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Abstract

Context-Adaptive Binary Arithmetic Coding (CABAC) is one of two entropy engines used by the AVC video coding standard. Processing in CABAC engine is highly serial in nature.  Consequently, in order to decode high bitrate video bit-streams in real-time, the CABAC engine needs to be run at extremely high frequencies which consumes a significant amount of power and in the worst case may not be feasible. Several techniques to parallelize CABAC were proposed in different contributions in response to CfP at the last JCT-VC meeting. The parallelism proposed in those contributions can be broadly classified into three categories: bin-level parallelism, syntax element-level parallelism, and slice-level parallelism. The bin-level parallelism techniques such as NBAC/PIPE/V2V parallelize binary arithmetic coder (BAC) of CABAC. However, due to serial bottlenecks in context processing, there is limited overall throughput improvement in the entropy coder. Hence techniques that parallelize context processing and binarization are required. This contribution presents the following three different techniques for parallelization of context processing (PCP) for improving throughput of the whole entropy coder: Coefficient Sign PCP, Coeff Level BinIdx 0 PCP, significance map PCP. In addition, this contribution also explains the advantages of syntax element partitioning from perspective of parallelization of binarizer and context processing.
1 Introduction

Context-Adaptive Binary Arithmetic Coding (CABAC) is one of two entropy engines used by the AVC video coding standard. Processing in CABAC engine is highly serial in nature.  Consequently, in order to decode high bitrate video bit-streams in real-time, the CABAC engine needs to be run at extremely high frequencies which consumes a significant amount of power and in the worst case may not be feasible.  
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Figure 1: CABAC block diagram (from [1]).

The serial nature in CABAC comes from the following three blocks:

· Binarizer: Bins from many syntax elements such as coefficient levels and motion vector differences are coded using variable length coding such as unary coding and exp-Golomb coding. Variable length codes are inherently serial in nature.

· Context modeler: The serial dependency comes about since the probability used in the context model for coding the next bin is updated depending on the current bin value. If the current bin value is Least Probable Symbol (LPS), the probability is increased and if the current bin value is Most Probable Symbol (MPS), the probability is decreased. Another source of serial dependency is the context index selection process, where the context index of bin may be determined by the value of previously coded bins.

· Binary arithmetic coder (BAC): Arithmetic coding uses interval subdivision. The range, value, offset used to determine the interval on [0, 1] that uniquely identifies the coded stream of bin values are updated in a serial fashion as and when bins get encoded/decoded.

Parallel entropy coding tools were proposed in several contributions in response to CfP [4-7]. The parallelism proposed in those contributions can be broadly classified into three categories:

· Bin-level parallelism [4][6][7], which parallelizes the BAC

· Syntax element-level parallelism [4], which parallelizes the BAC, the context modeler, and the binarizer

· Sub-slice-level parallelism [4][5]

2 Bin-level parallelism

2.1 N-bin/cycle coding

A N-bins/cycle coding (NBAC) was introduced in [3] which encodes and decodes N-bins/cycle to achieve N-fold improvement in throughput. The contexts for N-bins are calculated through the use of conditional probabilities.

2.2 PIPE/V2V codes


[image: image2]
Figure 2: PIPE/V2V coding [2].

PIPE/V2V schemes were proposed in [6][7]. The binarizer and context modeler are basically the same as in CABAC of AVC. However for coding of the bins, variable-to-variable length coding schemes were proposed. There are two flavors of the scheme: PIPE and V2V, the main difference between the two is the context probabilities are quantized to 12 levels in PIPE and to 64 in V2V. In PIPE/V2V coding scheme, the bins are coded using a parallel bin encoding scheme as shown in Figure 2. A variant of the scheme that interleaves the V2V code words from different partial bitstreams into a single serial bitstream was also proposed. Reference [6] reported a throughput 6 bins/cycle for V2V in hardware. We see an estimated throughput of 3 bins/cycle in BAC stage for PIPE hardware implementation for both the parallel and serial versions. Note that AVC decoding can be currently carried out at 2 bins/cycle under similar constraints in the industry. PIPE is better than V2V from a complexity/hardware area perspective since PIPE uses 12 bitstream buffers when compared to V2V which uses 64 bitstream buffers.

3 Parallel Context Processing (PCP) techniques
The NBAC/PIPE/V2V schemes reduce serial dependency in the BAC block. However, there is limited overall throughput improvement in the entropy coder due to serial bottlenecks in context processing and binarization. Hence techniques that parallelize context processing and binarization are essential for leveraging the throughput gains achieved at bin level. This section presents techniques for parallel context processing (PCP) and binarization.
3.1 Syntax-element partitioning
In syntax element partitioning, syntax elements such as macroblock type, motion vectors, transform coefficients, significant coefficient map etc. are divided into N groups and each group is coded separately. The context selection and adaptation within a group happens in parallel leading to a potential N-fold speed up in context modeler if the various partitions are balanced in terms of the number of bins they process. In practice, the various partitions are not balanced and the throughput improvement is less than a factor of N.

Figure 3 shows the block diagram of a system with N syntax partitions. The bin coders can be arithmetic coders or PIPE/V2V coders. If PIPE/V2V coders are used as the bin coders, the serial version of PIPE that interleaves codewords is preferable since it reduces the number of bitstream buffers needed.

References [9] and [4] provide more details on syntax element partitioning.
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Figure 3: Syntax element partitioning.

3.2 Coefficient Sign PCP

In AVC, sign information is interleaved along with level information as shown in Figure 4. 

Figure 4 : Coding of coefficient level information in AVC CABAC.

This leads to inefficiency in parallel context processing. Figure 5 shows the context processing tree that needs to be pre-calculated at each bin to achieve 4X parallelism in context processing of level in AVC. The context processing (conditional ifs) that happens at every SIGN node is wasteful since SIGN is coded in bypass mode. REF _Ref266794249 \h 
 Table 1 shows the distribution of level of coeffs obtained by measuring levels in bitstreams generated by TMuC-0.1 using cfg files in cfp-fast directory. Level =1 occurs with the highest probability, so the most probable path in the context processing tree of Figure 5 is L0(0) ( SIGN0 ( L1(0) ( SIGN1. For this particular path, the context processing efficiency is 50%, meaning half the context processing is wasteful. On the average, for the context processing tree of  REF _Ref266794292 \h 
 Figure 5 and assuming the level distribution of Table 1 REF _Ref266794249 \h 
, the context processing efficiency is 60%.


[image: image4.emf] 

L0(0)  

1  

L0(1)  

SIGN0  

0  

EQ1++  

GT1++  

1  

L0(2)  

SIGN0  

0  

1  

L1(1)  

SIGN1  

0  

EQ1++  

GT1++  

L1(0)  

L1(0)  

1  

L0(3)  

SIGN0  

0  


Figure 5: Context processing tree for level coding in AVC. (EQ1 stands for numDecodAbsLevelEq1 and GT1 stands for numDecodAbsLevelGt1).

Table 1: Level histogram

	Level
	Probablity of occurrence

	1
	0.76

	2
	0.15

	3
	0.05

	4
	0.02

	5
	0.01


Coefficient sign PCP technique codes sign information in a separate plane as shown in Figure 6 REF _Ref266793566 \h 
 to improve parallel context processing efficiency.  REF _Ref266794896 \h 
 Figure 7 shows the context processing tree for levels when sign is coded in separate bin-plane. As can be seen in the figure, context processing efficiency is 100%. Table 2 list the BD-Rate increase because of this data rearrangement. As expected, there is no BD-Rate increase. TMuC-0.1 [8] was used for this simulation

Figure 6: Coding of coefficient sign information in a separate bin-plane.
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Figure 7: Context processing tree for levels when SIGN is coded in separate bin-plane. (EQ1 stands for numDecodAbsLevelEq1 and GT1 stands for numDecodAbsLevelGt1).

Table 2: BD-Rate increase for coeff sign PCP.
	
	Coefficient Sign PCP BD-Rate

	 
	 
	Alpha
	Beta

	S01
	Traffic
	-0.08 
	 

	S02
	PeopleOnStreet
	-0.01 
	 

	S03
	Kimono
	0.02 
	-0.02 

	S04
	ParkScene
	0.03 
	0.02 

	S05
	Cactus
	-0.07 
	-0.01 

	S06
	BasketballDrive
	0.05 
	0.06 

	S07
	BQTerrace
	0.15 
	0.10 

	S08
	BasketballDrill
	0.01 
	0.00 

	S09
	BQMall
	-0.01 
	0.10 

	S10
	PartyScene
	-0.03 
	0.00 

	S11
	RaceHorses
	-0.09 
	-0.01 

	S12
	BasketballPass
	0.08 
	-0.30 

	S13
	BQSquare
	0.12 
	0.06 

	S14
	BlowingBubbles
	0.06 
	-0.11 

	S15
	RaceHorses
	-0.03 
	-0.07 

	S16
	Vidyo1
	 
	0.18 

	S17
	Vidyo3
	 
	0.07 

	S18
	Vidyo4
	 
	0.06

	
	Avg
	0.01
	0.01

	
	Min
	-0.09
	-0.30

	
	Max
	0.15
	0.18


3.3 Coeff Level BinIdx 0 PCP

Coefficient coding is carried out in AVC CABAC as shown in Figure 4 REF _Ref266794205 \h 
.
The context (ctxIdxInc) used for coeff_abs_level_minus1 depends on the position of the bin (binIdx) as follows: (extracted from AVC specification)

–
If binIdx is equal to 0, ctxIdxInc is derived by

ctxIdxInc = ( ( numDecodAbsLevelGt1  !=  0 ) ? 0: Min( 4, 1 + numDecodAbsLevelEq1 ) )
(9-23)

–
Otherwise (binIdx is greater than 0), ctxIdxInc is derived by

ctxIdxInc = 5 + Min( 4 − ( ( ctxBlockCat  = =  3 )  ?  1  :  0 ), numDecodAbsLevelGt1 )
(9-24)

binIdx = 0 context processing is different from binIdx 
[image: image6.wmf]¹

0 bins. 
Coeff Level BinIdx 0 PCP technique transmits binIdx = 0 bins in a separate bin-plane. The advantage of doing this is that context processing of Equation (9-24) can be carried out in parallel to context processing of Equation (9-23) i.e. the context processing for all the bins with binIdx 
[image: image7.wmf]¹

0 for all the coeffs level in a block can be carried out in parallel to bin processing of binIdx = 0 and before the decoding of bins with binIdx 
[image: image8.wmf]¹

0.

Coeff Level BinIdx 0 PCP is not expected to show any BD-Rate degradation with respect to the AVC coding format of  Figure 4. 
3.4 Significance Map PCP
Significance map coding is carried out in AVC CABAC as shown in Figure 8 below.

Figure 8 : Significance map coding in AVC CABAC.

last_significant_coeff_flag is transmitted only when a coeff is significant. This introduces serial dependency in decoding of significance map. If Nx throughput improvement is needed, then speculative computation at every bin is needed which leads to complex logic as shown in Figure 9(a). Speculative computation at every bin also results in increased power consumption.

[image: image9.emf](a) 5X parallelism in AVC CABAC SigMap context processing using speculative computing (which happens every bin). 

Counter i indicates bin position, i1 is MaxNumCoeff(BlockType)-1, EOB denotes end of block. SIG - significant_coeff_flag. 

LAST - last_significant_coeff_flag.
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Figure 9: Parallelization of context processing for significance map

Significance map PCP technique parallelizes significance map coding by transmitting a last_significant_coeff_flag (LAST) only once per N significant_coeff_flag (SIG) bins.  If all of the N significant_coeff_flag are zero, last_significant_coeff_flag is not transmitted. Figure 10 shows the pseudo-code of Significance map PCP technique labeled as N-SIG, 1-LAST (NSIG1L). 


Figure 10: Pseduo-code of Significance map PCP technique (N-SIG, 1-LAST).

Significance map PCP reduces the number of LAST bins that need to be transmitted, but it increases the number of SIG bins that need to be transmitted. However, there is overall reduction in the number of significance map bins that need to be processed.
Significance map PCP achieves efficient parallelization of context processing as shown in Figure 9(b). It parallelizes about 30% of the bins for largest coding unit (LCTB). Table 3 shows the distribution of bins used by different syntax element types as a percent of total bins for a LCTB. The bin distribution was obtained  by measuring bins in bitstreams generated by TMuC-0.1 [8] using cfg files in cfp-fast directory.

Table 3: Distribution of bins used by different syntax element type as a percent of total bins for a LCU.

	 
	Average number of bins

	SigMap
	21.65%

	SigLast
	8.35%

	LevelAbs
	16.67%

	LevelSign
	9.92%


The BD-Rate increase of NSIG1L for various values of N is given in Table 4. NSIG1L algorithm achieves efficient parallelism of significance map bins at cost of average 0.25% (Alpha conditions) and 0.28% (Beta conditions) bit-rate increase. TMuC-0.1 [8] was used for this simulation.
Table 4: BD-Rate performance of NSIG1L schemes.

	 
	 BD-Rate for Alpha
	
	 
	 

BD-Rate for Beta

	 
	 
	4SIG1L (5X parallelism)
	2SIG1L (3X parallelism)
	
	 
	 
	4SIG1L (5X parallelism)
	2SIG1L (3X parallelism)

	S01
	Traffic
	0.17 
	0.09 
	
	S01
	Traffic
	 
	 

	S02
	PeopleOnStreet
	0.34 
	0.04 
	
	S02
	PeopleOnStreet
	 
	 

	S03
	Kimono
	0.46 
	0.08 
	
	S03
	Kimono
	0.39 
	0.02 

	S04
	ParkScene
	0.28 
	0.12 
	
	S04
	ParkScene
	0.17 
	0.04 

	S05
	Cactus
	0.34 
	-0.03 
	
	S05
	Cactus
	0.63 
	0.13 

	S06
	BasketballDrive
	0.41 
	0.15 
	
	S06
	BasketballDrive
	0.53 
	0.27 

	S07
	BQTerrace
	0.26 
	0.27 
	
	S07
	BQTerrace
	0.15 
	0.12 

	S08
	BasketballDrill
	0.30 
	0.06 
	
	S08
	BasketballDrill
	0.18 
	0.04 

	S09
	BQMall
	0.17 
	-0.01 
	
	S09
	BQMall
	0.40 
	0.16 

	S10
	PartyScene
	0.00 
	0.03 
	
	S10
	PartyScene
	-0.13 
	-0.10 

	S11
	RaceHorses
	0.32 
	-0.11 
	
	S11
	RaceHorses
	0.46 
	0.01 

	S12
	BasketballPass
	0.25 
	0.28 
	
	S12
	BasketballPass
	0.11 
	-0.10 

	S13
	BQSquare
	-0.08 
	0.08 
	
	S13
	BQSquare
	-0.34 
	0.09 

	S14
	BlowingBubbles
	0.11 
	-0.02 
	
	S14
	BlowingBubbles
	0.15 
	-0.08 

	S15
	RaceHorses
	0.46 
	0.04 
	
	S15
	RaceHorses
	0.53 
	0.06 

	S16
	Vidyo1
	 
	 
	
	S16
	Vidyo1
	0.72 
	0.02 

	S17
	Vidyo3
	 
	 
	
	S17
	Vidyo3
	0.25 
	0.14 

	S18
	Vidyo4
	 
	 
	
	S18
	Vidyo4
	0.62
	0.25

	
	Avg
	0.25
	0.07
	
	
	Avg
	0.28
	0.05

	
	Min
	-0.08
	-0.11
	
	
	Min
	-0.34
	-0.10

	
	Max
	0.46
	0.28
	
	
	Max
	0.72
	0.27
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for (i = MaxNumCoeff(BlockType)-1;i >= 0;i--)


{


    Encode coeff_sign_flag[i];


}





for (i = MaxNumCoeff(BlockType)-1;i >= 0;i--)


{


    Encode coeff_abs_level_minus1[i];


}





for (i = MaxNumCoeff(BlockType)-1;i >= 0;i--)


{


  {


    Encode coeff_abs_level_minus1[i];


    Encode coeff_sign_flag[i];


  }


}





for (i = 0 ;i < MaxNumCoeff(BlockType)-1 ;i++)


{


  Encode significant_coeff_flag[i];


  if(significant_coeff_flag[i])


    Encode last_significant_coeff_flag[i];


  if (last_significant_coeff_flag[i])


    break ;


}





for (i = 0 ;i < MaxNumCoeff(BlockType)-1 ;i += K)


{


  if(i+K < MaxNumCoeff(BlockType)-1)


    j1 = K ;


  else


    j1 = K-1 ;


  sig = 0 ;


  for (j = 0 ;j < j1 ;j++)


  {


    Encode significant_coeff_flag[i*K+j];


    sig += significant_coeff_flag[i*K+j]


  }


  if(sig)


    Encode last_significant_coeff_flag[i];


  if (last_significant_coeff_flag[i])


    break ;


}
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