	[image: image17.png]

[image: image18.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11

2nd Meeting: Geneva, CH, 21-28 July, 2010
	Document: JCTVC-B020

	Title:
	Proposals for video coding complexity assessment

	Status:
	Input Document to JCT-VC

	Purpose:
	Information

	Author(s) or
Contact(s):
	Daniele Alfonso
STMicroelectronics
Via Tolomeo 1
20100 Cornaredo MI, Italy
	
Tel:
Email:
	
+39.02.93519755
daniele.alfonso@st.com

	Source:
	STMicroelectronics

Abstract

This contribution discusses some methods commonly used to estimate the complexity of software applications and proposes a methodology for the complexity assessment of video coding software systems based on the Valgrind tool suite.

1. Introduction

This document focuses on the complexity assessment of video coding software systems, a subject that is recently drawing increased attention in view of the development of the new “High-Performance Video Coding”, for which some complexity goals have been proposed [1]

 REF _Ref242260273 \r \h
 * MERGEFORMAT [2]

 REF _Ref242260274 \r \h
 * MERGEFORMAT [3]

 REF _Ref242260275 \r \h
 * MERGEFORMAT [4]

 REF _Ref242260276 \r \h
 * MERGEFORMAT [5].

As a first step towards the definition of a methodology for complexity assessment of video coding systems, it is important to remember that the result of a measure is not simply a number, but rather a stochastic variable characterized by an uncertainty that is due to systematic errors and random errors. Two factors define the quality of a measure, called accuracy and precision: the accuracy defines the closeness of a measured quantity to its true value whereas the precision defines the degree to which further measurements show the same or similar results (also called repeatability).

Of course we wish a measure of complexity having good accuracy and precision, and furthermore we want to define a test method having good properties of reproducibility and simplicity.

The reproducibility refers to the ability of a test or experiment to be accurately reproduced or replicated by someone else working independently. As we will see later, the complexity estimation of a software system depends not only on the application itself, but also on the environment in which the application is running, therefore the reproducibility is a key point when several people are working on the design of a software system using different machines equipped with different CPUs, different Operating Systems, different compilers and so on, otherwise the measures obtained by different people could not be directly compared.

By simplicity we intend the capability to execute complexity measures in an automated way, with very limited participation of the system designer. This property is important because it is known that the complexity of a video coding system heavily depends on how the system is configured (especially for encoders) and on the input signals (especially for decoders). Since the complexity assessment is likely going to be performed on large sets of configurations and inputs, a viable complexity assessment should be performed by shell scripting without requiring human interaction.

To conclude this introduction, we must finally give a clear definition for the complexity of a video coding system. As observed in [6], complexity is actually a multi-dimensional quantity, including different aspects such as computation, memory size, memory bandwidth and others.

In order to limit the difficulty of our analysis we would like to consider very few complexity dimensions, restricting our investigations to those factors that have the most relevant impact on the final implementation cost, which in case of a hardware system is essentially determined by silicon area, clock frequency and power consumption.

Under those assumptions, our complexity assessments will be practically performed by the measurement of the computational complexity and the memory bandwidth, which express respectively the number of operations and the amount of data read from/written to the memory per time unit or per size of the input data, e.g. per second, per picture or per Macroblock.

2. Time measures

The computational complexity of an application is often estimated by its overall execution time, which is very easy to be measured by the C function gettimeoftheday(), part of the standard library sys/time.h. The function returns the current “wall clock” time with microsecond precision, so it is sufficient to invoke it at the beginning and at the end of the main() function of the application to obtain the total elapsed time.

For our purposes this kind of measure is definitely coarse and unreliable for several reasons. First of all, the total elapsed time from the beginning of a process to its conclusion accounts for the time spent by the CPU in the process of interest and also in all the other processes running in the system, on behalf of other users or the Operating System. Even in the ideal case of a single process running (which is anyway practically impossible), it must be remembered that the OS can put the CPU in one of the following four states:

· Executing in User Mode: the CPU is executing the machine code of a process that accesses its own data space in memory.

· Executing in System Mode (also known as Kernel Mode): the CPU is executing a system call made by the process to require the services of the Kernel.

· Idle waiting for I/O: processes are sleeping while waiting for the completion of I/O to disk or other block devices.

· Idle: no processes are ready-to-run on the CPU or are sleeping waiting for block I/O or keyboard input or network I/O.

Given the above definitions, the Elapsed Time is defined as the total time elapsed from process start to process end, the User Time is the total number of CPU time that the process used directly (in User Mode) and the System Time is the total number of CPU-seconds used by the OS on behalf of the process (in System Mode). The CPU load, defined in the following formula, expresses the fraction of the total time that the CPU spent in execution mode.

[image: image1.wmf]elapsed

system

user

load

CPU

+

=

_

Obviously we are not interested in measuring the performance of the hard disk or the time spent by the CPU in executing Kernel routines, because these factors are not related to the intrinsic complexity of the video coding system. To improve the accuracy of the measure, the evaluation of the Elapsed Time shall be rather replaced by the evaluation of the User Time of the process of interest.

Under the Linux OS the User Time can be measured by the C function getrusage(), which is part of the sys/resource.h library. This function returns a structure containing several data about the resource usage of the current process (or a child process), including the User Time.

Alternatively, and especially when the source files of the application can not be modified, the User Time can be measured by the time built-in command of the Shell or by the GNU time command which is usually installed as /usr/bin/time. Both commands work by forking a child process for the target application and then using the getrusage() function to measure the resource usage of the child process.

To evaluate the reliability of this kind of measure, we performed a test experiment using the GNU time command to measure the User Time of the JM H.264/AVC encoder and decoder version 16.0 [7]

 REF _Ref242503054 \r \h
 * MERGEFORMAT [8]. In this test we wanted to compare the computational complexity of both encoding and decoding in two different configurations: in the first we enabled the Inter MB coding modes from 16x16 to 8x8 whereas in the second only the 16x16 mode is enabled. We have used 4 standard test sequences in 1080p24 format (Kimono1, Park Scene, Rolling Tomatoes and Tennis) and 4 different base quantization parameters (22, 27, 32, 37). For each configuration the encoder has been run 5 times and the decoder 9 times. The measured user times are reported in tables 1 and 2.

To evaluate the precision of the measures we used the Index of Dispersion (D), also known as Variance to Mean Ratio (VMR), defined as D = (2 / μ, where (2 is the variance of the distribution and μ is the mean value. The VMR is a normalized measure of the dispersion of a probability distribution: in an ideal situation it would be zero, corresponding to an infinite precision of the measure (i.e. all the measured values are identical); any value greater than zero proportionally indicates a loss of accuracy.

Tables 1 and 2 show that it could be unwise to trust the result of a single measurement of the User Time, rather it may be preferrable to execute the application several times and then take the statistical Expected Value as the result of the measurement. In case of several consecutive experiments the Index of Dispersion is most often acceptable, but sometimes it can be significant, as we measured a worst-case VMR equal to 0.65 for encoding.
[image: image2.emf]InterMB QP

1 2 3 4 5 Avg. Var. VMR

22 591 559 555 562 561

565.6 209.6 0.371

27 562 558 553 555 558

557.3 11.7 0.021

32 579 570 568 572 580

573.8 28.3 0.049

37 607 599 608 607 595

603.1 33.6 0.056

22 1,602 1,566 1,570 1,561 1,584

1576.5 279.3 0.177

27 1,561 1,546 1,545 1,568 1,574

1558.9 165.4 0.106

32 1,567 1,572 1,575 1,578 1,581

1574.7 25.6 0.016

37 1,545 1,589 1,567 1,591 1,570

1572.4 340.0 0.216

22 550 528 528 526 535

533.3 101.4 0.190

27 531 514 527 515 515

520.3 64.1 0.123

32 525 528 534 529 526

528.6 13.1 0.025

37 564 558 557 557 562

559.6 9.8 0.017

22 1,441 1,458 1,427 1,439 1,438

1440.5 125.9 0.087

27 1,392 1,409 1,398 1,399 1,402

1399.9 39.6 0.028

32 1,418 1,445 1,429 1,406 1,412

1421.9 234.3 0.165

37 1,408 1,443 1,423 1,439 1,409

1424.4 267.4 0.188

22 528 485 487 488 495

496.6 324.7 0.654

27 497 486 485 496 494

491.6 31.0 0.063

32 494 492 493 490 484

490.5 17.2 0.035

37 487 488 487 492 490

488.6 4.1 0.008

22 1,280 1,272 1,270 1,274 1,273

1274.0 13.7 0.011

27 1,267 1,252 1,265 1,262 1,256

1260.4 36.9 0.029

32 1,234 1,258 1,258 1,251 1,260

1252.0 119.0 0.095

37 1,221 1,224 1,254 1,237 1,228

1232.9 179.1 0.145

22 649 613 619 610 612

620.7 263.6 0.425

27 609 622 611 625 622

617.7 49.9 0.081

32 650 648 643 651 645

647.1 11.2 0.017

37 664 670 670 666 658

665.5 26.8 0.040

22 1,878 1,845 1,850 1,883 1,864

1863.8 277.1 0.149

27 1,852 1,889 1,874 1,889 1,847

1870.2 399.9 0.214

32 1,876 1,884 1,874 1,874 1,896

1880.6 88.4 0.047

37 1,920 1,962 1,941 1,929 1,952

1940.9 282.7 0.146

16x16

16x16

to 8x8

ParkScene

rolling_tomatoes

Tennis

16x16

16x16

to 8x8

16x16

16x16

to 8x8

Kimono1

16x16

16x16

to 8x8

Table 1: encoding user time [s].

[image: image3.emf]InterMB QP

1 2 3 4 5 6 7 8 9 Avg. Var. VMR

22 44.9 45.2 44.2 44.3 43.0 44.3 44.1 43.9 43.7

44.18 0.40 0.009

27 38.8 39.4 38.2 39.0 38.1 38.7 38.6 39.8 39.2

38.86 0.32 0.008

32 35.6 36.0 35.2 36.7 36.0 35.6 34.8 35.9 35.1

35.64 0.32 0.009

37 32.3 32.3 32.2 33.0 32.2 32.3 32.2 32.5 32.5

32.38 0.06 0.002

22 43.4 43.4 44.1 43.0 43.2 43.7 43.6 44.5 43.0

43.55 0.25 0.006

27 38.0 38.3 37.5 38.7 37.9 38.6 38.9 39.2 38.9

38.43 0.31 0.008

32 35.7 35.4 35.0 35.5 35.2 35.7 35.3 35.8 34.3

35.32 0.22 0.006

37 31.5 32.2 31.8 31.8 32.4 32.7 31.9 32.0 31.4

31.97 0.19 0.006

22 44.9 43.6 44.1 45.0 44.4 44.3 44.7 43.2 45.0

44.34 0.37 0.008

27 36.9 36.5 36.8 36.7 37.0 37.4 37.0 37.4 36.8

36.94 0.10 0.003

32 32.2 33.6 33.2 33.1 33.0 33.6 33.2 33.2 32.6

33.08 0.21 0.006

37 29.5 29.2 29.5 29.6 29.3 29.4 29.5 29.1 29.5

29.40 0.03 0.001

22 44.6 44.6 44.2 43.3 44.5 44.9 44.8 44.7 45.6

44.58 0.39 0.009

27 36.4 36.9 37.4 37.0 38.8 36.5 36.5 37.1 36.4

37.01 0.59 0.016

32 33.0 32.1 33.1 33.2 32.5 32.6 32.9 33.3 33.1

32.85 0.16 0.005

37 28.8 29.3 30.5 29.4 29.2 29.6 29.7 28.8 29.4

29.41 0.25 0.009

22 31.3 30.9 31.1 31.2 31.0 31.4 31.2 31.6 32.5

31.34 0.24 0.008

27 25.8 26.1 26.3 26.9 26.1 26.4 25.9 26.2 25.9

26.17 0.11 0.004

32 24.3 25.0 25.0 24.5 24.4 25.3 24.6 24.6 24.4

24.70 0.11 0.005

37 23.8 23.9 23.5 24.0 24.3 24.1 24.3 23.7 24.8

24.03 0.15 0.006

22 31.1 31.5 30.7 31.2 31.0 31.1 31.6 31.6 32.4

31.36 0.24 0.008

27 25.8 27.2 25.5 25.8 26.5 25.9 26.2 25.7 26.3

26.09 0.26 0.010

32 24.4 25.2 24.6 23.9 24.9 24.1 25.9 25.4 24.3

24.74 0.42 0.017

37 24.4 23.8 23.5 24.1 23.9 23.5 24.1 23.6 24.0

23.88 0.08 0.003

22 41.0 41.0 41.3 41.9 40.6 41.2 41.8 41.8 39.9

41.17 0.42 0.010

27 36.3 35.5 36.9 36.1 35.7 36.6 36.2 36.3 35.8

36.14 0.20 0.006

32 33.1 33.4 33.2 33.8 33.9 33.6 33.3 32.9 32.5

33.29 0.21 0.006

37 30.2 31.0 30.7 31.9 30.6 30.9 30.4 31.0 31.9

30.93 0.36 0.011

22 41.1 40.9 42.3 40.8 40.9 40.7 41.3 40.2 42.1

41.12 0.44 0.011

27 35.9 35.5 36.9 36.4 36.3 36.5 35.5 35.8 35.2

35.99 0.30 0.008

32 32.6 33.0 32.8 32.6 33.6 33.0 32.7 32.7 33.2

32.91 0.10 0.003

37 31.3 31.8 30.9 31.7 31.4 30.9 31.0 29.7 30.7

31.02 0.39 0.013

Kimono1

16x16

16x16

to 8x8

ParkScene

rolling_tomatoes

Tennis

16x16

16x16

to 8x8

16x16

16x16

to 8x8

16x16

to 8x8

16x16

Table 2: decoding user time [s].

[image: image4.emf]500

520

540

560

580

600

620

22 27 32 37

QP

User Time [s]

Round 1

Round 2

Round 3

Round 4

Round 5

Average

Figure 1: encoding user time for the sequence Kimono1.

Besides precision, estimating the computational complexity as the User Time has obvious reproducibility problems, because the same application running on different PC systems can easily result in greatly different complexity values, making almost impossible to compare the results.

In conclusion of this brief analysis we can state that the computational complexity estimation through measurement of the execution time – either Elapsed or User one – can not offer good properties of precision, accuracy and/or reproducibility, and alternative solutions should be explored.

3. New complexity metrics

Until now we have identified the computational complexity of an application as the time spent by the CPU to execute it. By definition, it is given by:

	
[image: image5.wmf]CR

CPI

IC

e

clock_cycl

seconds

n

instructio

es

clock_cycl

program

ns

instructio

program

seconds

CPU_time

complexity

´

´

=

=

´

´

=

=

=

=

	(1)

Therefore the computational complexity depends on three factors: the Instruction Count (IC), the average Clock cycles Per Instruction (CPI) and the Clock Rate (CR) [9].

The CR depends entirely on the hardware technology of the CPU which executes the application, not on the application itself. Since we are not interested in an evaluation of the CPU performance, we can conveniently exclude the CR from our analysis and adopt a new definition of complexity as follows:

	
[image: image6.wmf]CPI

IC

n

instructio

es

clock_cycl

program

ns

instructio

program

es

clock_cycl

complexity

´

=

´

=

=

	(2)

The CPI is the average number of clock cycles required by the CPU to execute an instruction of the specified program. It depends partially on the application, partially on the compiler technology and partially on the CPU hardware architecture.

To increase execution performance, modern CPU’s adopt pipelined, superscalar out-of-order execution, so that a precise measurement of the CPI is most difficult, unless employing a cycle-accurate Instruction Set Simulator (ISS).

ISS tools are typically commercial and/or proprietary and may be available only for certain specific CPU’s. If certain target architecture has been defined and if an ISS tool is available and able to run the selected application, then it is surely opportune to adopt the complexity definition (2) and measure it through the ISS.

Since is not in the scope of the standardization to target a definite architecture, it is proposed to estimate the complexity by assuming as reference a generic 32-bit x86 architecture (also called IA-32, see [10]), so that we should leave CPI measurement and adopt instead the following, simplified definition:

	
[image: image7.wmf]IC

program

ns

instructio

complexity

=

=

	(3)

The IC is the number of machine code instructions executed for the target application. It depends mostly on the application itself, but also on the compiler used to translate the high-level instructions to machine-level and lastly it depends on the CPU Instruction Set Architecture (ISA). The following section will explain how to measure the IC by using a tool called Valgrind [11].

It should be clear now that measuring the computational complexity of an application is not possible without referring to a specific architecture and a specific compiler technology. Even if a “generic” x86 CPU architecture is used for computational complexity evaluations, it is still important to agree on a specific compiler for the sake of reproducibility of experiments.

Under Linux OS, it is suggested to use the GCC compiler, adopting a recent version that already reached a “stage 3” maturity level [11]. Furthermore, it is necessary to consider the level of optimization applied by the compiler. GCC allows to control the optimization level by several options, the most important being the –On flag, which can assume the following values:

· -O0 reduces compilation time and makes debugging produce the expected results. This is the default.

· -O1 or -O tries to reduce both code size and execution time, without performing any optimizations that take a great deal of compilation time.

· -O2 performs nearly all supported optimizations that do not involve a space-speed trade-off. Compared to -O, this option increases both compilation time and the performance of the generated code.

· -O3 turns on all optimizations specified by -O2 and also turns on other optimizations that increase speed but may also increase the size, like function inlining.

· -Os optimizes for size.

Additionally, the GCC compiler can perform some platform-specific optimization specified by the –mtune and –march flags, and use SIMD instruction sets such as MMX or SSE. For the sake of efficiency and reproducibility of the measures, it is suggested to agree at least on the use of the typical speed optimization –O3 and to avoid any further platform-specific optimizations.

For the simulations presented in this document the JM 16.0 code has been compiled with GCC version 4.1.2 (a rather old 2007 release) using the default Makefile included in the JM package, which specifies –O3 optimization level.

4. Complexity measures with Valgrind
Valgrind [12] is a tool suite for debugging and profiling, which possesses several key features that make it very suitable for our purposes:

· it is freeware and open source (with GPL 2 license);
· it is available for many Linux distributions as precompiled package;
· it is maintained (latest release now is 3.5.0, dated 19 August 2009);
· it is reliable and easy to use.
Valgrind includes a cache simulator that can accurately trace the access to both Instruction Cache and Data Cache. Each access to Instruction Cache corresponds to a single instruction fetched and executed, hence allowing to easily measure the Instruction Count of the application, and therefore its computational complexity as defined in (3). For what concerns the Data Cache, Valgrind reports the number of accesses, but unfortunately it tells nothing about the data size so that it is not really possible to obtain the total number of bytes exchanged between the D-cache and the CPU.

To launch Valgrind with cache simulation, one of the following two syntaxes can be used:

1) valgrind --tool=cachegrind <command>

2) valgrind --tool=callgrind --simulate-cache=yes <command>

At the end of the simulation, Valgrind will report the results in the following form:

Events : Ir Dr Dw I1mr D1mr D1mw I2mr D2mr D2mw

Collected : 42583376 14494735 8421576 20494 28180 13073 7944 5856 11085

I refs: 42,583,376

I1 misses: 20,494

L2i misses: 7,944

I1 miss rate: 0.4%

L2i miss rate: 0.1%

D refs: 22,916,311 (14,494,735 rd + 8,421,576 wr)

D1 misses: 41,253 (28,180 rd + 13,073 wr)

L2d misses: 16,941 (5,856 rd + 11,085 wr)

D1 miss rate: 0.1% (0.1% + 0.1%)

L2d miss rate: 0.0% (0.0% + 0.1%)

L2 refs: 61,747 (48,674 rd + 13,073 wr)

L2 misses: 24,885 (13,800 rd + 11,085 wr)

L2 miss rate: 0.0% (0.0% + 0.1%)

In this example, the execution of a target application implied a total of 42,583,376 accesses to the I-cache, meaning that the same number of machine instructions has been executed. It also generated 22,916,311 total references to the D-cache, of which 14,494,735 are read accesses and 8,421,576 are write accesses.

Valgrind also simulates a further memory hierarchy level, an L2 cache shared for both data and instructions, and it also reports the hit-rate and miss-rate for each cache memory. For our purposes, however, it is sufficient to count the accesses to I-cache and D-cache, so that the actual cache configuration and performance is not really relevant.

It is worth noting that cache simulation results are available with function-by-function granularity, and they can be easily examined by using Kcachegrind, a graphical front-end interface [13]. If the cache simulation is executed through the Callgrind tool, a call graph of the application is also built, allowing an easy profiling of the application, as shown in Fig.2.

[image: image8.jpg]Ele View Go Settings Help

BHOY 000 %+
Instruction Fetch

R X/ Blockmotionsearch
search: | | (o Grouping) |~ || pes | callers | AllCallers | Source | Callee Map l
Incl, | self | called | Function | Location 121|| [event Type | Incl. | self |short | |Formula [2]
650 223 481 008 2 (0) M0X00A40810 1d2.5.50 B
650 223 365 701 18 1 50x08048E30 lencod.exe Data Read Access B 191 363 627 902 2 385440256 Dr
650 223 364 544 64 1 m(below main) libc-2.5.50 Data Write Access BNl 157116 354 880 1151 288328 Dw
w659 223 361 386 139731 1 simain lencod.exe L1 Instr. Fetch Miss 448032077 79294949 llmr 2]
NN 659 203 141 080 3415 1Mencode_sequence lencod.exe 11 Data Read Miss_ s 657784715 38615629 Dimr =)
650 203135 242 1480359 24 sencode_one_frame lencod.exe =
550 883 734 891 4128 24 miframe_picture lencod.exe [
649 852 085 224 1083 24 8code_a_picture lencod.exe
540 852083 733 2136 24 sicode_a_plane lencod.exe
N 547 015 588 449 14446128 24 sencode_one_slice lencod.exe
631 369 871 308 250183873 195 840 encode_one_macroblock_low lencod.exe
W 328867 768 041 744012480 897 600 MPartitionMotionearch lencod.exe
m 290670012112 123999360 6152 640 MUMHEXSUbPelBIOCkME lencod.exe 113918 7 326 721,
W 286523538302 43122021790 59 873 659 MCOMpLLeSATD lencod.exe
W 281 879 490 452 W 281 879 490 452 131 167 748 MHadamardSADEXS lencod.exe
W 238447187737 2408701583 2366 400 siSubPelBlockMotionSearch lencod.exe
W 163610836 493 1062556725 1 436 160 Msubmacroblock_mode_deci... lencod.exe 1l
I 117255875587 1392814080 1436 160 MSubPartitionMotionsearch lencod.exe
I 116805806868 10399073491 6152 640 SUMHEXIntegerPelBlockMoti... lencod.exe
I 803344917161 80334491716 74 625 640 HCOMpULESAD lencod.exe
53827100 760 794230660 8 698 560 Mlist_prediction_cost lencod.exe E——
52009725015 1614672867 3786 240 HUMHEXSUbPelBlockMotions... lencod.exe
35012373388 6283281600 3182 400 MiBPredPartitionCost lencod.exe
31573074950 31573074950 37184 281 Mmemset libc-2.5.50 R0 GAD RSB OaE
25940179 474 25609374 195 840 miMode_Decision_for_Intragx... lencod.exe
25912024180 1146174585 783 360 MMode_Decision_for_8x@intr... lencod.exe
25 678 955 554 101858424 195 840 MMode_Decision for_Intradx... lencod.exe
25574551210 2669683763 3133 440 MMode_Decision_for_4x4intr... lencod.exe
23479817 084 43622512 10 905 628 Hdistortion8xBSATD lencod.exe
18020496712 3497090400 1591 200 MBIDPartitionCost lencod.exe
17512578864 2470799496 6999 432 slcompute_satd8xa_cost lencod.exe
17025282744 17025282744 53 038 264 MHadamardSADAXd lencod.exe 25718
16396372071 3284870170 3182 400 MUMHEXBIpredintegerPelBlo... lencod.exe
16199 364 599 458717765 1903 248 Mluma_residual coding 88 lencod.exe
15246158498 11883032228 19508 110 Mluma_prediction lencod.exe
14413824338 11750400338 19 584 000 Mluma_prediction_bi lencod.exe -
12883765608 3884760624 538 560 MTransformDecision lencod.exe
12818721101 12818721101 7 302 785 McomputeBiPredSADL lencod.exe (e B 236 036,
12806173320 14687880 195 840 slend_macroblock lencod.exe
12788939520 12788939520 195 840 MFmoGetlastCodedMBOfSlic... lencod.exe s
12560374584 3540508272 28099 272 Mcompute_satd4xd_cost lencod.exe 3
11 303174 259 351 669 607 2 049 372 Mdct 8x8 lencod.exe &

Caller Map Call Graph | Callees | All Callees | Assembler

Tennis_1920x1080_24.raw_M1_QP37_enc2.callgrind.out [1] - Total Instruction Fetch Cost: 659 223 481 008

Figure 2: Kcachegrind.

To evaluate the quality of the results provided by Valgrind (version 3.2.1), we repeated the experiment presented in section 3, i.e. the evaluation of encoding and decoding complexity of the JM software for two different configurations: one in which the Inter Macroblock coding modes are enabled from 16x16 to 8x8 and another which only allows the 16x16 Inter mode.

Tables 3 and 4 report the complexity results as the total number of accesses to I-cache and D-cache for the encoding and the decoding of 1 s (24 pictures) of the sequence “rolling tomatoes”, having 1080p24 format. The encoder has been run 5 times for each configuration and the decoder 9 times. The extremely low values of the VMR demonstrate that Valgrind’s results have so high precision that is not necessary to perform the measurement more than once for each configuration, as each measure will be practically identical to the others.

As shown in Table 5, it is convenient to express the complexity results in the following terms:

· Average number of I/D-cache accesses per second of video: these numbers give an idea of the overall number of operations and bandwidth required for real-time processing.

· Average number of I/D-cache accesses per picture: these numbers are independent from the temporal resolution of the video, but still depend on the spatial resolution.

· Average number of I/D-cache accesses per Macroblock: this measure is independent from the format of the input video.

· Average number of I/D-cache accesses per pixel: this measure is also independent from the concept of Macroblock and from its size.

At the end it is possible to compare the results and finally know the complexity difference between the two tested configurations. As reported in Table 6, enabling all the MB coding modes from 16x16 to 8x8 leads to an encoding complexity increase by a factor 2.70 with respect to the case in which the only mode allowed is 16x16. As it is logical to expect, from a decoding point of view there is no significant difference. Furthermore we can compute the complexity ratio between encoding and decoding, also reported in Table 6, showing that, depending on the configuration, the ratio spans the range from about 18 to 66 for the computation and from about 21 to 82 for the bandwidth.

[image: image9.emf]InterMB QP Round 1 Round 2 Round 3 Round 4 Round 5 Average Variance VMR

22 248,174,605,948 248,174,605,916 248,174,597,201 248,174,597,397 248,174,597,276 248,174,600,748 22,403,354 9.03E-05

27 247,625,369,783 247,625,361,135 247,625,369,790 247,625,360,983 247,625,361,102 247,625,364,559 22,778,984 9.20E-05

32 248,719,241,088 248,719,249,817 248,719,240,902 248,719,241,043 248,719,240,960 248,719,242,762 15,559,267 6.26E-05

37 251,002,569,757 251,002,569,860 251,002,569,802 251,002,569,770 251,002,569,796 251,002,569,797 1,581 6.30E-09

22 685,588,482,176 685,588,482,256 685,588,482,360 685,588,482,271 685,588,482,129 685,588,482,238 8,005 1.17E-08

27 676,478,344,847 676,478,344,812 676,478,344,895 676,478,344,698 676,478,344,592 676,478,344,769 15,045 2.22E-08

32 670,435,046,169 670,435,046,366 670,435,046,126 670,435,046,344 670,435,046,297 670,435,046,260 11,474 1.71E-08

37 659,223,489,941 659,223,481,155 659,223,480,912 659,223,481,114 659,223,481,364 659,223,482,897 15,530,476 2.36E-05

16x16

16x16 to

8x8

[image: image10.emf]InterMB QP Round 1 Round 2 Round 3 Round 4 Round 5 Average Variance VMR

22 177,370,555,152 177,370,555,136 177,370,548,916 177,370,549,034 177,370,548,956 177,370,551,439 11,442,255 6.45E-05

27 177,147,237,243 177,147,231,062 177,147,237,238 177,147,230,975 177,147,231,042 177,147,233,512 11,585,802 6.54E-05

32 177,768,938,773 177,768,945,001 177,768,938,653 177,768,938,743 177,768,938,694 177,768,939,973 7,902,981 4.45E-05

37 178,967,520,987 178,967,521,041 178,967,521,015 178,967,520,993 178,967,521,009 178,967,521,009 450 2.51E-09

22 517,420,987,691 517,420,987,746 517,420,987,811 517,420,987,761 517,420,987,669 517,420,987,736 3,216 6.22E-09

27 510,702,100,130 510,702,100,099 510,702,100,164 510,702,100,038 510,702,099,964 510,702,100,079 6,283 1.23E-08

32 506,291,618,093 506,291,618,218 506,291,618,064 506,291,618,206 506,291,618,168 506,291,618,150 4,682 9.25E-09

37 497,911,074,445 497,911,068,184 497,911,068,017 497,911,068,154 497,911,068,312 497,911,069,422 7,894,280 1.59E-05

16x16

16x16 to

8x8

Table 3: total number of accesses to I-cache (top) and D-cache (bottom) for encoding.
[image: image11.emf]InterMB QP Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9 Average Variance VMR

22 13,676,631,871 13,676,631,868 13,676,631,897 13,676,631,953 13,676,631,888 13,676,631,946 13,676,631,879 13,676,631,921 13,676,631,984 13,676,631,912 1,701 1.24E-07

27 11,337,029,631 11,337,029,595 11,337,029,355 11,337,029,535 11,337,029,490 11,337,029,556 11,337,029,629 11,337,029,524 11,337,029,611 11,337,029,547 7,631 6.73E-07

32 10,475,160,895 10,475,160,809 10,475,160,889 10,475,160,864 10,475,160,737 10,475,160,828 10,475,160,991 10,475,160,923 10,475,160,767 10,475,160,856 6,308 6.02E-07

37 9,977,557,215 9,977,557,239 9,977,556,906 9,977,557,102 9,977,565,826 9,977,557,222 9,977,557,264 9,977,557,245 9,977,557,247 9,977,558,141 8,318,849 8.34E-04

22 13,598,370,294 13,598,361,769 13,598,361,881 13,598,361,781 13,598,370,346 13,598,361,626 13,598,361,697 13,598,370,382 13,598,361,897 13,598,364,630 18,350,080 1.35E-03

27 11,208,260,659 11,208,260,780 11,208,260,904 11,208,260,860 11,208,260,792 11,208,260,866 11,208,269,552 11,208,269,551 11,208,260,795 11,208,262,751 14,876,672 1.33E-03

32 10,404,462,966 10,404,462,868 10,404,463,062 10,404,463,124 10,404,462,817 10,404,463,078 10,404,462,947 10,404,471,774 10,404,463,003 10,404,463,960 8,596,348 8.26E-04

37 9,932,933,427 9,932,933,632 9,932,933,507 9,932,933,631 9,932,933,566 9,932,933,713 9,932,933,530 9,932,933,747 9,932,933,442 9,932,933,577 12,661 1.27E-06

16x16

16x16 to

8x8

[image: image12.emf]InterMB QP Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9 Average Variance VMR

22 8,343,572,290 8,343,572,291 8,343,572,304 8,343,572,345 8,343,572,291 8,343,572,334 8,343,572,286 8,343,572,314 8,343,572,358 8,343,572,313 725 8.68E-08

27 6,923,487,348 6,923,487,323 6,923,487,166 6,923,487,288 6,923,487,255 6,923,487,299 6,923,487,348 6,923,487,273 6,923,487,340 6,923,487,293 3,399 4.91E-07

32 6,409,984,099 6,409,984,034 6,409,984,089 6,409,984,077 6,409,983,990 6,409,984,043 6,409,984,154 6,409,984,111 6,409,984,006 6,409,984,067 2,804 4.37E-07

37 6,118,114,042 6,118,114,068 6,118,113,838 6,118,113,974 6,118,120,188 6,118,114,045 6,118,114,080 6,118,114,063 6,118,114,065 6,118,114,707 4,230,329 6.91E-04

22 8,289,245,081 8,289,238,982 8,289,239,049 8,289,238,994 8,289,245,113 8,289,238,891 8,289,238,948 8,289,245,128 8,289,239,069 8,289,241,028 9,355,264 1.13E-03

27 6,843,299,217 6,843,299,303 6,843,299,385 6,843,299,357 6,843,299,307 6,843,299,357 6,843,305,545 6,843,305,548 6,843,299,309 6,843,300,703 7,528,448 1.10E-03

32 6,365,389,956 6,365,389,884 6,365,390,024 6,365,390,053 6,365,389,859 6,365,390,034 6,365,389,922 6,365,396,235 6,365,389,982 6,365,390,661 4,373,645 6.87E-04

37 6,090,451,448 6,090,451,587 6,090,451,504 6,090,451,587 6,090,451,547 6,090,451,641 6,090,451,523 6,090,451,652 6,090,451,454 6,090,451,549 5,486 9.01E-07

16x16

16x16 to

8x8

Table 4: total number of accesses to I-cache (top) and D-cache (bottom) for decoding.
[image: image13.emf]I refs D refs I refs D refs I refs D refs

22 248,174,600,748 177,370,551,439

10,340,608,364 7,390,439,643 1,267,231 905,691

27 247,625,364,559 177,147,233,512

10,317,723,523 7,381,134,730 1,264,427 904,551

32 248,719,242,762 177,768,939,973

10,363,301,782 7,407,039,166 1,270,012 907,725

37 251,002,569,797 178,967,521,009

10,458,440,408 7,456,980,042 1,281,672 913,846

22 685,588,482,238 517,420,987,736

28,566,186,760 21,559,207,822 3,500,758 2,642,060

27 676,478,344,769 510,702,100,079

28,186,597,699 21,279,254,170 3,454,240 2,607,752

32 670,435,046,260 506,291,618,150

27,934,793,594 21,095,484,090 3,423,382 2,585,231

37 659,223,482,897 497,911,069,422

27,467,645,121 20,746,294,559 3,366,133 2,542,438

InterMB QP

Per second Per picture Per Macroblock

16x16

16x16 to

8x8

[image: image14.emf]I refs D refs I refs D refs I refs D refs

22 13,676,631,912 8,343,572,313

569,859,663 347,648,846 69,836 42,604

27 11,337,029,547 6,923,487,293

472,376,231 288,478,637 57,889 35,353

32 10,475,160,856 6,409,984,067

436,465,036 267,082,669 53,488 32,731

37 9,977,558,141 6,118,114,707

415,731,589 254,921,446 50,947 31,240

22 13,598,364,630 8,289,241,028

566,598,526 345,385,043 69,436 42,327

27 11,208,262,751 6,843,300,703

467,010,948 285,137,529 57,232 34,943

32 10,404,463,960 6,365,390,661

433,519,332 265,224,611 53,127 32,503

37 9,932,933,577 6,090,451,549

413,872,232 253,768,815 50,720 31,099

16x16

16x16 to

8x8

InterMB QP

Per second Per picture Per Macroblock

Table 5: encoding (top) and decoding (bottom) average complexity results.

	[image: image15.emf]I refs D refs I refs D refs

22

2.76 2.92

0.99 0.99

27

2.73 2.88

0.99 0.99

32

2.70 2.85

0.99 0.99

37

2.63 2.78

1.00 1.00

2.70 2.86

0.99 0.99

Decode Ratio

QP

Encode Ratio

InterMB=(16x16 to 8x8) vs. InterMB=(16x16)
	[image: image16.emf]I refs D refs

22

18.1 21.3

27

21.8 25.6

32

23.7 27.7

37

25.2 29.3

22

50.4 62.4

27

60.4 74.6

32

64.4 79.5

37

66.4 81.8

InterMB QP

Enc/Dec Ratio

16x16

16x16 to

8x8

Encoding vs. decoding

	Table 6: complexity ratio.

We must anyway admit that Valgrind usage has a couple of relevant drawbacks:

(cache simulation is a very CPU-intensive task that can slow down the application execution by up to two orders of magnitude: for this reason it is advisable to carefully select the test material and relevant configurations to minimize the analysis effort.
(I-cache accesses do not tell how many clock cycles are spent in executing the instructions and D-cache accesses do not tell how many bytes are actually transferred each time: for these reasons the accuracy of the complexity measures reported by Valgrind can be questionable.

Finally, for the sake of the consistency and reproducibility of the complexity results, it is advisable to follow this set of simple rules:

· Define a specific compiler version and a level of optimization.

· Define a common set of test sequences and s/w configurations.

· Process at least 1 second of video and at least 1 complete Intra period to have sufficient statistical data to analyze.

· Report the measures as average number of I-cache and D-cache references per second of video and per Macroblock processed.
5. Summary

· The complexity measurement method shall have good properties of accuracy, precision, reproducibility and simplicity.

· Complexity is a multi-dimensional concept: we restrict our analysis to computation and memory bandwidth, because these are the factors having the most relevant impact on the implementation cost.

· Estimating the computational complexity by measuring the elapsed time of a process is very inaccurate and shall be avoided. The user time is more accurate and the precision is quite good, but it has very limited reproducibility.

· It is not possible to define the computational complexity of an application “per se”: it depends on the application, on the compiler technology and on the CPU Instruction Set Architecture.

· Exact measure of the computational complexity of a process on a specific CPU architecture requires a cycle-accurate Instruction Set Simulator.

· It is always necessary to specify and agree on the following points: compiler version, optimization level, set of test sequences and configurations.

· We can perform simplified complexity estimation over generic x86 CPU by means of the cache simulator in the Valgrind tool suite for Linux OS.

· Valgrind estimates computational and bandwidth resources as the number of accesses to the I-cache and to the D-cache. It is useful to report the results in terms of cache accesses per second of processed video and per Macroblock or per pixel, as the two latter measures does not depend on the format on the input video signal.

· Valgrind’s accuracy is not perfect.

6. Conclusions

STMicroelectronics would like to submit the following proposals for JCT-VC consideration:

· To consider complexity assessment during the standardization process of the new “High-Performance Video Coding” and to evaluate contributions in terms of both coding efficiency and complexity efficiency.

· To define a clear procedure for complexity assessment considering the present contribution as a starting point for further discussion.
· To finally specify the complexity assessment procedure in a document entitled e.g. “Recommended simulation common conditions for complexity efficiency experiments”.

7. References

[1] Nokia, “On requirements for next generation video coding standard”, ITU-T COM 16 – C 110 – E, January 2009

[2] Rapporteurs of Q6/16, “Draft requirements for H.NGC next-generation video coding project”, TD 24 (WP 3/16), Geneva, 27 January - 6 February 2009.
[3] “Draft requirements for EPVC enhanced performance video coding project”, Annex Q06.A to the Report of Q6/16 Rapporteurs Meeting (London and Geneva, 1-8 July 2009), TD 45/WP3.
[4] MPEG Video and Requirements Subgroups, “Vision and Requirements for High-Performance Video Coding (HVC)”, N11096, January 2010, Kyoto, JP.

[5] ITU-T Q6/16 Visual Coding and ISO/IEC JTC1/SC29/WG11, “Joint Call for Proposals on Video Compression Technology”, N11113, January 2010, Kyoto, JP.
[6] M. Horowitz, “Toward useful complexity evaluation methods”, VCEG-AG19, October 2007, Shenzen, China.
[7] ITU-T and ISO/IEC JTC1, “Advanced Video Coding for Generic Audio-Visual Services”, ITU-T Rec.H.264 and ISO/IEC MPEG-4 AVC, version (03/2009).

[8] H.264/AVC Reference Software, http://iphome.hhi.de/suehring/tml/download/ version 16.0, 7th July 2009.

[9] J. L. Hennessy, D. A. Patterson, “Computer Architecture: A Quantitative Approach”, Morgan Kaufman Publishers, 4th edition, 2007.

[10] Intel® 64 and IA-32 Architectures Software Developer's Manual, http://developer.intel.com/products/processor/manuals/index.htm

[11] http://gcc.gnu.org/

[12] Valgrind Documentation, Release 3.5.0, 19 August 2009, http://valgrind.org/

[13] http://kcachegrind.sourceforge.net/html/Home.html

[14] G. Bjøntegaard, “Calculation of average PSNR differences between RD-curves”, VCEG-M33, Austin, USA, April 2001.

[15] T.K.Tan, G.Sullivan, and T.Wedi, “Recommended Simulation Common Conditions for Coding Efficiency Experiments Revision 4”, VCEG-AJ10r1, San Diego, USA, July 2008.
[16] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro, “H.264/AVC Baseline Profile Decoder Complexity Analysis”, IEEE TCSVT, vol. 13., pp. 704-716, July 2003.
Patent rights declaration(s)
STMicroelectronics may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

Page: 1
Date Saved: 2010-04-09

_1312093380.unknown

_1312709268.unknown

_1312093442.unknown

_1311764013.unknown

