shall be performed on a treeblock basis after the completion of the picture construction process prior to deblocking filter process for the entire decoded picture (as specified in subclauses XXX and YYY) [Ed.: (WJ) those subclauses seem not defined yet], with all treeblocks in a picture processed in order of increasing treeblock addresses.

Each treeblock is processed on a coding unit basis with the same order as decoding process. For each coding unit, vertical edges are filtered first, starting with the edge on the left-hand side of the coding unit proceeding through the edges towards the right-hand side of the coding unit in their geometrical order. Then, the horizontal edges are filtered starting with the edge on the top of the coding unit proceeding through the edges towards the bottom of the coding unit in their geometrical order.

Sample values above and to the left of the current coding unit that may have already been modified by the deblocking filter process operation on previous coding unit shall be used as inputs to the deblocking filter process on the current coding unit and may be further modified during the filtering of the current coding unit. Sample values modified during filtering of vertical edges are used as input for the filtering of the horizontal edges for the same coding unit.

The deblocking filter process shall be applied to all prediction unit edges and transform unit edges of a picture, except edges at the boundary of the picture and any edges for which the deblocking filter process is disabled by disable_deblocking_filter_idc. For the transform units and prediction units with edges smaller than 8 samples in either vertical or horizontal direction, only the edges lying on the 8x8 sample grid are filtered.

If disable_deblocking_filter_idc is equal to 1, the deblocking filter process is simply omitted otherwise the following ordered steps apply for each coding unit with the same order as decoding process.

1. The coding unit size nS is set equal to 1 << log2CUSize.

2. The variables FilterInternalEdgesFlag, FilterLeftCuEdgeFlag and FilterTopCuEdgeFlag are derived as follows.

· The variable FilterInternalEdges is set equal to 1.

· If the left boundary of current coding unit is the left boundary of the picture, the variable FilterLeftCuEdgeFlag is set equal to 0, otherwise set equal to 1.

· If the top boundary of current coding unit is the top boundary of the picture, the variable FilterTopCuEdgeFlag is set equal to 0, otherwise set equal to 1.
3. All elements of two-dimensional array of size (nS)x(nS), horEdgeFlags and verEdgeFlags are initialized to zero.

4. The derivation process of transform unit boundary specified in subclause 8.6.1.1 are invoked with the luma location ( xB, yB ) set equal to ( 0, 0 ), the transform unit size log2TrafoSize set equal to log2CUSize and the variable trafoDepth set equal to 0 as the inputs and the modified horEdgeFlags and verEdgeFlags as outputs.
5. The derivation process of prediction unit boundary specified in subclause 8.6.1.2 are invoked with the coding unit size log2CUSize and the prediction partition mode PartMode as inputs, and the modified horEdgeFlags and verEdgeFlags as outputs.
6. The derivation process of the boundary filtering strength specified in subclause 8.6.1.3 is invoked with the luma location ( xC, yC ), the coding unit size log2CUSize, horEdgeFlags and verEdgeFlags as inputs and an array of size (2)x(nS)x(nS), bS as output.
7. The filtering process for coding unit specified in subclause 8.6.1.4 are invoked with the luma location ( xC, yC ) specifying the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture, the coding unit size log2CUSize and the array bS as inputs and the modified reconstructued picture as output.
8.6.1.1 Derivation process of transform unit boundary
Inputs of this process are:

–
a luma location ( xB, yB ) specifying the top-left luma sample of the current block relative to the top‑left luma sample of the current coding unit, 

–
a transform unit size log2TrafoSize,
–
a variable trafoDepth.

Outputs of this process are:

–
two-dimensional arrays of (nS)x(nS), horEdgeFlags and verEdgeFlags.

Depending on split_transform_flag[ xB ][ yB ][ trafoDepth ], the following applies:
–
If split_transform_flag[ xB ][ yB ][ trafoDepth ] is equal to 1, the following ordered steps apply:

1. The variable xB1 is set equal to xB + ( ( 1 << log2TrafoSize ) >> 1 ).
2. The variable yB1 is set equal to yB + ( ( 1 << log2TrafoSize ) >> 1 ).
3. The deriviation process of transform unit boundary as specified in this subclause is invoked with the luma location ( xB, yB ), the variable log2TrafoSize1 set equal to log2TrafoSize – 1 and the variable trafoDepth1 set equal to trafoDepth + 1 as inputs and the outputs are the modified versions of two arrays, horEdgeFlags and verEdgeFlags.
4. The deriviation process of transform unit boundary as specified in this subclause is invoked with the luma location ( xB1, yB ), the variable log2TrafoSize1 set equal to log2TrafoSize – 1 and the variable trafoDepth1 set equal to trafoDepth + 1 as inputs and the outputs are the modified versions of two arrays, horEdgeFlags and verEdgeFlags.
5. The deriviation process of transform unit boundary as specified in this subclause is invoked with the luma location ( xB, yB1 ), the variable log2TrafoSize1 set equal to log2TrafoSize – 1 and the variable trafoDepth1 set equal to trafoDepth + 1 as inputs and the outputs are the modified versions of two arrays, horEdgeFlags and verEdgeFlags.
6. The deriviation process of transform unit boundary as specified in this subclause is invoked with the luma location ( xB1, yB1 ), the variable log2TrafoSize1 set equal to log2TrafoSize – 1 and the variable trafoDepth1 set equal to trafoDepth + 1 as inputs and the outputs are the modified versions of two arrays, horEdgeFlags and verEdgeFlags.
–
Otherwise (split_transform_flag[ xB ][ yB ][ trafoDepth ] is equal to 0), the following applies:

· If yB is equal to zero, horEdgeFlags[ xB + k ][ yB ] is set equal to FilterTopCuEdgeFlag, otherwise horEdgeFlags[ xB + k ][ yB ] is set equal to FilterInternalEdgesFlag for k = 0.. ( 1 << log2TrafoSize ) – 1.
· If xB is equal to zero, verEdgeFlags[ xB ][ yB + k ] is set equal to FilterLeftCuEdgeFlag, otherwise verEdgeFlags[ xB ][ yB + k ] is set equal to FilterInternalEdgesFlag for k = 0.. ( 1 << log2TrafoSize ) – 1.
8.6.1.2 Derivation process of prediction unit boundary
Inputs of this process are:

–
a variable log2CUSize specifying the coding unit size, 

–
a prediction partition mode PartMode.

Outputs of this process are:

–
two-dimensional arrays of (nS)x(nS), horEdgeFlags and verEdgeFlags.

Depending on PartMode, the following applies:
–
If PartMode is equal to PART_2NxN or PART_NxN, horEdgeFlags[ k ][ 1 << ( log2CUSize – 1 ) ] is set equal to FilterInternalEdgesFlag for k = 0.. ( 1 << log2CUSize ) – 1.
–
If PartMode is equal to PART_Nx2N or PART_NxN, verEdgeFlags[ 1 << ( log2CUSize – 1 ) ][ k ] is set equal to FilterInternalEdgesFlag for k = 0.. ( 1 << log2CUSize ) – 1.
8.6.1.3 Derivation process of boundary filtering strength

Inputs of this process are:

–
a luma location ( xC, yC ) specifying the top-left luma sample of the current coding unit relative to the top-left luma sample of the current picture, 

–
a variable log2CUSize specifying the size of the current coding unit,
–
a two-dimensional arrays of size (nS)x(nS), horEdgeFlags and verEdgeFlags.

Output of this process is an array of size (2)x(nS)x(nS), bS specifying the boundary filtering strength.

Let ( xEk, yEj ) with k = 0..nE-1 and j = 0..nE-1 specify a set of edge sample locations where nE is set equal to ( ( 1 << log2CUSize ) >> 2 ), xE0 = 0, yE0 = 0, xEk+1 = xEk + 4 and yEj+1 = yEj + 4.
For ( xEk, yEj ) with k = 0..nE-1 and j = 0..nE-1, the following applies.
· If horEdgeFlags[ xEk ][ yEj ] is equal to 1,
· Set sample p0 = recPicture[ xC + xEk ][ yC + yEj – 1 ] and q0 = recPicture[ xC + xEk ][ yC + yEj ].

· The variable filterDir is set equal to 1.

· Otherwise, if verEdgeFlags[ xEk ][ yEj ] is equal to 1,

· Set sample p0 = recPicture[ xC + xEk – 1 ][ yC + yEj ] and q0 = recPicture[ xC + xEk ][ yC + yEj ].

· The variable filterDir is set equal to 0.

· Depending on the value of filterDir, the variable bS[ filterDir ][ xEk ][ yEj ] is derived as follows.
· If the block edge is also a coding unit edge and the following condition is true, the variable bS[ 0 ][ xEk ][ yEj ] is set equal to 4.
· The sample p0 or q0 is in a coding unit coded with intra prediction mode

· Otherwise, if the following condition is true, the variable bS[ filterDir ][ xEk ][ yEj ] is set equal to 3.

· The sample p0 or q0 is in a coding unit coded with intra prediction mode

· Otherwise, if the following condition is true, the variable bS[ filterDir ][ xEk ][ yEj ] is set equal to 2.
· The sample p0 or q0 is in a transform unit which contains non-zero transform coefficient level.
· Otherwise, if any of the following conditions are true, the variable bS[ filterDir ][ xEk ][ yEj ] is set equal to 1.
· The prediction unit containing sample p0 has different reference pictures or a different number of motion vectors with the prediction unit containing the sample q0.

NOTE – The determination of whether the reference pictures used for the two prediction are the same or different is based on which pictures are referenced, without regard to whether a prediction is formed using an index into list 0 or an index into list 1, and also without regard to whether or not the index position within a reference picture list is different or not.

· One motion vector is used to predict the prediction unit containing sample p0, one motion vector is used to predict the prediction unit containing sample q0, and the absolute difference between the horizontal or vertical component of the motion vector used is greater than or equal to 4 in units of quarter luma samples.

· [Ed.: (WJ) needs to be checked again whether this condition covers all 2-motion cases] Two motion vectors are used to predict the prediction unit containing sample p0, two motion vectors are used to predict the prediction unit containing sample q0, and at least one of the motion vector pairs corresponding the same reference pictures and the different boundary samples p0 and q0 satisfies the following condition:

1. The absolute difference between the horizontal or vertical component of a motion vector used in the prediction of the two prediction units is greater than or equal to 4 in units of quarter luma samples.

· Otherwise, the variable bS[ filterDir ][ xEk ][ yEj ] is set equal to 0.
8.6.1.4 Filtering process for coding unit
Inputs of this process are:

–
a luma location ( xC, yC ) specifying the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture,

–
a luma location ( xB, yB ) specifying the top-left luma sample of the current block relative to the top left luma sample of the current coding unit,
–
a variable log2CUSize specifying the coding unit size, 

–
an array bS specifying the boundary filtering strength. 

Output of this process is:

–
modified reconstruction of the picture.

The filtering process for luma edges in the current coding unit consists of the following ordered steps:
1. The variable nD is set equal to 1 << ( log2CUSize – 3 ).
2. For xDk set equal to xB+( k << 3 ), k=0..nD – 1, the following applies:
· For yDm set equal to yB+( m << 3 ), m=0..nD – 1, the following ordered steps apply:

a. Boundary filtering strength bSVer is derived as follows:





bSVer = Max( bS[ 0 ][ xDk ][ yDm + i ] ) for i = 0..7 
(8‑428)
b. Filtering process for luma block edge in subclause 8.6.1.4.1 is invoked with the luma location of the coding unit ( xC, yC ), the luma location of the block ( xDk, yDm ), a variable verticalEdgeFlag set equal to 1, and the boundary filtering strength bSVer as inputs and the modified luma picture buffer as output.
3. For yDm set equal to yB+( m << 3 ), m=0..nD - 1, the following applies:
· For xDk set equal to xB+( k << 3 ), k=0..nD – 1, the following ordered steps apply:
a. Boundary filtering strength bSHor is derived as follows:





bSHor = Max( bS[ 1 ][ xDk + i][ yDm ] ) for i = 0..7 
(8‑429)
b. Filtering process for luma block edge in subclause 8.6.1.4.1 is invoked with the luma location of the coding unit ( xC, yC ), the luma location of the block ( xDk, yDm ), a variable verticalEdgeFlag set equal to 0, and the boundary filtering strength bSHor as inputs and the modified luma picture buffer as output.
The filtering process for chroma edges in the current coding unit consists of the following ordered steps:

1. The variable nD is set equal to 1 << ( Max( log2CUSize, 4 ) – 4 ).

2. For xDk set equal to ( xB / 2 )+( k << 3 ), k=0..nD – 1, the following applies:
· For yDm set equal to ( yB / 2)+( m << 2 ), m=0..nD*2 – 1, the following ordered steps apply:
a. Boundary filtering strength bSVer is derived as follows:





bSVer = bS[ 0 ][ xDk*2 ][ yDm*2 ] 

(8‑430)
b. Filtering process for chroma block edge in subclause 8.6.1.4.2 is invoked with the chroma location of the coding unit ( xC/2, yC/2 ), the chroma location of the block ( xDk, yDm ), a variable verticalEdgeFlag set equal to 1, a chroma component index cIdx set equal to 1 and the boundary filtering strength bSVer as inputs and the modified chroma picture buffer as output.
c. Filtering process for chroma block edge in subclause 8.6.1.4.2 is invoked with the chroma location of the coding unit ( xC/2, yC/2 ), the chroma location of the block ( xDk, yDm ), a variable verticalEdgeFlag set equal to 1, a chroma component index cIdx set equal to 2 and the boundary filtering strength bSVer as inputs and the modified chroma picture buffer as output.
3. For yDm set equal to ( yB / 2 )+( m << 3 ), m=0..nD – 1, the following applies:
· For xDk set equal to ( xB / 2 )+( k << 2 ), k=0..nD*2 – 1, the following ordered steps apply:
a. Boundary filtering strength bSHor is derived as follows:





bSHor = bS[ 1 ][ xDk*2 ][ yDm*2 ] 

(8‑431)
b. Filtering process for chroma block edge in subclause 8.6.1.4.2 is invoked with the chroma location of the coding unit ( xC/2, yC/2 ), the chroma location of the block ( xDk, yDm ), a variable verticalEdgeFlag set equal to 0, a chroma component index cIdx set equal to 1 and the boundary filtering strength bSHor as inputs and the modified chroma picture buffer as output.
c. Filtering process for chroma block edge in subclause 8.6.1.4.2 is invoked with the chroma location of the coding unit ( xC/2, yC/2 ), the chroma location of the block ( xDk, yDm ), a variable verticalEdgeFlag set equal to 0, a chroma component index cIdx set equal to 2 and the boundary filtering strength bSHor as inputs and the modified chroma picture buffer as output.
8.6.1.4.1 Filtering process for luma block edge
Inputs of this process are:

–
a luma location ( xC, yC ) specifying the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture,

–
a luma location ( xB, yB ) specifying the top-left luma sample of the current block relative to the top left luma sample of the current coding unit,

–
a variable verticalEdgeFlag,

–
a variable bS specifying the boundary filtering strength,

Output of this process is:

–
modified reconstruction of the picture.

Let s’ represent the luma sample array recPictureL of the current picture.

A variables β is specified as Table 8‑13 with luma quantization parameter qPL as input.

A variable tC is specified as follows:

–
If bS is greater than 2, the variable tC is specified specified as Table 8‑13 with luma quantization parameter ( qPL + 4 ) as input,

–
Otherwise (bS is equal or less than 2), the variable tC is specified specified as Table 8‑13 with luma quantization parameter qPL as input.

Depending on verticalEdgeFlag, the following applies:
–
If verticalEdgeFlag is equal to 1, the following ordered steps apply:

1. The sample values pi,k and qi,k with i = 0..3 and k = 0..7 are derived as follows:


qi,k = s’[ xC + xB +i, yC + yB + k ]

(8‑432)

pi,k = s’[ xC + xB – i – 1, yC + yB + k ]

(8‑433)
2. The variable d is derived as follows:


d = | p2,2 – 2*p1,2 + p0,2 | + | q2,2 – 2*q1,2 + q0,2 | + | p2,5 – 2*p1,5 + p0,5 | + | q2,5 – 2*q1,5 + q0,5 |
(8‑434)
3. If bS is not equal to 0 and d is less than β, for each sample location ( xC + xB, yC + yB + k ), k = 0..7, the following ordered steps apply:

a. The filtering process for a luma sample specified in subclause 8.6.1.4.3 is invoked with sample values pi,k, qi,k with i = 0..3, the boundary filtering strength bS and the variables d, β and tC as inputs and the number of filtered samples nD and the filtered sample values pi’ and qi’ as outputs.
b. The filtered sample values pi’ and qi’ with i = 0..nD – 1 replace the corresponding samples inside the sample array s’ as follows:




s’[ xC + xB +i, yC + yB + k ] = qi’

(8‑435)



s’[ xC + xB – i – 1, yC + yB + k ] = pi’

(8‑436)
–
Otherwise (verticalEdgeFlag is equal to 0), the following ordered steps apply:

1. The sample values pi,k and qi,k with i = 0..3 and k = 0..7 are derived as follows:


qi,k = s’[ xC + xB +k, yC + yB + i ]

(8‑437)

pi,k = s’[ xC + xB +k, yC + yB – i – 1 ]

(8‑438)
2. The variable d is derived as follows:


d = | p2,2 – 2*p1,2 + p0,2 | + | q2,2 – 2*q1,2 + q0,2 | + | p2,5 – 2*p1,5 + p0,5 | + | q2,5 – 2*q1,5 + q0,5 |
(8‑439)
3. If bS is not equal to 0 and d is less than β, for each sample location ( xC + xB + k, yC + yB ), k = 0..7, the following ordered steps apply:

a. The filtering process for a luma sample specified in subclause 8.6.1.4.3 is invoked with sample values pi,k, qi,k with i = 0..3, the boundary filtering strength bS and the variables d, β and tC as inputs and the number of filtered samples nD and the filtered sample values pi’ and qi’ as outputs.
b. The filtered sample values pi’ and qi’ with i = 0..nD – 1 replace the corresponding samples inside the sample array s’ as follows:




s’[ xC + xB +k, yC + yB + i ] = qi’

(8‑440)



s’[ xC + xB +k, yC + yB – i – 1 ] = pi’

(8‑441)
8.6.1.4.2 Filtering process for chroma block edge

[Ed.: (WJ) cIdx cannot be 0 here]

Inputs of this process are:

–
a luma location ( xC, yC ) specifying the top-left chroma sample of the current coding unit relative to the top left chroma sample of the current picture,

–
a luma location ( xB, yB ) specifying the top-left chroma sample of the current block relative to the top left chroma sample of the current coding unit,

–
a variable verticalEdgeFlag,

–
a variable bS specifying the boundary filtering strength,

–
a variable cIdx specifying the chroma component index.

Output of this process is:

–
modified reconstruction of the picture.

Let s’ be a variable specifying chroma sample array which is derived as follows.

–
If cIdx is equal to 1, s’ represents the chroma sample array recPictureCb of the current picture.

–
Otherwise (cIdx is equal to 2), s’ represents the chroma sample array recPictureCr of the current picture.

A variable tC is specified as follows:

–
If bS is greater than 2, the variable tC is specified specified as Table 8‑13 with luma quantization parameter ( qPL + 4 ) as input,

–
Otherwise (bS is equal or less than 2), the variable tC is specified as Table 8‑13 with luma quantization parameter qPL as input.

Depending on verticalEdgeFlag, the following applies:

–
If verticalEdgeFlag is equal to 1, for each sample location ( xC + xB, yC + yB + k ), k = 0..3, the following ordered steps apply:
1. The sample values pi and qi with i = 0..1 are derived as follows:


qi = s’[ xC + xB +i, yC + yB + k ]

(8‑442)

pi = s’[ xC + xB – i – 1, yC + yB + k ]

(8‑443)
2. If bS is greater than 2, the following ordered steps apply:

a. The filtering process for a sample specified in subclause 8.6.1.4.4 is invoked with sample values pi, qi, with i = 0..1, the boundary filtering strength bS and the variable tC as inputs and the filtered sample values p0’ and q0’ as outputs.

b. The filtered sample values p0’ and q0’ replace the corresponding samples inside the sample array s’ as follows:




s’[ xC + xB , yC + yB + k ] = q0’

(8‑444)



s’[ xC + xB – 1, yC + yB + k ] = p0’

(8‑445)
–
Otherwise (verticalEdgeFlag is equal to 0), for each sample location ( xC + xB +k, yC + yB ), k = 0..3, the following ordered steps apply:

1. The sample values pi and qi with i = 0..1 are derived as follows:


qi = s’[ xC + xB +k, yC + yB + i ]

(8‑446)

pi = s’[ xC + xB +k, yC + yB – i – 1 ]

(8‑447)
2. If bS is greater than 2, the following ordered steps apply:

a. The filtering process for a sample specified in subclause 8.6.1.4.4 is invoked with sample values pi, qi, with i = 0..1, the boundary filtering strength bS and the variable tC as inputs and the filtered sample values p0’ and q0’ as outputs.

b. The filtered sample values p0’ and q0’ replace the corresponding samples inside the sample array s’ as follows:




s’[ xC + xB +k, yC + yB ] = q0’

(8‑448)



s’[ xC + xB +k, yC + yB – 1 ] = p0’

(8‑449)
8.6.1.4.3 Filtering process for a luma sample

[Ed: (WJ) no filtering when bS is equal to 0]

Inputs of this process are:

–
sample values, pi and qi with i = 0..3,

–
a variable bS specifying the boundary filtering strength,
–
variables d, β and tC.
Output of this process is:

–
number of filtered samples nD,

–
filtered sample values, pi’ and qi’ with i = 0..nD – 1,
When the variable bS is not equal to 0, the following applies:
–
If d is less than ( β >> 2 ), | p3 – p0 | + | q0 – q3 | is less than ( β >> 3 ) and | p0 – q0 | is less than ( 5*tC + 1 ) >> 1, the following strong filtering applies while nD is set equal to 3:
p0’ = Clip1Y( ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3 )
(8‑450)
p1’ = Clip1Y( ( p2 + p1 + p0 + q0 + 2 ) >> 2 )

(8‑451)
p2’ = Clip1Y( ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3 )

(8‑452)
q0’ = Clip1Y( ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3 )
(8‑453)
q1’ = Clip1Y( ( p0 + q0 + q1 + q2 + 2 ) >> 2 )

(8‑454)
q2’ = Clip1Y( ( p0 + q0 + q1 + 3*q2 + 2*q3 + 4 ) >> 3 )

(8‑455)
–
Otherwise, the following weak filtering applies while nD is set equal to 2:

( = Clip3( -tC, tC, ( 13*( q0 – p0 ) + 4*( q1 – p1 ) - 5*( q2 – p0 ) + 16 ) >> 5 )
(8‑456)
p0’ = Clip1Y( p0 + ( )

(8‑457)
q0’ = Clip1Y( q0 - ( )

(8‑458)
p1’ = Clip1Y( p1 + (/2 )

(8‑459)
q1’ = Clip1Y( q1 – (/2 )

(8‑460)
Table 8‑13 – Derivation of threshold variables β and tC from input Q
	Q
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18

	β
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	6
	7
	8

	tC
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1

	Q
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37

	β
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	20
	22
	24
	26
	28
	30
	32
	34
	36

	tC
	1
	1
	1
	1
	1
	1
	1
	1
	2
	2
	2
	2
	3
	3
	3
	3
	4
	4
	4

	Q
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	

	β
	38
	40
	42
	44
	46
	48
	50
	52
	54
	56
	58
	60
	62
	64
	64
	64
	64
	64
	

	tC
	5
	5
	6
	6
	7
	8
	9
	9
	10
	10
	11
	11
	12
	12
	13
	13
	14
	14
	


8.6.1.4.4 Filtering process for a chroma sample

[Ed: (WJ) no filtering when bS is equal or less than 2]

Inputs of this process are:

–
sample values, pi and qi with i = 0..1,

–
a variable bS specifying the boundary filtering strength.

–
a variable tC.

Output of this process is:

–
The filtered sample values, p0’ and q0’.
When the variable bS is greater than 2, the filtered sample values p0’ and q0’ are derived by
( = Clip3( -tC, tC, ( ( ( ( q0 – p0 ) << 2 ) + p1 – q1 + 4 ) >> 3 ) )
(8‑461)
p0’ = Clip1C( p0 + ( )

(8‑462)
q0’ = Clip1C( q0 - ( )

(8‑463)
8.6.2 Adaptive loop filter process
An adaptive loop filtering process shall be conditionally performed on a treeblock basis after the completion of the deblocking filter process for the entire decoded picture, with all treeblocks in a picture processed in order of increasing treeblock addresses.

Each treeblock is processed on a coding unit basis with the same order as decoding process.

This process is invoked when both adaptive_loop_filter_enabled_flag is equal to 1 and adaptive_loop_filter_flag are equal to 1.

This process is performed on a coding unit basis after the completion of the slice construction process prior to adaptive loop filter process for the entire decoded slice, with all coding units in a slice processed in order of coding unit scan order.
Filter coefficients cL for luma samples and cC for chroma samples are derived by invoking the process specified in subclause 8.6.2.1.
Filter index array fIdx for luma samples are derived by invoking the process specified in subclause 8.6.2.2 with the luma location ( xC, yC ) specifying the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture and the coding unit size log2CUSize as inputs.
When interpreting the luma samples of the coding unit as to be filtered, depending on alf_cu_control_flag, the following applies.
· If alf_cu_control_flag is equal to 0, the luma samples are filtered,
· Otherwise (alf_cu_control_flag is equal to 1), if AlfCuFlag[ xC ][ yC ] is equal to 1 where xC and yC are the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture, the luma samples are filtered.
· Otherwise, the luma samples are not filtered.

When interpreting the chroma samples of the coding unit as to be filtered, depending on alf_chroma_idc, the following applies.
· If alf_chroma_idc is equal to 1, the Cr samples are filtered.
· Otherwise, if alf_chroma_idc is equal to 2, the Cb samples are filtered.
· Otherwise, if alf_chroma_idc is equal to 3, both chroma samples are filtered.
· Otherwise (alf_chroma_idc is equal to 0), both chroma samples are not filtered.
For the luma samples of the coding unit interpreted as to be filtered, the filtering process for luma samples specified in subclause 8.6.2.3 is invoked with the luma location ( xC, yC ) specifying the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture, the coding unit size log2CUSize, and the filter index array fIdx as inputs and the output is the modified filtered picture, recFiltPictureL.
For the chroma samples of the coding unit interpreted as to be filtered, the filtering process for chroma samples specified in subclause 8.6.2.4 is invoked with the chroma location ( xC/2, yC/2 ) specifying the top-left chroma sample of the current coding unit relative to the top left chroma sample of the current picture, the coding unit size log2CUSize-1 and the chroma component index cIdx equal to 1 as inputs and the output is the modified filtered picture, recFiltPictureCb.
For the chroma samples of the coding unit interpreted as to be filtered, the filtering process for chroma samples specified in subclause 8.6.2.4 is invoked with the chroma location ( xC/2, yC/2 ) specifying the top-left chroma sample of the current coding unit relative to the top left chroma sample of the current picture, the coding unit size log2CUSize-1 and the chroma component index cIdx equal to 2 as inputs and the output is the modified filtered picture, recFiltPictureCr.
[Ed.: (WJ) recPicture: deblocked/output picture and recFiltPicture: ALFed picture]

[Ed.: (WJ) depending adaptive_loop_filter_flag, recFiltPicture should be copied to recPicture in subclause 8.6]

8.6.2.1 Derivation process for filter coefficients

Outputs of this process are filter coefficients cL for the luma samples and filter coefficients cC for the chroma samples.

The luma filter coefficients cL with elements cL[ i ][ j ], i = 0..AlfNumFilters – 1, j = 0..AlfCodedLengthLuma – 1 is derived as follows:
· If alf_pred_method is equal to 0 or the value of i is equal to 0,
· cL[ i ][ j ] = alf_coeff_luma[ i ][ j ]

(8‑461)
· Otherwise (alf_pred_method is equal to 1 and the value of i is greater than 1), 
cL[ i ][ j ] = alf_coeff_luma[ i ][ j ] + cL[ i – 1 ][ j ]

(8‑461)
Considering the symmetry of the filter, the luma filter coefficients cL with elements cL[ i ][ j ], i = 0..AlfNumFilters – 1 is derived as follows:
cL[ i ][ AlfLengthLuma – 1 ] = cL[ i ][ AlfCodedLengthLuma – 1 ]
(8‑461)
cL[ i ][ AlfLengthLuma – 2 – j ] = cL[ i ][ j ] for j = 0..AlfCodedLengthLuma – 2
(8‑461)
The chroma filter coefficients cC with elements cC[ i ], i = 0..AlfCodedLengthChroma – 1 is derived as follows:
· If i is equal to AlfCodedLengthChroma – 1, the coefficient cC[i] is derived as
cC[ i ] = 255 – sum – alf_coeff_chroma[ i ]

(8‑469)
where
sum = alf_coeff_chroma[ AlfCodedLengthChroma – 2 ] + (j( alf_coeff_chroma[ j ] << 1 ) 
(8‑469)
with j = 0..AlfCodedLengthChroma – 3
· Otherwise (i is less than AlfCodedLengthChroma – 1), 

cC[ i ] = alf_coeff_chroma[ i ]

(8‑470)
Considering the symmetry of the filter, the chroma filter coefficients cC with elements cC[ i ], i = 0..AlfLengthChroma – 1 is derived as follows:

cC[ i ][ AlfLengthChroma – 1 ] = cC[ i ][ AlfCodedLengthChroma – 1 ]
(8‑471)
cC[ i ][ AlfLengthChroma – 2 – j ] = cC[ i ][ j ] for j = 0..AlfCodedLengthChroma – 2
(8‑472)

8.6.2.1.1 Derivation process for filter index array for luma samples

Inputs of this process are:

–
a luma location ( xC, yC ) specifying the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture,

–
a variable log2CUSize specifying the size of the current coding unit.
Output of this process is the two-dimensional filter index array of (nS)x(nS), fIdx.
A variable nS is set equal to ( 1 << log2CUSize ) and s’ represents the luma sample array recPictureL of the current picture.
The filter index array fIdx is specified in the following ordered steps:

1. The variable varTemp1[ x ][ y ] with x, y = -3..(nS)+2 is derived as
varTemp1[ x ][ y ] = | ( s’[ xC+x, yC+y ] << 1 ) – s’[ xC+x-1, yC+y ] – s’[ xC+x+1, yC+y ] | + 




| ( s’[ xC+x, yC+y ] << 1 ) – s’[ xC+x, yC+y-1 ] - s’[ xC+x, yC+y+1 ] |
(8‑465)
2. The variable varTemp2[ x, y ] with x, y = 0..(nS)-1 is derived as
varTemp2[ x ][ y ] = (i(j varTemp1[ x + i ][ y + j ] with i, j = -3..3
(8‑465)
3. The filter index fIdx[ x, y ] with x, y = 0..(nS)-1 is derived as
fIdx[ x ][ y ] = Clip3( 0, varMax, ( varTemp2[ x, y ] * 21 ) >> ( 3 + BitDepthY ) )
(8‑465)
where varMax is set equal to15.
8.6.2.2 Filtering process for luma samples

Inputs of this process are:

–
a luma location ( xC, yC ) specifying the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture,

–
a variable log2CUSize specifying the size of the current coding unit,
–
a filter index array of (nS)x(nS), fIdx.
Output of this process is the filtered reconstruction of luma picture.

Let s’ be a variable specifying luma sample array recPictureL.
A variable nS is set equal to ( 1 << log2CUSize ) and a variable alfTap is set equal to ( alf_length_luma_minus_5_div2 << 1 ) + 5.

Each sample of luma picture recFiltPictureL[ xC + x ][ yC + y ] with x, y = 0..(nS)-1, is derived as follows.
1. 
2. 

[image: image26.wmf](

)

å

-

=

+

+

+

+

+

=

+

+

1

0

]

]][

][

[

[

*

]

 

]

[

 

],

[

 

[

'

]

]][

][

[

[

   

          

]

][

[

N

i

L

L

L

i

y

x

fIdx

c

i

verPos

y

yC

i

horPos

x

xC

s

N

y

x

fIdx

c

y

yC

x

xC

ture

recFiltPic


(8‑476)
where N is set equal to AlfNumCoeffLuma-1 and horPos[i] and verPos[i] are specified in Table 8‑14 and Table 8‑15, respectively.
Table 8‑14 – Specification of horPos[ i ] according to alfTap for adaptive loop filter process of luma samples
	i
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19

	alfTap = 5
	0
	-1
	0
	1
	-2
	-1
	0
	1
	2
	-1
	0
	1
	0
	-
	-
	-
	-
	-
	-
	-

	alfTap = 7
	0
	-1
	0
	1
	-2
	-1
	0
	1
	2
	-3
	-2
	-1
	0
	1
	2
	3
	-2
	-1
	0
	1

	alfTap = 9
	-1
	0
	1
	-2
	-1
	0
	1
	2
	-3
	-2
	-1
	0
	1
	2
	3
	-4
	-3
	-2
	-1
	0


	i
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38

	alfTap = 5
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-

	alfTap = 7
	2
	-1
	0
	1
	0
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-

	alfTap = 9
	1
	2
	3
	4
	-3
	-2
	-1
	0
	1
	2
	3
	-2
	-1
	0
	1
	2
	-1
	0
	1


Table 8‑15 – Specification of verPos[ i ] according to alfTap for adaptive loop filter process of luma samples
	i
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19

	alfTap = 5
	-2
	-1
	-1
	-1
	0
	0
	0
	0
	0
	1
	1
	1
	2
	
	
	
	
	
	
	

	alfTap = 7
	-3
	-2
	-2
	-2
	-1
	-1
	-1
	-1
	-1
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	1

	alfTap = 9
	-3
	-3
	-3
	-2
	-2
	-2
	-2
	-2
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	0
	0
	0
	0
	0


	i
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38

	alfTap = 5
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-

	alfTap = 7
	1
	2
	2
	2
	3
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-

	alfTap = 9
	0
	0
	0
	0
	1
	1
	1
	1
	1
	1
	1
	2
	2
	2
	2
	2
	3
	3
	3


[image: image27.emf]0

1 2 3

4 5 6 7 8

9 10 11

12

0

1 2 3

4 5 6 7 8

21 22 23

24

9 10 11 12 13 14 15

16 17 18 19 20

0 1 2

3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30

31 32 33 34 35

36 37 38

(a) alfTap= 5 (a) alfTap= 7 (a) alfTap= 9


Figure 8‑7 Mapping between geometric position and luma adaptive loop filter index according to alfTap (informative)

8.6.2.3 Filtering process for chroma samples

Inputs of this process are:

–
a chroma location ( xC, yC ) specifying the top-left luma sample of the current coding unit relative to the top left chroma sample of the current picture,

–
a variable log2CUSize specifying the size of the current coding unit.

–
a variable cIdx specifying the chroma component index.

Output of this process is the filtered reconstruction of chroma picture.

Let s’ be a variable specifying chroma sample array which is derived as follows.

–
If cIdx is equal to 1, s’ represents the chroma sample array recPictureCb of the current picture and recFiltPicture represents the filtered reconstruction of chroma picture recFiltPictureCb.
–
Otherwise (cIdx is equal to 2), s’ represents the chroma sample array recPictureCr of the current picture and recFiltPicture represents the filtered reconstruction of chroma picture recFiltPictureCr.
A variable nS is set equal to ( 1 << log2CUSize ) and a variable alfTapChroma is set equal to ( alf_length_chroma_minus_5_div2 << 1 ) + 5.
Filtered samples of chroma picture recFiltPicture[ xC + x ][ yC + y ] with x, y = 0..(nS)-1, are derived as follows.

[image: image28.wmf](

)

å

-

=

+

+

+

+

+

=

+

+

1

0

]

[

*

]

 

]

[

 

],

[

 

[

'

]

[

]

][

[

N

i

C

C

i

c

i

verPos

y

yC

i

horPos

x

xC

s

N

c

y

yC

x

xC

ture

recFiltPic


(8‑465)
where 
N = AlfNumCoeffChroma – 1,

(8‑466)
horPos[ i ] = ( i %  alfTapChroma ) – ( alfTapChroma >> 1 ), and
(8‑467)
verPos[ i ] = ( i /  alfTapChroma ) – ( alfTapChroma >> 1 )
(8‑468)
9 Parsing process

Inputs to this process are bits from the RBSP.

Outputs of this process are syntax element values.

This process is invoked when the descriptor of a syntax element in the syntax tables in subclause 7.3 is equal to ue(v), me(v), se(v), te(v) (see subclause 9.1), ce(v) (see subclause 9.2), or ae(v) (see subclause 9.3).

9.1 Parsing process for Exp-Golomb codes

This process is invoked when the descriptor of a syntax element in the syntax tables in subclause 7.3 is equal to ue(v), me(v), se(v), or te(v). For syntax elements in subclauses 7.3.4 and 7.3.5, this process is invoked only when entropy_coding_mode_flag is equal to 0.

Inputs to this process are bits from the RBSP.

Outputs of this process are syntax element values.

Syntax elements coded as ue(v), me(v), or se(v) are Exp-Golomb-coded. Syntax elements coded as te(v) are truncated Exp-Golomb-coded. The parsing process for these syntax elements begins with reading the bits starting at the current location in the bitstream up to and including the first non-zero bit, and counting the number of leading bits that are equal to 0. This process is specified as follows:

leadingZeroBits = −1
for( b = 0; !b; leadingZeroBits++ )
(9‑1)

b = read_bits( 1 )

The variable codeNum is then assigned as follows:

codeNum = 2leadingZeroBits − 1 + read_bits( leadingZeroBits ) 
(9‑2)

where the value returned from read_bits( leadingZeroBits ) is interpreted as a binary representation of an unsigned integer with most significant bit written first.

Table 9‑1 illustrates the structure of the Exp-Golomb code by separating the bit string into "prefix" and "suffix" bits. The "prefix" bits are those bits that are parsed in the above pseudo-code for the computation of leadingZeroBits, and are shown as either 0 or 1 in the bit string column of Table 9‑1. The "suffix" bits are those bits that are parsed in the computation of codeNum and are shown as xi in Table 9‑1, with i being in the range 0 to leadingZeroBits − 1, inclusive. Each xi can take on values 0 or 1.

Table 9‑1 – Bit strings with "prefix" and "suffix" bits and assignment to codeNum ranges (informative)

	Bit string form
	Range of codeNum

	          1
	0

	        0 1 x0
	1..2

	      0 0 1 x1 x0
	3..6

	    0 0 0 1 x2 x1 x0
	7..14

	  0 0 0 0 1 x3 x2 x1 x0
	15..30

	0 0 0 0 0 1 x4 x3 x2 x1 x0
	31..62

	…
	…


Table 9‑2 illustrates explicitly the assignment of bit strings to codeNum values.

Table 9‑2 – Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative)

	Bit string
	codeNum

	1
	0

	0 1 0
	1

	0 1 1
	2

	0 0 1 0 0
	3

	0 0 1 0 1
	4

	0 0 1 1 0
	5

	0 0 1 1 1
	6

	0 0 0 1 0 0 0
	7

	0 0 0 1 0 0 1
	8

	0 0 0 1 0 1 0
	9

	…
	…


Depending on the descriptor, the value of a syntax element is derived as follows.

–
If the syntax element is coded as ue(v), the value of the syntax element is equal to codeNum. 

–
Otherwise, if the syntax element is coded as se(v), the value of the syntax element is derived by invoking the mapping process for signed Exp-Golomb codes as specified in subclause 9.1.1 with codeNum as the input.

–
Otherwise, if the syntax element is coded as me(v) [Ed. (TW): insert text]

–
Otherwise (the syntax element is coded as te(v)), the range of possible values for the syntax element is determined first. The range of this syntax element may be between 0 and x, with x being greater than or equal to 1 and the range is used in the derivation of the value of the syntax element value as follows.
–
If x is greater than 1, codeNum and the value of the syntax element is derived in the same way as for syntax elements coded as ue(v).
–
Otherwise (x is equal to 1), the parsing process for codeNum which is equal to the value of the syntax element is given by a process equivalent to:

b = read_bits( 1 ) 
(9‑3)
codeNum = !b

9.1.1 Mapping process for signed Exp-Golomb codes

Input to this process is codeNum as specified in subclause 9.1.

Output of this process is a value of a syntax element coded as se(v).

The syntax element is assigned to the codeNum by ordering the syntax element by its absolute value in increasing order and representing the positive value for a given absolute value with the lower codeNum. Table 9‑3 provides the assignment rule.

Table 9‑3 – Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(v)

	codeNum
	syntax element value

	0
	0

	1
	1

	2
	−1

	3
	2

	4
	−2

	5
	3

	6
	−3

	k
	(−1)k+1 Ceil( k÷2 )


9.2 CAVLC parsing process for transform coefficient levels
[Ed. (TW) needs to be inserted]
9.3 CABAC parsing process for slice data

[Ed. (TW) needs to be extended]

This process is invoked when parsing syntax elements with descriptor ae(v) in subclauses 7.3.4 and 7.3.5 when entropy_coding_mode_flag is equal to 1.

Inputs to this process are a request for a value of a syntax element and values of prior parsed syntax elements.

Output of this process is the value of the syntax element.

When starting the parsing of the slice data of a slice in subclause 7.3.4, the initialisation process of the CABAC parsing process is invoked as specified in subclause 9.3.1.

The parsing of syntax elements proceeds as follows:

For each requested value of a syntax element a binarization is derived as described in subclause 9.3.2.

The binarization for the syntax element and the sequence of parsed bins determines the decoding process flow as described in subclause 9.3.3.

For each bin of the binarization of the syntax element, which is indexed by the variable binIdx, a context index ctxIdx is derived as specified in subclause 9.3.3.1.

For each ctxIdx the arithmetic decoding process is invoked as specified in subclause 9.3.3.2.

The resulting sequence ( b0..bbinIdx ) of parsed bins is compared to the set of bin strings given by the binarization process after decoding of each bin. When the sequence matches a bin string in the given set, the corresponding value is assigned to the syntax element.

In case the request for a value of a syntax element is processed for the syntax element mb_type and the decoded value of mb_type is equal to I_PCM, the decoding engine is initialised after the decoding of any pcm_alignment_zero_bit and all pcm_sample_luma and pcm_sample_chroma data as specified in subclause 9.3.1.2.

9.3.1 Initialisation process

Outputs of this process are initialised CABAC internal variables.

The processes in subclauses 9.3.1.1 and 9.3.1.2 are invoked when starting the parsing of the slice data of a slice in subclause 7.3.4.

The process in subclause 9.3.1.2 is also invoked after decoding any pcm_alignment_zero_bit and all pcm_sample_luma and pcm_sample_chroma data for a macroblock of type I_PCM.

9.3.1.1 Initialisation process for context variables
Outputs of this process are the initialised CABAC context variables indexed by ctxIdx.

Tables ABC to DEF contain the values of the variables n and m used in the initialisation of context variables that are assigned to all syntax elements in subclauses 7.3.4 and 7.3.5 except for the end-of-slice flag.

For each context variable, the two variables pStateIdx and valMPS are initialised.

NOTE 1 – The variable pStateIdx corresponds to a probability state index and the variable valMPS corresponds to the value of the most probable symbol as further described in subclause 9.3.3.2.

The two values assigned to pStateIdx and valMPS for the initialisation are derived from SliceQPY, which is derived in Equation [Ed. (TW): insert text]. Given the two table entries ( m, n ), the initialisation is specified by the following pseudo-code process:

preCtxState = Clip3( 1, 126, ( ( m ( Clip3( 0, 51, SliceQPY ) ) >> 4 ) + n )
if( preCtxState  <=  63 )  {

pStateIdx = 63 − preCtxState

valMPS = 0
(9‑4)
} else {

pStateIdx = preCtxState − 64

valMPS = 1
}

9.3.1.2 Initialisation process for the arithmetic decoding engine
This process is invoked before decoding the first macroblock of a slice or after the decoding of any pcm_alignment_zero_bit and all pcm_sample_luma and pcm_sample_chroma data for a macroblock of type I_PCM.

Outputs of this process are the initialised decoding engine registers codIRange and codIOffset both in 16 bit register precision.

The status of the arithmetic decoding engine is represented by the variables codIRange and codIOffset. In the initialisation procedure of the arithmetic decoding process, codIRange is set equal to 510 and codIOffset is set equal to the value returned from read_bits( 9 ) interpreted as a 9 bit binary representation of an unsigned integer with most significant bit written first.

The bitstream shall not contain data that result in a value of codIOffset being equal to 510 or 511.

NOTE – The description of the arithmetic decoding engine in this Recommendation | International Standard utilizes 16 bit register precision. However, a minimum register precision of 9 bits is required for storing the values of the variables codIRange and codIOffset after invocation of the arithmetic decoding process (DecodeBin) as specified in subclause 9.3.3.2. The arithmetic decoding process for a binary decision (DecodeDecision) as specified in subclause 9.3.3.2.1 and the decoding process for a binary decision before termination (DecodeTerminate) as specified in subclause 9.3.3.2.4 require a minimum register precision of 9 bits for the variables codIRange and codIOffset. The bypass decoding process for binary decisions (DecodeBypass) as specified in subclause 9.3.3.2.3 requires a minimum register precision of 10 bits for the variable codIOffset and a minimum register precision of 9 bits for the variable codIRange.

9.3.2 Binarization process

Input to this process is a request for a syntax element.

Output of this process is the binarization of the syntax element, maxBinIdxCtx, ctxIdxOffset, and bypassFlag.

Table 9‑4 specifies the type of binarization process, maxBinIdxCtx, and ctxIdxOffset associated with each syntax element.
[Ed. (TW): insert text]
[Ed. (BB): most of the binarization processes like unary, truncated unary,... can be copied from H.264/AVC]
Table 9‑4 – Syntax elements and associated types of binarization, maxBinIdxCtx, and ctxIdxOffset 

	Syntax element
	Type of binarization
	maxBinIdxCtx
	ctxIdxOffset

	pred_type
	As specified in subclause 9.3.2.1
	[Ed.??]
	[Ed.??]


[Ed. (BB): more syntax elements need to be inserted.]
9.3.2.1 Binarization process for pred_type 

Input to this process is a request for a binarization for the syntax element pred_type and a variable log2CUSize specifying the current CU size.

Output of this process is the binarization of the syntax element. 

The binarization for pred_type is given by Table 9‑5 depending on slice type and the size of the coding unit.
Table 9‑5 – Binarization for pred_type 
	Slice type
	Value of pred_type
	PredMode
	PartMode
	Bin string

	
	
	
	
	log2CUSize > 3
	log2CUSize = = 3e

	I
	0
	MODE_INTRA
	PART_2Nx2N
	-
	1

	
	1
	MODE_INTRA
	PART_NxN
	-
	0

	P
	0
	MODE_INTER
	PART_2Nx2N
	01
	01

	
	1
	MODE_INTER
	PART_2NxN
	001
	001

	
	2
	MODE_INTER
	PART_Nx2N
	000
	0001

	
	3
	MODE_INTER
	PART_NxN
	-
	0000

	
	4
	MODE_INTRA
	PART_2Nx2N
	1
	11

	
	5
	MODE_INTRA
	PART_NxN
	-
	10

	B
	0
	MODE_INTER
	PART_2Nx2N
	1
	1

	
	1
	MODE_INTER
	PART_2NxN
	01
	01

	
	2
	MODE_INTER
	PART_Nx2N
	001
	001

	
	3
	MODE_INTER
	PART_NxN
	-
	0001

	
	4
	MODE_INTRA
	PART_2Nx2N
	000
	0000 1

	
	5
	MODE_INTRA
	PART_NxN
	-
	0000 0


9.3.3 Decoding process flow 

Input to this process is a binarization of the requested syntax element, maxBinIdxCtx, bypassFlag and ctxIdxOffset as specified in subclause 9.3.2.

Output of this process is the value of the syntax element.

This process specifies how each bit of a bit string is parsed for each syntax element.

After parsing each bit, the resulting bit string is compared to all bin strings of the binarization of the syntax element and the following applies.

–
If the bit string is equal to one of the bin strings, the corresponding value of the syntax element is the output. 

–
Otherwise (the bit string is not equal to one of the bin strings), the next bit is parsed.

While parsing each bin, the variable binIdx is incremented by 1 starting with binIdx being set equal to 0 for the first bin. 

When the binarization of the corresponding syntax element consists of a prefix and a suffix binarization part, the variable binIdx is set equal to 0 for the first bin of each part of the bin string (prefix part or suffix part). [Ed. (TW): insert text]

Depending on the variable bypassFlag, the following applies.

–
If bypassFlag is equal to 1, the bypass decoding process as specified in subclause 9.3.3.2.3 is applied for parsing the value of the bins from the bitstream. 

–
Otherwise (bypassFlag is equal to 0), the parsing of each bin is specified by the following two ordered steps:

1.
Given binIdx, maxBinIdxCtx and ctxIdxOffset, ctxIdx is derived as specified in subclause 9.3.3.1.

2.
Given ctxIdx, the value of the bin from the bitstream as specified in subclause 9.3.3.2 is decoded.

9.3.3.1 Derivation process for ctxIdx
Inputs to this process are binIdx, maxBinIdxCtx and ctxIdxOffset.

Output of this process is ctxIdx.

[Ed. (TW): insert text]

9.3.3.2 Arithmetic decoding process
Inputs to this process are the bypassFlag, ctxIdx as derived in subclause 9.3.3.1, and the state variables codIRange and codIOffset of the arithmetic decoding engine.

Output of this process is the value of the bin.

Figure 9‑1 illustrates the whole arithmetic decoding process for a single bin. For decoding the value of a bin, the context index ctxIdx is passed to the arithmetic decoding process DecodeBin(ctxIdx), which is specified as follows. 

–
If bypassFlag is equal to 1, DecodeBypass( ) as specified in subclause 9.3.3.2.3 is invoked.

–
Otherwise, if bypassFlag is equal to 0 and ctxIdx is equal to 276, DecodeTerminate( ) as specified in subclause 9.3.3.2.4 is invoked.

–
Otherwise (bypassFlag is equal to 0 and ctxIdx is not equal to 276), DecodeDecision( ) as specified in subclause 9.3.3.2.1 is applied.


[image: image29.wmf]Done

DecodeBin(ctxIdx)

DecodeBypass

Yes

No

DecodeDecision(ctxIdx)

ctxIdx==276?

Yes

DecodeTerminate

No

bypassFlag

 == 1?


Figure 9‑1 – Overview of the arithmetic decoding process for a single bin (informative)

NOTE – Arithmetic coding is based on the principle of recursive interval subdivision. Given a probability estimation p( 0 ) and p( 1 ) = 1 ( p( 0 ) of a binary decision ( 0, 1 ), an initially given code sub-interval with the range codIRange will be subdivided into two sub-intervals having range p( 0 ) * codIRange and codIRange ( p( 0 ) * codIRange, respectively. Depending on the decision, which has been observed, the corresponding sub-interval will be chosen as the new code interval, and a binary code string pointing into that interval will represent the sequence of observed binary decisions. It is useful to distinguish between the most probable symbol (MPS) and the least probable symbol (LPS), so that binary decisions have to be identified as either MPS or LPS, rather than 0 or 1. Given this terminology, each context is specified by the probability pLPS of the LPS and the value of MPS (valMPS), which is either 0 or 1.

The arithmetic core engine in this Recommendation | International Standard has three distinct properties:

–
The probability estimation is performed by means of a finite-state machine with a table-based transition process between 64 different representative probability states { pLPS(pStateIdx) | 0 <= pStateIdx < 64 } for the LPS probability pLPS. The numbering of the states is arranged in such a way that the probability state with index pStateIdx = 0 corresponds to an LPS probability value of 0.5, with decreasing LPS probability towards higher state indices.

–
The range codIRange representing the state of the coding engine is quantised to a small set {Q1,…,Q4} of pre-set quantisation values prior to the calculation of the new interval range. Storing a table containing all 64x4 pre-computed product values of Qi * pLPS(pStateIdx) allows a multiplication-free approximation of the product codIRange * pLPS(pStateIdx).

–
For syntax elements or parts thereof for which an approximately uniform probability distribution is assumed to be given a separate simplified encoding and decoding bypass process is used. 

9.3.3.2.1 Arithmetic decoding process for a binary decision

Inputs to this process are ctxIdx, codIRange, and codIOffset.

Outputs of this process are the decoded value binVal, and the updated variables codIRange and codIOffset.

Figure 9‑2 shows the flowchart for decoding a single decision (DecodeDecision):

1. The value of the variable codIRangeLPS is derived as follows.

–
Given the current value of codIRange, the variable qCodIRangeIdx is derived by

qCodIRangeIdx =( codIRange  >>  6 ) & 3

(9‑5)

–
Given qCodIRangeIdx and pStateIdx associated with ctxIdx, the value of the variable rangeTabLPS as specified in Table 9‑6 is assigned to codIRangeLPS:
codIRangeLPS = rangeTabLPS[ pStateIdx ][ qCodIRangeIdx ]
(9‑6)

2. The variable codIRange is set equal to codIRange ( codIRangeLPS and the following applies.
–
If codIOffset is greater than or equal to codIRange, the variable binVal is set equal to 1 − valMPS, codIOffset is decremented by codIRange, and codIRange is set equal to codIRangeLPS.

–
Otherwise, the variable binVal is set equal to valMPS.
Given the value of binVal, the state transition is performed as specified in subclause 9.3.3.2.1.1. Depending on the current value of codIRange, renormalization is performed as specified in subclause 9.3.3.2.2.

9.3.3.2.1.1 State transition process

Inputs to this process are the current pStateIdx, the decoded value binVal and valMPS values of the context variable associated with ctxIdx.

Outputs of this process are the updated pStateIdx and valMPS of the context variable associated with ctxIdx.

Depending on the decoded value binVal, the update of the two variables pStateIdx and valMPS associated with ctxIdx is derived as specified by the following pseudo-code:

if( binVal  = =  valMPS ) 

pStateIdx = transIdxMPS( pStateIdx )
else {



(9‑7)

if( pStateIdx  = =  0 )


valMPS = 1 ( valMPS

pStateIdx = transIdxLPS( pStateIdx )
}

Table 9‑7 specifies the transition rules transIdxMPS( ) and transIdxLPS( ) after decoding the value of valMPS and 1 ( valMPS, respectively.


[image: image30.wmf]
Figure 9‑2 – Flowchart for decoding a decision

Table 9‑6 – Specification of rangeTabLPS depending on pStateIdx and qCodIRangeIdx 

	pStateIdx
	qCodIRangeIdx
	pStateIdx
	qCodIRangeIdx

	
	0
	1
	2
	3
	
	0
	1
	2
	3

	0
	128
	176
	208
	240
	32
	27
	33
	39
	45

	1
	128
	167
	197
	227
	33
	26
	31
	37
	43

	2
	128
	158
	187
	216
	34
	24
	30
	35
	41

	3
	123
	150
	178
	205
	35
	23
	28
	33
	39

	4
	116
	142
	169
	195
	36
	22
	27
	32
	37

	5
	111
	135
	160
	185
	37
	21
	26
	30
	35

	6
	105
	128
	152
	175
	38
	20
	24
	29
	33

	7
	100
	122
	144
	166
	39
	19
	23
	27
	31

	8
	95
	116
	137
	158
	40
	18
	22
	26
	30

	9
	90
	110
	130
	150
	41
	17
	21
	25
	28

	10
	85
	104
	123
	142
	42
	16
	20
	23
	27

	11
	81
	99
	117
	135
	43
	15
	19
	22
	25

	12
	77
	94
	111
	128
	44
	14
	18
	21
	24

	13
	73
	89
	105
	122
	45
	14
	17
	20
	23

	14
	69
	85
	100
	116
	46
	13
	16
	19
	22

	15
	66
	80
	95
	110
	47
	12
	15
	18
	21

	16
	62
	76
	90
	104
	48
	12
	14
	17
	20

	17
	59
	72
	86
	99
	49
	11
	14
	16
	19

	18
	56
	69
	81
	94
	50
	11
	13
	15
	18

	19
	53
	65
	77
	89
	51
	10
	12
	15
	17

	20
	51
	62
	73
	85
	52
	10
	12
	14
	16

	21
	48
	59
	69
	80
	53
	9
	11
	13
	15

	22
	46
	56
	66
	76
	54
	9
	11
	12
	14

	23
	43
	53
	63
	72
	55
	8
	10
	12
	14

	24
	41
	50
	59
	69
	56
	8
	9
	11
	13

	25
	39
	48
	56
	65
	57
	7
	9
	11
	12

	26
	37
	45
	54
	62
	58
	7
	9
	10
	12

	27
	35
	43
	51
	59
	59
	7
	8
	10
	11

	28
	33
	41
	48
	56
	60
	6
	8
	9
	11

	29
	32
	39
	46
	53
	61
	6
	7
	9
	10

	30
	30
	37
	43
	50
	62
	6
	7
	8
	9

	31
	29
	35
	41
	48
	63
	2
	2
	2
	2


Table 9‑7 – State transition table

	pStateIdx
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	transIdxLPS
	0
	0
	1
	2
	2
	4
	4
	5
	6
	7
	8
	9
	9
	11
	11
	12

	transIdxMPS
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	pStateIdx
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31

	transIdxLPS
	13
	13
	15
	15
	16
	16
	18
	18
	19
	19
	21
	21
	22
	22
	23
	24

	transIdxMPS
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32

	pStateIdx
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47

	transIdxLPS
	24
	25
	26
	26
	27
	27
	28
	29
	29
	30
	30
	30
	31
	32
	32
	33

	transIdxMPS
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48

	pStateIdx
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63

	transIdxLPS
	33
	33
	34
	34
	35
	35
	35
	36
	36
	36
	37
	37
	37
	38
	38
	63

	transIdxMPS
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	62
	63


9.3.3.2.2 Renormalization process in the arithmetic decoding engine 

Inputs to this process are bits from slice data and the variables codIRange and codIOffset.

Outputs of this process are the updated variables codIRange and codIOffset.

A flowchart of the renormalization is shown in Figure 9‑3. The current value of codIRange is first compared to 256 and further steps are specified as follows.

–
If codIRange is greater than or equal to 256, no renormalization is needed and the RenormD process is finished;

–
Otherwise (codIRange is less than 256), the renormalization loop is entered. Within this loop, the value of codIRange is doubled, i.e., left-shifted by 1 and a single bit is shifted into codIOffset by using read_bits( 1 ).

The bitstream shall not contain data that result in a value of codIOffset being greater than or equal to codIRange upon completion of this process.


[image: image31.wmf]codIRange <  256

Done

RenormD

Yes

No

codIRange = codIRange << 1

codIOffset = codIOffset << 1

codIOffset = codIOffset | read_bits(1)


Figure 9‑3 – Flowchart of renormalization

9.3.3.2.3 Bypass decoding process for binary decisions

Inputs to this process are bits from slice data and the variables codIRange and codIOffset.

Outputs of this process are the updated variable codIOffset and the decoded value binVal.

The bypass decoding process is invoked when bypassFlag is equal to 1. Figure 9‑4 shows a flowchart of the corresponding process.

First, the value of codIOffset is doubled, i.e., left-shifted by 1 and a single bit is shifted into codIOffset by using read_bits( 1 ). Then, the value of codIOffset is compared to the value of codIRange and further steps are specified as follows.

–
If codIOffset is greater than or equal to codIRange, the variable binVal is set equal to 1 and codIOffset is decremented by codIRange.

–
Otherwise (codIOffset is less than codIRange), the variable binVal is set equal to 0.
The bitstream shall not contain data that result in a value of codIOffset being greater than or equal to codIRange upon completion of this process.


[image: image32.wmf]
Figure 9‑4 – Flowchart of bypass decoding process

9.3.3.2.4 Decoding process for binary decisions before termination

Inputs to this process are bits from slice data and the variables codIRange and codIOffset.

Outputs of this process are the updated variables codIRange and codIOffset, and the decoded value binVal.

This special decoding routine applies to decoding of end_of_slice_flag and of the bin indicating the I_PCM mode corresponding to ctxIdx equal to 276. Figure 9‑5 shows the flowchart of the corresponding decoding process, which is specified as follows.

First, the value of codIRange is decremented by 2. Then, the value of codIOffset is compared to the value of codIRange and further steps are specified as follows.

–
If codIOffset is greater than or equal to codIRange, the variable binVal is set equal to 1, no renormalization is carried out, and CABAC decoding is terminated. The last bit inserted in register codIOffset is equal to 1. When decoding end_of_slice_flag, this last bit inserted in register codIOffset is interpreted as rbsp_stop_one_bit.

–
Otherwise (codIOffset is less than codIRange), the variable binVal is set equal to 0 and renormalization is performed as specified in subclause 9.3.3.2.2.
NOTE – This procedure may also be implemented using DecodeDecision(ctxIdx) with ctxIdx = 276. In the case where the decoded value is equal to 1, seven more bits would be read by DecodeDecision(ctxIdx) and a decoding process would have to adjust its bitstream pointer accordingly to properly decode following syntax elements.


[image: image33.wmf]codIOffset >= codIRange

binVal = 1

binVal = 0

Yes

No

Done

DecodeTerminate

RenormD

codIRange = codIRange-2


Figure 9‑5 – Flowchart of decoding a decision before termination

9.3.4 Arithmetic encoding process (informative) 

This subclause does not form an integral part of this Recommendation | International Standard.

Inputs to this process are decisions that are to be encoded and written.

Outputs of this process are bits that are written to the RBSP.

This informative subclause describes an arithmetic encoding engine that matches the arithmetic decoding engine described in subclause 9.3.3.2. The encoding engine is essentially symmetric with the decoding engine, i.e., procedures are called in the same order. The following procedures are described in this section: InitEncoder, EncodeDecision, EncodeBypass, EncodeTerminate, which correspond to InitDecoder, DecodeDecision, DecodeBypass, and DecodeTerminate, respectively. The state of the arithmetic encoding engine is represented by a value of the variable codILow pointing to the lower end of a sub-interval and a value of the variable codIRange specifying the corresponding range of that sub-interval.

9.3.4.1 Initialisation process for the arithmetic encoding engine (informative)
This subclause does not form an integral part of this Recommendation | International Standard.

This process is invoked before encoding the first macroblock of a slice, and after encoding any pcm_alignment_zero_bit and all pcm_sample_luma and pcm_sample_chroma data for a macroblock of type I_PCM.

Outputs of this process are the values codILow, codIRange, firstBitFlag, bitsOutstanding, and BinCountsInNALunits of the arithmetic encoding engine.

In the initialisation procedure of the encoder, codILow is set equal to 0, and codIRange is set equal to 510. Furthermore, firstBitFlag is set equal to 1 and the counter bitsOutstanding is set equal to 0.

Depending on whether the current slice is the first slice of a coded picture, the following applies.

–
If the current slice is the first slice of a coded picture, the counter BinCountsInNALunits is set equal to 0.

–
Otherwise (the current slice is not the first slice of a coded picture), the counter BinCountsInNALunits is not modified. The value of BinCountsInNALunits is the result of encoding all the slices of a coded picture that precede the current slice in decoding order. After initialising for the first slice of a coded picture as specified in this subclause, BinCountsInNALunits is incremented as specified in subclauses 9.3.4.2, 9.3.4.4, and 9.3.4.5.

NOTE – The minimum register precision required for storing the values of the variables codILow and codIRange after invocation of any of the arithmetic encoding processes specified in subclauses 9.3.4.2, 9.3.4.4, and 9.3.4.5 is 10 bits and 9 bits, respectively. The encoding process for a binary decision (EncodeDecision) as specified in subclause 9.3.4.2 and the encoding process for a binary decision before termination (EncodeTerminate) as specified in subclause 9.3.4.5 require a minimum register precision of 10 bits for the variable codILow and a minimum register precision of 9 bits for the variable codIRange. The bypass encoding process for binary decisions (EncodeBypass) as specified in subclause 9.3.4.4 requires a minimum register precision of 11 bits for the variable codILow and a minimum register precision of 9 bits for the variable codIRange. The precision required for the counters bitsOutstanding and BinCountsInNALunits should be sufficiently large to prevent overflow of the related registers. When maxBinCountInSlice denotes the maximum total number of binary decisions to encode in one slice and maxBinCountInPic denotes the maximum total number of binary decisions to encode a picture, the minimum register precision required for the variables bitsOutstanding and BinCountsInNALunits is given by Ceil( Log2( maxBinCountInSlice + 1 ) ) and Ceil( Log2( maxBinCountInPic + 1 ) ), respectively.

9.3.4.2 Encoding process for a binary decision (informative)
This subclause does not form an integral part of this Recommendation | International Standard.

Inputs to this process are the context index ctxIdx, the value of binVal to be encoded, and the variables codIRange, codILow and BinCountsInNALunits.

Outputs of this process are the variables codIRange, codILow, and BinCountsInNALunits.

Figure 9‑6 shows the flowchart for encoding a single decision. In a first step, the variable codIRangeLPS is derived as follows.

Given the current value of codIRange, codIRange is mapped to the index qCodIRangeIdx of a quantised value of codIRange by using Equation 9‑5. The value of qCodIRangeIdx and the value of pStateIdx associated with ctxIdx are used to determine the value of the variable rangeTabLPS as specified in Table 9‑6, which is assigned to codIRangeLPS. The value of codIRange − codIRangeLPS is assigned to codIRange.

In a second step, the value of binVal is compared to valMPS associated with ctxIdx. When binVal is different from valMPS, codIRange is added to codILow and codIRange is set equal to the value codIRangeLPS. Given the encoded decision, the state transition is performed as specified in subclause 9.3.3.2.1.1. Depending on the current value of codIRange, renormalization is performed as specified in subclause 9.3.4.3. Finally, the variable BinCountsInNALunits is incremented by 1.


[image: image34.wmf]EncodeDecision(ctxIdx,binVal)

binVal !=

valMPS

pStateIdx != 0

valMPS = 1 – valMPS

pStateIdx = transIdxLPS[pStateIdx]

pStateIdx = transIdxMPS[pStateIdx]

RenormE

Done

Yes

No

Yes

No

qCodIRangeIdx = (codIRange >> 6) & 3

codIRangeLPS = rangeTabLPS[pStateIdx][qCodIRangeIdx]

codIRange = codIRange  codIRangeLPS

-

codILow = codILow + codIRange

codIRange = codIRangeLPS

BinCountsInNALunits = 

BinCountsInNALunits + 1 


Figure 9‑6 – Flowchart for encoding a decision

9.3.4.3 Renormalization process in the arithmetic encoding engine (informative)
This subclause does not form an integral part of this Recommendation | International Standard.

Inputs to this process are the variables codIRange, codILow, firstBitFlag, and bitsOutstanding.

Outputs of this process are zero or more bits written to the RBSP and the updated variables codIRange, codILow, firstBitFlag, and bitsOutstanding.

Renormalization is illustrated in Figure 9‑7.


[image: image35.wmf]RenormE

Done

codIRange < 256

codILow < 256

PutBit(0)

codILow >= 512

PutBit(1)

codILow = codILow  512

-

Yes

Yes

No

Yes

No

No

codILow = codILow 256

bitsOutstanding = bitsOutstanding + 1

- 

codIRange = codIRange << 1

codILow = codILow << 1


Figure 9‑7 – Flowchart of renormalization in the encoder

The PutBit( ) procedure described in Figure 9‑8 provides carry over control. It uses the function WriteBits( B, N ) that writes N bits with value B to the bitstream and advances the bitstream pointer by N bit positions. This function assumes the existence of a bitstream pointer with an indication of the position of the next bit to be written to the bitstream by the encoding process.


[image: image36.wmf]WriteBits(B, 1)

bitsOutstanding > 0

Yes

firstBitFlag = 0

Yes

WriteBits(1  B, 1)

bitsOutstanding = bitsOutstanding – 1

-


Figure 9‑8 – Flowchart of PutBit(B)

9.3.4.4 Bypass encoding process for binary decisions (informative)
This subclause does not form an integral part of this Recommendation | International Standard.

Inputs to this process are the variables binVal, codILow, codIRange, bitsOutstanding, and BinCountsInNALunits.

Output of this process is a bit written to the RBSP and the updated variables codILow, bitsOutstanding, and BinCountsInNALunits.

This encoding process applies to all binary decisions with bypassFlag equal to 1. Renormalization is included in the specification of this process as given in Figure 9‑9.


[image: image37.wmf]EncodeBypass(binVal)

binVal != 0

codILow = codILow + codIRange

codILow = codILow << 1

codILow = codILow  1024

-

codILow < 512

Done

Yes

No

No

Yes

No

Yes

codILow = codILow  512

bitsOutstanding = bitsOutstanding + 1

-

codILow >=

1024


Figure 9‑9 – Flowchart of encoding bypass

9.3.4.5 Encoding process for a binary decision before termination (informative)
This subclause does not form an integral part of this Recommendation | International Standard.

Inputs to this process are the variables binVal, codIRange, codILow, bitsOutstanding, and BinCountsInNALunits.

Outputs of this process are zero or more bits written to the RBSP and the updated variables codILow, codIRange, bitsOutstanding, and BinCountsInNALunits.

This encoding routine shown in Figure 9‑10 applies to encoding of the end_of_slice_flag and of the bin indicating the I_PCM mb_type both associated with ctxIdx equal to 276. 


[image: image38.wmf]
Figure 9‑10 – Flowchart of encoding a decision before termination

When the value of binVal to encode is equal to 1, CABAC encoding is terminated and the flushing procedure shown in Figure 9‑11 is applied. In this flushing procedure, the last bit written by WriteBits( B, N )  is equal to 1. When encoding end_of_slice_flag, this last bit is interpreted as the rbsp_stop_one_bit.


[image: image39.wmf]EncodeFlush

codIRange = 2

RenormE

PutBit((codILow >> 9) & 1)

WriteBits(((codILow >> 7) & 3) | 1, 2)

Done


Figure 9‑11 – Flowchart of flushing at termination

9.3.4.6 Byte stuffing process (informative)
This subclause does not form an integral part of this Recommendation | International Standard.

This process is invoked after encoding the last macroblock of the last slice of a picture and after encapsulation.

Inputs to this process are the number of bytes NumBytesInVclNALunits of all VCL NAL units of a picture, the number of macroblocks PicSizeInMbs in the picture, and the number of binary symbols BinCountsInNALunits resulting from encoding the contents of all VCL NAL units of the picture.

NOTE – The value of BinCountsInNALunits is the result of encoding all slices of a coded picture. After initialising for the first slice of a coded picture as specified in subclause 9.3.4.1, BinCountsInNALunits is incremented as specified in subclauses 9.3.4.2, 9.3.4.4, and 9.3.4.5.

Outputs of this process are zero or more bytes appended to the NAL unit.

Let the variable k be set equal to Ceil( ( Ceil( 3 * ( 32 * BinCountsInNALunits − RawMbBits * PicSizeInMbs ) ÷ 1024 ) − NumBytesInVclNALunits ) ÷ 3 ). Depending on the variable k the following applies.

–
If k is less than or equal to 0, no cabac_zero_word is appended to the NAL unit. 

–
Otherwise (k is greater than 0), the 3-byte sequence 0x000003 is appended k times to the NAL unit after encapsulation, where the first two bytes 0x0000 represent a cabac_zero_word and the third byte 0x03 represents an emulation_prevention_three_byte.

A Annex A

Profiles and levels

(This annex forms an integral part of this Recommendation | International Standard)

Profiles and levels specify restrictions on bitstreams and hence limits on the capabilities needed to decode the bitstreams. Profiles and levels may also be used to indicate interoperability points between individual decoder implementations.

NOTE 1 – This Recommendation | International Standard does not include individually selectable "options" at the decoder, as this would increase interoperability difficulties.

Each profile specifies a subset of algorithmic features and limits that shall be supported by all decoders conforming to that profile. 

NOTE 2 – Encoders are not required to make use of any particular subset of features supported in a profile.

Each level specifies a set of limits on the values that may be taken by the syntax elements of this Recommendation | International Standard. The same set of level definitions is used with all profiles, but individual implementations may support a different level for each supported profile. For any given profile, levels generally correspond to decoder processing load and memory capability.

The profiles that are specified in subclause A.2 are also referred to as the profiles specified in Annex A.

A.1 Requirements on video decoder capability

Capabilities of video decoders conforming to this Recommendation | International Standard are specified in terms of the ability to decode video streams conforming to the constraints of profiles and levels specified in this annex. For each such profile, the level supported for that profile shall also be expressed.

Specific values are specified in this annex for the syntax elements profile_idc and level_idc. All other values of profile_idc and level_idc are reserved for future use by ITU-T | ISO/IEC.

NOTE – Decoders should not infer that when a reserved value of profile_idc or level_idc falls between the values specified in this Recommendation | International Standard that this indicates intermediate capabilities between the specified profiles or levels, as there are no restrictions on the method to be chosen by ITU-T | ISO/IEC for the use of such future reserved values.

A.2 Profiles

All constraints for picture parameter sets that are specified are constraints for picture parameter sets that are activated in the bitstream. All constraints for sequence parameter sets that are specified in subclause A.2.1 are constraints for sequence parameter sets that are activated in the bitstream.

A.2.1 ABC profile

A.3 Levels

Table A‑9‑8 – Level limits [Ed. (TW) Kept for convenience]
	Level number







	Max macroblock processing rate MaxMBPS (MB/s)



	Max picture size MaxFS (MBs)




	Max decoded picture buffer size MaxDpbMbs (MBs)



	Max 
video
bit rate MaxBR 
(1000 bits/s,
1200 bits/s, cpbBrVclFactor bits/s, or cpbBrNalFactor bits/s)
	Max
CPB size
MaxCPB
(1000 bits,
1200 bits, cpbBrVclFactor bits, or cpbBrNalFactor bits)
	Vertical MV component range 
MaxVmvR
(luma picture samples)



	Min compression ratio MinCR





	Max number of motion vectors per two consecutive MBs 
MaxMvsPer2Mb





	1
	1 485
	99
	396
	64
	175
	[−64,+63.75]
	2
	-

	1b
	1 485
	99
	396
	128
	350
	[−64,+63.75]
	2
	-

	1.1
	3 000
	396
	900
	192
	500
	[−128,+127.75]
	2
	-

	1.2
	6 000
	396
	2 376
	384
	1 000
	[−128,+127.75]
	2
	-

	1.3
	11 880
	396
	2 376
	768
	2 000
	[−128,+127.75]
	2
	-

	2
	11 880
	396
	2 376
	2 000
	2 000
	[−128,+127.75]
	2
	-

	2.1
	19 800
	792
	4 752
	4 000
	4 000
	[−256,+255.75]
	2
	-

	2.2
	20 250
	1 620
	8 100
	4 000
	4 000
	[−256,+255.75]
	2
	-

	3
	40 500
	1 620
	8 100
	10 000
	10 000
	[−256,+255.75]
	2
	32

	3.1
	108 000
	3 600
	18 000
	14 000
	14 000
	[−512,+511.75]
	4
	16

	3.2
	216 000
	5 120
	20 480
	20 000
	20 000
	[−512,+511.75]
	4
	16

	4
	245 760
	8 192
	32 768
	20 000
	25 000
	[−512,+511.75]
	4
	16

	4.1
	245 760
	8 192
	32 768
	50 000
	62 500
	[−512,+511.75]
	2
	16

	4.2
	522 240
	8 704
	34 816
	50 000
	62 500
	[−512,+511.75]
	2
	16

	5
	589 824
	22 080
	110 400
	135 000
	135 000
	[−512,+511.75]
	2
	16

	5.1
	983 040
	36 864
	184 320
	240 000
	240 000
	[−512,+511.75]
	2
	16


Levels with non-integer level numbers in Table A‑9‑8 are referred to as "intermediate levels".

NOTE 4 – All levels have the same status, but some applications may choose to use only the integer-numbered levels.

B Annex B

Byte stream format

(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies syntax and semantics of a byte stream format specified for use by applications that deliver some or all of the NAL unit stream as an ordered stream of bytes or bits within which the locations of NAL unit boundaries need to be identifiable from patterns in the data, such as ITU-T Rec. H.222.0 | ISO/IEC 13818-1 systems or ITU‑T Rec. H.320 systems. For bit-oriented delivery, the bit order for the byte stream format is specified to start with the MSB of the first byte, proceed to the LSB of the first byte, followed by the MSB of the second byte, etc.

The byte stream format consists of a sequence of byte stream NAL unit syntax structures. Each byte stream NAL unit syntax structure contains one start code prefix followed by one nal_unit( NumBytesInNALunit ) syntax structure. It may (and under some circumstances, it shall) also contain an additional zero_byte syntax element. It may also contain one or more additional trailing_zero_8bits syntax elements. When it is the first byte stream NAL unit in the bitstream, it may also contain one or more additional leading_zero_8bits syntax elements.

B.1 Byte stream NAL unit syntax and semantics

B.1.1 Byte stream NAL unit syntax

	byte_stream_nal_unit( NumBytesInNALunit ) {
	C
	Descriptor

	
while( next_bits( 24 )  !=  0x000001 &&




next_bits( 32 ) != 0x00000001 )
	
	

	

leading_zero_8bits  /* equal to 0x00 */
	
	f(8)

	
if( next_bits( 24 ) != 0x000001 )
	
	

	

zero_byte  /* equal to 0x00 */
	
	f(8)

	
start_code_prefix_one_3bytes  /* equal to 0x000001 */
	
	f(24)

	
nal_unit( NumBytesInNALunit )
	
	

	
while( more_data_in_byte_stream( ) &&




next_bits( 24 ) != 0x000001 &&




next_bits( 32 ) != 0x00000001 )
	
	

	

trailing_zero_8bits  /* equal to 0x00 */
	
	f(8)

	}
	
	


B.1.2 Byte stream NAL unit semantics

The order of byte stream NAL units in the byte stream shall follow the decoding order of the NAL units contained in the byte stream NAL units (see subclause 7.4.1.2). The content of each byte stream NAL unit is associated with the same access unit as the NAL unit contained in the byte stream NAL unit (see subclause 7.4.1.2.3).

leading_zero_8bits is a byte equal to 0x00.

NOTE – The leading_zero_8bits syntax element can only be present in the first byte stream NAL unit of the bitstream, because (as shown in the syntax diagram of subclause B.1.1) any bytes equal to 0x00 that follow a NAL unit syntax structure and precede the four-byte sequence 0x00000001 (which is to be interpreted as a zero_byte followed by a start_code_prefix_one_3bytes) will be considered to be trailing_zero_8bits syntax elements that are part of the preceding byte stream NAL unit.

zero_byte is a single byte equal to 0x00.

When any of the following conditions are fulfilled, the zero_byte syntax element shall be present:

–
the nal_unit_type within the nal_unit( ) is equal to 7 (sequence parameter set) or 8 (picture parameter set),

–
the byte stream NAL unit syntax structure contains the first NAL unit of an access unit in decoding order, as specified by subclause 7.4.1.2.3.

start_code_prefix_one_3bytes is a fixed-value sequence of 3 bytes equal to 0x000001. This syntax element is called a start code prefix.

trailing_zero_8bits is a byte equal to 0x00.

B.2 Byte stream NAL unit decoding process

Input to this process consists of an ordered stream of bytes consisting of a sequence of byte stream NAL unit syntax structures.

Output of this process consists of a sequence of NAL unit syntax structures.

At the beginning of the decoding process, the decoder initialises its current position in the byte stream to the beginning of the byte stream. It then extracts and discards each leading_zero_8bits syntax element (if present), moving the current position in the byte stream forward one byte at a time, until the current position in the byte stream is such that the next four bytes in the bitstream form the four-byte sequence 0x00000001.

The decoder then performs the following step-wise process repeatedly to extract and decode each NAL unit syntax structure in the byte stream until the end of the byte stream has been encountered (as determined by unspecified means) and the last NAL unit in the byte stream has been decoded:

1. When the next four bytes in the bitstream form the four-byte sequence 0x00000001, the next byte in the byte stream (which is a zero_byte syntax element) is extracted and discarded and the current position in the byte stream is set equal to the position of the byte following this discarded byte.

2. The next three-byte sequence in the byte stream (which is a start_code_prefix_one_3bytes) is extracted and discarded and the current position in the byte stream is set equal to the position of the byte following this three‑byte sequence.

3. NumBytesInNALunit is set equal to the number of bytes starting with the byte at the current position in the byte stream up to and including the last byte that precedes the location of any of the following conditions:

–
A subsequent byte-aligned three-byte sequence equal to 0x000000,

–
A subsequent byte-aligned three-byte sequence equal to 0x000001,

–
The end of the byte stream, as determined by unspecified means.

4. NumBytesInNALunit bytes are removed from the bitstream and the current position in the byte stream is advanced by NumBytesInNALunit bytes. This sequence of bytes is nal_unit( NumBytesInNALunit ) and is decoded using the NAL unit decoding process.

5. When the current position in the byte stream is not at the end of the byte stream (as determined by unspecified means) and the next bytes in the byte stream do not start with a three-byte sequence equal to 0x000001 and the next bytes in the byte stream do not start with a four byte sequence equal to 0x00000001, the decoder extracts and discards each trailing_zero_8bits syntax element, moving the current position in the byte stream forward one byte at a time, until the current position in the byte stream is such that the next bytes in the byte stream form the four-byte sequence 0x00000001 or the end of the byte stream has been encountered (as determined by unspecified means).

B.3 Decoder byte-alignment recovery (informative)

This subclause does not form an integral part of this Recommendation | International Standard.

Many applications provide data to a decoder in a manner that is inherently byte aligned, and thus have no need for the bit-oriented byte alignment detection procedure described in this subclause.

A decoder is said to have byte-alignment with a bitstream when the decoder is able to determine whether or not the positions of data in the bitstream are byte-aligned. When a decoder does not have byte alignment with the encoder's byte stream, the decoder may examine the incoming bitstream for the binary pattern '00000000 00000000 00000000 00000001' (31 consecutive bits equal to 0 followed by a bit equal to 1). The bit immediately following this pattern is the first bit of an aligned byte following a start code prefix. Upon detecting this pattern, the decoder will be byte aligned with the encoder and positioned at the start of a NAL unit in the byte stream.

Once byte aligned with the encoder, the decoder can examine the incoming byte stream for subsequent three-byte sequences 0x000001 and 0x000003.

When the three-byte sequence 0x000001 is detected, this is a start code prefix.

When the three-byte sequence 0x000003 is detected, the third byte (0x03) is an emulation_prevention_three_byte to be discarded as specified in subclause 7.4.1.

When an error in the bitstream syntax is detected (e.g., a non-zero value of the forbidden_zero_bit or one of the three‑byte or four-byte sequences that are prohibited in subclause 7.4.1), the decoder may consider the detected condition as an indication that byte alignment may have been lost and may discard all bitstream data until the detection of byte alignment at a later position in the bitstream as described in this subclause.

C Annex C

Hypothetical reference decoder

(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies the hypothetical reference decoder (HRD) and its use to check bitstream and decoder conformance.

Two types of bitstreams are subject to HRD conformance checking for this Recommendation | International Standard. The first such type of bitstream, called Type I bitstream, is a NAL unit stream containing only the VCL NAL units and filler data NAL units for all access units in the bitstream. The second type of bitstream, called a Type II bitstream, contains, in addition to the VCL NAL units and filler data NAL units for all access units in the bitstream, at least one of the following:

–
additional non-VCL NAL units other than filler data NAL units,

–
all leading_zero_8bits, zero_byte, start_code_prefix_one_3bytes, and trailing_zero_8bits syntax elements that form a byte stream from the NAL unit stream (as specified in Annex B).

Figure C‑9‑12 shows the types of bitstream conformance points checked by the HRD. 


[image: image40.wmf]H.264(09)_FC-1

VCL NAL units

Non-VCL NAL units other

than filter data NAL units

Byte stream format

encapsulation

(see Annex B)

Filter data NAL units


Figure C‑9‑12 – Structure of byte streams and NAL unit streams for HRD conformance checks

The syntax elements of non-VCL NAL units (or their default values for some of the syntax elements), required for the HRD, are specified in the semantic subclauses of clause 7, Annexes D and E.

The HRD contains a coded picture buffer (CPB), an instantaneous decoding process, a decoded picture buffer (DPB), and output cropping as shown in Figure C‑9‑13.


[image: image41.wmf]Output cropping

Coded picture

buffer (CPB)

Decoding process

(instantaneous)

Reference

fields or frames

Decoded picture

buffer (DPB)

Fields of frames

Fields of frames

Access units

Type I or type II bitstream

Output cropped fields of frames


Figure C‑9‑13 – HRD buffer model

C.1 Operation of coded picture buffer (CPB)

The specifications in this subclause apply independently to each set of CPB parameters that is present and to both the Type I and Type II conformance points shown in Figure C‑9‑12.

C.1.1 Timing of bitstream arrival

C.1.2 Timing of coded picture removal

C.2 Operation of the decoded picture buffer (DPB)

C.3 Bitstream conformance
C.4 Decoder conformance

D Annex D

Supplemental enhancement information


(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies syntax and semantics for SEI message payloads.

SEI messages assist in processes related to decoding, display or other purposes. However, SEI messages are not required for constructing the luma or chroma samples by the decoding process. Conforming decoders are not required to process this information for output order conformance to this Recommendation | International Standard (see Annex 0 for the specification of conformance). Some SEI message information is required to check bitstream conformance and for output timing decoder conformance.

In Annex D, specification for presence of SEI messages are also satisfied when those messages (or some subset of them) are conveyed to decoders (or to the HRD) by other means not specified by this Recommendation | International Standard. When present in the bitstream, SEI messages shall obey the syntax and semantics specified in subclauses 7.3.2.3 and 0 and this annex. When the content of an SEI message is conveyed for the application by some means other than presence within the bitstream, the representation of the content of the SEI message is not required to use the same syntax specified in this annex. For the purpose of counting bits, only the appropriate bits that are actually present in the bitstream are counted.

D.1 SEI payload syntax

[Ed. (TW): insert table]

D.2 SEI payload semantics

E Annex E

Video usability information

(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies syntax and semantics of the VUI parameters of the sequence parameter sets.

VUI parameters are not required for constructing the luma or chroma samples by the decoding process. Conforming decoders are not required to process this information for output order conformance to this Recommendation | International Standard (see Annex 0 for the specification of conformance). Some VUI parameters are required to check bitstream conformance and for output timing decoder conformance. 

In Annex E, specification for presence of VUI parameters is also satisfied when those parameters (or some subset of them) are conveyed to decoders (or to the HRD) by other means not specified by this Recommendation | International Standard. When present in the bitstream, VUI parameters shall follow the syntax and semantics specified in subclauses 7.3.2.1 and 7.4.2.1 and this annex. When the content of VUI parameters is conveyed for the application by some means other than presence within the bitstream, the representation of the content of the VUI parameters is not required to use the same syntax specified in this annex. For the purpose of counting bits, only the appropriate bits that are actually present in the bitstream are counted.

E.1 VUI syntax

E.1.1 VUI parameters syntax

[Ed. (TW): insert table]

E.2 VUI semantics

ii
HEVC


HEVC
iii

_1352296592.unknown

_1352296600.unknown

_1352296608.unknown

_1352296612.unknown

_1352296616.unknown

_1360762945.unknown

_1361001536.unknown

_1361284901.unknown

_1360763053.unknown

_1360762936.unknown

_1352296617.unknown

_1352296614.unknown

_1352296615.unknown

_1352296613.unknown

_1352296610.unknown

_1352296611.unknown

_1352296609.unknown

_1352296606.unknown

_1352296607.unknown

_1352296605.unknown

_1352296596.unknown

_1352296598.unknown

_1352296599.unknown

_1352296597.unknown

_1352296594.unknown

_1352296595.unknown

_1352296593.unknown

_1352296587.unknown

_1352296590.unknown

_1352296591.unknown

_1352296588.unknown

_1352296585.unknown

_1352296586.unknown

_1352296584.unknown

