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Abstract

Mode-Dependent Directional Transform (MDDT) was previously introduced to improve transform coding of intra-predicted blocks [1], and is now a core component of the Test Model under Consideration (TMuC) [2]. This proposal presents a simplification of the MDDT scheme that requires only two transform matrices: a DCT and a derived KLT. The derived 4x4 KLT also has a structure that can be exploited to reduce the operation count of the transform operation. Derivation of the KLT is based on an assumed image correlation model. Experimental results show that the proposed technique matches the performance of MDDT even though the approach requires no training, and has significantly lower computation and storage costs.
1 Introduction

In MDDT, separable transforms are used to approximate an ideal non-separable directional transform [1]. Specifically, if X is a N x N block of pixels, then its 2D transform coefficients are given by:

[image: image1.wmf]T

m

m

XR

C

Y

=


The subscript m in Cm and Rm denotes the dependence of the column and row transforms on the prediction mode. Note that in H.264, Cm = Rm = M, where M is an integer Discrete Cosine Transform (DCT) transform matrix. In the Mode-Dependent Directional Transform (MDDT) scheme, Karhunen-Loève Transforms (KLT) are used for Cm and Rm and are computed by performing SVD on residual blocks of prediction mode m collected from training video sequences.
In H.264/AVC, there are a total of 9 intra prediction modes. Therefore, MDDT needs to store 18 transform matrices. Furthermore, because a KLT, unlike DCT, in general has no fast computation method, it is more complex than simply performing DCT. To alleviate this, Budagavi and Zhou have proposed two alternatives [3]. The first, called Orthogonal Mode-Dependent Directional Transform (OMDDT), simply assumes that Cm = Rm, and thus computes the KLT using that constraint. In this way, only 9 transform matrices need to be stored instead of 18. The second, called Mode-Dependent DCT (MDDCT), goes a step further and assumes that each KLT is simply a DCT followed by scaling of ±1. In other words:
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where Qm is a diagonal matrix with ±1 entries along its diagonal.

None of the above approaches actually explores why a directional transform would perform better than DCT in coding intra prediction residuals. This proposal presents an analysis of the statistics of intra prediction residuals for various modes in order to determine why directional transforms would provide more coding gain than DCT. From this insight, a set of transforms can be derived without any training. Furthermore, it matches the performance of MDDT while requiring less computational complexity and storage.

2 Proposed scheme
2.1 Image correlation model
To simplify the derivation, we will assume that each image pixel is a random variable with zero mean and unit variance. Furthermore, we shall assume the following image correlation model:
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where ρy and ρx are the correlation coefficient of neighboring pixels in the vertical and horizontal direction respectively.

2.2 Residual statistics and transform
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Figure 1. Reference and source pixels in a 4x4 block.
We now derive the statistics of the residual after intra prediction. We will use as an example intra mode 0, which predicts in the vertical direction. Suppose that the pixels are labeled as in Figure 1. First, let us look at the statistics for each row of the residue. The covariance matrix for the kth row (1 ≤ k ≤ 4) is:
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Note that
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is a Toeplitz matrix, and so its KLT is approximately the DCT. In other words, applying a DCT on each row would be sufficient; there is no need to train a KLT specifically to handle the row-wise transform.
Next, we look at each column of the residue. The covariance matrix for the kth column (1 ≤ k ≤ 4) is:
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Unlike the row-wise covariance matrix,
 
is not a Toeplitz matrix, so the DCT is clearly sub-optimal. We would now have to compute the KLT, but fortunately, we can use this derived covariance matrix to compute the KLT.
The actual covariance matrix is in fact independent of k:
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Furthermore, as ρ→1, the covariance matrix tends towards:
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where α is some constant. The inverse of the matrix (without the scalar multiplier) happens to be:
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The eigenvectors of such a tri-diagonal matrix have been computed to have sinusoidal terms [4]:
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Since
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is a symmetric positive-definite matrix, its eigenvectors (and KLT basis) would also be the same as above.
For N=4, we can obtain the following integer transform:
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In comparison, an integer DCT transform matrix is:
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We can do the same analysis for N=8:
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And, for N=16:
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In summary, for the vertical prediction mode (mode 0), we should do DCT along the rows, and the derived KLT along the columns. The analysis for horizontal prediction (mode 1) is very similar, and we should apply the derived KLT along the rows, and the DCT along the columns.
For DC prediction (mode 2), a single DC value is used as the predictor for all pixels. Suppose that the predictor is equally correlated to all the pixels in the source. Then, the resulting covariance matrix is Toeplitz for both column and row, so the DCT is sufficient for both directions.
We can do a similar analysis for modes 3, 7 and 8. It turns out that a combination of DCT and the derived KLT is also prescribed for these modes. For modes 4, 5 and 6, the analysis is not so straightforward since neighboring pixels along both horizontal and vertical edges are used for prediction. However, a comparison between the derived KLT matrix and the trained matrices from MDDT [4] reveals that the two are in fact very similar. Therefore, we propose that the derived KLT be used for performing both row-wise and column-wise transforms in these three modes. Table 1 summarizes the choices that are made.
Table 1. Choice of KLT/DCT for each intra prediction mode.

	Mode
	Column Transform
	Row Transform

	0
	KLT
	DCT

	1
	DCT
	KLT

	2
	DCT
	DCT

	3
	KLT
	DCT

	4
	KLT
	KLT

	5
	KLT
	KLT

	6
	KLT
	KLT

	7
	KLT
	DCT

	8
	DCT
	KLT


3 Fast Implementation for 4x4 transform

In general, there is no fast transform when using a KLT, so a full matrix multiply has to be carried out. For N=4, this would require 16 multiplies and 12 adds per 1-D transform operation. It turns out that the derived KLT for N=4 has a certain structure that can be exploited to reduce the total number of operations compared to a full matrix multiply. Suppose we wish to compute the following:
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We can do so by using the following steps:
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This requires only 8 multiplies and 10 adds.

The inverse transform can be computed as follows:
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This also requires only 8 multiplies and 10 adds.

4 Implementation and Simulation Results

We have implemented our proposed approach on the JM-KTA software platform (JM11.0KTA2.6r1), where the 4x4, 8x8 and 16x16 block transforms for intra prediction residual uses the proposed combinations of DCT and derived KLT transforms shown in Table 1 (for 16x16, only the vertical and horizontal prediction modes are applicable). Note that in the proposed approach, only two transform matrices need to be stored for each block size (one of which is the DCT), instead of 18 transform matrices in MDDT.
We use the following KTA tools in both all-intra and hierarchical-B configurations: adaptive loop filter (UseAdaptiveLoopFilter=1), extended block sizes (UseExtMB=2) and RDOQ (UseRDO_Q=1). For hierarchical-B configurations, we also use motion vector competition (MVCompetition=1) and new offset for weighted prediction (UseNewOffset=1).

We compare MDDT [1] and the proposed technique with KTA without MDDT (but with the other KTA tools enabled), showing both BD-Rate and BD-PSNR figures [6]. Table 2 shows the RD results when all the frames are coded as intra, for all the test sequences used in the HVC CfP [5]. Here, the proposed technique matches the RD performance of MDDT, but requires less storage and computational complexity.

Table 2. RD results for all intra configuration.

	Sequence
	MDDT
	Proposed

	
	BD-Rate (%)
	BD-PSNR (dB)
	BD-Rate (%)
	BD-PSNR (dB)

	Class A

	PeopleOnStreet
	-6.08
	0.35
	-7.11
	0.41

	Traffic
	-6.07
	0.33
	-6.32
	0.34

	Average for Class A
	-6.08
	0.34
	-6.72
	0.38

	Class B

	BasketballDrive
	-5.50
	0.17
	-5.36
	0.17

	BQTerrace
	-3.32
	0.18
	-3.41
	0.18

	Cactus
	-4.55
	0.19
	-5.00
	0.20

	Kimono1
	-7.65
	0.34
	-7.51
	0.33

	ParkScene
	-4.44
	0.21
	-4.22
	0.20

	Average for Class B
	-5.09
	0.22
	-5.10
	0.22

	Class C

	BasketballDrill
	-5.19
	0.26
	-5.65
	0.28

	BQMall
	-6.04
	0.34
	-5.86
	0.33

	PartyScene
	-3.46
	0.27
	-3.25
	0.25

	RaceHorses
	-3.71
	0.20
	-3.94
	0.22

	Average for Class C
	-4.60
	0.27
	-4.68
	0.27

	Class D

	BasketballPass
	-4.70
	0.26
	-4.49
	0.25

	BlowingBubbles
	-3.36
	0.23
	-3.30
	0.22

	BQSquare
	-3.37
	0.27
	-3.66
	0.30

	RaceHorses
	-3.97
	0.23
	-4.11
	0.24

	Average for Class D
	-3.85
	0.25
	-3.89
	0.25

	Class E

	vidyo1
	-7.84
	0.46
	-8.35
	0.49

	vidyo3
	-8.00
	0.50
	-7.36
	0.46

	vidyo4
	-7.38
	0.40
	-7.53
	0.41

	Average for Class E
	-7.74
	0.45
	-7.75
	0.45


Table 3 shows the RD results when the hierarchical-B configuration is used, as in the alpha anchor in the HVC CfP, where a IbBbBbBbP coding structure is used, with an IDR period of at most 1.1 seconds (as in the HVC CfP) [5].

Table 3. RD results for hierarchical B configuration
	Sequence
	MDDT
	Proposed

	
	BD-Rate (%)
	BD-PSNR (dB)
	BD-Rate (%)
	BD-PSNR (dB)

	Class A

	PeopleOnStreet
	-2.54
	0.12
	-2.91
	0.14

	Traffic
	-3.16
	0.13
	-3.13
	0.12

	Average for Class A
	-2.85
	0.12
	-3.02
	0.13

	Class B

	BasketballDrive
	-3.14
	0.08
	-2.99
	0.07

	BQTerrace
	-1.95
	0.03
	-1.45
	0.02

	Cactus
	-2.44
	0.05
	-2.68
	0.06

	Kimono1
	-3.04
	0.11
	-3.31
	0.12

	ParkScene
	-2.33
	0.08
	-2.05
	0.07

	Average for Class B
	-2.58
	0.07
	-2.50
	0.07

	Class C

	BasketballDrill
	-2.67
	0.11
	-2.87
	0.12

	BQMall
	-2.14
	0.09
	-1.82
	0.08

	PartyScene
	-1.30
	0.05
	-1.18
	0.05

	RaceHorses
	-1.88
	0.07
	-1.83
	0.07

	Average for Class C
	-2.00
	0.08
	-1.93
	0.08

	Class D

	BasketballPass
	-2.16
	0.10
	-1.98
	0.09

	BlowingBubbles
	-1.25
	0.05
	-1.09
	0.04

	BQSquare
	-1.05
	0.04
	-1.22
	0.04

	RaceHorses
	-1.70
	0.07
	-1.62
	0.07

	Average for Class D
	-1.54
	0.07
	-1.48
	0.06

	Class E

	vidyo1
	-3.92
	0.16
	-3.99
	0.17

	vidyo3
	-3.70
	0.16
	-2.81
	0.12

	vidyo4
	-3.69
	0.15
	-3.48
	0.14

	Average for Class E
	-3.77
	0.16
	-3.43
	0.14


5 Conclusion

This proposal presents a technique for reducing the computational and storage complexity of MDDT by using only two transforms: DCT and a derived KLT. Experimental results show that there is no significant loss in coding efficiency. We recommend to consider this proposal for adoption in the TM/TMuC and to propose this technique for Core Experiments.
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