	[image: image3.png]

[image: image4.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
2nd Meeting: Geneva, CH, 21-28 July, 2010
	Document: JCTVC-B111

	Title:
	Entropy Slices for Parallel Entropy Coding

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Kiran Misra, Jie Zhao and Andrew Segall
5750 NW Pacific Rim Blvd
Camas, WA 98607
	Tel:
Email:
	Tel: +1-360-817-8487
asegall@sharplabs.com

	Source:
	SHARP

Abstract
We propose the concept of an Entropy Slice for the HEVC system. Entropy slices enable separate definitions for neighborhood in the entropy decoding and reconstruction loops. Motivations for entropy slices are many. As a first benefit, we assert that the system enables parallel decoding with negligible overhead. This includes both the context adaptation and bin coding stages, and it accommodates all of the entropy coding engines currently in the TMuC. As a second benefit, we assert that the degree of parallelization is flexible – an encoder may generate a bit-stream that supports a wide range of decoder parallelization factors without knowledge of the target platform. As a third benefit, we assert that the entropy slice concept enables more meaningful profile and level definitions for entropy coding. Specifically, profiles/levels may define bin limits per entropy slice, as opposed for an entire picture. This is useful for all applications, but with significant benefit to emerging, higher rate and higher resolution scenarios.

1 Introduction

Entropy slices address the problem of highly parallel decoding by allowing the slice concept to be applied to entropy decoding without modifying the reconstruction loop. An entropy slice may be described as follows. First, an entropy slice contains a sequence of largest coding units (LCU). Second, similar to a standard slice, entropy slices break the context model dependency of entropy decoding between entropy slices. Finally and unlike a standard slice though, entropy slices do not affect the intra and inter prediction within the reconstruction or deblocking loop.

To better understand the process, the differences between and entropy slice and reconstruction slice are as follows:
1) Restricted header signaling: only the syntax elements related to the entropy decoder are transmitted.
2) Context model initialization: context modes are initialized or reset to predefined states at the start of the entropy slice.

3) Neighborhood definition: an alternative definition for context model is employed. Specifically, coding units in other entropy slices are marked as unavailable for entropy coding. Note that these coding units may be available for reconstruction.

2 Benefits
After describing the entropy slice concept, we now identify its benefits:

A first benefit of the entropy slice concept is the parallelization of the entropy coding process. This is achieved since entropy slices are independent units and, thus, may be decoded without reference to other entropy slices. A graphical example of the parallel process is shown in Figure 1, where you will see that the decoding loop first identifies the location of the entropy slice headers. Then, it assigns the entropy slices to entropy decoders. These decoders operate independently to decode the entropy slices, and provide reconstructed symbols to the reconstruction unit. Independence of the entropy slices is a critical property, as the independence is necessary for maintaining throughput on many architectures.

[image: image1.emf]Parse N slice/entropy slice

Headers or until

start of next picture

Entropy

decode 1

st

slice data

reconstruct

m slices

Each Picture

N : Desired degree of parallel

m: available slices in current picture

…

Entropy

decode 2

nd

slice data

Entropy

Decode m

th

slice data

Parallel Entropy

Decoding

m slices

Fig. 1. Decoding process with parallel entropy decoding

A second benefit of the entropy slice concept is that it does not require an encoder to target a specific degree of parallelization at the decoder. To explain this property, let us consider the processing steps required for serial processing of a bit-stream with entropy slices. The process is shown in Figure 1, with the comparative decoding process of a bit-stream without entropy slices also provided. Please note that we show the entropy slice concept for the case of CABAC, though it is applicable to all entropy coders considered within the JCT-VC. As can be seen from the Figure, traditional slice processing consists of (i) parsing a header, (ii) resetting the context state, (iii) defining a neighborhood, (iv) entropy decoding and (v) reconstruction. In the entropy slice system, all steps are the same. However, there is an additional neighborhood calculation between entropy decoding and reconstruction. This is the only modification necessary for entropy slices, and we assert that this additional calculation is negligible.

[image: image2.emf]Reconstruct slice

Each Picture/Slice

Reset CABAC

state

Reset CABAC

state

entropy_slice_flag?

Parse regular

slice header

Parse entropy

slice header

Define

neighbor info

for CABAC &

reconstruct

Entropy

Decode Slice

Data

Define

neighbor info

for CABAC

Entropy

Decode Slice

Data

Define

neighbor info

for reconstruct

Entropy

decode

slice data

Parse slice

header

Y

N

Figure 2: Decoding process of a slice and an entropy slice in sequential mode

After describing the impact of entropy slices on a serial processing platform, we now discuss the flexibility of the entropy slice system. As will be shown in the results section, it is straightforward to generate a bit-stream for 1080p resolution that contains 32 entropy slices and with negligible impact on coding efficiency. Each of these entropy slices is restricted to include no more than a fixed number of bins, and thus, we assert they have a bounded decoding complexity. In this case, the 32 entropy slices may be processed by 32 entropy decoders in parallel, with each entropy decoder capable of processing a known number of bins, N, per frame. Similarly though, the bit-stream may be processed with 16 entropy decoders with each entropy decoder able to process 2*N number of bins per frame. In this case, each entropy decoder would process two entropy slices serially. As we have previously discussed though, the serial processing does not add additional complexity. As yet another example, the bit-stream may be processed with 4 entropy decoders, each able to process 8*N bins per frame. We suspect that it is clear to the reader that the system can be scaled to any target configuration, but we mention that the number of entropy slices does not need to be an integer factor of the number of entropy decoders. For example, the bit-stream may be processed with 6 entropy decoder, each able to process 6*N bins per frame. In this case, not all decoders will process the same number of entropy slices.

A third benefit of the entropy slice concept is that it enables straightforward specification of conformance points. Specifically, by defining the maximum number of bins within an entropy slice in addition to the maximum number of bins within a frame, the JCT-VC can specify the degree of parallelism clearly for both encoder and decoder conformance. Previously, we have asserted that the impact on decoding is negligible. Additionally, our conclusion is that the impact on the encoding processes is also small, as encoders can generate parallel friendly bit-streams by counting the number of bins within a slice and terminating the slice to satisfy conformance definitions. This is applicable even to encoders that use "traditional" slices to parallelize the encoding process.

3 Syntax
Here, we propose syntax and semantics for the entropy slice system

3.1.1 Slice header syntax

	slice_header() {
	C
	Descriptor

	
first_lctb_in_slice
	2
	ue(v)

	
entropy_slice_flag
	2
	u(1)

	
if(!entropy_slice_flag) {
	
	

	

slice_type
	2
	ue(v)

	

pic_parameter_set_id
	2
	ue(v)

	

frame_num
	2
	u(v)

	

if(IdrPicFlag)
	
	

	

idr_pic_id
	2
	ue(v)

	

pic_order_cnt_lsb
	2
	u(v)

	

if(slice_type = = P | | slice_type = = B) {
	
	

	

num_ref_idx_active_override_flag
	2
	u(1)

	

if(num_ref_idx_active_override_flag) {
	
	

	

num_ref_idx_l0_active_minus1
	2
	ue(v)

	

if(slice_type = = B)
	
	

	

num_ref_idx_l1_active_minus1
	2
	ue(v)

	

}
	
	

	

}
	
	

	

if(nal_ref_idc != 0)
	
	

	

dec_ref_pic_marking()
	2
	

	

if(entropy_coding_mode_flag && slice_type != I)
	
	

	

cabac_init_idc
	2
	ue(v)

	

slice_qp_delta
	2
	se(v)

	

alf_param()
	
	

	

if(slice_type = = P | | slice_type = = B) {
	
	

	

mc_interpolation_idc
	2
	ue(v)

	

mv_competition_flag
	2
	u(1)

	

if (mv_competition_flag) {
	
	

	

mv_competition_temporal_flag
	2
	u(1)

	

}
	
	

	
}
	
	

	

if (slice_type = = B && mv_competition_flag)
	
	

	

collocated_from_l0_flag
	2
	u(1)

	
}
	
	

	
else {
	
	

	

if(entropy_coding_mode_flag && slice_type != I)
	
	

	

cabac_init_idc
	2
	ue(v)

	
}
	
	

entropy_slice_flag specifies if the slice is an entropy slice. entropy_slice_flag equal to 1 denotes that the entropy decoding process shall use an alternative definition of neighbor availability than the reconstruction process. entropy_slice_flag equal to 1 denotes that the entropy decoding and reconstruction processes shall use the same definition of neighbor availability.
4 Results

We implemented the entropy slice concept into TMuC 0.3 and evaluated performance. To configure the entropy slices, we first encoded all 1080p material with a high quality (QP=20) and determined the number of bins in an entropy slice that would provide a 32x degree of parallelization. This was determined to be 180,000 bins/entropy slice.

We then coded all sequences using the configuration files provided by the Software Ad Hoc Group and with the 180,000 bin limit, and we measured the impact on performance of including the entropy slice functionality compared to no entropy slices. For each test, we used the PIPE entropy codec.

Full results are available in the attached XLS sheets. However, the summary is as follows:

	Coding Condition
	BD-Bitrate (%)
	BD-PSNR (dB)

	1080p (HierB)
	0.381%
	-0.009

	WVGA (HierB)
	0.036%
	-0.001

	VGA (HierB)
	-0.120%
	 0.004

	1080p and 720p (IPPP)
	0.08%
	 0.000

	WVGA (IPPP)
	0.016%
	-0.001

	VGA (IPPP)
	0.017%
	-0.001

Note that for all sequence types, the average impact on BD-PSNR is less than 0.01dB. We assert that this is a negligible impact, given that the resulting bit-stream now has additional parallel functionality. Moreover, we mention that for some sequences (e.g., VGA – HierB), we actually observe a small increase in coding performance. This is also visible in the Video3, Vidyo4 and Cactus IPPP results in the XLS, where we observe improvements of -0.07%, -0.28% and -0.15%, respectively.
5 Conclusion

We propose an entropy slice concept that enables separate definitions for slices for the entropy decoding and reconstruction processes. We assert that the system has multiple advantages. These advantages include: (1) parallelization of the entropy decoding process, including both the context adaptation and bin coding processes; (2) support for all entropy coding strategies currently under study in the JCT-VC; (3) support for a wide variety of decoder parallelization factors in a single bit-stream, and (4) straightforward specification of parallelization in the profile and level process.
6 Patent rights declaration(s)
SHARP Labs of America may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
7 Reference

[1] JCT-VC, “Draft Test Model under Consideration”, JCTVC-A205, 1. JCT-VC Meeting, Dresden, April 2010.
[2] G. Bjøntegaard, “Calculation of average PSNR differences between RD-Curves,” ITU-T Q.6/SG16 Doc., VCEG-M33, Austin, Apr. 2001.

Page: 1
Date Saved: 2010-07-20

