	[image: image6.emf]15 14 11 10

13 12 9 8

7 6 3 2

5 4 1 0

[image: image7.wmf]Prediction

Reconstruction

Prediction

Reconstruction

[image: image8.wmf]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
2nd Meeting: Geneva, CH, 21-28 July, 2010
	Document: JCTVC-B112

	Title:
	Parallel Prediction Unit for Parallel Intra Coding

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Jie Zhao and Andrew Segall
5750 NW Pacific Rim Blvd
Camas, WA 98607
	Tel:
Email:
	Tel: +1-360-817-8487
asegall@sharplabs.com

	Source:
	SHARP

Abstract
We propose the concept of a parallel prediction unit (PPU) within the Test Model under Consideration (TMuC) design. The goal of the parallel prediction unit is to define a group of pixels that are intra-coded, and where the intra-coding may be done in a parallel fashion. This extends our previous work on parallel intra-prediction for a H.264/AVC-like macro-block to the TMuC design. Parallelization is achieved by partitioning the intra-coded blocks into two sets and predicting the first set completely from the pixels bounding the PPU. The second set of blocks is then predicted from the reconstructed, first set of blocks. To be clear, blocks within each set are predicted in parallel. We report results using TMuC 0.3 and assert that the parallelism results in negligible impact on coding efficiency. For example, the coding efficiency impact for 1080p sequences (hierarchical B) is 0.012dB or less than 0.5%
1 Introduction
In the previously state-of-the-art H.264/MPEG-AVC, intra-prediction is a significant bottleneck for parallel processing. There, intra prediction is realized by partitioning a macro-block (MB) into one or more blocks. Each block is then predicted spatially and subsequently refined, and the prediction is performed sequentially using neighboring reconstructed blocks. These serial dependencies result in significant complexity for both the encoder and decoder processes.

In our previous contribution (JCTVC-105), we introduced the concept of parallel intra-prediction. The approach is designed to reduce the serial dependencies within the intra-prediction process, and it begins by modifying the partitioning strategy for blocks within a macro-block. Here, when using an intra-4x4 prediction strategy, we chose to partition the sixteen 4x4 blocks in Fig. 1(b) into two sets of blocks. Each of these partitions contained eight blocks, and we used a checker-board arrangement such as shown in Fig. 1. In the Figure, blocks in the first set are shown with shading, while blocks in the second set are shown in white.

[image: image1]With the partitioning in Fig. 1, we then defined that all blocks in a single partition be processed in parallel. This meant that the eight blocks in the first partition were predicted and refined without reference to each other (or blocks in the second partition). Blocks in the second partition were also predicted and refined without reference to other blocks in the second partition. In all cases, a block could use the pixel values from neighboring macro-blocks for intra-prediction.

By employing the partitioning strategy, we achieved a direct increase in parallelism. This parallelism is shown graphically in Fig. 2. As can be seen in the Fig., "normal" intra-4x4 prediction requires 16 sequential steps while our partitioning approach results in only two sequential steps. This is an increase in parallelism by a factor of 8x. In general, the increase in parallelism is N/2, where N is the number of blocks within the macro-block.

 SHAPE * MERGEFORMAT

To predict the first set of blocks, we used pixel values from the upper and left macro-block boundaries. For example, to predict block '13' in Fig. 1, we used reconstructed pixel values from the block above block '5' and the block to the left of block '8'. With this definition, it was sufficient to conceptualize the prediction process as the same as that in ITU-T H.264/MPEG-4 AVC.

Following the prediction of first set of blocks, we then added any transmitted residual to the predicted value to generate a reconstructed first set of blocks. After reconstructing the first set of blocks, we proceed to predict the second set of blocks. As mentioned before, these blocks are predicted in parallel and use the reconstructed pixel values from blocks in the first partition.

In the system, the second partition used any neighboring pixel values from the reconstructed, first partition. For example, consider the block labeled '3' in Fig. 1. This block has top, bottom, left and right neighbors labeled '1', '2', '6' and '9', respectively. These neighboring pixels are shown in Fig. 3, where p(y,x) denotes the pixel at row y and column x. As can be seen from the Figure, the current block has both spatially causal and spatially non-causal pixel neighbors.

[image: image3.png]X|a|B|cCc|D

I |PO,0|FO,D|PO,Z) (FO,3)

T |PCLOFCLDP(LZ | F(L3)

K |FQO|FED|PED (F23H

FGa.D

Fig. 3. - Block with four surrounding neighbor blocks. Note the pixels AA-DD, II-LL, X2 and X3 are spatially non-causal from the block pixels P().

With the additional right and bottom neighbors, we defined prediction directions that employed combinations of the right and bottom neighbors, as well as the neighbors to the left and above. As one step, we choose to support the prediction modes from ITU-T H.264/MPEG-4 AVC – but with modifications for the additional pixels. Specifically, we used the bottom neighbor (when available) for the "Horizontal Up" mode, and the right neighbors (when available) for the "Diagonal Down Left" and "Vertical Left" modes. These modes were previously shown in Fig. 1(c).

In addition to supporting traditional intra-prediction modes, we also defined additional prediction directions for further coding efficiency improvement. Specifically, we constructed the modes shown in Fig. 4. These are simply rotated versions of the modes shown in Fig. 1(c), and we supported using them explicitly and also in a weighted combination with the previously introduced modes. For example, the vertical mode (Mode 0) can be combined with the rotated vertical mode (Mode 9). For the weighted combination, we used weights that were proportional to the distance between each predicted pixel and the top/bottom and left/right neighbor. This was expressed as

[image: image4.wmf])

,

(

2

)

1

(

)

,

(

1

*

)

,

(

x

y

p

w

x

y

p

w

x

y

p

-

+

=

,

where w denotes the weight and may be a fractional number, and p1(y,x) and p2(y,x) denote the predicted values using the first mode and a second mode, respectively.

	 SHAPE * MERGEFORMAT

	Mode
Name of Mode
9
Vertical 2
10
Horizontal 2
11
DC 2
12
Diagonal Down Left 2
13
Diagonal Down Right 2
14
Vertical Right 2
15
Horizontal Down 2
16
Vertical Left 2
17
Horizontal Up 2

Fig. 4 - Additional intra prediction modes introduced in the proposed technique.

2 Extension to TMuC Design
In this document, we extend the previous system for parallel intra prediction to the coding unit design the Test Model under Consideration. We begin by defining a concept called the “Parallel Prediction Unit”, or PPU. The PPU defines the size of a block that may be coded using the parallel intra prediction technology. The motivation for the PPU is straightforward – the serial bottleneck in intra-prediction is not determined by the number of blocks within an LCU, but rather by the size of the blocks that are being intra-coded.

To better understand the PPU concept, let us provide a couple of examples. First, consider an LCU of 64x64 that is coded with four, intra-coded coding units. If we signal that the PPU size is 16x16, then these four coding units are predicted and reconstructed sequentially. This is because each coding unit is of size 32x32, which is larger than a PPU. As a second example though, consider an LCU of 64x64 that contains at least one 16x16 coding unit. If this 16x16 coding unit is further partitioned (using additional coding units or the intra_split_flag), then we use the parallel intra technology to parallelize the reconstruction of these partitions. Again, this is simply because we defined that the PPU size is 16x16 and the prediction units are now smaller than this 16x16 size.

With the introduction of the PPU, we now consider the extension of the parallel intra-prediction technology to the additional intra-prediction methods considered in the TMuC design. Fortunately, the extension is straightforward. For first-pass blocks, we use the additional methods directly and simply extrapolate the boundary pixels from the reconstructed pixels at the PPU border. For second-pass blocks, we use the additional methods as specified. Additionally, when lower and right neighbors are present, we generate a second prediction using the non-causal neighbors. This prediction is achieved conceptually by (i) rotating the current block and pixel values so that the lower and right boundaries become the upper and left boundaries, respectively, (ii) performing intra-prediction, and (iii) rotating the result back to the original pixel locations. Of course, this may be implemented directly without the rotation. This second prediction may be used explicitly, or it may be combined with the first prediction using the weighting function as previously described.
3 Results

We integrated the parallel intra-prediction technology with the PPU concept into the TMuC_0.3 software and tested with the recommended configuration (provided by the Software AhG) and a PPU of 16x16. Results are shown in the Table below. As can be seen from the Table, the impact on coding efficiency is less than 1% for all resolutions and less than 0.5% for higher resolutions that most need the parallel technology.

	Parallel Intra vs. No parallel Intra

TMuc v0.3
	Hierarchal B
	

	Sequences

	BD PSNR (dB)
	BD rate (%)
	Average
	

	HD

(1920x1080)
	S03-Kimono
	-0.01
	0.29
	-0.012
	0.486

	
	S04-ParkScene
	-0.02
	0.49
	
	

	
	S05-Cactus
	-0.01
	0.44
	
	

	
	S06-BasketballDrive
	-0.02
	0.85
	
	

	
	S07-BQTerrace
	0
	0.36
	
	

	WVGA

 (832x480)
	S08_BasketballDrill
	-0.05
	1.21
	-0.0325
	0.875

	
	S09_BQMall
	-0.03
	0.84
	
	

	
	S10_PartyScene
	-0.03
	0.86
	
	

	
	S11_RaceHorces
	-0.02
	0.59
	
	

	WQVGA

(416x240)

	S12_BasketballPass
	-0.04
	0.83
	-0.025
	0.5375

	
	S13-BQSquare
	-0.01
	0.26
	
	

	
	S14-BlowingBubbles
	-0.02
	0.54
	
	

	
	S15-RaceHorses_wqvga
	-0.03
	0.52
	
	

	
	
	
	
	
	

	AVERAGE
	
	-0.022
	0.622
	
	

4 Syntax
We propose to support the parallel prediction unit with the following syntax and semantics
4.1.1 Sequence parameter set RBSP syntax

	seq_parameter_set_rbsp() {
	C
	Descriptor

	
profile_idc
	0
	u(8)

	
reserved_zero_8bits /* equal to 0 */
	0
	u(8)

	
level_idc
	0
	u(8)

	
seq_parameter_set_id
	0
	ue(v)

	
bit_depth_luma_minus8
	0
	ue(v)

	
bit_depth_chroma_minus8
	0
	ue(v)

	
increased_bit_depth_luma
	0
	ue(v)

	
increased_bit_depth_chroma
	0
	ue(v)

	
log2_max_frame_num_minus4
	0
	ue(v)

	
log2_max_pic_order_cnt_lsb_minus4
	0
	ue(v)

	
max_num_ref_frames
	0
	ue(v)

	
gaps_in_frame_num_value_allowed_flag
	0
	u(1)

	
log2_min_coding_unit_size_minus3
	0
	ue(v)

	
max_coding_unit_hierarchy_depth
	0
	ue(v)

	
log2_min_transform_unit_size_minus2
	0
	ue(v)

	
max_transform_unit_hierarchy_depth
	0
	ue(v)

	
log2_parallel_unit_size
	0
	ue(v)

	
pic_width_in_luma_samples
	0
	u(16)

	
pic_height_in_luma_samples
	0
	u(16)

	
rbsp_trailing_bits()
	0
	

	}
	
	

4.1.2 Prediction unit syntax

	prediction_unit(x0, y0, currPredUnitSize) {
	C
	Descriptor

	
if(slice_type != I)
	
	

	

skip_flag
	
	

	
if(skip_flag) {
	
	

	

if(mv_competition_flag) {
	
	

	

if(inter_pred_idc != Pred_L1 && NumMVPCand(L0) > 1)
	
	

	

mvp_idx_l0
	2
	ue(v) | ae(v)

	

if(inter_pred_idc != Pred_L0 && NumMVPCand(L1) > 1)
	
	

	

mvp_idx_l1
	2
	ue(v) | ae(v)

	

}
	
	

	
}
	
	

	
else {
	
	

	

if(!entropy_coding_mode_flag)
	
	

	

mode_table_idx
	
	vlc(n,v)

	

else {
	
	

	

if(slice_type != I)
	
	

	

pred_mode
	2
	u(1) | ae(v)

	

 }
	
	

	

if(PredMode == MODE_INTRA) {
	
	

	

planar_flag
	2
	u(1) | ae(v)

	

if(planar_flag) {
	
	

	

planar_delta_y = getPlanarDelta()
	
	

	

planar_delta_uv_present_flag
	2
	u(1) | ae(v)

	

if(planar_delta_uv_present_flag) {
	
	

	

planar_delta_u = getPlanarDelta()
	
	

	

planar_delta_v = getPlanarDelta()
	
	

	

}
	
	

	

} else {
	
	

	

if(entropy_coding_mode_flag)
	
	

	

intra_split_flag
	2
	ae(v)

	

combined_intra_pred_flag
	2
	u(1) | ae(v)

	

for(i = 0; i < (intra_split_flag ? 4 : 1); i++) {
	
	

	

prev_intra_luma_pred_ flag
	2
	u(1) | ae(v)

	

if(!prev_intra_pred_luma_flag)
	
	

	

rem_intra_luma_pred_mode
	2
	ue(v) | ae(v)

	

}
	
	

	

}
	
	

	

if((currPredUnitSize < ParallelPredictionUnitSize

&& isFirstIntraInParallelPredUnit()) || (currPredUnitSize ==

ParallelPredictionUnitSize && intra_split_flag) {
	
	

	

weighted_intra_block_flag
	
	

	

}
	
	

	

if(chroma_format_idc != 0)
	
	

	

intra_chroma_pred_mode
	2
	ue(v) | ae(v)

	

}
	
	

	

}
	
	

	

else if(PredMode == MODE_INTER) {
	
	

	

if(entropy_coding_mode_flag)
	
	

	

inter_partitioning_idc
	2
	ue(v) | ae(v)

	

for(i= 0; i < NumPuParts(inter_partitioning_idc); i++) {
	
	

	

if(NumMergeCandidates > 0) {
	
	

	

merge_flag[i]
	2
	ue(1) | ae(v)

	

if(merge_flag[i] && NumMergeCandidates > 1)
	
	

	

merge_left_flag[i]
	2
	ue(1) | ae(v)

	

}
	
	

	

if(!merge_flag[i]) {
	
	

	

if(slice_type == B)
	
	

	

inter_pred_idc[i]
	2
	ue(v) | ae(v)

	

if(inter_pred_idc[i] != Pred_L1) {
	
	

	

if(num_ref_idx_l0_active_minus1 > 0)
	
	

	

ref_idx_l0[i]
	2
	ue(v) | ae(v)

	

mvd_l0[i][0]
	2
	se(v) | ae(v)

	

mvd_l0[i][1]
	2
	se(v) | ae(v)

	

if(mv_competition_flag &&

NumMVPCand(L0, i) > 1)
	
	

	

mvp_idx_l0[i]
	2
	ue(v) | ae(v)

	

}
	
	

	

if(inter_pred_idc[i] != Pred_L0) {
	
	

	

if(num_ref_idx_l1_active_minus1 > 0)
	
	

	

ref_idx_l1[i]
	2
	ue(v) | ae(v)

	

mvd_l1[i][0]
	2
	se(v) | ae(v)

	

mvd_l1[i][1]
	2
	se(v) | ae(v)

	

if(mv_competition_flag &&

NumMVPCand(L1, i) > 1)
	
	

	

mvp_idx_l1[i]
	2
	ue(v) | ae(v)

	

}
	
	

	

}
	
	

	

}
	
	

	

}
	
	

	

else if(PredMode == MODE_DIRECT) {
	
	

	

if(slice_type == B)
	
	

	

inter_pred_idc
	2
	ue(v) | ae(v)

	

if(mv_competition_flag) {
	
	

	

if(inter_pred_idc != Pred_L1 &&

NumMVPCand(L0) > 1)
	
	

	

mvp_idx_l0
	2
	ue(v) | ae(v)

	

if(inter_pred_idc != Pred_L0 &&

NumMVPCand(L1) > 1)
	
	

	

mvp_idx_l1
	2
	ue(v) | ae(v)

	

}
	
	

	

}
	
	

	
}
	
	

SEMANTICS
log2_parallel_unit_size specifies the size of the parallel prediction unit.

The variable ParallelPredictionUnitSize is derived as

ParallelPredictionUnitSize = MaxTransformUnitSize >> log2_parallel_unit_size

weighted_intra_block_flag equal 1 defines that weighted prediction shall be used for second pass units within a parallel prediction unit. weighted_intra_block_flag equal 0 defines that weighted prediction shall not be used for second pass blocks within a parallel prediction unit.
5 Conclusion
We propose a parallel prediction unit, or PPU, for the TMuC design. The parallel prediction unit supports the parallelization of intra-coded blocks within the PPU in a two step, parallel process. Initial results show that the increased parallelization comes with small losses in coding efficiency. For example, less than 0.5% for HD sequences and a PPU size of 16x16. We assert that this loss is negligible and well justified by the parallelization capability. Given this level of performance and the significance of parallelization for future standards, we request the JCT-VC conduct a CE to further evaluate the technology.
6 Patent rights declaration(s)
SHARP Labs of America may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
7 Reference

[1] JCT-VC, “Draft Test Model under Consideration”, JCTVC-A205, 1. JCT-VC Meeting, Dresden, April 2010.
[2] G. Bjøntegaard, “Calculation of average PSNR differences between RD-Curves,” ITU-T Q.6/SG16 Doc., VCEG-M33, Austin, Apr. 2001.

�

Fig. 1 - Illustration of partitioning a macro-block into two sets of blocks for parallel intra prediction. Blocks denoted with shading are assigned to the first partition; blocks shown in white are assigned to the second partition.

��

	(a)	(b)

Fig. 2 - Processing order for the 4x4 blocks within a 16x16 intra-predicted macro-block using (a) traditional intra-prediction structure and (b) the proposed intra-prediction structure. Notice that with the proposed intra-prediction structure 8 blocks are predicted in parallel and result in only two sequential steps. By contrast, the dependencies in the traditional structure require 16 sequential steps.

17

10

15

13

14

9

1

8

12

3

7

0

5

4

6

16

17

10

15

13

14

9

1

8

12

3

7

0

5

4

6

16

Page: 1
Date Saved: 2010-07-22

[image: image9.png]

[image: image10.png]

_1304429306.unknown

