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Abstract
Combined with the directional intra prediction technique in AVC [1], MDDT (Mode Dependent Directional Transform) [2] has been proven to be an efficient tool to enhance the coding efficiency by exploiting the redundancy in the intra prediction residuals. Based on the symmetry among all intra prediction directions, the number of transform matrices can be significantly reduced by the proposed SMDDT (Simplified MDDT) while the coding performance is kept unchanged. We suggest that a joint intra prediction and transform TE/CE is established, and various joint directional prediction and transform techniques for intra coding can be studied together.
1 Motivation
As described in [1], directional textures exist in the residuals after the directional intra prediction specified in AVC. Further, symmetry is observed among prediction residuals of different prediction modes. Taking 8x8 intra predictions as an example, shown in Fig. 1 are the dominant patterns of residuals after the intra prediction along all allowed directions. The patterns are obtained through PCA (Principle Component Analysis). Fig. 1 (a), (b), (d), (e), (g), (h), (i), (j) correspond to the intra prediction residual of mode 0, 1, 3, 4, 5, 6, 7, 8 respectively, with proper alignment. Alignment here denotes geometric transforms such as mirror and transpose of residual block. And the alignment is applied based on the symmetry of these prediction directions.
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(g)     (h)     (i)     (j)     (k)
Fig. 1 Dominant pattern of intra prediction residuals
Be noted that the switch of white and black areas in the pattern is determined by the sign of the component, which is trivial when we evaluate the similarity of different components. Therefore, we can see from Fig. 1 that the patterns of residuals of each row are quite similar after alignment. 
Based on this observation, the prediction residuals of different intra prediction modes are grouped into three classes. Specifically, mode 0 and 1 are grouped together as class 0; mode 3 and 4 are grouped together as class 1; mode 5, 6, 7 and 8 are grouped together as class 2. For all three classes, we also get the dominant patterns respectively, and show them in Fig. 1, (c), (f), and (k). Then, we can see from Fig. 1 that the dominant pattern of each class is very similar to that of each intra prediction mode within the class. And therefore, it is reasonable to use one pattern to describe residuals of different prediction modes in the same class. In other words, we can get one transform for each class, and use it for coding residuals of different prediction modes within the class.
2 Algorithm description

Again macroblock coding mode I8MB specified in AVC is used to illustrate the implementation of the proposed SMDDT. The classification of all eight directional prediction modes, which is already described in the previous section, is illustrated in Table 1. The representing mode MODEREP is also given in Table 1.
Table 1. Classification of prediction modes

	MODEH.264
	0
	1
	3
	4
	5
	6
	7
	8

	Class
	0
	0
	1
	1
	2
	2
	2
	2

	MODEREP
	0
	0
	4
	4
	5
	5
	5
	5


For each class, a separable KLT is trained and is used for the transform of residual blocks belonging to this class. For class 2, the row transform and the column are identical because the dominant patterns shown in Fig. 1 (f) are nearly symmetric with regard to the down right diagonal line. Therefore, five transform matrices in all are used.
At the encoder side, the residual block is firstly aligned to the representing mode of the class thereof. Then the transform for that class is performed. The following entropy coding is not changed. At the decoder side, the class to which the residual block belongs is firstly decided, and the inverse transform for the class is performed accordingly. Then the reconstructed residual block is dis-aligned according to the intra prediction mode.
For other intra prediction modes in AVC, the SMDDT can be implemented accordingly. In addition to the directional intra prediction in AVC, the SMDDT can also be combined easily with other directional intra prediction methods such as angular prediction and arbitrary directional intra (ADI) specified in TMuC [3].
3 Complexity analysis

3.1  Memory consumption
MDDT employs one pairs of transform matrices and one corresponding scan order for each intra prediction mode. Therefore, for I8MB mode in AVC, totally 8x2=16 transform matrices and 8 scan orders are required by MDDT. As for SMDDT, only 5 transform matrices and 3 scan orders are needed. Hence the memory for the storage of transform matrices and scan orders can be reduced accordingly.
3.2  Computational complexity

Compared with AVC, the proposed SMDDT replace the integer DCT with the separable integer KLT in both encoder and decoder. So the matrix multiplication is performed twice for the transform of each residual block, one for column transform and the other for row transform. The complexity of matrix multiplication can be reduced by the Winograd algorithm which has already been implemented in the KTA software. The mirror and transpose operation for the alignment and dis-alignment can be easily implemented in the hardware design, and the complexity is negligible. Obviously, the computational complexity of SMDDT is the same as that of MDDT, which can also be seen in the comparison of encoding and decoding time in section 4.2. 
4 Simulation results
4.1  Test conditions

The codebase used for the implementation of SMDDT is KTA2.6r1. Two modifications specified in AHG report [4] are adopted. Also the two test conditions, i.e. All-Intra and CS1 are adopted with following modifications:
1. Non AVC coding tools including Extended macroblock, MV competition, HP filter, ALF etc. are switched off.
This will save us a lot of time when running the simulation.
2. Extended MB (EMB) is switched off.
This actually has nearly no influence on the intra transform technique since the intra prediction and transform in KTA is not extended to block size larger than 16x16, and the simulation results are the exactly the same for All-Intra test condition.
3. All CfP sequences are used for the simulation to study the performance of the proposed SMDDT for sequences with diversified textures.
4. QPs for I slice are set to 22, 27, 32, and 37 to cover a wider bitrate range
4.2  Objective evaluation

Table 1. Coding performance in terms of BD_Rate and BD_PSNR
	Sequence name
	All-Intra
	CS1

	
	MDDT
	SMDDT
	MDDT
	SMDDT

	
	BD_Rate
	BD_PSNR
	BD_Rate
	BD_PSNR
	BD_Rate
	BD_PSNR
	BD_Rate
	BD_PSNR

	Traffic
	-6.93
	0.39
	-6.91
	0.389
	-2.58
	0.096
	-2.8
	0.104

	PeopleOnStreet
	-7.55
	0.457
	-7.73
	0.47
	-2.61
	0.121
	-2.68
	0.125

	Class A avg
	-7.24
	0.424
	-7.32
	0.43
	-2.59
	0.109
	-2.74
	0.115

	Kimono1
	-6.91
	0.259
	-7.81
	0.293
	-2.72
	0.096
	-3.14
	0.111

	ParkScene
	-5.63
	0.266
	-5.59
	0.265
	-2.14
	0.076
	-2.08
	0.074

	Cactus
	-5.32
	0.216
	-5.69
	0.232
	-2.84
	0.068
	-3.18
	0.078

	BasketballDrive
	-5.42
	0.162
	-4.87
	0.145
	-3.65
	0.095
	-3.79
	0.098

	BQTerrace
	-5.05
	0.297
	-4.83
	0.289
	-2.59
	0.057
	-2.46
	0.056

	Class B avg
	-5.66
	0.24
	-5.76
	0.245
	-2.79
	0.078
	-2.93
	0.083

	BasketballDrill
	-4.21
	0.212
	-3.91
	0.198
	-2
	0.083
	-1.97
	0.082

	BQMall
	-4.77
	0.293
	-5.51
	0.34
	-1.8
	0.077
	-1.98
	0.085

	PartyScene
	-2.93
	0.235
	-3.27
	0.263
	-1.04
	0.048
	-1.2
	0.055

	RaceHorses
	-2.57
	0.181
	-3.14
	0.222
	-1.25
	0.052
	-1.26
	0.053

	Class C avg
	-3.62
	0.23
	-3.96
	0.256
	-1.52
	0.065
	-1.6
	0.069

	BasketballPass
	-4.06
	0.243
	-3.57
	0.214
	-1.21
	0.06
	-1.29
	0.066

	BQSquare
	-2.84
	0.261
	-3.49
	0.32
	-0.83
	0.034
	-0.99
	0.042

	BlowingBubbles
	-3.29
	0.209
	-3.76
	0.238
	-1.12
	0.044
	-1.17
	0.046

	RaceHorses
	-4.69
	0.316
	-4.55
	0.308
	-1.42
	0.07
	-1.51
	0.075

	Class D avg
	-3.72
	0.257
	-3.84
	0.27
	-1.14
	0.052
	-1.24
	0.057

	vidyo1
	-8.36
	0.454
	-8.44
	0.459
	-4.05
	0.128
	-4.37
	0.136

	vidyo3
	-8.89
	0.547
	-9.98
	0.62
	-2.93
	0.102
	-3.24
	0.111

	vidyo4
	-7.29
	0.366
	-8.02
	0.404
	-1.9
	0.056
	-2.47
	0.076

	Class E avg
	-8.18
	0.456
	-8.81
	0.494
	-2.96
	0.095
	-3.36
	0.108

	All class avg
	-5.37
	0.298
	-5.61
	0.315
	-1.99
	0.072
	-2.10
	0.077


Table 2. Computational complexity in terms of encoding and decoding time (the ratio compared to the anchor is presented)
	Sequence name
	All-Intra
	CS1

	
	MDDT
	SMDDT
	MDDT
	SMDDT

	
	Encod.
	Decod.
	Encod.
	Decod.
	Encod.
	Decod.
	Encod.
	Decod.

	Traffic
	1.09 
	1.13 
	1.16 
	1.14 
	1.07 
	1.02 
	1.09 
	1.01 

	PeopleOnStreet
	1.11 
	1.09 
	1.17 
	1.11 
	1.04 
	1.01 
	1.02 
	1.01 

	Class A avg
	1.10 
	1.11 
	1.17 
	1.12 
	1.05 
	1.01 
	1.05 
	1.01 

	Kimono1
	1.14 
	1.17 
	1.13 
	1.19 
	0.96 
	1.01 
	1.00 
	1.00 

	ParkScene
	1.15 
	1.12 
	1.24 
	1.12 
	1.01 
	1.01 
	1.05 
	1.01 

	Cactus
	1.10 
	1.14 
	1.10 
	1.14 
	1.01 
	1.00 
	1.05 
	1.01 

	BasketballDrive
	1.15 
	1.16 
	1.17 
	1.16 
	1.00 
	1.02 
	1.09 
	1.02 

	BQTerrace
	1.19 
	1.10 
	1.30 
	1.10 
	1.01 
	1.01 
	1.05 
	1.01 

	Class B avg
	1.15 
	1.14 
	1.19 
	1.14 
	1.00 
	1.01 
	1.05 
	1.01 

	BasketballDrill
	1.13 
	1.05 
	1.14 
	1.09 
	0.97 
	1.00 
	1.09 
	1.01 

	BQMall
	1.12 
	1.10 
	1.12 
	1.08 
	0.99 
	1.00 
	1.02 
	1.01 

	PartyScene
	1.15 
	1.06 
	1.16 
	1.05 
	0.96 
	1.01 
	1.10 
	1.01 

	RaceHorses
	1.13 
	1.11 
	1.09 
	1.07 
	1.12 
	1.00 
	0.91 
	0.99 

	Class C avg
	1.13 
	1.08 
	1.13 
	1.07 
	1.01 
	1.00 
	1.03 
	1.00 

	BasketballPass
	1.07 
	1.09 
	1.23 
	1.12 
	1.04 
	1.00 
	1.04 
	1.00 

	BQSquare
	1.15 
	1.05 
	1.26 
	1.06 
	1.02 
	0.99 
	1.06 
	1.01 

	BlowingBubbles
	1.17 
	1.06 
	1.17 
	1.06 
	1.05 
	1.01 
	1.02 
	1.02 

	RaceHorses
	1.09 
	1.08 
	1.12 
	1.11 
	1.03 
	1.01 
	1.04 
	0.99 

	Class D avg
	1.12 
	1.07 
	1.19 
	1.09 
	1.03 
	1.01 
	1.04 
	1.01 

	vidyo1
	1.15 
	1.18 
	1.08 
	1.17 
	1.11 
	1.00 
	1.12 
	1.01 

	vidyo3
	1.07 
	1.14 
	1.19 
	1.15 
	1.06 
	0.99 
	1.20 
	1.00 

	vidyo4
	1.27 
	1.16 
	1.32 
	1.18 
	1.13 
	1.00 
	1.16 
	1.00 

	Class E avg
	1.16 
	1.16 
	1.19 
	1.16 
	1.10 
	1.00 
	1.16 
	1.00 

	All class avg
	1.13 
	1.11 
	1.18 
	1.12 
	1.03 
	1.01 
	1.06 
	1.01 


As we can see from Table 1, the proposed SMDDT can achieve the same or even slightly better coding performance compared with MDDT. As for the computational complexity, the encoding and decoding time of SMDDT is approximate the same as that of MDDT as shown in Table 2. The encoding and decoding time presented here gives a rough idea of the computational complexity. And the comparison of the exact numbers is meaningless.
Since the Class E sequences are not included in the CS1 test condition, the data in the shadow areas in the two tables are not used to calculate the average. However, we would like to point out that both MDDT and SMDDT performs best for Class E sequences. Besides, better coding performance is observed for sequences with larger spatial resolution. By our analysis, a part of the coding gain comes from the introduction of the 16x16 transform in both MDDT and SMDDT. Therefore, larger coding gains are obtained for sequences with large resolution such as Class A & B, or for sequences with smooth textures such as Class E.
4.3  Subjective evaluation

Subjective test is conducted to find out how the proposed SMDDT would influence the video quality. When playing the decoded video sequences, the difference between SMDDT and Anchor is negligible. When compare two still images alternatively, there are obvious difference between the SMDDT and Anchor. However, it is hard to tell which is better in general. One thing should be noted is that the SMDDT tends to make the texture clean in areas with sharp and strong edges. We consider this is caused by the strong directionality exists in the transform, which is imposed to the transform by the SMDDT where the symmetry of different directions is supposed and utilized.
5 Conclusion

The simplified MDDT presented in this proposal can achieve the same coding performance as MDDT with less transform matrices, thus reducing the complexity of MDDT. As discussed in the reflector, the prediction and transform for intra coding is suggested be studied together to achieve maximum overall coding gains. We also agreed that a joint intra prediction and transform TE/CE is established, and we suggest the proposed SMDDT can be further evaluated in this TE/CE.
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7 Appendix: SMDDT transform matrices

7.1  4x4 SMDDT transform matrices
const int KLTCol[3][4][4]=

{

{

{    32,    56,    75,    81},

{    70,    75,    -3,   -77},

{   -80,    21,    79,   -56},

{    63,   -85,    67,   -28},

},

{

{    32,    60,    78,    75},

{    69,    73,   -10,   -78},

{   -83,    25,    73,   -60},

{    60,   -82,    70,   -32},

},

{

{    38,    64,    78,    69},

{   -73,   -67,    21,    79},

{    80,   -34,   -68,    64},

{    56,   -82,    72,   -36},

},
}

const int KLTRow[3][4][4]=

{

{

{    37,   -85,    75,    46},

{    60,   -63,   -53,   -77},

{    78,    26,   -58,    80},

{    73,    67,    68,   -44},

},

{

{    51,   -74,    76,    51},

{    68,   -54,   -44,   -83},

{    74,    33,   -66,    74},

{    61,    83,    66,   -39},

},

{

{    38,   -73,    80,    56},

{    64,   -67,   -34,   -82},

{    78,    21,   -68,    72},

{    69,    79,    64,   -36},

},
}
7.2  8x8 SMDDT transform matrices
const int KLTCol8[3][8][8] = 

{

{

{    18,    30,    39,    45,    51,    54,    56,    55},

{    38,    55,    57,    43,    15,   -19,   -50,   -62},

{   -49,   -57,   -19,    38,    66,    40,   -18,   -53},

{   -58,   -28,    44,    56,   -13,   -63,   -19,    51},

{   -62,    13,    60,   -20,   -52,    35,    47,   -47},

{   -54,    51,    12,   -58,    39,    23,   -63,    36},

{   -41,    63,   -48,     9,    36,   -59,    54,   -24},

{    21,   -42,    57,   -63,    60,   -48,    30,   -11},

},

{

{    15,    28,    39,    47,    53,    56,    56,    51},

{    31,    52,    59,    46,    16,   -20,   -52,   -61},

{   -47,   -60,   -24,    33,    64,    40,   -19,   -54},

{   -58,   -36,    40,    57,   -12,   -62,   -16,    52},

{   -61,     7,    61,   -19,   -55,    35,    47,   -47},

{   -58,    47,    16,   -58,    37,    23,   -62,    38},

{   -46,    64,   -47,     9,    34,   -57,    54,   -25},

{    22,   -41,    56,   -63,    60,   -49,    32,   -12},

},

{

{    21,    33,    43,    49,    53,    54,    52,    46},

{    36,    54,    56,    39,     6,   -29,   -56,   -60},

{   -50,   -56,   -14,    41,    65,    34,   -24,   -54},

{   -58,   -28,    45,    53,   -19,   -62,   -10,    54},

{   -61,    14,    59,   -24,   -51,    39,    43,   -49},

{   -55,    52,     9,   -56,    41,    18,   -61,    39},

{   -41,    63,   -51,    14,    31,   -57,    56,   -27},

{    20,   -39,    54,   -63,    61,   -50,    33,   -13},

},

}

const int KLTRow8[3][8][8] = 

{ 

{

{    31,    50,   -57,   -57,   -56,   -47,   -31,   -15},

{    40,    60,   -42,    -6,    33,    59,    59,    34},

{    46,    49,    13,    58,    49,    -6,   -57,   -52},

{    49,    22,    61,    35,   -38,   -50,    25,    63},

{    51,   -12,    59,   -42,   -37,    49,    23,   -63},

{    51,   -40,    12,   -59,    51,     6,   -56,    54},

{    48,   -55,   -37,     8,    35,   -60,    59,   -36},

{    41,   -50,   -50,    57,   -57,    46,   -30,    15},

},

{

{    31,   -44,    52,    57,    58,    50,    36,    17},

{    41,   -54,    48,    18,   -24,   -57,   -63,   -38},

{    47,   -48,     3,   -52,   -59,    -4,    53,    54},

{    50,   -28,   -47,   -52,    29,    55,   -18,   -63},

{    51,     4,   -65,    21,    50,   -44,   -29,    62},

{    51,    36,   -31,    62,   -40,   -16,    57,   -51},

{    48,    60,    28,     9,   -41,    61,   -57,    33},

{    40,    60,    57,   -54,    49,   -41,    28,   -14},

},

{

{    21,    36,   -50,   -58,   -61,   -55,   -41,    20},

{    33,    54,   -56,   -28,    14,    52,    63,   -39},

{    43,    56,   -14,    45,    59,     9,   -51,    54},

{    49,    39,    41,    53,   -24,   -56,    14,   -63},

{    53,     6,    65,   -19,   -51,    41,    31,    61},

{    54,   -29,    34,   -62,    39,    18,   -57,   -50},

{    52,   -56,   -24,   -10,    43,   -61,    56,    33},

{    46,   -60,   -54,    54,   -49,    39,   -27,   -13},

},
}
7.3  16x16 SMDDT transform matrices
const int KLTCol16[3][16][16]=

{

{

{   19,   23,   25,   27,   29,   30,   32,   33,   34,   35,   36,   36,   37,   37,   37,   36},

{  -29,  -35,  -38,  -39,  -38,  -34,  -27,  -20,   -9,    1,   11,   21,   31,   39,   47,   49},

{  -36,  -43,  -39,  -29,  -11,    8,   25,   36,   43,   43,   36,   21,    1,  -18,  -36,  -42},

{   35,   38,   24,    1,  -26,  -43,  -45,  -31,   -1,   25,   42,   42,   28,    3,  -27,  -43},

{   33,   32,    7,  -26,  -46,  -34,   -1,   30,   45,   33,    0,  -35,  -49,  -28,   14,   41},

{   37,   28,  -12,  -45,  -39,    3,   41,   40,   -3,  -39,  -38,    0,   38,   39,   -1,  -37},

{   36,   17,  -31,  -43,    0,   42,   28,  -23,  -47,  -11,   38,   37,  -15,  -45,  -12,   36},

{   39,    6,  -45,  -28,   36,   35,  -24,  -42,   15,   43,   -1,  -45,  -13,   39,   22,  -31},

{   39,   -9,  -46,    7,   43,  -16,  -42,   19,   42,  -20,  -39,   22,   36,  -28,  -35,   33},

{   38,  -23,  -36,   32,   20,  -42,   -1,   44,  -24,  -29,   37,   16,  -46,    9,   43,  -31},

{   39,  -37,  -17,   44,  -21,  -25,   42,   -8,  -38,   39,    5,  -43,   31,   14,  -42,   24},

{   36,  -45,    6,   31,  -45,   22,   22,  -48,   37,    0,  -37,   38,   -7,  -27,   39,  -20},

{  -27,   43,  -30,    4,   26,  -41,   33,   -6,  -26,   46,  -39,   10,   27,  -47,   43,  -20},

{  -26,   46,  -45,   30,   -2,  -23,   42,  -44,   39,  -27,    5,   18,  -35,   39,  -31,   13},

{  -14,   28,  -37,   40,  -37,   30,  -18,    3,   16,  -34,   45,  -48,   45,  -37,   24,   -9},

{  -12,   24,  -33,   39,  -42,   44,  -42,   36,  -35,   37,  -37,   32,  -27,   21,  -13,    5},

},

{

{   19,   22,   25,   28,   30,   32,   33,   35,   36,   36,   36,   36,   36,   35,   34,   32},

{  -36,  -41,  -41,  -40,  -35,  -30,  -23,  -14,   -3,    6,   16,   24,   32,   38,   44,   45},

{   42,   45,   36,   21,    1,  -17,  -31,  -39,  -41,  -37,  -27,  -12,    7,   25,   39,   43},

{   40,   36,   13,  -13,  -35,  -43,  -38,  -20,    7,   30,   44,   42,   25,   -2,  -31,  -45},

{   42,   31,   -9,  -43,  -47,  -21,   16,   40,   40,   21,  -11,  -36,  -41,  -21,   17,   39},

{   35,   15,  -28,  -45,  -18,   26,   45,   24,  -21,  -46,  -31,   10,   45,   38,   -6,  -39},

{   34,    5,  -39,  -32,   22,   47,   13,  -37,  -43,    3,   45,   29,  -24,  -43,   -5,   34},

{   38,   -8,  -47,   -8,   46,   20,  -39,  -32,   31,   41,  -14,  -46,   -2,   40,   15,  -29},

{   36,  -20,  -40,   23,   35,  -29,  -33,   33,   31,  -34,  -30,   34,   30,  -35,  -29,   34},

{   36,  -33,  -25,   41,    3,  -42,   15,   36,  -33,  -18,   41,    2,  -45,   18,   42,  -34},

{   34,  -39,   -5,   40,  -32,  -13,   44,  -21,  -29,   43,   -5,  -38,   38,    6,  -45,   30},

{   30,  -45,   17,   20,  -44,   31,   12,  -45,   42,   -6,  -35,   41,  -11,  -25,   41,  -22},

{   24,  -43,   37,  -12,  -21,   41,  -40,   15,   19,  -42,   41,  -16,  -20,   42,  -43,   20},

{   19,  -39,   43,  -33,   11,   15,  -36,   45,  -43,   32,   -9,  -16,   37,  -44,   35,  -15},

{  -13,   29,  -38,   43,  -42,   36,  -23,    7,   12,  -28,   40,  -44,   43,  -37,   25,  -10},

{    8,  -19,   27,  -33,   38,  -42,   41,  -37,   37,  -40,   40,  -37,   31,  -24,   16,   -6},

},

{

{   30,   31,   31,   31,   32,   32,   32,   32,   33,   33,   33,   33,   33,   33,   32,   32},

{  -38,  -43,  -42,  -37,  -29,  -23,  -17,   -9,    3,   13,   20,   26,   35,   41,   46,   45},

{  -41,  -42,  -30,  -12,    8,   23,   35,   41,   40,   38,   30,   15,   -5,  -24,  -41,  -44},

{   35,   33,   12,  -13,  -35,  -44,  -39,  -22,    6,   30,   43,   42,   29,    1,  -33,  -46},

{   45,   27,  -18,  -48,  -46,  -19,   16,   38,   39,   22,   -4,  -29,  -42,  -27,   12,   37},

{   45,   11,  -43,  -48,   -5,   34,   40,   12,  -23,  -38,  -26,    9,   42,   36,   -7,  -37},

{   30,   -1,  -38,  -21,   34,   43,   -4,  -49,  -38,   13,   49,   25,  -29,  -42,   -3,   32},

{   29,  -10,  -36,    3,   44,   10,  -45,  -28,   41,   45,  -18,  -51,   -6,   38,   16,  -31},

{   34,  -25,  -35,   26,   33,  -28,  -33,   28,   31,  -31,  -33,   34,   33,  -36,  -32,   36},

{   39,  -37,  -24,   43,    1,  -42,   13,   35,  -31,  -19,   38,    6,  -43,   15,   42,  -35},

{   31,  -40,   -2,   38,  -32,  -11,   42,  -21,  -31,   44,   -1,  -42,   33,    9,  -47,   31},

{   26,  -42,   20,   18,  -46,   31,   16,  -48,   41,   -1,  -36,   41,   -7,  -28,   40,  -22},

{  -22,   41,  -36,   13,   22,  -42,   38,  -11,  -24,   46,  -39,   11,   25,  -44,   41,  -19},

{  -19,   40,  -45,   35,   -9,  -18,   39,  -46,   43,  -30,    6,   17,  -36,   40,  -31,   14},

{   12,  -29,   40,  -46,   45,  -40,   27,  -10,   -9,   25,  -37,   41,  -41,   34,  -22,    9},

{    7,  -17,   25,  -30,   35,  -39,   39,  -36,   38,  -42,   43,  -41,   35,  -27,   16,   -7},

},

}

const int KLTCol16[3][16][16]=

{

{

{   19,   23,   25,   27,   29,   30,   32,   33,   34,   35,   36,   36,   37,   37,   37,   36},

{  -29,  -35,  -38,  -39,  -38,  -34,  -27,  -20,   -9,    1,   11,   21,   31,   39,   47,   49},

{  -36,  -43,  -39,  -29,  -11,    8,   25,   36,   43,   43,   36,   21,    1,  -18,  -36,  -42},

{   35,   38,   24,    1,  -26,  -43,  -45,  -31,   -1,   25,   42,   42,   28,    3,  -27,  -43},

{   33,   32,    7,  -26,  -46,  -34,   -1,   30,   45,   33,    0,  -35,  -49,  -28,   14,   41},

{   37,   28,  -12,  -45,  -39,    3,   41,   40,   -3,  -39,  -38,    0,   38,   39,   -1,  -37},

{   36,   17,  -31,  -43,    0,   42,   28,  -23,  -47,  -11,   38,   37,  -15,  -45,  -12,   36},

{   39,    6,  -45,  -28,   36,   35,  -24,  -42,   15,   43,   -1,  -45,  -13,   39,   22,  -31},

{   39,   -9,  -46,    7,   43,  -16,  -42,   19,   42,  -20,  -39,   22,   36,  -28,  -35,   33},

{   38,  -23,  -36,   32,   20,  -42,   -1,   44,  -24,  -29,   37,   16,  -46,    9,   43,  -31},

{   39,  -37,  -17,   44,  -21,  -25,   42,   -8,  -38,   39,    5,  -43,   31,   14,  -42,   24},

{   36,  -45,    6,   31,  -45,   22,   22,  -48,   37,    0,  -37,   38,   -7,  -27,   39,  -20},

{  -27,   43,  -30,    4,   26,  -41,   33,   -6,  -26,   46,  -39,   10,   27,  -47,   43,  -20},

{  -26,   46,  -45,   30,   -2,  -23,   42,  -44,   39,  -27,    5,   18,  -35,   39,  -31,   13},

{  -14,   28,  -37,   40,  -37,   30,  -18,    3,   16,  -34,   45,  -48,   45,  -37,   24,   -9},

{  -12,   24,  -33,   39,  -42,   44,  -42,   36,  -35,   37,  -37,   32,  -27,   21,  -13,    5},

}, 

{ 

{   19,   22,   25,   28,   30,   32,   33,   35,   36,   36,   36,   36,   36,   35,   34,   32},

{  -36,  -41,  -41,  -40,  -35,  -30,  -23,  -14,   -3,    6,   16,   24,   32,   38,   44,   45},

{   42,   45,   36,   21,    1,  -17,  -31,  -39,  -41,  -37,  -27,  -12,    7,   25,   39,   43},

{   40,   36,   13,  -13,  -35,  -43,  -38,  -20,    7,   30,   44,   42,   25,   -2,  -31,  -45},

{   42,   31,   -9,  -43,  -47,  -21,   16,   40,   40,   21,  -11,  -36,  -41,  -21,   17,   39},

{   35,   15,  -28,  -45,  -18,   26,   45,   24,  -21,  -46,  -31,   10,   45,   38,   -6,  -39},

{   34,    5,  -39,  -32,   22,   47,   13,  -37,  -43,    3,   45,   29,  -24,  -43,   -5,   34},

{   38,   -8,  -47,   -8,   46,   20,  -39,  -32,   31,   41,  -14,  -46,   -2,   40,   15,  -29},

{   36,  -20,  -40,   23,   35,  -29,  -33,   33,   31,  -34,  -30,   34,   30,  -35,  -29,   34},

{   36,  -33,  -25,   41,    3,  -42,   15,   36,  -33,  -18,   41,    2,  -45,   18,   42,  -34},

{   34,  -39,   -5,   40,  -32,  -13,   44,  -21,  -29,   43,   -5,  -38,   38,    6,  -45,   30},

{   30,  -45,   17,   20,  -44,   31,   12,  -45,   42,   -6,  -35,   41,  -11,  -25,   41,  -22},

{   24,  -43,   37,  -12,  -21,   41,  -40,   15,   19,  -42,   41,  -16,  -20,   42,  -43,   20},

{   19,  -39,   43,  -33,   11,   15,  -36,   45,  -43,   32,   -9,  -16,   37,  -44,   35,  -15},

{  -13,   29,  -38,   43,  -42,   36,  -23,    7,   12,  -28,   40,  -44,   43,  -37,   25,  -10},

{    8,  -19,   27,  -33,   38,  -42,   41,  -37,   37,  -40,   40,  -37,   31,  -24,   16,   -6},

}, 

{ 

{   30,   31,   31,   31,   32,   32,   32,   32,   33,   33,   33,   33,   33,   33,   32,   32},

{  -38,  -43,  -42,  -37,  -29,  -23,  -17,   -9,    3,   13,   20,   26,   35,   41,   46,   45},

{  -41,  -42,  -30,  -12,    8,   23,   35,   41,   40,   38,   30,   15,   -5,  -24,  -41,  -44},

{   35,   33,   12,  -13,  -35,  -44,  -39,  -22,    6,   30,   43,   42,   29,    1,  -33,  -46},

{   45,   27,  -18,  -48,  -46,  -19,   16,   38,   39,   22,   -4,  -29,  -42,  -27,   12,   37},

{   45,   11,  -43,  -48,   -5,   34,   40,   12,  -23,  -38,  -26,    9,   42,   36,   -7,  -37},

{   30,   -1,  -38,  -21,   34,   43,   -4,  -49,  -38,   13,   49,   25,  -29,  -42,   -3,   32},

{   29,  -10,  -36,    3,   44,   10,  -45,  -28,   41,   45,  -18,  -51,   -6,   38,   16,  -31},

{   34,  -25,  -35,   26,   33,  -28,  -33,   28,   31,  -31,  -33,   34,   33,  -36,  -32,   36},

{   39,  -37,  -24,   43,    1,  -42,   13,   35,  -31,  -19,   38,    6,  -43,   15,   42,  -35},

{   31,  -40,   -2,   38,  -32,  -11,   42,  -21,  -31,   44,   -1,  -42,   33,    9,  -47,   31},

{   26,  -42,   20,   18,  -46,   31,   16,  -48,   41,   -1,  -36,   41,   -7,  -28,   40,  -22},

{  -22,   41,  -36,   13,   22,  -42,   38,  -11,  -24,   46,  -39,   11,   25,  -44,   41,  -19},

{  -19,   40,  -45,   35,   -9,  -18,   39,  -46,   43,  -30,    6,   17,  -36,   40,  -31,   14},

{   12,  -29,   40,  -46,   45,  -40,   27,  -10,   -9,   25,  -37,   41,  -41,   34,  -22,    9},

{    7,  -17,   25,  -30,   35,  -39,   39,  -36,   38,  -42,   43,  -41,   35,  -27,   16,   -7},

},

}
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