	[image: image122.png]


[image: image123.png]


Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11

3rd Meeting: Guangzhou, CN, 7-15 October, 2010
	Document: JCTVC-D502

WG11 Number: N11818


	Title:
	High Efficiency Video Coding (HEVC) Test Model 2 (HM 2) Encoder Description

	Status:
	Output Document (draft000)

	Purpose:
	Report

	Author(s) or
Contact(s):
	Ken McCann (Samsung/ZetaCast)

Benjamin Bross (HHI)

Shun-ichi Sekiguchi (Mitsubishi)

Woo-Jin Han (Samsung)
	Email:
	ken@zetacast.com
benjamin.bross@hhi.fraunhofer.de 

Sekiguchi.Shunichi@eb.MitsubishiElectric.co.jp 
wjhan.han@samsung.com 

	Source:
	Editors


_____________________________
Abstract

The JCT-VC established a second HEVC test model (HM2) at its 4th meeting in January 2011.  This document serves as a source of general tutorial information on HEVC and also provides an encoder-side description of HM2. 
[Ed. Note: This document is a very rough skeleton that requires significant improvement]
CONTENTS


Page

1Abstract


41
Introduction


42
Scope


53
Definitions


104
Abbreviations


115
Description of HEVC Test Model


115.1
General Coding Structure


115.2
Picture Partitioning


115.2.1
Treeblock (TB) Partitioning


115.2.2
Coding Unit (CU) structure


125.2.3
Prediction Unit (PU) structure


125.2.4
Transform Unit (TU) structure


135.3
Intra Prediction


145.4
Inter Prediction


145.4.1
Motion vector prediction


165.4.2
Interpolation filter


175.5
Transform and Quantization


175.5.1
Transform


175.5.2
Scaling and quantization


175.6
Entropy Coding


175.7
Loop Filtering


175.7.1
Deblocking filter


175.7.2
Adaptive loop filter (ALF)


185.8
Internal bit depth increase (IBDI)


186
Description of encoding methods


186.1
Cost Functions


186.1.1
Sum of Square Error (SSE)


186.1.2
Sum of Absolute Difference (SAD)


186.1.3
Hadamard transformed SAD (SATD)


196.1.4
RD cost functions


196.1.4.1
Lagrangian constant values


196.1.4.2
SAD based cost function for motion parameter decision


196.1.4.3
SATD based cost function for motion parameter decision


206.1.4.4
Cost function for mode decision


206.2
Encoder configurations


206.2.1
Overview of Encoder Configurations


206.2.2
High Efficiency (HE) coding


206.2.3
Low Complexity (LC) coding


206.3
Temporal Prediction Structure


206.3.1
Intra-only configuration


206.3.2
Low-delay configuration


206.3.3
Random-access configuration


206.4
Internal Bit Depth Increase (IBDI)


206.5
Derivation process for Slice-level coding parameters


206.5.1
Adaptive Loop Filter (ALF) parameters


216.5.1.1
Luma pixel classification


216.5.1.2
Derivation of filter coefficients and applying the filter


216.5.1.3
Encoding of filter coefficients


216.5.1.4
Derivation of ALF control map


226.5.1.5
Decision of chroma component(s) to be filtered


226.5.2
Rounding control


226.6
Derivation process for CU-level and PU-level coding parameters


226.6.1
Intra prediction mode and parameters


226.6.2
Inter prediction mode and parameters


226.6.2.1
Derivation of motion parameters


236.6.2.2
Motion estimation


236.6.3
Early SKIP mode decision in inter-coded slices


236.6.4
Intra/inter mode decision


246.7
Derivation process for TU-level coding parameters


246.7.1
Multiple block size 2-D transforms


246.7.2
Residual Quad-tree partitioning


246.7.3
Rate-Distortion Optimized Quantization


277
References




List of figures
11Figure 5‑1 – Example of a picture divided into treeblocks


12Figure 5‑2 – Example of Coding Unit structure


12Figure 5‑3 – Four types of Prediction Unit structure


13Figure 5‑4 – Example of Transform Unit structure


14Figure 5‑5 – The 33 intra prediction directions


14Figure 5‑6 – Mapping between intra prediction direction and intra prediction mode


15Figure 5‑7 – Spatial motion vector candidates for AMVP


16Figure 5‑8 – Spatial candidates for Motion Merge


18Figure 5‑9 – Filter shape for luma samples according to the filter length


25Figure 6‑1 – Graph structure for RDO quantization based on CABAC in H.264/AVC


26Figure 6‑2 – Possible quantized values in RDO-Q




List of tables

4Table 1‑1 – Structure of Tools in HM2 Configurations


13Table 5‑1 – Maximum quadtree depth according to test scenario and prediction modes


13Table 5‑2 – Number of supported intra modes according to PU size


16Table 5‑3 – 8-tap DCT-IF coefficients for 1/4th luma interpolation


16Table 5‑4 – 4-tap DCT-IF coefficients for 1/8th chroma interpolation


[image: image1.wmf]k

W

Table 6‑1 – Derivation of 
19



1 Introduction

The second HEVC test model (HM2) was defined by decisions taken at the 4th meeting of JCT-VC in Deagu from 20 to 28 January 2011.  In previous meetings, JCT-VC had defined a "Test Model under Consideration" (TMuC), documented in JCTVC-B205 [1] and JCTVC-B204 [2]. In its 3rd meeting in Guangzhou, the JCT-VC defined a first HEVC Test Model (HM1) [3] , with first Working Draft text [4]. The majority of the tools within HM1 were included in the TMuC, but HM1 had substantially fewer coding tools and hence there was a substantial decrease in the computational resources necessary for encoding and decoding. The HM2 has been specified as further optimization of HM1 spec, which achieves better performance than HM1 in terms of both coding efficiency and complexity.
The HM contains only a minimum set of well-tested tools that together form a coherent design that is confirmed to show good capability.  Two settings have been defined: high efficiency and low-complexity.  A summary list of the tools that are included in HM2 is provided in Table 1‑1.

The tools are applicable to the High Efficiency configuration and / or the Low Complexity configuration as defined in JCTVC-D600 [5].  

Table 1‑1 – Structure of Tools in HM2 Configurations

	High Efficiency Configuration
	Low Complexity Configuration

	Coding Unit tree structure (8x8 up to 64x64 luma samples)

	Prediction Units

	Transform unit tree structure (3 level max.)
	Transform unit tree structure (2 level max.)

	Transform block size of 4x4 to 32x32 samples (always square)

	Angular Intra Prediction (34 directions max.)

	DCT-based interpolation filter for luma samples (1/4-sample, 8-tap)

	DCT-based interpolation filter for luma samples (1/8-sample, 4-tap)

	Coding Unit based Skip & Prediction Unit based merging

	Advanced motion vector prediction

	Context adaptive binary arithmetic entropy coding
	Low complexity entropy coding phase 2

	Internal bit-depth increase (2 bits)
	X

	X
	Transform precision extension (2 bits)

	Deblocking filter

	Adaptive loop filter
	X


This document provides an encoder-side description of software implementation of HEVC Test Model (HM), which serves as tutorial information of the HM software. The purpose of this text is to share a common understanding on reference encoding methods supported in the HM software among JCT-VC experts, in order facilitate the assessment of the technical impact of new proposed technologies during the HEVC standardization process. 
2 Scope

This document focuses on non-normative process in the encoder.  The corresponding part of the HEVC working draft [6] should be referred to for any descriptions regarding normative processes.
3 Definitions
[Ed. Note: Aligned with JCT-VC D503 version 2 - dated 2011-03-14]
3.1 access unit: A set of NAL units that are consecutive in decoding order and contain exactly one primary coded picture. In addition to the primary coded picture one auxiliary coded picture, or other NAL units not containing slices of a primary coded picture. The decoding of an access unit always results in a decoded picture.

3.2 AC transform coefficient: Any transform coefficient for which the frequency index in one or both dimensions is non-zero.

3.3 adaptive binary arithmetic decoding process: An entropy decoding process that derives the values of bins from a bitstream produced by an adaptive binary arithmetic encoding process.

3.4 adaptive binary arithmetic encoding process: An entropy encoding process, not normatively specified in this Recommendation | International Standard, that codes a sequence of bins and produces a bitstream that can be decoded using the adaptive binary arithmetic decoding process.

3.5 B slice: A slice that may be decoded using intra prediction or inter prediction using at most two motion vectors and reference indices to predict the sample values of each block.

3.6 bin: One bit of a bin string.

3.7 binarization: A set of bin strings for all possible values of a syntax element.

3.8 binarization process: A unique mapping process of all possible values of a syntax element onto a set of bin strings.

3.9 bin string: A string of bins. A bin string is an intermediate binary representation of values of syntax elements from the binarization of the syntax element.

3.10 bi-predictive slice: See B slice.
3.11 bitstream: A sequence of bits that forms the representation of coded pictures and associated data forming one or more coded video sequences. Bitstream is a collective term used to refer either to a NAL unit stream or a byte stream.

3.12 block: An MxN (M-column by N-row) array of samples, or an MxN array of transform coefficients.

3.13 broken link: A location in a bitstream at which it is indicated that some subsequent pictures in decoding order may contain serious visual artefacts due to unspecified operations performed in the generation of the bitstream.
3.14 byte: A sequence of 8 bits, written and read with the most significant bit on the left and the least significant bit on the right. When represented in a sequence of data bits, the most significant bit of a byte is first.

3.15 byte-aligned: A position in a bitstream is byte-aligned when the position is an integer multiple of 8 bits from the position of the first bit in the bitstream. A bit or byte or syntax element is said to be byte-aligned when the position at which it appears in a bitstream is byte-aligned.
3.16 byte stream: An encapsulation of a NAL unit stream containing start code prefixes and NAL units as specified in Annex B.

3.17 can: A term used to refer to behaviour that is allowed, but not necessarily required.
3.18 chroma: An adjective specifying that a sample array or single sample is representing one of the two colour difference signals related to the primary colours. The symbols used for a chroma array or sample are Cb and Cr.

NOTE – The term chroma is used rather than the term chrominance in order to avoid the implication of the use of linear light transfer characteristics that is often associated with the term chrominance.

3.19 clean decoding refresh (CDR) access unit: An access unit in which the primary coded picture is a CDR picture.
3.20 clean decoding refresh (DDR) picture: A coded picture containing only slices with I slice types that causes the decoding process to mark all reference pictures except the current CDR picture as "unused for reference" immediately before the decoding of the first picture following the current CDR with an output order greater than the current CDR picture. All coded pictures that follow a CDR picture in output order can be decoded without inter prediction from any picture that precedes the CDR picture in output order.  All coded pictures with output order smaller than the current CDR are not affected by the deferred marking process.
3.21 coded picture: A coded representation of a picture. 

3.22 coded picture buffer (CPB): A first-in first-out buffer containing access units in decoding order specified in the hypothetical reference decoder in Annex 0.

3.23 coded representation: A data element as represented in its coded form.

3.24 coded slice NAL unit: A NAL unit containing a slice.

3.25 coded video sequence: A sequence of access units that consists, in decoding order, of an IDR access unit followed by zero or more non-IDR access units including all subsequent access units up to but not including any subsequent IDR access unit.

3.26 component: An array or single sample from one of the three arrays (luma and two chroma) that make up a picture in 4:2:0, 4:2:2, or 4:4:4 colour format or the array or a single sample of the array that make up a picture in monochrome format.

3.27 context variable: A variable specified for the adaptive binary arithmetic decoding process of a bin by an equation containing recently decoded bins.

3.28 DC transform coefficient: A transform coefficient for which the frequency index is zero in all dimensions.

3.29 decoded picture: A decoded picture is derived by decoding a coded picture. 

3.30 decoded picture buffer (DPB): A buffer holding decoded pictures for reference, output reordering, or output delay specified for the hypothetical reference decoder in Annex 0.

3.31 decoder: An embodiment of a decoding process.

3.32 decoder under test (DUT): A decoder that is tested for conformance to this Recommendation | International Standard by operating the hypothetical stream scheduler to deliver a conforming bitstream to the decoder and to the hypothetical reference decoder and comparing the values and timing of the output of the two decoders.

3.33 decoding order: The order in which syntax elements are processed by the decoding process.

3.34 decoding process: The process specified in this Recommendation | International Standard that reads a bitstream and derives decoded pictures from it.

3.35 display process: A process not specified in this Recommendation | International Standard having, as its input, the cropped decoded pictures that are the output of the decoding process.
3.36 emulation prevention byte: A byte equal to 0x03 that may be present within a NAL unit. The presence of emulation prevention bytes ensures that no sequence of consecutive byte-aligned bytes in the NAL unit contains a start code prefix.

3.37 encoder: An embodiment of an encoding process.

3.38 encoding process: A process, not specified in this Recommendation | International Standard, that produces a bitstream conforming to this Recommendation | International Standard.

3.39 flag: A variable that can take one of the two possible values 0 and 1.

3.40 frequency index: A one-dimensional or two-dimensional index associated with a transform coefficient prior to an inverse transform part of the decoding process.
3.41 hypothetical reference decoder (HRD): A hypothetical decoder model that specifies constraints on the variability of conforming NAL unit streams or conforming byte streams that an encoding process may produce.

3.42 hypothetical stream scheduler (HSS): A hypothetical delivery mechanism for the timing and data flow of the input of a bitstream into the hypothetical reference decoder. The HSS is used for checking the conformance of a bitstream or a decoder.

3.43 I slice: A slice that is decoded using intra prediction only.

3.44 informative: A term used to refer to content provided in this Recommendation | International Standard that is not an integral part of this Recommendation | International Standard. Informative content does not establish any mandatory requirements for conformance to this Recommendation | International Standard.

3.45 instantaneous decoding refresh (IDR) access unit: An access unit in which the primary coded picture is an IDR picture.

3.46 instantaneous decoding refresh (IDR) picture: A coded picture for which the variable IdrPicFlag is equal to 1. An IDR picture causes the decoding process to mark all reference pictures as "unused for reference" immediately after the decoding of the IDR picture. All coded pictures that follow an IDR picture in decoding order can be decoded without inter prediction from any picture that precedes the IDR picture in decoding order. The first picture of each coded video sequence in decoding order is an IDR picture.

3.47 inter coding: Coding of a block, macroblock, slice, or picture that uses inter prediction.

3.48 inter prediction: A prediction derived from decoded samples of reference pictures other than the current decoded picture.
3.49 intra coding: Coding of a block, macroblock, slice, or picture that uses intra prediction.

3.50 intra prediction: A prediction derived from the decoded samples of the same decoded slice.

3.51 intra slice: See I slice.
3.52 inverse transform: A part of the decoding process by which a set of transform coefficients are converted into spatial-domain values, or by which a set of transform coefficients are converted into DC transform coefficients.

3.53 layer: One of a set of syntactical structures in a non-branching hierarchical relationship. Higher layers contain lower layers. The coding layers are the coded video sequence, picture, slice, and treeblock layers.

3.54 leaf: A terminating node of a tree that is a root node of a tree of depth 0.
3.55 level: A defined set of constraints on the values that may be taken by the syntax elements and variables of this Recommendation | International Standard. The same set of levels is defined for all profiles, with most aspects of the definition of each level being in common across different profiles. Individual implementations may, within specified constraints, support a different level for each supported profile. In a different context, level is the value of a transform coefficient prior to scaling.

3.56 list 0 (list 1) motion vector: A motion vector associated with a reference index pointing into reference picture list 0 (list 1).

3.57 list 0 (list 1) prediction: Inter prediction of the content of a slice using a reference index pointing into reference picture list 0 (list 1).

3.58 luma: An adjective specifying that a sample array or single sample is representing the monochrome signal related to the primary colours. The symbol or subscript used for luma is Y or L.

NOTE – The term luma is used rather than the term luminance in order to avoid the implication of the use of linear light transfer characteristics that is often associated with the term luminance. The symbol L is sometimes used instead of the symbol Y to avoid confusion with the symbol y as used for vertical location.

3.59 may: A term used to refer to behaviour that is allowed, but not necessarily required. In some places where the optional nature of the described behaviour is intended to be emphasized, the phrase "may or may not" is used to provide emphasis.

3.60 memory management control operation: Seven operations that control reference picture marking.

3.61 motion vector: A two-dimensional vector used for inter prediction that provides an offset from the coordinates in the decoded picture to the coordinates in a reference picture.

3.62 must: A term used in expressing an observation about a requirement or an implication of a requirement that is specified elsewhere in this Recommendation | International Standard. This term is used exclusively in an informative context.

3.63 NAL unit: A syntax structure containing an indication of the type of data to follow and bytes containing that data in the form of an RBSP interspersed as necessary with emulation prevention bytes.

3.64 NAL unit stream: A sequence of NAL units.

3.65 non-reference picture: A picture coded with nal_ref_idc equal to 0. A non-reference picture is not used for inter prediction of any other pictures.

3.66 note: A term used to prefix informative remarks. This term is used exclusively in an informative context.

3.67 output order: The order in which the decoded pictures are output from the decoded picture buffer.

3.68 P slice: A slice that may be decoded using intra prediction or inter prediction using at most one motion vector and reference index to predict the sample values of each block.

3.69 parameter: A syntax element of a sequence parameter set or a picture parameter set. Parameter is also used as part of the defined term quantisation parameter.

3.70 partitioning: The division of a set into subsets such that each element of the set is in exactly one of the subsets.

3.71 picture: [Ed. (TW) define]
3.72 picture parameter set: A syntax structure containing syntax elements that apply to zero or more entire coded pictures as determined by the pic_parameter_set_id syntax element found in each slice header.
3.73 picture order count: [Ed. (TW) re-check] A variable that is associated with each coded picture and has a value that is non-decreasing with increasing picture position in output order relative to the first output picture of the previous IDR picture in decoding order or relative to the first output picture of the previous picture, in decoding order, that contains a memory management control operation that marks all reference pictures as "unused for reference". 
3.74 prediction: An embodiment of the prediction process.

3.75 prediction process: The use of a predictor to provide an estimate of the sample value or data element currently being decoded.

3.76 predictive slice: See P slice.
3.77 predictor: A combination of specified values or previously decoded sample values or data elements used in the decoding process of subsequent sample values or data elements.

3.78 primary coded picture: The coded representation of a picture to be used by the decoding process for a bitstream conforming to this Recommendation | International Standard. The primary coded picture contains all treeblocks of the picture. The only pictures that have a normative effect on the decoding process are primary coded pictures.
3.79 profile: A specified subset of the syntax of this Recommendation | International Standard.

3.80 quadtree: A tree in which a parent node can be split into four child nodes. A child node may become parent node for another plit into four child nodes.
3.81 quantisation parameter: A variable used by the decoding process for scaling of transform coefficient levels.
3.82 random access: The act of starting the decoding process for a bitstream at a point other than the beginning of the stream.

3.83 raster scan: A mapping of a rectangular two-dimensional pattern to a one-dimensional pattern such that the first entries in the one-dimensional pattern are from the first top row of the two-dimensional pattern scanned from left to right, followed similarly by the second, third, etc., rows of the pattern (going down) each scanned from left to right.

3.84 raw byte sequence payload (RBSP): A syntax structure containing an integer number of bytes that is encapsulated in a NAL unit. An RBSP is either empty or has the form of a string of data bits containing syntax elements followed by an RBSP stop bit and followed by zero or more subsequent bits equal to 0.

3.85 raw byte sequence payload (RBSP) stop bit: A bit equal to 1 present within a raw byte sequence payload (RBSP) after a string of data bits. The location of the end of the string of data bits within an RBSP can be identified by searching from the end of the RBSP for the RBSP stop bit, which is the last non-zero bit in the RBSP.
3.86 recovery point: A point in the bitstream at which the recovery of an exact or an approximate representation of the decoded pictures represented by the bitstream is achieved after a random access or broken link.

3.87 reference index: An index into a reference picture list.

3.88 reference picture: A picture with nal_ref_idc not equal to 0. A reference picture contains samples that may be used for inter prediction in the decoding process of subsequent pictures in decoding order.

3.89 reference picture list: A list of reference pictures that is used for inter prediction of a P or B slice. For the decoding process of a P slice, there is one reference picture list. For the decoding process of a B slice, there are two reference picture lists. [Ed. (TW) the latter may not be true anymore]
3.90 reference picture list 0: A reference picture list used for inter prediction of a P or B slice. All inter prediction used for P slices uses reference picture list 0. Reference picture list 0 is one of two reference picture lists used for inter prediction for a B slice, with the other being reference picture list 1. [Ed. (TW) the latter may not be true anymore]
3.91 reference picture list 1: A reference picture list used for inter prediction of a B slice. Reference picture list 1 is one of two reference picture lists used for inter prediction for a B slice, with the other being reference picture list 0.

3.92 reference picture lists combination: A reference picture list used for uni-prediction of a B slice. Reference picture lists combination is derived from the entries of the reference picture lists 0 and reference picture list 1.
3.93 reference picture marking: Specifies, in the bitstream, how the decoded pictures are marked for inter prediction.

3.94 reserved: The term reserved, when used in the clauses specifying some values of a particular syntax element, are for future use by ITU-T | ISO/IEC. These values shall not be used in bitstreams conforming to this Recommendation | International Standard, but may be used in future extensions of this Recommendation | International Standard by ITU‑T | ISO/IEC.

3.95 residual: The decoded difference between a prediction of a sample or data element and its decoded value.

3.96 sample aspect ratio: Specifies, for assisting the display process, which is not specified in this Recommendation | International Standard, the ratio between the intended horizontal distance between the columns and the intended vertical distance between the rows of the luma sample array in a picture. Sample aspect ratio is expressed as h:v, where h is horizontal width and v is vertical height (in arbitrary units of spatial distance).

3.97 scaling: The process of multiplying transform coefficient levels by a factor, resulting in transform coefficients.

3.98 sequence parameter set: A syntax structure containing syntax elements that apply to zero or more entire coded video sequences as determined by the content of a seq_parameter_set_id syntax element found in the picture parameter set referred to by the pic_parameter_set_id syntax element found in each slice header.
3.99 shall: A term used to express mandatory requirements for conformance to this Recommendation | International Standard. When used to express a mandatory constraint on the values of syntax elements or on the results obtained by operation of the specified decoding process, it is the responsibility of the encoder to ensure that the constraint is fulfilled. When used in reference to operations performed by the decoding process, any decoding process that produces identical results to the decoding process described herein conforms to the decoding process requirements of this Recommendation | International Standard.
3.100 should: A term used to refer to behaviour of an implementation that is encouraged to be followed under anticipated ordinary circumstances, but is not a mandatory requirement for conformance to this Recommendation | International Standard.

3.101 slice: An integer number of treeblocks ordered consecutively in the raster scan. For the primary coded picture, the division of each picture into slices is a partitioning. The treeblock addresses are derived from the first treeblock address in a slice (as represented in the slice header).
3.102 slice header: A part of a coded slice containing the data elements pertaining to the first or all macroblocks represented in the slice.

3.103 source: Term used to describe the video material or some of its attributes before encoding.

3.104 start code prefix: A unique sequence of three bytes equal to 0x000001 embedded in the byte stream as a prefix to each NAL unit. The location of a start code prefix can be used by a decoder to identify the beginning of a new NAL unit and the end of a previous NAL unit. Emulation of start code prefixes is prevented within NAL units by the inclusion of emulation prevention bytes.

3.105 string of data bits (SODB): A sequence of some number of bits representing syntax elements present within a raw byte sequence payload prior to the raw byte sequence payload stop bit. Within an SODB, the left-most bit is considered to be the first and most significant bit, and the right-most bit is considered to be the last and least significant bit.

3.106 syntax element: An element of data represented in the bitstream.

3.107 syntax structure: Zero or more syntax elements present together in the bitstream in a specified order.
3.108 transform coefficient: A scalar quantity, considered to be in a frequency domain, that is associated with a particular one-dimensional or two-dimensional frequency index in an inverse transform part of the decoding process.

3.109 transform coefficient level: An integer quantity representing the value associated with a particular two‑dimensional frequency index in the decoding process prior to scaling for computation of a transform coefficient value.

3.110 tree: A tree is a finite ste of nodes with a unique root node. A terminating node is called a leaf. 
3.111 treeblock: A NxN block of luma samples and two corresponding blocks of chroma samples of a picture that has three sample arrays, or a NxN block of samples of a monochrome picture or a picture that is coded using three separate colour planes. The division of a slice into treeblocks is a partitioning.

3.112 treeblock address: A treeblock address is the index of a treeblock in a treeblock raster scan of the picture starting with zero for the top-left treeblock in a picture. 

3.113 treeblock location: The two-dimensional coordinates of a treeblock in a picture denoted by ( x, y ). For the top left treeblock of the picture ( x, y ) is equal to ( 0, 0 ). x is incremented by 1 for each treeblock column from left to right. The value of y is incremented by 1 for each treeblock row from top to bottom. 

3.114 treeblock partition: A block of luma samples and two corresponding blocks of chroma samples resulting from a partitioning of a treeblock for inter prediction for a picture that has three sample arrays or a block of luma samples resulting from a partitioning of a treeblock for inter prediction for a monochrome picture or a picture that is coded using three separate colour planes.

3.115 universal unique identifier (UUID): An identifier that is unique with respect to the space of all universal unique identifiers.

3.116 unspecified: The term unspecified, when used in the clauses specifying some values of a particular syntax element, indicates that the values have no specified meaning in this Recommendation | International Standard and will not have a specified meaning in the future as an integral part of this Recommendation | International Standard.

3.117 variable length coding (VLC): A reversible procedure for entropy coding that assigns shorter bit strings to symbols expected to be more frequent and longer bit strings to symbols expected to be less frequent.

3.118 VCL NAL unit: A collective term for coded slice NAL units.
3.119 zig-zag scan: A specific sequential ordering of transform coefficient levels from (approximately) the lowest spatial frequency to the highest. 
4 Abbreviations

[Ed. Note: Aligned with JCT-VC D503 version 2 - dated 2011-03-14]

CABAC
Context-based Adaptive Binary Arithmetic Coding

CAVLC
Context-based Adaptive Variable Length Coding
CBR
Constant Bit Rate
CDR
Clean Decoding Refresh
CPB
Coded Picture Buffer
DPB
Decoded Picture Buffer

DUT
Decoder under test

FIFO
First-In, First-Out

HRD
Hypothetical Reference Decoder

HSS
Hypothetical Stream Scheduler

IDR
Instantaneous Decoding Refresh

LSB
Least Significant Bit

MSB
Most Significant Bit

NAL
Network Abstraction Layer

RBSP
Raw Byte Sequence Payload

SEI
Supplemental Enhancement Information

SODB
String Of Data Bits

TB
Treeblock

UUID
Universal Unique Identifier

VBR
Variable Bit Rate

VCL
Video Coding Layer

VLC
Variable Length Coding
VUI
Video Usability Information
5 Description of HEVC Test Model
5.1 General Coding Structure

[Ed. Note: Insert general overview, including graphical representation of encoding and decoding]

5.2 Picture Partitioning

5.2.1 Treeblock (TB) Partitioning

Pictures are divided into slices and slices are divided into a sequence of treeblocks.  A treeblock is an NxN block of luma samples together with the two corresponding blocks of chroma samples for a picture that has three sample arrays, or an NxN block of samples of a monochrome picture for a picture that is coded using three separate colour planes. The treeblock concept is broadly analogous to that of the macroblock in previous standards such as H.264/AVC [6]. The maximum allowed size of the treeblock is 64x64 luma samples.
[image: image2.emf]
Figure 5‑1 – Example of a picture divided into treeblocks
[Ed. Note: Needs expansion]
5.2.2 Coding Unit (CU) structure

The Coding Unit (CU) is the basic unit of region splitting used for inter/intra prediction. It is always square and it may take a size from 8x8 luma samples up to the size of the treeblock. 
The CU concept allows recursive splitting into four equally sized blocks, starting from the treeblock.  This process gives a content-adaptive coding tree structure comprised of CU blocks, each of which may be as large as the treeblock or as small as 8x8. 

[image: image3.emf]
Figure 5‑2 – Example of Coding Unit structure

Both skipped CU and non-skipped CU types are allowed. The skipped CU is considered to be an inter prediction mode without coding of motion vector differences and residual information. The non-skipped CU is assigned to one of two prediction modes, intra prediction and inter prediction.

[Ed. Note: Needs expansion]
5.2.3 Prediction Unit (PU) structure
The Prediction Unit (PU) is the basic unit used for carrying the information related to the prediction processes. In general, it is not restricted to being square in shape, in order to facilitate partitioning which matches the boundaries of real objects in the picture. Each CU may contain one or more PUs.
[image: image4.emf]2Nx2N Nx2N 2NxN NxN


Figure 5‑3 – Four types of Prediction Unit structure
It should be noted that PU type NxN is allowed only when the corresponding CU size is greater than the smallest allowed CU size, which is denoted as SCUSize.

[Ed. Note: Needs expansion]
5.2.4 Transform Unit (TU) structure
The Transform Unit (TU) is the basic unit used for the transform and quantization processes.  It is always square and it may take a size from 4x4 up to 32x32 luma samples. Each CU may contain one or more TUs, where multiple TUs may be arranged in a quadtree structure, as illustrated in Figure 5‑4 below.
[image: image5.emf]
Figure 5‑4 – Example of Transform Unit structure

[Ed. Note: Needs expansion, based on JCTVC-C311 and JCTVC-C319

• 3-level quadtree for high efficiency configuration

• Same maximum quadtree depth for luma and chroma]
The maximum quadtree depth is adjustable and is specified in the slice header syntax. The values are set according to the test scenario as shown in Table 5‑1 below.

Table 5‑1 – Maximum quadtree depth according to test scenario and prediction modes
	Test scenario
	Maximum quadtree depth
(for inter block)
	Maximum quadtree depth
(for intra block)

	Intra Only High-Efficiency
	-
	3

	Random Access High-Efficiency
	3
	3

	Low Delay High-Efficiency
	3
	3

	Intra Only Low Complexity
	-
	1

	Random Access Low Complexity
	2
	1

	Low Delay Low Complexity
	2
	1


5.3 Intra Prediction

The unified intra prediction coding tool provides up to 33 directional prediction modes and one DC prediction mode for each PU. The total number of available prediction modes is dependent on the size of the corresponding PU, as shown in Table 5‑1 below.
Table 5‑2 – Number of supported intra modes according to PU size
	PU size
	Number of intra modes

	4
	17

	8
	34

	16
	34

	32
	34

	64
	3


The 33 possible intra prediction directions are illustrated in Figure 5‑5 below.

[image: image6.emf]0 -5 -10 -15 -20 -25 -30

-30

-25

-20

-15

-10

-5

0

5 10 15 20 25 30

5

10

15

20

25

30


Figure 5‑5 – The 33 intra prediction directions
For PU sizes where less than the full set 34 total intra prediction modes are allowed, the first N directions according to the mapping between the intra prediction direction and the intra prediction mode number specified in Figure 5‑6 below are used.

[image: image7.emf]3 18 10 19 4 20 1121022 12 23 5 24 25 13 6

2: DC mode

26

14

27

7

28

15

29

1

30

16

31

8

32

17

33

9


Figure 5‑6 – Mapping between intra prediction direction and intra prediction mode

[Ed. Note: Needs expansion

· Simplified unified intra prediction (JCTVC-C042)
· Encoder modification for intra prediction search (JCTVC-C207)]
5.4 Inter Prediction

5.4.1 Motion vector prediction

[Ed. Note: Need to describe
· Bi-directional prediction for temporal level 0 (JCTVC-C278, JCTVC-C285)]
Each inter coded PU shall have a set of motion parameters consisting of motion vector, reference picture index, prediction direction index to be used for inter prediction sample generation, in an explicit or implicit way of signaling. When a CU is coded with skip mode (i.e., PredMode == MODE_SKIP), the CU consists of one PU having the same block size and its motion vectors for RefPicList0 and RefPicList1 are derived using Advanced Motion Vector Prediction (AMVP) technique with refIdx equals to zero for both RefPicLists. When a PU is predicted with Motion Merging, the motion vector(s) and corresponding reference picture index(indices) are inferred from the PU to be merged. In these cases, motion parameters are not explicitly transmitted but derived at decoder from parameters such as prediction mode or merge related parameters. Otherwise, motion vector and corresponding reference picture index for each RefPicList are signalled explicitly per each PU in the form of prediction difference by using motion vector predictor obtained with the AMVP technique.

The AMVP is an adaptive motion vector prediction technique that exploits spatio-temporal correlation of motion vector with neighbouring PUs. It constructs motion vector candidate list by firstly checking availability of left, top (as shown in Figure 5‑7) and tempoally co-located PU positions and then removing redundant candidates as a normative process. Then, encoder can select the best predictor from the candidate list and transmits corresponding index indicating chosen candidate. The AMVP is used for prediction of all coded motion vectors and for derivation of skip motion vectors.

[image: image8.png]Bn51 BnB




 
Figure 5‑7 – Spatial motion vector candidates for AMVP
The Motion Merge technique is to find neighbouring inter coded PU such that its motion parameters (motion vector, reference picture index, and prediction direction index) can be inferred as the ones for the current PU. Similar to the AMVP technique, encoder can also select the best candidate to be used to infer motion parameters from multiple candidates formed by spatial neighbouring PUs as shown in Figure 5‑8 and temporally co-located PU, and transmits corresponding index indicating chosen candidate. This mode can be applied to any PU and, as special cases, the first PU (i.e., puPartIdx == 0) of a CU coded with PART_2NxN or PART_Nx2N shall be predicted with this technique.
[image: image9.emf]A

D

B C


Figure 5‑8 – Spatial candidates for Motion Merge
For PU types Nx2N and 2NxN, the first PU in the decoding order is inferred to use merging mode. Both merging and motion vector difference coding modes are supported in the other PUs.

5.4.2 Interpolation filter


· 
· 
· 
· 
· 
· 
· 
For the luma interpolation filter, an 8-tap separable DCT-based interpolation filter is used, as shown in Table 5‑3.
Table 5‑3 – 8-tap DCT-IF coefficients for 1/4th luma interpolation

	Position
	Filter coefficients

	1/4
	{ -1, 4, -10, 57, 19, -7, 3, -1 }

	2/4
	{ -1, 4, -11, 40, 40, -11, 4, -1 }

	3/4
	{ -1, 3, -7, 19, 57, -10, 4, -1 }


Similarly, a 4-tap separable DCT-based interpolation filter is used for the chroma interpolation filter, as shown in Table 5‑4.
Table 5‑4 – 4-tap DCT-IF coefficients for 1/8th chroma interpolation

	Position
	Filter coefficients

	1/8
	{ -3, 60, 8, -1 }

	2/8
	{ -4, 54, 16, -2 }

	3/8
	{ -5, 46, 27, -4 }

	4/8
	{ -4, 36, 36, -4 }

	5/8
	{ -4, 27, 46, -5 }

	6/8
	{ -2, 16, 54, -4 }

	7/8
	{ -1, 8, 60, -3 }


For the bi-directional prediction, the bit-depth of the output of the interpolation filter is maintained to 14-bit accuracy, regardless of the source bit-depth, before the averaging of the two prediction signals. The actual averaging process is done implicitly with the bit-depth reduction process as:


predSamples[ x, y ] = ( predSamplesL0[ x, y ] + predSamplesL1[ x, y ] + offset ) >> shift


where



shift = ( 15 – BitDepth ) and offset = 1 << ( shift – 1 )

5.5 Transform and Quantization
5.5.1 Transform
Transforms of sizes from 4x4 to 32x32 are supported. For transforms of size 4x4 and 8x8, the same method as that specified in the H.264/AVC [6] standard is used. For transforms of 16x16 and 32x32, fast integer transforms using a butterfly structure are used.
[Ed. Note: Needs expansion]
5.5.2 Scaling and quantization
The same scaling and quantization method as in H.264/AVC [6] is used, with scaling matrices added for the transform sizes of 16x16 and 32x32.
[Ed. Note: Needs expansion]
5.6 Entropy Coding

Two alternative entropy coding schemes are supported in the HM: Context Adaptive Binary Arithmetic Coding (CABAC) and Low Complexity Entropy Coding (LCEC).
[Ed. Note: Need to describe

· Context adaptive binary arithmetic coding (CABAC) for high efficiency configuration
· Simplified context generation for significance map (JCTVC-D260)
· Low complexity entropy coding (LCEC) phase 2 for low complexity configuration

· Coefficient sign PCP (JCTVC-B088 Section 3.2)

· Coefficeint level BinIdx 0 PCP (JCTVC-B088 Section 3.3)

· Coded block flag signaling in VLC (JCTVC-C262)

· Coded block flag redundancy removal (JCTVC-C277)

· HHI transform coefficient coding
· Intra mode coding (JCTVC-D366)
· Coefficient coding (JCTVC-D374)
· Reference index coding (JCTVC-D141/D184)
· Inter mode signaling (JCTVC-D370)
· Mode-dependent coefficient scanning (JCTVC-D393)]
5.7 Loop Filtering
5.7.1 Deblocking filter

The deblocking method is based on that used in H.264/AVC [6]. 4x4 block boundaries are not deblocked in order to reduce the complexity.

 [Ed. Note: Needs expansion]
5.7.2 Adaptive loop filter (ALF)

An adaptive loop filter is applied to the reconstruction signal after the deblocking filter by using the filter coefficients given in the slice header. For luma samples in each CU, the encoder makes a decision on whether or not the adaptive loop filter is applied and the appropriate signaling flag is included in the slice header. The filtering process uses multiple 2D diamond-shape filters for luma samples. The filter coefficient for each pixel is selected from multiple filters by computing the variance measure. Three filter sizes of 5x5, 7x7 and 9x9 are supported, but the maximum vertical difference for the current pixel is restricted from -3 to 3 inclusive as illustrated in Figure 5‑9.
[image: image10.emf] 

0

1 2 3

4 5 6 7 8

9 10 11

12

0

1 2 3

4 5 6 7 8

21 22 23

24

9 10 11 12 13 14 15

16 17 18 19 20

0 1 2

3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30

31 32 33 34 35

36 37 38

(a) alfTap = 5 (a) alfTap = 7 (a) alfTap = 9


Figure 5‑9 – Filter shape for luma samples according to the filter length

For the chroma samples, the decision to apply the filter is done based on the picture-level rather than CU-level. Rectangular
-shape filter of 5x5 is used for the filtering process of chroma samples and no variance-based filter selection scheme is applied.

[Ed. Note: syntax allows arbitrary filter sizes, but 5x5, 7x7, 9x9 for luma and 5x5 for chroma seems adopted values until now]


[Ed. Note: Needs expansion]
5.8 Internal bit depth increase (IBDI)
[Ed. Note: Need to describe

· Internal bit depth increase (IBDI) with 2 bits added precision for 8-bit per sample decoding

· Transform precision extension (TPE) with 2 bits added precision for 8-bit per sample decoding] 
6 Description of encoding methods
6.1 Cost Functions

[Ed. note: Definitions of all cost functions used in the HM software and remaining sections should refer to relevant section number below that specifies cost function to be used]
Various cost functions are used in the HM software encoder to perform non-normative mode/parameter decisions. In this section, the cost functions actually used in the encoding process of the HM software are specified for reference in the remaining sections of this document.

6.1.1 Sum of Square Error (SSE)
The difference between two blocks with the same block size is produced using


Diff(i,j) = BlockA(i,j) - BlockB(i,j)

(6‑1)

SEE is computed using the following equation:



[image: image11.wmf]å

=

j

i

j

i

Diff

SSE

,

2

)

,

(



(6‑2)

6.1.2 Sum of Absolute Difference (SAD)
SAD is computed using the following equation:



[image: image12.wmf]å

=

j

i

j

i

Diff

SAD

,

)

,

(



(6‑3)

6.1.3 Hadamard transformed SAD (SATD)
Since the transformed coefficients are coded, an improved estimation of the cost of each mode can be obtained by estimating DCT with the Hadamard transform. 

SATD is computed using:


[image: image13.wmf]2

/

)

)

,

(

(

,

å

=

j

i

j

i

DiffT

SATD



(6‑4)

The Hadamard transform flag can be turned on or off. SA(T)D refers to either SAD or SATD depending on the status of the Hadamard transform flag.

SAD is used when computing full-pel motion estimation while SA(T)D is used for sub-pel motion estimation.
6.1.4 RD cost functions

6.1.4.1 Lagrangian constant values
In the HM encoder, lambda values that are used for cost computation are defined as


[image: image14.wmf])

0

.

3

/

)

12

((

mod

2

*

*

-

=

QP

k

e

W

a

l



(6‑5)



[image: image15.wmf]e

motion

mod

l

l

=



















(6‑6)


[image: image16.wmf]î

í

ì

-

=

0

.

1

)

_

_

_

*

05

.

0

,

5

.

0

,

0

.

0

(

3

0

.

1

frames

B

of

number

Clip

a







 

(6‑7)

[image: image17.wmf]k

W

represents weighting factor dependent to encoding configuration and hierarchy level of current picture within a GOP, as specified in Table Table 6‑1. Note that the value of 
[image: image18.wmf]k

W

derived from Table Table 6‑1 is further modified by multiplying 0.95 when SATD based motion estimation is used.
Table 6‑1 – Derivation of 
[image: image19.wmf]k

W


	k
	Hierarchy level
	Use RDO-Q 
	Slice type
	Number of B-frames
	Referenced 
	
[image: image20.wmf]k

W



	0
	0
	1
	I
	-
	-
	0.57

	1
	0
	-
	I or GPB
	> 0
	-
	0.68

	2
	0
	-
	I or GPB
	0
	-
	0.85

	3
	> 0
	-
	GPB
	-
	-
	0.68

	4
	> 0
	-
	B
	-
	0
	0.68 * Clip3( 2.0, 4.0, (QP-12)/6.0 )

	5
	> 0
	-
	B
	-
	1
	0.68 * Clip3( 2.0, 4.0, (QP-12)/6.0 ) * 0.80


6.1.4.2 SAD based cost function for motion parameter decision
The cost for motion parameter decision Jmot,SAD is specified by the following formula.



Jmot,SAD = Bmotion +λmotion * SAD, 













(6‑8)

where Bmotion specifies bit cost to be considered for making decision, which depends on each decision case. λmotion and SAD are defined in the section 6.1.4.1 and 6.1.2, respectively.
6.1.4.3 SATD based cost function for motion parameter decision
The cost for motion parameter decision Jmot,SATD is specified by the following formula.



Jmot,SATD = Bmotion +λmotion * SATD, 













(6‑9)

where Bmotion specifies bit cost to be considered for making decision, which depends on each decision case. λmotion and SATD are defined in the section 6.1.4.1 and 6.1.3, respectively.
6.1.4.4 Cost function for mode decision
The cost for mode decision Jmode is specified by the following formula.



Jmode = Bmode +λmode * SSE, 














(6‑10)
where Bmode specifies bit cost to be considered for mode decision, which depends on each decision case. λmode and SSE are defined in the section 6.1.4.1 and 6.1.1, respectively.
6.2 Encoder configurations

6.2.1 Overview of Encoder Configurations

The HM encoder works with two sets of encoder configurations, designated High Efficiency (HE) and Low Complexity (LC), as defined in the JVC-VC test condition document [5]. 

6.2.2 High Efficiency (HE) coding

[Ed. Note: Need to describe set of coding tools used for HE condition]
6.2.3 Low Complexity (LC) coding

[Ed. Note: Need to describe set of coding tools used for LC condition]
6.3 Temporal Prediction Structure
The HM encoder works with three kinds of temporal prediction structures depending on experimental conditions, as defined in the JVC-VC test condition document [5]. Reference picture list management should depend on each temporal configuration.

6.3.1 Intra-only configuration

In the test case for Intra-only coding, each picture in a video sequence shall be encoded as IDR picture. No temporal reference pictures shall be used. It is not allowed to change QP within a picture.

6.3.2 Low-delay configuration

For low-delay coding condition, only the first picture in a video sequence shall be encoded as IDR picture. The other successive pictures shall be encoded as Generalized P and B-picture (GPB). The GPB shall be able to use only the reference pictures, each of whose POC is smaller than the current picture (i.e., all reference pictures in RefPicList0 and RefPicList1 shall be temporally previous in display order relative to the current picture). The contents of RefPicList0 and RefPicList1 shall be identical, and they shall be updated with sliding-window management process.

6.3.3 Random-access configuration

For the random-access test condition, hierarchical B structure shall be used for coding. Intra picture shall be inserted cyclically per about one second. The first intra picture of a video sequence shall be encoded as IDR picture and the other intra pictures shall be encoded as non-IDR intra pictures (“Open GOP”). The pictures located between successive intra pictures in display order shall be encoded as B-pictures. The GPB picture shall be used for the 1st temporal layer by referring to …..

6.4 Internal Bit Depth Increase (IBDI)

The IBDI (Internal Bit Depth Increase) tool shall be turned on for HE test, with simply 4bit extension for all color components. For LC test, IBDI shall be turned off and instead Transform Precision Expansion (TPE) feature shall be turned on with simply 4bit extensions.

6.5  Derivation process for Slice-level coding parameters

6.5.1 Adaptive Loop Filter (ALF) parameters

[Ed. Note: Need to describe 
· Encoding of ALF parameters that refers to CU split status

· For LC test, this process shall not be invoked and the syntax element for ALF does not exist in coded bitstream.]
In the HM encoder, the following process is performed to determine ALF parameters:

1. Luma pixel classification by sum of Laplacian according to section 6.5.1.1.

2. Derive filter coefficients using luma blocks in a slice and apply the filter according to section 6.5.1.2.

3. Encoding of filter coefficients according to section 6.5.1.3.

4. Decide an ALF control map including the depth of CU splitting for the designed filter according to section 6.5.1.4.

5. Update luma DPB by filtered or not-filtered blocks based on the ALF control map.

6. Derive filter coefficients for Chroma (Cb and/or Cr) using all chroma blocks in a slice according to section 6.5.1.2.

7. Decide which compoment(s) is (are) filtered according to section 6.5.1.5.

8. Update chroma DPB when the chroma component(s) is (are) filtered.

6.5.1.1 Luma pixel classification
Luma pixels are classified to sixteen classes according to the following sum of Laplacian:


[image: image21.wmf](

)

å

å

-

=

-

=

÷

÷

ø

ö

ç

ç

è

æ

+

+

+

-

-

+

+

-

+

+

+

+

+

+

-

+

-

+

-

+

+

=

K

K

k

L

L

l

l

j

k

i

R

l

j

k

i

R

l

j

k

i

R

l

j

k

i

R

l

j

k

i

R

l

j

k

i

R

j

i

|

)

1

,

(

)

1

,

(

)

,

(

2

|

|

)

,

1

(

)

,

1

(

)

,

(

2

|

,

var


(6‑11)
where R(i,j) corresponds to the reconstructed pixels.
This classification is used to design and apply filter to luma pixels.

6.5.1.2 Derivation of filter coefficients and applying the filter
Filter coefficients for each class are derived based on Wiener-based filter design.  A cross-correlation matrix 
[image: image22.wmf]0

,

j

C

 between the original pixels and the reconstructed pixels and an auto-correlation matrix 
[image: image23.wmf]j

i

A

,

 of the reconstructed pixels are created for each class for the rage of tap length of the filter.  All pixels in a slice or pixels that are marked as filtered (by alf_cu_flag) during the re-design process of filter coefficients are used to calculate the correlation matrix.

 Based on the correlation matrix, filter coefficients for each class are derived by solving the following simultaneous equations:



[image: image24.wmf]0

,

1

0

,

j

N

i

j

i

i

C

A

w

=

å

-

=

 for j = 0 .. N-1














(6‑12)
where N is the number of filter coefficients, 
[image: image25.wmf]i

w

 is the filter coefficients to be derived.

Estimated distortion is calculated for each class according to the following equation:



[image: image26.wmf]å

å

å

-

=

i

i

i

i

j

j

i

j

i

C

w

A

w

w

D

0

,

,

2















(6‑13)
When deriving luma filter coefficients, class merging is performed by deriving filter coefficients and estimating the distortion (for all pixels in a slice or pixels that are marked as filtered).

When the filter coefficients are designed, a 2-D FIR filtering is performed on all pixels in a slice.
6.5.1.3 Encoding of filter coefficients
Filter coefficients for luma are encoded directly or predictively.  Coefficients of the first filter are encoded directly by exponential golomb code.  When the number of filters is more than one, encoding of coefficients of the other filters is decided according to the number of bits to signal the coefficients directly or predictively by exponential golomb code.

Filter coefficients for chroma are encoded directly by exponential golomb code.
6.5.1.4 Derivation of ALF control map
An ALF control map that controls filter adaptation is decided.  The control map consists filter adaptation flags for multiple of blocks, where the blocks are synchronized with CU except that the depth of splitting from TB is restricted by alf_cu_control_max_depth.  

For depth from 0 to the maximum depth of TB splitting, the following two SSDs of each block are calculated:


SSDrecon = (org(i,j) – recon(i,j))2

SSDalf = (org(i,j) – filt(i,j))2
where org(i,j), recon(i,j) and filt(i,j) correspond to the original pixels, the reconsructed pixels and the filtered pixels.  If SSDalf is smaller than SSDrecon, the block is marked as filtered (i.e. alf_cu_flag for the block is set to 1).  Otherwise, the block is marked as not-filtered (i.e. alf_cu_flag for the block is set to 0).  The distortion for the depth is calculated for all blocks in the slice based on above block based SSD values (i.e., adding min(SSDrecon, SSDalf) over all blocks).  The best depth is decided according to the following RD decision:

RDCost = SSDalf_total + λRmap

where Rmap is the number of bits to signal alf_cu_flag for a slice.
The number of taps for filter is also decided by comparing the RDCost.
6.5.1.5 Decision of chroma component(s) to be filtered
It is decided which chroma component (U and/or V) may be filtered according to the distortion of the filtered pixels.  Filter adaptation to the chroma component(s) is (are) decided according to RD decision, where the rate is the number of bits to signal filter coefficients for chroma.

6.5.2 Rounding control

[Editor’s note: Text of C253 should be summarized here.]
6.6 Derivation process for CU-level and PU-level coding parameters

6.6.1 Intra prediction mode and parameters 

The unified intra coding tool provides up to 34 directional prediction modes for different PUs. With the PU size of 4x4, 8x8, 16x16, 32x32 and 64x64, there are 17, 34, 34, 34 and 5 prediction modes available respectively.
[Editor’s note: Text of C207 should be summarized here.]
6.6.2 Inter prediction mode and parameters

6.6.2.1 Derivation of motion parameters

In the HM encoder, an inter CU can be segmented into multiple inter PUs, each of which has more than one motion vectors (per each RefPicList) and corresponding reference picture indices. An inter CU can be encoded with one of the following coding modes (“PredMode”): MODE_SKIP, MODE_INTER. For MODE_SKIP case, any sub-partitioning is not allowed and motion vector and reference picture index are assigned to the CU itself, where the PU size is PART_2Nx2N. On the contrary, up to four types of further partitioning to PUs can be allowed for CUs coded with MODE_INTER. The PredMode and this CU partitioning (“PartMode”) are signaled by a CU level syntax element “part_type” as specified in Table 7-7 of the WD. For a MODE_INTER CU other than those having maximum depth, three PU partitioning patterns (PART_2Nx2N, PART_2NxN and PART_Nx2N) can be selected. PART_NxN can only be chosen at maximum CU depth level. For each PU, PU-based motion merging (merge mode) or normal inter prediction with actually estimated motion parameters can be used. This section describes how luma motion vector and corresponding reference picture index are obtained for each PU depending on each coding/prediction mode. It is noted that chroma motion vector shall be derived from luma motion vector of corresponding PU according to the normative process specified in section 8.4.2.1.8 of the WD.

6.6.2.1.1 Motion Vector Prediction

For each PU, the best motion vector predictor is computed with the process specified as follows. Firstly, a set of motion vector predictor candidates for RefPicListX shall be derived with normative process specified in section 8.4.2.1.6 of the WD, by referring to motion parameters of neighboring PUs. Then, the best one from the candidate set is determined by a criterion that selects a motion vector predictor candidate that minimizes the cost Jmot,SAD specified in the section 6.1.4.2, with setting the bits for an index specifying each candidate to Bmotion. The index corresponding to the selected best candidate is assigned to the mvp_idx_lX.

6.6.2.1.2 Skip mode

In the case of skip mode (i.e., PredMode == “MODE_SKIP”), motion vector predictor for the current CU(i.e., PART_2Nx2N PU) is directly used as current motion vector. The use of RefPicList (i.e., inter_pred_dir) is inferred from slice_type, which means List0 prediction is used for P-slices and BiPred prediction is used for B-slices. The motion vector(s) and corresponding mvp_idx_lX(s) to be used for MODE_SKIP are determined by checking all possible motion vector candidates derived by the normative process specified in section 8.4.2.1.6 of the WD, and selecting the best one that minimizes the cost Jmode specified in the section 6.1.4.3, with setting bits for skip_flag and mvp_idx_lX to Bmode. Since prediction residual is not transmitted for skip mode, SSE is obtained by inter prediction samples.

6.6.2.1.3 Merge mode

When a CU is coded with MODE_INTER, the use of merge mode is evaluated per each PU. If merge mode is used, all motion parameters (motion vector, reference picture index, prediction direction index) are inferred from PU to be merged. The decision on the use of merge mode starts with checking availabilities of all neighbouring PUs to form merge candidates according to the normative process specified in the section 8.4.2.1.3 of the WD. If there is no PU available as merge candidate, the HM encoder simply skips cost computation for merge mode and does not choose merge mode for the current PU. Otherwise(i.e., if there is at least one merge candidate), the ME cost Jmot,SATD specified in the section 6.1.4.3 is computed for all possible PUs as merge candidate and the best candidate is selected. SATD between source and prediction samples is used as distortion factor, and bits for merge_idx is set to Bmotion.This ME cost is compared with that of normal inter mode as specified in the next section, and the better mode and corresponding motion parameters are chosen per each PU.
6.6.2.1.4 Inter mode

When a CU is coded with MODE_INTER, the use of normal inter mode is evaluated per each PU except for the first PU in a CU predicted with PART_2NxN or PART_Nx2N. In the case of inter mode, motion vectors, corresponding reference picture indices and prediction direction index of each PU to be evaluated are derived by invoking motion estimation process specified in section 6.6.2.2. During the motion estimation process, the best motion parameter is obtained based on cost function Jmot,SATD, which is comparable with the cost of motion parameter derivation for merge mode.
6.6.2.2 Motion estimation 

6.6.2.2.1 Integer-sample search

[Ed. Note: Need to describe search point selection and cost function (by referring to section 6.1)]
6.6.2.2.2 Sub-sample search

[Ed. Note: Need to describe search point selection and cost function (by referring to section 6.1)

· WD shall be referred for the specification of MC interpolation filter.]
6.6.2.2.3 Bi-predictive search

[Ed. Note: Need to describe bi-predictive search]
6.6.3 Early SKIP mode decision in inter-coded slices

[Ed. Note: Need to describe FEN operation]
6.6.4 Intra/inter mode decision 

For inter coded CUs, the following mode decision process is conducted in the HM encoder.

1. MODE_SKIP is evaluated and its coding cost Jmode is set to minimum CU coding cost J.
2. CU-level merge mode is evaluated and its coding cost Jmode is set to J if Jmode < J. 

3. Invoke FEN process pecified in the section 6.6.3. If the FEN process suggests further evaluation of inter prediction modes, proceed to 4. Otherwise, proceed to 7.

4. MODE_INTER with PART_2Nx2N is evaluated and its coding cost Jmode is set to J if Jmode < J.

5. Check if the current CU depth is maximum. If true, proceed to 6. Otherwise, proceed to 7.

6. MODE_INTER with PART_NxN is evaluated and its coding cost Jmode is set to J if Jmode < J.

7. MODE_INTER with PART_Nx2N is evaluated and its coding cost Jmode is set to J if Jmode < J. In this case, 1st PU (i.e., puPartIdx == 0) shall always be predicted with merge mode. Thus, this mode is not selected when 1st PU has no merge candidates.

8. MODE_INTER with PART_2NxN is evaluated and its coding cost Jmode is set to J if Jmode < J. In this case, 1st PU (i.e., puPartIdx == 0) shall always be predicted with merge mode. Thus, this mode is not selected when 1st PU has no merge candidates.

9. If the FEN process suggests further evaluation of intra prediction modes, proceed to 10. Otherwise, proceed to 7.

10. MODE_INTRA with PART_2Nx2N is evaluated by invoking the process specified in 6.6.1, only when at least one or more non-zero transform coefficients can be found by using the best interim coding mode. The resulting coding cost Jmode is set to J if Jmode < J.
11. Check if the current CU depth is maximum, If true, proceed to 12. Otherwise, proceed to 13.
12. MODE_INTRA with PART_NxN is evaluated by invoking the process specified in 6.6.1, only when the current CU size is larger than minimum TU size. The resulting coding cost Jmode is set to J if Jmode < J.

13. Update bit cost Bmode by adding bits for CU split flag and re-compute minimum coding cost J.
For the computation of Jmode, residual signal is obtained by subtracting intra or inter prediction samples from source samples and is coded with transform and quantization. Bits for side information (skip_flag, merge_flag, merge_idx, pred_type, inter_pred_dir, reference picture indices, motion vector(s), mvp_idx, intra prediction mode signaling) and residual coded data are considered as Bmode. SSE is obtained by using local decoded samples, except for MODE_SKIP case where prediction sample is used as local decoded samples.

This CU level mode decision is recursively performed for each CU depth and final distribution of CU coding modes is determined at treeblock level.

[Editor’s note: Any other non-normative encoding tricks in the HM software?]
6.7 Derivation process for TU-level coding parameters

6.7.1 Multiple block size 2-D transforms 

[Ed. Note: Need to describe 
· forward transform

· forward quantization process]
6.7.2 Residual Quad-tree partitioning 

[Editor’s note: Non-normative description of C311 & C319 should be summarized here.] 

6.7.3 Rate-Distortion Optimized Quantization 

[Editor’s note: This section described RDOQ applied to PIPE. Additional description for RDOQ applied to VLC may be considered. Similarly this section does not describe RDOQ applied to chroma.] 
[Editor’s note: PIPE related description needs to be removed. Does the current description fit to software implementation for other aspects?]
The basic idea behind trellis-based rate distortion optimized quantization (RDOQ) is to perform a soft decision quantization for a given coefficient given both its impact on the bitrate and quality. In the HM, RDOQ is applied to PIPE in a similar manner as it was applied to CABAC in H264/AVC. 

To estimate the number of bits required to code a coefficients, we use the tabularized values of entropy of the probabilities corresponding to states in PIPE coding engine. But, the PIPE algorithm uses the context modeling (PIPE context model is currently the same as in CABAC). That is, the coding of current coefficient in a block is related to the state of previous coded coefficients.

The RDO-Q is closely related to the context modeling for residual coding. Residual coding by PIPE includes two parts, i.e., coding a so-called significance map and coding non-zero coefficients. Given a zigzag ordered sequence of transform coefficients, its significance map is a binary sequence which indicates the occurrence and location of the non-zero coefficients. The context modeling for coding the significance map is associated with the zig-zag order, and is easy to be included in RDO-Q. The context modeling for coding non-zero coefficients, however, is complicated. For a given sequence, there are in total 10 contexts for coding non-zero coefficients, with 5 of them for coding the first bit of a binary representation and the other 5 dedicated to coding the second to 14th bits. Briefly, contexts are selected as follows,

1. Scan the sequence in the inverse order to initiate two parameters as NumLg1 and NumEq1. NumLg1 is the number of coefficients that are greater than 1 while NumEq1 accords to those equal to one.

2. The context for the first bit is determined by

[image: image27.png]0, MNumlgl >0
CTH o =
70 i 4,1+ NumBql), otherwise



                                               (12)

3. The context for the 2-14th bits is selected by

[image: image28.png]CTX oy =

min( 4, MumLgl)



                                                                            (13)

There is also a bypass mode with a fixed distribution. Other bits in the binary representation use the bypass mode.

[image: image29.png]Gs Cs G G2 G G &G G G &G &G G G G G G

& \' NEANENNCANAR





Figure 6‑1 – Graph structure for RDO quantization based on CABAC in H.264/AVC
In order to solve the minimization problem, a graph-based algorithm is used to address the computation of the rate function R(.) of PIPE. As shown in Figure 6‑1, the graph is constructed based on coding features of PIPE. Basically, states are defined based on the context model selection. Thus, states are named by values of NumEq1and NumLg1, as of NumEq1_NumLg1 , e.g., 2_0 accords to NumEq1 = 2 and NumLg1 = 0. When NumLg1 > 0, the context is irrelevant to NumEq1. Thus, there are three states as X_1, X_2, and X_3. The context is fixed for allNumLg1 ≥4. Accordingly, one state X_X is defined. For a 4×4 luma block, there are 16 columns, each of them corresponding to one coefficient. In each column there are up to 8 states. Transitions are established between states according to the increase of NumEq1 and NumLg1 , e.g., the state 1_0 is connected to 1_0, 2_0 and X_1according to a quantization output of 0, 1, or greater than 1, respectively. In case that the quantization output is greater than 1, parallel transitions are established so that each accords to a unique value. In practice, because the distortion is a quadratic function with respect to the quantization output, it is sufficient to investigate only a few parallel transitions. Thus the complexity is greatly reduced without sacrificing the optimality. Finally, a graph structure as shown in Figure 6‑1 is obtained.

The optimal RDO quantization design now becomes a problem to search for a path in the graph for the minimal RD cost. It is not hard to see that the above graph design allows an element-wise additive computation of the RD cost. The Viterbi algorithm is then used to do the search, which leads to the solution of the minimization problem.

To avoid searching within a full graph, a simplified RD optimized quantization (RDO-Q) scheme is applied:

In RDO-Q, assuming the transform coefficients before quantization are
[image: image30.wmf]i

c

, (i=0,…,M-1),  then the quantized coefficients/levels 
[image: image31.wmf]i

l

 (i=0,…,M-1) are calculated as follows:
For a given coefficient position k, k=M-1,…,0, assume that coefficient
[image: image32.wmf]k

c

 is the last significant coefficient in the block: 

For each coefficient
[image: image33.wmf]i

c

, i=k-1,…,0, calculate its Lagrangian cost when the quantized value 
[image: image34.wmf]i

l

 is equal to 0, 
[image: image35.wmf]floor

l

 and 
[image: image36.wmf]ceil

l

. The Lagrangian cost 
[image: image37.wmf](

)

i

i

k

l

J

,

,

l

 when coefficient 
[image: image38.wmf]i

c

 is quantized to 
[image: image39.wmf]i

l

 is calculated as:


[image: image40.wmf](

)

(

)

(

)

i

i

i

i

i

k

l

bits

l

c

err

l

J

×

+

=

l

l

,

,

,


where 
[image: image41.wmf](

)

i

i

l

c

err

,

 is the quantization error if the coefficient 
[image: image42.wmf]i

c

 is quantized to value
[image: image43.wmf]i

l

 and 
[image: image44.wmf](

)

i

l

bits

 is the number of bits needed to code 
[image: image45.wmf]i

l

. The value of 
[image: image46.wmf]floor

l

 and 
[image: image47.wmf]ceil

l

are defined as (4x4 block as an example): 


[image: image48.wmf](

)

)

2

/

,

6

%

|

(|

6

/

15

QP

i

floor

i

QP

Q

c

floor

l

+

×

=



[image: image49.wmf].

1

+

=

floor

ceil

l

l


Let the final quantized level 
[image: image50.wmf](

)

i

i

k

l

opt

i

l

J

l

i

,

min

arg

,

,

l

=

 and update Lagrangian cost 
[image: image51.wmf](

)

l

k

J

 using 
[image: image52.wmf](

)

opt

i

i

k

l

J

,

,

,

l

. 
The final quantized vector of quantized coefficients 
[image: image53.wmf])

(

min

arg

l

k

k

opt

J

=

l

. 

[image: image54.png]l floor

ceil





Figure 6‑2 – Possible quantized values in RDO-Q
To speed up the algorithm the following simplifications are made:

For each coefficient 
[image: image55.wmf]ij

c

 at most 3 possible values of level 
[image: image56.wmf]ij

l

 are tested: 0, 
[image: image57.wmf]floor

ij

l

 and 
[image: image58.wmf]ceil

ij

l

. For 4x4 block values 
[image: image59.wmf]floor

ij

l

and 
[image: image60.wmf]ceil

ij

l

 are calculated as follows:


[image: image61.wmf](

)

,

2

/

,

,

6

%

|

|

6

/

15

QP

ij

float

ij

j

i

QP

c

l

+

×

=

Q



[image: image62.wmf](

)

,

float

ij

floor

ij

l

floor

l

=



[image: image63.wmf].

1

+

=

floor

ij

ceil

ij

l

l


To reduce complexity if coefficient 
[image: image64.wmf]ij

c

 is closer (as measured by for example absolute distance between 
[image: image65.wmf]float

ij

l

 and 
[image: image66.wmf]floor

ij

l

or 
[image: image67.wmf]ceil

ij

l

) to 
[image: image68.wmf]floor

ij

l

 than to 
[image: image69.wmf]ceil

ij

l

 only value 
[image: image70.wmf]floor

ij

l

 is considered.  If 
[image: image71.wmf]ij

c

 is closer to level 0 than 1 it is assigned level 0 without any further analysis. 

Let us assume that the coefficients in a given block are ordered using zigzag scanning, resulting in a one-dimensional ordered coefficient vector. We will denote the ordered coefficients as
[image: image72.wmf]i

c

, where i=0,...,M .

The quantized coefficients 
[image: image73.wmf]i

l

are obtained in two passes. In the first pass it is determined which coefficient should be the last non-zero coefficient; this coefficient will be denoted as 
[image: image74.wmf]k

c

. In the second pass we find final values of quantized coefficients assuming that coefficient
[image: image75.wmf]k

c

 is the last nonzero coefficient in the block.
Only coefficients 
[image: image76.wmf]0

i

c

,…,
[image: image77.wmf]1

i

c

 are considered in the first pass, where

[image: image78.wmf]1

i

 is the largest value of i for which 
[image: image79.wmf]5

.

0

>

float

i

l

.


[image: image80.wmf]0

i

 is the largest value of i for which 
[image: image81.wmf]1

>

float

i

l

. If such index does not exist 
[image: image82.wmf].

0

0

=

i

 
To reduce complexity value of 
[image: image83.wmf]sum

J

 is pre-calculated as sum of quantization errors 
[image: image84.wmf](

)

i

i

l

c

err

,

 when coefficients
[image: image85.wmf]i

c

,
[image: image86.wmf]1

0

,...,

i

i

i

=

, are quantized to 
[image: image87.wmf]0

=

i

l

: 

[image: image88.wmf](

)

å

=

=

1

0

0

,

i

i

i

i

sum

c

err

J

.

The first pass consists of following steps:

If for coefficient 
[image: image89.wmf]0

i

c

, 
[image: image90.wmf]5

.

1

0

>

float

i

l

: 
Update value of 
[image: image91.wmf]sum

J

:


[image: image92.wmf](

)

0

,

0

i

sum

sum

c

err

J

J

-

=

.

The approximation of RD Cost 
[image: image93.wmf](

)

l

0

i

J

 of the block when 
[image: image94.wmf]0

i

c

is the last nonzero coefficient is calculated as: 


[image: image95.wmf](

)

(

)

0

1

0

=

=

-

×

+

=

last

last

sum

i

bits

bits

J

J

l

l

.


[image: image96.wmf]1

=

last

bits

 is the approximate number of bits required to indicate that 
[image: image97.wmf]0

i

c

 is the last non-zero coefficient (i.e., number of bits to encode last_significant_coeff_flag equal to 1). 
[image: image98.wmf]0

=

last

bits

 is approximate the number of bits required to indicate that 
[image: image99.wmf]0

i

c

 is not the last non-zero coefficient (i.e., number of bits to encode last_significant_coeff_flag equal to 0). 

The starting index 
[image: image100.wmf]0

i

 is updated to 
[image: image101.wmf]1

0

0

+

=

i

i

.

For coefficients 
[image: image102.wmf]i

c

where 
[image: image103.wmf]1

0

,...,

i

i

i

=

:

Update value of 
[image: image104.wmf]sum

J

:


[image: image105.wmf](

)

0

,

i

sum

sum

c

err

J

J

-

=

.

Find RD Cost 
[image: image106.wmf](

)

0

,

,

i

c

J

l

 when 
[image: image107.wmf]i

c

 is quantized to 0. 

If coefficients 
[image: image108.wmf]i

c

is closer to 1 than to 0 calculate two additional values of RD Cost: 


[image: image109.wmf](

)

1

,

,

0

i

last

c

J

l

=

 - 
[image: image110.wmf]i

c

 is quantized to 1 and is not the last nonzero coefficient, 


[image: image111.wmf](

)

1

,

,

1

i

last

c

J

l

=

 - 
[image: image112.wmf]i

c

is quantized to 1 and is the last nonzero coefficient. 

The approximation of RD Cost 
[image: image113.wmf](

)

l

i

J

 when 
[image: image114.wmf]i

c

 is the last nonzero coefficient is:


[image: image115.wmf](

)

(

)

1

,

,

1

i

last

sum

i

c

J

J

J

l

l

=

+

=


When calculating bits needed to code value of equal to 1 we fix context for greater_than_1 symbol to be one of the 5 possible values for all coefficients. 
Update value of 
[image: image116.wmf]sum

J

:


[image: image117.wmf](

)

(

)

(

)

1

,

,

,

0

,

,

min

0

i

last

i

sum

sum

c

J

c

J

J

J

l

l

=

+

=


The coefficient 
[image: image118.wmf]k

c

 with the smallest corresponding value of 
[image: image119.wmf](

)

l

k

J

 is assumed to be the last nonzero coefficient in the block. 

In the second pass we find final values of quantized coefficients assuming that coefficient ck selected in the first pass is the last nonzero coefficient in the block. For each coefficient ci, i=k,…,0  we find value of level li for which RD Cost J(λ, ci, li) is minimized. As described previously at most 3 different values of level li are considered: 0, 
[image: image120.wmf]floor

i

l

 and 
[image: image121.wmf]ceil

i

l

. To calculate context when encoding value of level li , already selected values for levels lj, j=k,…,i-1 are used.
7 References

[1] JCT-VC, “Draft Test Model under Consideration”, JCTVC-B205, JCT-VC Meeting, Geneva, July 2010. 

[2] JCT-VC, “Encoder-side description of Test Model under Consideration”, JCTVC-B204, JCT-VC Meeting, Geneva, July 2010 

[3] JCT-VC, “High Efficiency Video Coding (HEVC) Test Model 1 (HM 1) Encoder Description”, JCTVC-C402, October 2010.
[4] JCT-VC, “High Efficiency Video Coding (HEVC) text specification Working Draft 1”, JCTVC-C403, October 2010.
[5] JCT-VC, “Common test conditions and software reference configurations”, JCTVC-D600, January 2011.
[6] JCT-VC, “High Efficiency Video Coding (HEVC) text specification Working Draft 2”, JCTVC-D503, January 2011.

[7] ITU-T Recommendation H.264 / ISO/IEC 14496-10: "Information technology - Coding of audio-visual objects- Part 10: Advanced Video Coding".
, for non-referenced pictures





, for referenced pictures








_1269866414.unknown

_1353835799.unknown

_1360762884.unknown

_1360765767.unknown

_1360765781.unknown

_1360765809.unknown

_1360765743.unknown

_1360763383.unknown

_1360761565.unknown

_1360761701.unknown

_1360761329.unknown

_1360761454.unknown

_1360761464.unknown

_1360758423.unknown

_1269866558.unknown

_1269866699.unknown

_1269866709.unknown

_1269866743.unknown

_1269866876.unknown

_1269866913.unknown

_1269866874.unknown

_1269866875.unknown

_1269866873.unknown

_1269866872.unknown

_1269866723.unknown

_1269866735.unknown

_1269866740.unknown

_1269866712.unknown

_1269866721.unknown

_1269866701.unknown

_1269866702.unknown

_1269866700.unknown

_1269866606.unknown

_1269866697.unknown

_1269866698.unknown

_1269866695.unknown

_1269866696.unknown

_1269866607.unknown

_1269866691.unknown

_1269866604.unknown

_1269866605.unknown

_1269866602.unknown

_1269866603.unknown

_1269866559.unknown

_1269866601.unknown

_1269866437.unknown

_1269866454.unknown

_1269866557.unknown

_1269866556.unknown

_1269866447.unknown

_1269866425.unknown

_1269866431.unknown

_1269866415.unknown

_1261301062.unknown

_1269865977.unknown

_1269866168.unknown

_1269866412.unknown

_1269866413.unknown

_1269866410.unknown

_1269866411.unknown

_1269866169.unknown

_1269865979.unknown

_1269866166.unknown

_1269866167.unknown

_1269865980.unknown

_1269865978.unknown

_1269865973.unknown

_1269865975.unknown

_1269865976.unknown

_1269865974.unknown

_1269262852.unknown

_1269428602.unknown

_1269428783.unknown

_1269865972.unknown

_1269262896.unknown

_1269258612.unknown

_1269258765.unknown

_1269262841.unknown

_1269258756.unknown

_1269258605.unknown

_1261295350.unknown

_1261300660.unknown

_1261300776.unknown

_1261300777.unknown

_1261300767.unknown

_1261297528.unknown

_1261297529.unknown

_1261297673.unknown

_1261295351.unknown

_1261297432.unknown

_1261292732.unknown

_1261292749.unknown

_1261292781.unknown

_1261292764.unknown

_1261292745.unknown

_998298813.unknown

_1261292725.unknown

_1261123882.unknown

_1261127776.unknown

_1261123759.unknown

_998298812.unknown

