	[image: image1.png]

[image: image2.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
2nd Meeting: Geneva, CH, 21-28 July, 2010
	Document: JCTVC-B036

	Title:
	Improving throughput for V2V coding in HEVC

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Dake He, Gergely Korodi, and Gaelle Martin-Cocher

175 Columbia St. West
Waterloo, Ontario N2L 5Z5
Canada
	
Tel: +1-519-888-7465
Email: dhe@rim.com gkorodi@rim.com gmartincocher@rim.com

	

	Source:
	Research In Motion Ltd.

Abstract

The V2V coding method described in the Test Model under Consideration for HEVC provides potentially significant throughput improvement over CABAC in ITU‑T Rec. H.264 | ISO/IEC 14496-10. It is however observed that the context modeling process might become the bottleneck limiting the throughput of the whole decoding process. In order to improve throughput of coding residual data, a coding order that groups significant_coeff_flags and last_significant_coeff_flags according to their contexts is described. For these syntax elements, this coding order allows multiple bins to be processed in a single table lookup, whereas such table lookups are impractical with the existing coding order defined in ITU‑T Rec. H.264 | ISO/IEC 14496-10.
1 Introduction
In ITU‑T Rec. H.264 | ISO/IEC 14496-10 (here after the AVC standard for brevity), the process of coding a syntax element by using CABAC includes: binarization, context modelling, and binary arithmetic coding (BAC). To encode a binary decision (bin) after binarization, context modelling determines a probability of the next bit by using a finite state model with 64 states, and the bin encoder based on BAC encodes the bit by using the estimated probability; in order to decode the bin at the decoder, the same context modeling process is used to determine the probability, and then the bin decoder based on BAC recovers the bin by using the probability.
In the Test Model under Considration (TMuC) [1] of HEVC (High Efficiency Video Coding), an entropy coding method called variable-length to variable-length coding (V2V) was introduced along with a framework allowing for parallel processing. In this framework, context modelling outputs probabilities from a finite set P = {p0, …, pN-1}, where N <= 64, and 0 <= pi <=1 for all 0 <= i < N. The bin sequence x to be encoded is then partitioned into N subsequences {S0, S1, …, SN-1}, where each bit in Si is assigned the same probability pi after context modelling. Then each subsequence Si can be encoded independently in parallel into Si’ by using V2V designed for probability pi. Using a simple multiplexing scheme, S0’, S1’, …, SN’ can be embedded into a single bitstream.

At the decoder, the input bitstream is de-multiplexed into N bitstreams S0’, S1’, …, SN-1’, by reversing the multiplexing procedure at the decoder. Each Si’ can then be independently decoded into Si. After all S0, S1, …, SN-1 are available, the decoder follows the context modelling process to produce the bin sequence x.

Since the parallel framework allows multiple bin decoders to run simultaneously to decode a subset of {S0’, S1’, …, SN-1’}, it has the potential to provide high throughput (measured by the rate of outputting bins), in particular in decoding, As such, this framework is particularly attractive in video compression where high throughput is required for real-time video decoding of large format video sequences.

However, since context modelling operates in a bin by bin manner, it is seen that it might become the bottleneck limiting the throughput of the whole decoding process. This proposal is aimed at addressing the throughput problem of context modeling coupled with V2V coding in HEVC.
2 Improving Throughput by Changing Coding Order
In this section, we use syntax elements significant_coeff_flags (or sig in short) and last_significant_coeff_flags (or last in short) of residual data to illustrate how one can improve throughput by changing coding order. Suppose that only 4x4 DCT (discrete cosine transform) is used specified in the AVC standard. Then the residual data of a video frame after quantization and zig-zag scanning can be organized as a sequence of length 16 vector of integers:

X[0, 0], X[0, 1], ..., X[0, 15]

X[1, 0], X[1, 1], ..., X[1, 15],

...

X[n-1, 0], X[n-1, 1], ..., X[n-1, 15],

where X[i, j] denotes the jth coefficient (following the zig-zag scanning order) in the ith DCT block, and n denotes the total number of 4x4 DCT blocks in the frame.

To encode a vector X[i, 0], ..., X[i, 15], the AVC standard first encodes two bin sequences

sig[i, 0], ..., sig[i, 15],

 and

last[i, 0], ..., last[i, 15],

where for any (i, j),

sig[i, j] = (X[i, j] != 0),

 and

last[i, j] = (j== Li).

In the above, Li denotes the position of the last non-zero coefficient in X[i, 0], ..., X[i, 15]. Collectively, sig[i, 0], ..., sig[i, 15], and last[i, 0], ..., last[i, 15] provide the significance map of X[i, 0], ..., X[i, 15]. To encode X[i, j], the context model in the AVC standard works as follows.

assigns context ctx_sig_offset+j to estimate the probability for encoding sig[i, j];

if (sig[i, j] ==1),

assigns context ctx_last_offset+j to estimate the probability for encoding last[i, j].

where ctx_sig_offset denotes the offset of the context block for significant_coeff_flags, and ctx_last_offset denotes the offset of the context block for last_significant_coeff_flags.
Clearly, the above coding order implies that at the decoder, the decoding of sig[i, 0], ..., sig[i, 15] and that of last[i, 0], ..., last[i, 15] has to be interleaved. As a consequence, in order to decode multiple bits together, large lookup tables are needed to account for all possible decoding output strings. For example, if one would like to decode 3 bits together starting at sig[i, j], the following information is needed

The initial state for ctx_sig_offset+j (out of 64 possible values)

The state for ctx_last_offset+j+1 (needed if sig[i, j] ==1)

The state for ctx_sig_offset+j+1

The state for ctx_last_offset+j+1 (needed if sig[i, j+1]==1)

The state for ctx_sig_offset+j+2 (needed if sig[i, j] == 0 and sig[i, j+1] == 0).

Simple calculations show that there are 64x64x64x8 = 221 possible combinations, and thus the table size is simply too large to be practical.

Examining the coding order above, we see that instead of interleaving the encoding of the significance map at the block level, one has the flexibility of doing that for a group of blocks. For example, the encoding order can be set up as follows.

For j=0, ..., 15

For i=0, ..., n-1

If (last[i, 0] + ... + last[i, j-1] == 0)

Encode sig[i, j] with context_sig_offset + j;

End

End

For i=0, ..., n-1

If (sig[i, j] == 1)

Encode last[i, j] with context_last_offset + j;

End

End

End

The advantages of using this encoding order are explained as follows:

1. Within a loop of i, it is now possible to decode multiple bins together by following the finite state machine used in the AVC standard context model to estimate probabilities. This method has no impact on the compression performance for 4x4 DCT blocks, however requires tables as in the AVC standard for the probabilities determination. To process four bins in a single lookup, the table size is estimated to have 1024 entries.
2. Alternatively, within a loop of i, one can easily trade off the delay in probability (state) estimation for decoding throughput. For example, instead of updating the state for every bin, one can update the state for every 4 bins. As such, the decoder can instantly extract 4 bits from one of the sub-sequences in {S0, S1, …, SN-1} as it is known that these 4 bins are encoding by using the same probability. This approach may reduce the compression efficiency. This is however simpler as the probability associated to the first bin is applied to the following bins. (No probability update needed within the group of bins).
To evaluate the effect of the second approach above on compression efficiency, we run tests on RaceHorses_416x240_30 and BQMall_832x480_60 by using the software base of the TMuC. On one GOP of 9 frames,
	
	Every 2 bins
	Every 3 bins
	Every 4 bins

	Loss for BQMall
	0.3%(0.02dB)
	0.31%(0.02dB)
	0.70%(0.03dB)

	Loss for RaceHorses
	0.11%(0.01dB)
	0.36%(0.02dB)
	0.53%(0.03dB)

3 Reference

[1] “Test Model under Consideration”, JCTVC-A205, April 2010.

4 Patent rights declaration(s)
Research In Motion Ltd may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

Page: 3
Date Saved: 2010-07-16

