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Abstract

This contribution presents specifications of a new video coding algorithm developed for submission as a response to the Joint Call for Proposals on Video Compression Technology. The proposed video coding algorithm is based on well-known macroblock based hybrid coding architectures with block motion compensation and orthogonal transforms with coefficient quantization, and additional new coding tools. Major technical advances from existing state-of-the-art AVC/H.264 are to enable adaptation of macroblock size together with multi-level hierarchical motion partitioning, adaptive decision on image block coverage and transform basis type for transform coding, new intra coding exploiting global spatial correlation, and adaptive Wiener loop filtering. The performance gain with the basic part of the proposed architecture has been proven in some practical implementation studies including responses to MPEG’s Call for Evidence or KTA (Key Technical Area) work being conducted by ITU-T VCEG (Q6/SG16). The proposed algorithm showed around 1dB PSNR gain in average relative to high-complexity AVC/H.264 High Profile, over a wide range of test sequences. More gain has been observed especially for high-resolution video sources such as class A and B as reported in this contribution. The proposed architecture has more functional extensibility than the fixed use of existing 16x16 macroblocks, which could be a good starting point for further performance improvement, while maintaining product implementability.
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1 Introduction
This contribution presents specifications of a new video coding algorithm proposed as a response to the Joint Call for Proposals on Video Compression Technology [1], jointly issued by ISO/IEC MPEG and ITU-T VCEG (Q6/SG16). The most important requirements of this upcoming standard are algorithm optimization for next-generation high-quality sources up to 8Kx4K UHDTV and to achieve significant compression performance relative to “state-of-the-art” MPEG-4 AVC/ITU-T H.264 standard (AVC/H.264) [2]. To pursue this goal while maintaining product implementability near the expected completion date of standardization work, the proposed scheme uses a  conventional block-based MC + transform based hybrid coding approach, which is a well-optimized and reliable video coding architecture for practical use and should be preferable in terms of H/W friendliness. Technical advances relative to the AVC/ H.264 are listed below.

· Extension of macroblock size and ability of its adaptation at higher syntax level
· Inter prediction with hierarchical and non-rectangular shaped motion partitioning
· New intra coding with global planer prediction and iterative adjustment prediction
· Adaptive transform with multiple block sizes and basis functions

· Combined in-loop adaptive de-blocking and Wiener filtering

· Optimized CABAC design that accommodates extended macroblock size syntax
2 Algorithm Description

2.1 Overview
Figure 2‑1 and Figure 2‑2 show block diagrams of video encoder and decoder to be proposed in this submission. In the encoder, each source input frame is divided into a set of macroblock(MB)s, whose size can be determined by the encoder and signaled to decoder side via explicit syntax element. The coding efficiency of this technique for high-resolution video coding has been proven by practical implementation based studies [3]-[5]. Adaptability of MB size enables the encoder to find the best trade-off between overhead bit budget and achievable distortion flexibly, for handling wide variety of picture resolutions from QVGA to 8Kx4K as specified in the Vision and Requirements for the new standard [6]. 
The proposed coding scheme relies on conventional picture coding types, which are I-, P-, and B-pictures. All MBs in I-pictures shall be encoded as intra blocks. MBs in P-pictures can use inter prediction using a single reference picture as well as adaptive use of intra blocks. Inter prediction using up to two reference pictures is allowed for MBs in B-pictures. AVC/H.264 based management of multiple reference pictures in the frame buffer is employed as a starting point for future enhancement of coding performance during new standardization work.

For intra coded blocks, the proposed scheme provides a set of coding modes among which the best mode can be chosen at the encoder per 16x16 luma block. Basically, this coding mode set consists of conventional AVC/H.264 intraNxN coding modes plus new proposed modes those are motivated by efficient use of global spatial correlation. On the other hand, corresponding intra chroma component shall always be encoded by using intra8x8 mode whose prediction mode can be chosen independently from that of luma. When the MB size of P- or B-pictures is set larger than 16x16, intra block can be chosen at a 16x16 sub-partition.

A hierarchical block partitioning based on a quad-tree structure is employed for inter prediction in P- and B-pictures. This is a kind of straight-forward extension to AVC/H.264 motion partitioning, but also supports some other features such as hierarchical skip modes, or additional simplified non-rectangular motion partition shapes. Additional technical advances on inter prediction part are adaptive PMV and direct MV derivation for compact representation of motion information.

The prediction residual signal of each MB is further compressed by using an adaptive 2-D transform and quantization process. In addition to the adaptive 4x4/8x8 integer transform adopted in AVC/H.264 High Profile, a 16x16 DCT is employed for efficient energy concentration of luma residual signals having relatively smooth distributions [7]. Thus, the transform block size for luma components can be chosen from 4x4, 8x8, and 16x16 depending on the inter prediction mode used to obtain the residual. The selected transform block size is then signaled to the decoder via explicit syntax element, together with inter prediction mode. On the contrary, transform block size for chroma components is always set to 8x8 independent to motion partition size, and DST(Discrete Sine Transform) is additionally introduced for efficient coding of chroma residual signals having lower DC power. The quantization process for transform coefficients is based on AVC/H.264 specification, modified to accommodate DST. A single-path version of rate distortion optimized quantization (RDO-Q) [8] process is applied as an encoder-only optimization.

CABAC is employed as entropy coder for the proposed scheme. Its arithmetic coding engine and the basic framework are the same as that of the AVC/H.264, but its initialization tables, binarizations and context modeling have been modified to optimize coding performance of the syntax for the support of extended MB sizes in the proposed scheme.

Finally, as for the in-loop filtering process, the proposed scheme takes a two-stage filtering solution, where an extended de-blocking filter from AVC/H.264 is applied first, then adaptive Wiener filtering is performed. The de-blocking filter process is based on the AVC/H.264 specification and is extended to support adaptive transform process and mixed intra/inter MB. The proposed adaptive Wiener filter is an extended version of BALF (Block-Adaptive Loop Filter) [9], which designs and utilizes multiple Wiener filters for quality enhancement of reference pictures.
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Figure 2‑1  Block diagram of the proposed encoder


[image: image2.emf] 

Frame

Memory

CABAC

Decoding

Frame 

Memory

Motion 

Compensation

Inverse

Transform/

quantization

＋

Loop filtering

Adaptive transform block-size & 

Adaptive DCT/DST decision

Extended in-loop deblocking filter 

& Adaptive Wiener loop filter

Adaptive PMV 

derivation

Intra Prediction

mb_type /

sub_mb_type_LX

New intra 

prediction modes

Motion parameters

Multi-layered

hierarchical motion 

partitioning

Improved direct mode

Non-rectangular 

motion partitions


Figure 2‑2  Block diagram of the proposed decoder

2.2 Macroblock size extension
The macroblock (MB) has been a basic data unit for encoding/decoding process in video coding standards for a long time, from the very early stage of standard such as H.261. On the other hand, its size has remained the same (i.e., 16 pixels x 16 lines for luma component) until the most recent standard AVC/H.264. To achieve high compression performance especially on UHDTV class video sources, it is essential to reduce the size of information to be encoded in lossless fashion such as motion vector data. Since MB size limits the image region size that can be covered by single motion vector, it is not possible to reduce motion bits more unless MB size can be extended or joint optimization for multiple MBs is performed, which requires extremely high computational loads. The MB size extension can also be justified by the fact that pixel-wise correlation should be getting higher as the resolution of video source is increased, and a single motion vector can cover wider image areas than for the case of coding for lower resolution video, if we ignore the influence of noise components.

In practice, however, the simple expansion of image area to be predicted by single motion vector results in increase of prediction error energy due to a “real-world” noise effect. Thus, an optimized design on adaptive motion block size support together with extended MB size should be required for new standard. In addition to that, extension of transform block size should be considered jointly, as smoother residual signal tends to be obtained when a larger motion block is chosen from a set of hierarchical motion partitioning shapes. This aspect will be specified in Section 2.3. In the proposed scheme, a mechanism to determine a MB size (MbSizeH, MbSizeV) depending on signal characteristics is supported. More specifically, it is allowed for the encoder to use one of the following two sizes for P- and B-picture coding.

“32x32 MB”: MbSizeH = MbSizeV = 32 (in luma component)

“64x64 MB”: MbSizeH = MbSizeV = 64 (in luma component)
The coding performance reported in Section 3 has been obtained by fixing MbSizeH and MbSizeV within P- and B-pictures for all frames in a sequence (64x64 for class A and B, 32x32 for other classes), however, there should be further performance improvement by adapting these size picture-by-picture or slice-by-slice, considering non-stationary property of video signals.
2.3 Motion representation

2.3.1 Hierarchical motion partitioning

In the proposed coding scheme, motion compensated prediction based on hierarchical block partitioning depending on MB size, is employed for inter prediction. An inter MB (i.e., MB belonging to P- or B-picture) can have a 32x32 or 64x64 luma block size. When the MB size is 32x32, an inter macroblock can be split into up to four quad-tree motion partitions, each of which has 16x16 block size. This first quad-tree partition level is called L0(“Layer0”)-partition. A partition belonging to L0-partition can have its own prediction mode “sub_mb_type_L0”. When the MB size is 64x64(Figure 2‑3), an inter MB can be split into up to four L0-partitions, each of which has a 32x32 block size. Each L0-partition can have its own sub_mb_type_L0. Then, a L0-partition can further be split into up to four L1(“Layer1”)-partitions, each of which has a 16x16 block size. Each L1-partition can have its own prediction mode “sub_mb_type_L1”. Given this specification, the smallest-size motion partition that can have sub_mb_type_LX (X=0,1,2) information shall be 16x16 block, and the smallest-size motion partition within a MB shall be 8x8 block in luma domain. Motion partition for chroma components shall be derived from corresponding luma partition shape, and has one-fourth size and the same shape as the corresponding luma partition.
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Figure 2‑3  Multi-layer hierarchical motion partitioning

In this proposed design, the largest motion block has the same size as the MB, but the smallest motion block size is constrained to 8x8 to limit memory bandwidth requirement due to a need of access to edge pixels of reference block for the purpose of MC interpolation filtering. Coding mode can also be assigned to each motion partition. At the MB-level, “mb_type” signals coding mode for a MB. “sub_mb_type_L0” is used to specify coding mode for a 1st layer sub-partition (L0 sub-partition), each of which is obtained by first quad-tree partitioning of a MB. Then, if necessary, “sub_mb_type_L1” or “sub_mb_type_L2” specify coding mode of L1 or L2 sub-partition, which are obtained by applying recursive quad-tree partitioning to L0 or L1 sub-partition, respectively. Available types for each coding mode have been designed with consideration of size-effect in each partition level. In particular, skip mode, which utilizes PMV as its motion vector and does not transmit non-zero coefficients at all, is defined in all partition levels (the smallest partition size is 8x8). The number of available types in the highest partition layer is reduced relative to lower partition layers so that signaling bits can be limited without sacrifice of loss of prediction efficiency.

“mb_type” and “sub_mb_type_LX”(X=0,1,2) allowed for P- and B-pictures are defined in Table 2‑1 to Table 2‑7. Intra coding mode (P[B]_I4x4, P[B]_I8x8, P[B]_I16x16) can only be selected at sub-partition level having 16x16 block-size.

Table 2‑1 mb_type allowed for P-picture
	
	NumPart
	PartSize
	PartPredMode

(part0)
	PartPredMode

(part1)
	PartPredMode

(part2)
	PartPredMode

(part3)

	P_Skip
	1
	MbSizeH×MbSizeV
	Pred_L0
	na
	na
	na

	P_1Part
	1
	MbSizeH×MbSizeV
	Pred_L0
	na
	na
	na

	P_2Part_H
	2
	MbSizeH ×(MbSizeV>>1)
	Pred_L0
	Pred_L0
	na
	na

	P_2Part_V
	2
	(MbSizeH>>1) ×MbSizeV
	Pred_L0
	Pred_L0
	na
	na

	P_2Part_UL
	2
	Part0: 

Other part of part1 in a MB

Part1:

(MbSizeH>>1) ×(MbSizeV>>1) at top-left position in a MB
	Pred_L0
	Pred_L0
	na
	na

	P_2Part_UR
	2
	Part0: 

Other part of part1 in a MB

Part1:

(MbSizeH>>1) ×(MbSizeV>>1) at top-right position in a MB
	Pred_L0
	Pred_L0
	na
	na

	P_2Part_LL
	2
	Part0: 

Other part of part1 in a MB

Part1:

(MbSizeH>>1) ×(MbSizeV>>1) at bottom-left position in a MB
	Pred_L0
	Pred_L0
	na
	na

	P_2Part_LR
	2
	Part0: 

Other part of part1 in a MB

Part1:

(MbSizeH>>1) ×(MbSizeV>>1) at bottom-right position in a MB
	Pred_L0
	Pred_L0
	na
	na

	P_4Part
	4
	(MbSizeH>>1) ×(MbSizeV>>1)
	na
	na
	na
	na


Table 2‑2  sub_mb_type_L0 allowed for P-picture
	
	NumPart
	PartSize
	PartPredMode

(part0)
	PartPredMode

(part1)
	PartPredMode

(part2)
	PartPredMode

(part3)

	P_Skip
	1
	(MbSizeH>>1)×(MbSizeV>>1)
	Pred_L0
	na
	na
	na

	P_1Part
	1


	(MbSizeH>>1)×(MbSizeV>>1)
	Pred_L0
	na
	na
	na

	P_2Part_H
	2
	(MbSizeH>>1) ×(MbSizeV>>2)
	Pred_L0
	Pred_L0
	na
	na

	P_2Part_V
	2
	(MbSizeH>>2) ×(MbSizeV>>1)
	Pred_L0
	Pred_L0
	na
	na

	P_2Part_UL
	2
	Part0: 

Other part of part1 in a L0 sub-partition

Part1:

(MbSizeH>>2) ×(MbSizeV>>2) at top-left position in a L0 sub-partition
	Pred_L0
	Pred_L0
	na
	na

	P_2Part_UR
	2
	Part0: 

Other part of part1 in a L0 sub-partition

Part1:

(MbSizeH>>2) ×(MbSizeV>>2) at top-right position in a L0 sub-partition
	Pred_L0
	Pred_L0
	na
	na

	P_2Part_LL
	2
	Part0: 

Other part of part1 in a L0 sub-partition

Part1:

(MbSizeH>>2) ×(MbSizeV>>2) at bottom-left position in a L0 sub-partition
	Pred_L0
	Pred_L0
	na
	na

	P_2Part_LR
	2
	Part0: 

Other part of part1 in a L0 sub-partition

Part1:

(MbSizeH>>2) ×(MbSizeV>>2) at bottom-right position in a L0 sub-partition
	Pred_L0
	Pred_L0
	na
	na

	P_4Part
	4
	(MbSizeH>>2) ×(MbSizeV>>2)
	32x32MB:

Pred_L0

64x64MB:

na
	32x32MB:

Pred_L0

64x64MB:

na
	32x32MB:

Pred_L0

64x64MB:

na
	32x32MB:

Pred_L0

64x64MB:

na

	P_I4x4 *
	16
	(MbSizeH>>3) ×(MbSizeV>>3)
	na
	na
	na
	na

	P_I8x8 *
	4
	(MbSizeH>>2) ×(MbSizeV>>2)
	na
	na
	na
	na

	P_I16x16 *
	1
	(MbSizeH>>1) ×(MbSizeV>>1)
	na
	na
	na
	na


  * can be selected only when 32x32MB (MbSizeH = MbSizeV = 32) is used.

Table 2‑3 sub_mb_type_L1 allowed for P-picture (only for 64x64MB)

	
	NumPart
	PartSize
	PartPredMode

(part0)
	PartPredMode

(part1)
	PartPredMode

(part2)
	PartPredMode

(part3)

	P_Skip
	1
	(MbSizeH>>2)×(MbSizeV>>2)
	Pred_L0
	na
	na
	na

	P_1Part
	1


	(MbSizeH>>2)×(MbSizeV>>2)
	Pred_L0
	na
	na
	na

	P_2Part_H
	2
	(MbSizeH>>2) ×(MbSizeV>>3)
	Pred_L0
	Pred_L0
	na
	na

	P_2Part_V
	2
	(MbSizeH>>3) ×(MbSizeV>>2)
	Pred_L0
	Pred_L0
	na
	na

	P_4Part
	4
	(MbSizeH>>3) ×(MbSizeV>>3)
	Pred_L0
	Pred_L0
	Pred_L0
	Pred_L0

	P_I4x4
	16
	(MbSizeH>>4) ×(MbSizeV>>4)
	na
	na
	na
	na

	P_I8x8
	4
	(MbSizeH>>3) ×(MbSizeV>>3)
	na
	na
	na
	na

	P_I16x16
	1
	(MbSizeH>>2) ×(MbSizeV>>2)
	na
	na
	na
	na


Table 2‑4 mb_type allowed for B-picture
	
	NumPart
	PartSize
	PartPredMode

(part0)
	PartPredMode

(part1)
	PartPredMode

(part2)
	PartPredMode

(part3)

	B_Skip
	1
	MbSizeH×MbSizeV
	(Pred_L0, Pred_L1)
	na
	na
	na

	B_Direct
	1


	MbSizeH×MbSizeV
	(Pred_L0, Pred_L1)
	na
	na
	na

	B_1Part_L0
	1


	MbSizeH×MbSizeV
	Pred_L0
	na
	na
	na

	B_1Part_L1
	1


	MbSizeH×MbSizeV
	Pred_L1
	na
	na
	na

	B_1Part_BI
	1


	MbSizeH×MbSizeV
	(Pred_L0, Pred_L1)
	na
	na
	na

	B_2Part_L0_L0_H
	2
	MbSizeH ×(MbSizeV>>1)
	Pred_L0
	Pred_L0
	na
	na

	B_2Part_L0_L0_V
	2
	(MbSizeH>>1) ×MbSizeV
	Pred_L0
	Pred_L0
	na
	na

	B_2Part_L1_L1_H
	2
	MbSizeH ×(MbSizeV>>1)
	Pred_L1
	Pred_L1
	na
	na

	B_2Part_L1_L1_V
	2
	(MbSizeH>>1) ×MbSizeV
	Pred_L1
	Pred_L1
	na
	na

	B_2Part_L0_L1_H
	2
	MbSizeH ×(MbSizeV>>1)
	Pred_L0
	Pred_L1
	na
	na

	B_2Part_L0_L1_V
	2
	(MbSizeH>>1) ×MbSizeV
	Pred_L0
	Pred_L1
	na
	na

	B_2Part_L1_L0_H
	2
	MbSizeH ×(MbSizeV>>1)
	Pred_L1
	Pred_L0
	na
	na

	B_2Part_L1_L0_V
	2
	(MbSizeH>>1) ×MbSizeV
	Pred_L1
	Pred_L0
	na
	na

	B_2Part_L0_BI_H
	2
	MbSizeH ×(MbSizeV>>1)
	Pred_L0
	(Pred_L0, Pred_L1)
	na
	na

	B_2Part_L0_BI_V
	2
	(MbSizeH>>1) ×MbSizeV
	Pred_L0
	(Pred_L0, Pred_L1)
	na
	na

	B_2Part_L1_BI_H
	2
	MbSizeH ×(MbSizeV>>1)
	Pred_L1
	(Pred_L0, Pred_L1)
	na
	na

	B_2Part_L1_BI_V
	2
	(MbSizeH>>1) ×MbSizeV
	Pred_L1
	(Pred_L0, Pred_L1)
	na
	na

	B_2Part_BI_L0_H
	2
	MbSizeH ×(MbSizeV>>1)
	(Pred_L0, Pred_L1)
	Pred_L0
	na
	na

	B_2Part_BI_L0_V
	2
	(MbSizeH>>1) ×MbSizeV
	(Pred_L0, Pred_L1)
	Pred_L0
	na
	na

	B_2Part_BI_L1_H
	2
	MbSizeH ×(MbSizeV>>1)
	(Pred_L0, Pred_L1)
	Pred_L1
	na
	na

	B_2Part_BI_L1_V
	2
	(MbSizeH>>1) ×MbSizeV
	(Pred_L0, Pred_L1)
	Pred_L1
	na
	na

	B_2Part_BI_BI_H
	2
	MbSizeH ×(MbSizeV>>1)
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)
	na
	na

	B_2Part_BI_BI_V
	2
	(MbSizeH>>1) ×MbSizeV
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)
	na
	na

	B_4Part
	4
	(MbSizeH>>1) ×(MbSizeV>>1)
	na
	na
	na
	na


Table 2‑5  sub_mb_type_L0 allowed for B-picture 

	
	NumPart
	PartSize
	PartPredMode

(part0)
	PartPredMode

(part1)
	PartPredMode

(part2)
	PartPredMode

(part3)

	B_Skip
	1
	(MbSizeH>>1)×(MbSizeV>>1)
	(Pred_L0, Pred_L1)
	na
	na
	na

	B_Direct
	1


	(MbSizeH>>1)×(MbSizeV>>1)
	(Pred_L0, Pred_L1)
	na
	na
	na

	B_1Part_L0
	1


	(MbSizeH>>1)×(MbSizeV>>1)
	Pred_L0
	na
	na
	na

	B_1Part_L1
	1


	(MbSizeH>>1)×(MbSizeV>>1)
	Pred_L1
	na
	na
	na

	B_1Part_BI
	1


	(MbSizeH>>1)×(MbSizeV>>1)
	(Pred_L0, Pred_L1)
	na
	na
	na

	B_2Part_L0_L0_H
	2
	(MbSizeH>>1) ×(MbSizeV>>2)
	Pred_L0
	Pred_L0
	na
	na

	B_2Part_L0_L0_V
	2
	(MbSizeH>>2) ×(MbSizeV>>1)
	Pred_L0
	Pred_L0
	na
	na

	B_2Part_L1_L1_H
	2
	(MbSizeH>>1) ×(MbSizeV>>2)
	Pred_L1
	Pred_L1
	na
	na

	B_2Part_L1_L1_V
	2
	(MbSizeH>>2) ×(MbSizeV>>1)
	Pred_L1
	Pred_L1
	na
	na

	B_2Part_L0_L1_H
	2
	(MbSizeH>>1) ×(MbSizeV>>2)
	Pred_L0
	Pred_L1
	na
	na

	B_2Part_L0_L1_V
	2
	(MbSizeH>>2) ×(MbSizeV>>1)
	Pred_L0
	Pred_L1
	na
	na

	B_2Part_L1_L0_H
	2
	(MbSizeH>>1) ×(MbSizeV>>2)
	Pred_L1
	Pred_L0
	na
	na

	B_2Part_L1_L0_V
	2
	(MbSizeH>>2) ×(MbSizeV>>1)
	Pred_L1
	Pred_L0
	na
	na

	B_2Part_L0_BI_H
	2
	(MbSizeH>>1) ×(MbSizeV>>2)
	Pred_L0
	(Pred_L0, Pred_L1)
	na
	na

	B_2Part_L0_BI_V
	2
	(MbSizeH>>2) ×(MbSizeV>>1)
	Pred_L0
	(Pred_L0, Pred_L1)
	na
	na

	B_2Part_L1_BI_H
	2
	(MbSizeH>>1) ×(MbSizeV>>2)
	Pred_L1
	(Pred_L0, Pred_L1)
	na
	na

	B_2Part_L1_BI_V
	2
	(MbSizeH>>2) ×(MbSizeV>>1)
	Pred_L1
	(Pred_L0, Pred_L1)
	na
	na

	B_2Part_BI_L0_H
	2
	(MbSizeH>>1) ×(MbSizeV>>2)
	(Pred_L0, Pred_L1)
	Pred_L0
	na
	na

	B_2Part_BI_L0_V
	2
	(MbSizeH>>2) ×(MbSizeV>>1)
	(Pred_L0, Pred_L1)
	Pred_L0
	na
	na

	B_2Part_BI_L1_H
	2
	(MbSizeH>>1) ×(MbSizeV>>2)
	(Pred_L0, Pred_L1)
	Pred_L1
	na
	na

	B_2Part_BI_L1_V
	2
	(MbSizeH>>2) ×(MbSizeV>>1)
	(Pred_L0, Pred_L1)
	Pred_L1
	na
	na

	B_2Part_BI_BI_H
	2
	(MbSizeH>>1) ×(MbSizeV>>2)
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)
	na
	na

	B_2Part_BI_BI_V
	2
	(MbSizeH>>2) ×(MbSizeV>>1)
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)
	na
	na

	B_4Part_L0*
	4
	(MbSizeH>>2) ×(MbSizeV>>2)
	Pred_L0
	Pred_L0
	Pred_L0
	Pred_L0

	B_4Part_L1*
	4
	(MbSizeH>>2) ×(MbSizeV>>2)
	Pred_L1
	Pred_L1
	Pred_L1
	Pred_L1

	B_4Part_BI*
	4
	(MbSizeH>>2) ×(MbSizeV>>2)
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)

	B_I4x4 *
	16
	(MbSizeH>>3) ×(MbSizeV>>3)
	na
	na
	na
	na

	B_I8x8 *
	4
	(MbSizeH>>2) ×(MbSizeV>>2)
	na
	na
	na
	na

	B_I16x16 *
	1
	(MbSizeH>>1) ×(MbSizeV>>1)
	na
	na
	na
	na

	B_4Part
	4
	(MbSizeH>>2) ×(MbSizeV>>2)
	na
	na
	na
	na


* can be selected only when 32x32MB (MbSizeH = MbSizeV = 32) is used.

Table 2‑6 sub_mb_type_L1 allowed for B-picture

	
	NumPart
	PartSize
	PartPredMode

(part0)
	PartPredMode

(part1)
	PartPredMode

(part2)
	PartPredMode

(part3)

	B_Skip*
	1
	(MbSizeH>>2)×(MbSizeV>>2)
	(Pred_L0, Pred_L1)
	na
	na
	na

	B_Direct
	1


	(MbSizeH>>2)×(MbSizeV>>2)
	(Pred_L0, Pred_L1)
	na
	na
	na

	B_1Part_L0
	1


	(MbSizeH>>2)×(MbSizeV>>2)
	Pred_L0
	na
	na
	na

	B_1Part_L1
	1


	(MbSizeH>>2)×(MbSizeV>>2)
	Pred_L1
	na
	na
	na

	B_1Part_BI
	1


	(MbSizeH>>2)×(MbSizeV>>2)
	(Pred_L0, Pred_L1)
	na
	na
	na

	B_2Part_L0_L0_H*
	2
	(MbSizeH>>2) ×(MbSizeV>>3)
	Pred_L0
	Pred_L0
	na
	na

	B_2Part_L0_L0_V*
	2
	(MbSizeH>>3) ×(MbSizeV>>2)
	Pred_L0
	Pred_L0
	na
	na

	B_2Part_L1_L1_H*
	2
	(MbSizeH>>2) ×(MbSizeV>>3)
	Pred_L1
	Pred_L1
	na
	na

	B_2Part_L1_L1_V*
	2
	(MbSizeH>>3) ×(MbSizeV>>2)
	Pred_L1
	Pred_L1
	na
	na

	B_2Part_BI_BI_H*
	2
	(MbSizeH>>2) ×(MbSizeV>>3)
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)
	na
	na

	B_2Part_BI_BI_V*
	2
	(MbSizeH>>3) ×(MbSizeV>>2)
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)
	na
	na

	B_4Part_L0*
	4
	(MbSizeH>>3) ×(MbSizeV>>3)
	Pred_L0
	Pred_L0
	Pred_L0
	Pred_L0

	B_4Part_L1*
	4
	(MbSizeH>>3) ×(MbSizeV>>3)
	Pred_L1
	Pred_L1
	Pred_L1
	Pred_L1

	B_4Part_BI*
	4
	(MbSizeH>>3) ×(MbSizeV>>3)
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)

	B_I4x4*
	16
	(MbSizeH>>4) ×(MbSizeV>>4)
	na
	na
	na
	na

	B_I8x8*
	4
	(MbSizeH>>3) ×(MbSizeV>>3)
	na
	na
	na
	na

	B_I16x16*
	1
	(MbSizeH>>2) ×(MbSizeV>>2)
	na
	na
	na
	na

	B_4Part*
	4
	(MbSizeH>>3) ×(MbSizeV>>3)
	na
	na
	na
	na


* can be selected only when 64x64MB (MbSizeH = MbSizeV = 64) is used.

Table 2‑7  sub_mb_type_L2 allowed for B-picture (only for 64x64MB)
	
	NumPart
	PartSize
	PartPredMode

(part0)
	PartPredMode

(part1)
	PartPredMode

(part2)
	PartPredMode

(part3)

	B_Direct
	1


	(MbSizeH>>3)×(MbSizeV>>3)
	(Pred_L0, Pred_L1)
	na
	na
	na

	B_1Part_L0
	1


	(MbSizeH>>3)×(MbSizeV>>3)
	Pred_L0
	na
	na
	na

	B_1Part_L1
	1


	(MbSizeH>>3)×(MbSizeV>>3)
	Pred_L1
	na
	na
	na

	B_1Part_BI
	1


	(MbSizeH>>3)×(MbSizeV>>3)
	(Pred_L0, Pred_L1)
	na
	na
	na


2.3.2 Non-rectangular motion partitions

It has been proven that hierarchical motion partitioning is promising to perform efficient inter prediction as adopted in AVC/H.264. On the other hand, it is also true that small motion partition sizes like 4x4 blocks tends to capture more noise components as video resolution gets higher, since it becomes difficult to see specific object structure within such a small motion partition area. It should also be noted that small motion partition with longer-tap MC interpolation filter becomes a burden in terms of memory bandwidth in practical codec implementations. The proposed algorithm alternatively adopts a simple set of non-rectangular motion partition shapes as illustrated in Figure 2‑4. The advantage of using these motion partitions is that movement of object boundaries can efficiently be captured by allowing a diagonal partition within a square block, and thus resulting motion vector data can be represented more efficiently than the use of quad-tree partitioning. Much literature has shown these advantages in various partitioning schemes [10]-[12]. Complicated partitioning shapes have been proposed in some previous works, however, they require more bits to represent complicated partition shape itself and thus overall coding performance should be bounded at some point in spite of the increased encoding complexity. Thus, we propose to employ only a simple set of diagonal partitions. In Figure 2‑4, “M” represents width and height of a MB-level or LX-level sub-partition. These diagonal partition modes can only split a MB- or LX-level sub-partition into two regions, each of which has specific motion vector respectively. 
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Figure 2‑4  Non-rectangular Motion Partition Shapes
2.3.3 Motion vector prediction
Efficient coding of motion information is essential for high-resolution video coding since it is not possible to take a lossy coding approach for coding of motion parameters and thus this information is going to occupy significant overhead bits as higher compression ratios are required. Rate-constrained motion estimation by using coded motion bits as rate factor is a basic solution to find the best trade-off between motion search efficiency and overhead bit budget. In such framework, derivation of accurate motion vector predictor (PMV) gives better results since motion vectors are usually encoded by predictive coding with estimated PMV. The proposed scheme employs a spatio-temporal adaptive PMV derivation method to improve prediction efficiency of motion vectors. In B-pictures, direct motion vector derivation is essentially an equivalent concept to PMV derivation. The proposed scheme adopts an improved direct mode based on an adaptive direct motion vector derivation to obtain more accurate direct motion vectors. 
2.3.3.1  Spatio-temporal adaptive PMV decision
The KTA study in ITU-T VCEG adopted an adaptive PMV derivation technique called Motion Vector Competition (MVC) [13]. MVC finds the best PMV in terms of coding efficiency of motion bits from multiple candidates for potential PMVs those can be determined from spatially neighboring MVs, and sends a 1-bit flag to notify the decoder which PMV is selected at the encoder.

The proposed scheme extends this concept of MVC so that it can exploit the temporal correlation of motion vectors as well as the spatial one. In general, a video frame consists of various moving regions each of which has different spatio-temporal correlation in motion vectors such as foreground objects and background region, or a region with a complicated motion field where spatial PMV is a much better candidate than the temporal one, and the other region with a smooth motion field where temporal PMV can represent the motion field better than spatial ones. Due to the non-stationary property of video signals, it should be efficient to introduce an adaptive PMV decision per each motion vector under the assumption that CABAC can efficiently represent the signaling bit depending on context of the video source. In the proposed scheme, the following temporal and spatial PMVs are available for selection (Figure 2‑5).
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Figure 2‑5  Candidates for adaptive PMV derivation
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are adjusted to each partition edge, and use the same derivation process as that for rectangular partitions. If the reference direction of the motion vector of a co-located motion partition is different from the current motion vector, then 
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 is obtained by motion vector scaling assuming a linear motion field. Final PMV is determined by competition between 
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 with regard to resulting rate cost for differential motion vector data (mvd).

2.3.3.2  Adaptive direct vector derivation
Direct mode is known as an efficient coding mode for B-picture coding due to its prediction efficiency and no need of motion bits to be transmitted to decoder. Since coding efficiency of direct mode highly depends on the accuracy of the estimated direct motion vector, the proposed scheme introduces locally adaptive derivation of the direct motion vector by enabling selection of the best candidate from spatial and temporal neighboring motion vector data. A similar mechanism can be used at slice level in the AVC/H.264, however, local adaptation can capture non-stationary motion field of various video sources much better. It is noted that the scheme employed here does not transmit selection bit to decoder side, which means no additional overhead bit is required for this adaptation.

Adaptive decision of direct vector is performed as illustrated in Figure 2‑6. Similarity of prediction block candidates is used as decision criteria. In Figure 2‑6, 
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represent forward and backward prediction blocks obtained by one of the direct vector candidate derived from temporally co-located vector, and 
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are forward and backward prediction blocks obtained by the other direct vector candidate derived from spatial neighboring vector. Given this notation, similarity criteria are defined by:
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Bigger SAD shows that the difference between forward and backward prediction samples is more significant and correlation is lower. Thus, the final direct motion vector is determined as the one that can produce a smaller SAD value. Considering that the proposed scheme extends MB size, the spatial direct vector candidate is obtained by using nearest neighboring motion vector data, instead of using the ones located outside of the current MB as specified in AVC/H.264. This can improve estimation accuracy of the spatial direct vector candidate.
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Figure 2‑6  Adaptive direct vector derivation

2.3.4 Obtaining inter prediction
Except for the above-mentioned enhancements, inter prediction derivation process is essentially identical to the one of AVC/H.264. Motion vector precision is up to quarter-sample accuracy, and the MC interpolation filter used to generate half- and quarter-pel reference samples is identical to the one used in AVC/H.264. The chroma motion vector is also derived from the motion vector of the corresponding luma component based on an AVC/H.264 compliant derivation process. A motion partition of P-picture can use only one reference picture belonging to reference picture list 0, and it is permitted for a motion partition in B-picture to use two prediction blocks obtained from reference picture list 0 and list 1. In B-picture, mb_type or sub_mb_type elements contains signaling on which the reference picture list is used to form final prediction as shown in Table 2‑4 to Table 2‑7. Even though the experimental results in Section 3 have not been obtained with full-optimization of reference picture list management, the proposed scheme assumes availability of the same level of customization of reference picture list management, by using memory management control operations (MMCO) or reference picture re-ordering etc.
One typical difference in the inter prediction derivation process from that of AVC/H.264 is the adaptive selection of prediction direction at a picture edge when direct mode is used there. The direct mode in the proposed scheme checks resulting forward and backward direct motion vectors to see whether either points outside of the valid picture area (i.e., each vector is unrestricted motion vector) or not. If one of forward/backward direct vectors is an unrestricted motion vector, prediction samples are generated by only using the other direct vector. This can avoid unnecessary prediction loss caused by averaging unreliable prediction samples with unrestricted motion vectors, and could reduce memory bandwidth when unidirectional prediction is selected.
2.4 Intra coding
The proposed scheme employs a modified set of AVC/H.264 intra coding modes. Major modifications are adopting new intra16x16 prediction modes for luma block, use of 16x16 DCT for luma residual coding of intra16x16 mode, and application of intra8x8 mode to 4:2:0 chroma intra coding. It is noted that intra coding can only be chosen as a coding option for 16x16 block unit, thus a MB bigger than 16x16 block size could consist of mixed intra and inter coded blocks.
In an intra coding of AVC/H.264, prediction samples in the current 16 x 16 block are derived using only neighboring constructed samples. In DC prediction mode, a mean value of neighboring samples is set for all prediction samples. In the other prediction modes, a neighboring sample value is set in the direction of prediction. The conventional intra prediction cannot make a prediction which reflects a two-dimensional change of image levels. In addition, the prediction efficiency is largely affected by noise component in a neighboring sample. Thus, the proposed scheme introduces two dimensional prediction modes which employ samples in neighboring area. These prediction modes are used along with the conventional horizontal and vertical prediction modes in replace with DC and plane prediction modes.
2.4.1 Luma coding
2.4.1.1  AVC/H.264 based intra coding modes

Modified AVC/H.264 luma intra coding modes are employed for luma intra coding. Both intra4x4 and intra8x8 have completely the same specification as those of AVC/H.264. For intra16x16, however, 16x16 DCT is simply applied to its residual signal, instead of using two-stage transform process. Two out of original four prediction modes of intra16x16 are replaced to new proposed prediction modes specified in Section 2.4.1.2 and 2.4.1.3. The best coding mode is determined per each 16x16 partition from all possible intra coding modes those can be chosen at encoder.
2.4.1.2  Global planer prediction
The global planer prediction mode creates two dimensional predictions. It is assumed that pixel values in the area, which includes the current block to be predicted and the constructed neighboring samples, are fit to a plane surface. The plane surface is expressed as follows (Figure 2‑7),
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where ( x, y ) is the coordinate of a pixel and z is the value of the pixel. The parameters a, b and c, which determine the surface, are estimated from the constructed neighboring samples using the least mean squares method. Then, the pixel value z of current block is calculated using above equation.
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Figure 2‑7  Global planer prediction

2.4.1.3  Iterative adjustment prediction
Supposing continuity between prediction block and neighboring area in both dc and ac components, prediction samples are derived gradually in an iterative processing as shown in Figure 2‑8. Initial prediction samples are derived by the conventional DC prediction. A processing 32 x 32 block, which contains the prediction 16 x 16 block and neighboring area, is transformed by 2D DCT. Because there is discontinuity at the border between prediction block and the adjacent area, the derived DCT coefficients contain high frequency components induced by it. Higher components of DCT coefficients are replaced to zero and the coefficients are inverse transformed. These process make samples in the neighboring area somewhat change. They are replaced by the original constructed sample values of the neighboring area. This transform and adjustment process is iterated up to a predetermined maximum number. If the adjustment is small enough, the process is terminated before the maximum iteration.
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Figure 2‑8  Iterative adjustment prediction

2.4.2 Intra chroma coding

For intra coding of chroma components, the proposed scheme utilizes intra8x8 coding mode employed by the AVC/H.264 luma intra coding. Both U and V components are predicted with a single common prediction mode that is chosen from 9 directional prediction modes defined in the AVC/H.264 and the prediction mode decision is made independently from the luma coding and prediction mode. The residual signal is encoded by the adaptive 8x8 DCT/DST as specified in Section 2.5.2 and corresponding quantization process.
2.5 Spatial transforms
2.5.1 Adaptive block-size 2-D transform

The residual signal obtained as the result of inter prediction is encoded using an adaptive multiple block size transform technique. The basic concept of adaptive block size transform employed in this specification is to use a simple set of 2-D integer transforms {4x4, 8x8, 16x16} and to allow 1-bit selection (i.e., selection of one from two candidates) per each sub-partition layer. The adaptive transform size selection can only be allowed for the luma component and a unit of transform size selection shall be at the maximum block size of the corresponding sub-partition layer. For 4x4 and 8x8 transforms, AVC/H.264 compliant specification shall be used. For the 16x16 transform, real-valued DCT transform basis rounded into integer accuracy is simply used to obtain experimental results in Section 3.

Transform configuration allowed for inter pictures are summarized in Table 2‑8 to Table 2‑11. Conceptually, larger transform block sizes can be selected for relatively large motion partitions considering that the residual signal for a large motion partition tends to be smoother than that for a smaller motion partition. More specifically, only the 16x16 DCT can be used for a motion partition that is larger than 32x32 block. Adaptive decision from 16x16 and 8x8 transforms is allowed for motion partitions smaller than 32x32 block but larger than 16x16. Similarly, 8x8 and 4x4 transform can be selected adaptively for a motion partition that is smaller or equal to a 16x16 block size. A 1-bit flag indicating transform block size shall be multiplexed into the coded data of each partition. Note that, in B-picture coding, adaptive transform block size decision is not available for L1 sub-partition in 32x32MB case and for L2 sub-partition in 64x64MB case. For these cases, transform block size shall be determined at larger motion partition level.
Table 2‑8  Transform process for P-picture (32x32 MB case)

	mb_type
	sub_mb_type_L0
	sub_mb_type_L1
	Transform configuration (Luma)
	Unit of selection

	P_1Part
	-
	-
	16x16 or 8x8
	MB

	P_2Part_H
	-
	-
	16x16 or 8x8
	MB

	P_2Part_V
	-
	-
	16x16 or 8x8
	MB

	P_2Part_UL
	-
	-
	16x16 or 8x8
	MB

	P_2Part_UR
	-
	-
	16x16 or 8x8
	MB

	P_2Part_LL
	-
	-
	16x16 or 8x8
	MB

	P_2Part_LR
	-
	-
	16x16 or 8x8
	MB

	P_4Part
	P_1Part
	-
	8x8 or 4x4
	SPL0

	P_4Part
	P_2Part_V
	-
	8x8 or 4x4
	SPL0

	P_4Part
	P_2Part_H
	-
	8x8 or 4x4
	SPL0

	P_4Part
	P_2Part_UL
	-
	8x8 or 4x4
	SPL0

	P_4Part
	P_2Part_LR
	-
	8x8 or 4x4
	SPL0

	P_4Part
	P_2Part_LL
	-
	8x8 or 4x4
	SPL0

	P_4Part
	P_2Part_LR
	-
	8x8 or 4x4
	SPL0

	P_4Part
	P_4Part
	-
	8x8 or 4x4
	SPL0

	P_4Part
	P_I4x4
	-
	4x4
	SPL0

	P_4Part
	P_I8x8
	-
	8x8
	SPL0

	P_4Part
	P_I16x16
	-
	16x16
	SPL0


Table 2‑9  Transform process for P-picture (64x64 MB case)

	mb_type
	sub_mb_type_L0
	sub_mb_type_L1
	Transform configuration (Luma)
	Unit of selection

	P_1Part
	-
	-
	16x16
	na

	P_2Part_H
	-
	-
	16x16
	na

	P_2Part_V
	-
	-
	16x16
	na

	P_4Part
	P_1Part
	-
	16x16 or 8x8
	SPL0

	P_4Part
	P_2Part_H
	-
	16x16 or 8x8
	SPL0

	P_4Part
	P_2Part_V
	-
	16x16 or 8x8
	SPL0

	P_4Part
	P_2Part_UL
	-
	16x16 or 8x8
	SPL0

	P_4Part
	P_2Part_UR
	-
	16x16 or 8x8
	SPL0

	P_4Part
	P_2Part_LL
	-
	16x16 or 8x8
	SPL0

	P_4Part
	P_2Part_LR
	-
	16x16 or 8x8
	SPL0

	P_4Part
	P_4Part
	P_1Part
	8x8 or 4x4
	SPL1

	P_4Part
	P_4Part
	P_2Part_H
	8x8 or 4x4
	SPL1

	P_4Part
	P_4Part
	P_2Part_H
	8x8 or 4x4
	SPL1

	P_4Part
	P_4Part
	P_2Part_UL
	8x8 or 4x4
	SPL1

	P_4Part
	P_4Part
	P_2Part_LR
	8x8 or 4x4
	SPL1

	P_4Part
	P_4Part
	P_2Part_LL
	8x8 or 4x4
	SPL1

	P_4Part
	P_4Part
	P_2Part_LR
	8x8 or 4x4
	SPL1

	P_4Part
	P_4Part
	P_4Part
	8x8 or 4x4
	SPL1

	P_4Part
	P_4Part
	P_I4x4
	4x4
	SPL1

	P_4Part
	P_4Part
	P_I8x8
	8x8
	SPL1

	P_4Part
	P_4Part
	P_I16x16
	16x16
	SPL1


Table 2‑10  Transform process for B-picture (32x32 MB case)

	mb_type
	sub_mb_type_L0
	sub_mb_type_L1
	Transform configuration (Luma)
	Unit of selection

	B_Direct
	-
	-
	16x16 or 8x8
	MB

	B_1Part_L0
	-
	-
	16x16 or 8x8
	MB

	B_1Part_L1
	-
	-
	16x16 or 8x8
	MB

	B_1Part_BI
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L0_L0_H
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L0_L0_V
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L1_L1_H
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L1_L1_V
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L0_L1_H
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L0_L1_V
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L1_L0_H
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L1_L0_V
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L0_BI_H
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L0_BI_V
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L1_BI_H
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L1_BI_V
	-
	-
	16x16 or 8x8
	MB

	B_2Part_BI_L0_H
	-
	-
	16x16 or 8x8
	MB

	B_2Part_BI_L0_V
	-
	-
	16x16 or 8x8
	MB

	B_2Part_BI_L1_H
	-
	-
	16x16 or 8x8
	MB

	B_2Part_BI_L1_V
	-
	-
	16x16 or 8x8
	MB

	B_2Part_BI_BI_H
	-
	-
	16x16 or 8x8
	MB

	B_2Part_BI_BI_V
	-
	-
	16x16 or 8x8
	MB

	B_4Part
	B_Direct
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_1Part_L0
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_1Part_L1
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_1Part_BI
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L0_L0_H
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L0_L0_V
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L1_L1_H
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L1_L1_V
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L0_L1_H
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L0_L1_V
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L1_L0_H
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L1_L0_V
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L0_BI_H
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L0_BI_V
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L1_BI_H
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L1_BI_V
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_BI_L0_H
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_BI_L0_V
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_BI_L1_H
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_BI_L1_V
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_BI_BI_H
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_BI_BI_V
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_I4x4
	-
	4x4
	SPL0

	B_4Part
	B_I8x8
	-
	8x8
	SPL0

	B_4Part
	B_I16x16
	-
	16x16
	SPL0

	B_4Part
	B_4Part
	B_Direct
	8x8 or 4x4
	SPL0

	B_4Part
	B_4Part
	B_1Part_L0
	8x8 or 4x4
	SPL0

	B_4Part
	B_4Part
	B_1Part_L1
	8x8 or 4x4
	SPL0

	B_4Part
	B_4Part
	B_1Part_BI
	8x8 or 4x4
	SPL0


Table 2‑11  Transform process for B-picture (64x64 MB case)

	mb_type
	sub_mb_type_L0
	sub_mb_type_L1
	sub_mb_type_L2
	Transform configuration (Luma)
	Unit of selection

	B_Direct
	-
	-
	-
	16x16
	MB

	B_1Part_L0
	-
	-
	-
	16x16
	MB

	B_1Part_L1
	-
	-
	-
	16x16
	MB

	B_1Part_BI
	-
	-
	-
	16x16
	MB

	B_2Part_L0_L0_H
	-
	-
	-
	16x16
	MB

	B_2Part_L0_L0_V
	-
	-
	-
	16x16
	MB

	B_2Part_L1_L1_H
	-
	-
	-
	16x16
	MB

	B_2Part_L1_L1_V
	-
	-
	-
	16x16
	MB

	B_2Part_L0_L1_H
	-
	-
	-
	16x16
	MB

	B_2Part_L0_L1_V
	-
	-
	-
	16x16
	MB

	B_2Part_L1_L0_H
	-
	-
	-
	16x16
	MB

	B_2Part_L1_L0_V
	-
	-
	-
	16x16
	MB

	B_2Part_L0_BI_H
	-
	-
	-
	16x16
	MB

	B_2Part_L0_BI_V
	-
	-
	-
	16x16
	MB

	B_2Part_L1_BI_H
	-
	-
	-
	16x16
	MB

	B_2Part_L1_BI_V
	-
	-
	-
	16x16
	MB

	B_2Part_BI_L0_H
	-
	-
	-
	16x16
	MB

	B_2Part_BI_L0_V
	-
	-
	-
	16x16
	MB

	B_2Part_BI_L1_H
	-
	-
	-
	16x16
	MB

	B_2Part_BI_L1_V
	-
	-
	-
	16x16
	MB

	B_2Part_BI_BI_H
	-
	-
	-
	16x16
	MB

	B_2Part_BI_BI_V
	-
	-
	-
	16x16
	MB

	B_4Part
	B_Direct
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_1Part_L0
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_1Part_L1
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_1Part_BI
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L0_L0_H
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L0_L0_V
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L1_L1_H
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L1_L1_V
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L0_L1_H
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L0_L1_V
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L1_L0_H
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L1_L0_V
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L0_BI_H
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L0_BI_V
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L1_BI_H
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L1_BI_V
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_BI_L0_H
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_BI_L0_V
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_BI_L1_H
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_BI_L1_V
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_BI_BI_H
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_BI_BI_V
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_4Part
	B_Direct
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_1Part_L0
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_1Part_L1
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_1Part_BI
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L0_L0_H
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L0_L0_V
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L1_L1_H
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L1_L1_V
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L0_L1_H
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L0_L1_V
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L1_L0_H
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L1_L0_V
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L0_BI_H
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L0_BI_V
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L1_BI_H
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L1_BI_V
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_BI_L0_H
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_BI_L0_V
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_BI_L1_H
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_BI_L1_V
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_BI_BI_H
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_BI_BI_V
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_I4x4
	-
	4x4
	SPL1

	B_4Part
	B_4Part
	B_I8x8
	-
	8x8
	SPL1

	B_4Part
	B_4Part
	B_I16x16
	-
	16x16
	SPL1

	B_4Part
	B_4Part
	B_4Part
	B_Direct
	8x8 or 4x4
	SPL1

	B_4Part
	B_4Part
	B_4Part
	B_1Part_L0
	8x8 or 4x4
	SPL1

	B_4Part
	B_4Part
	B_4Part
	B_1Part_L1
	8x8 or 4x4
	SPL1

	B_4Part
	B_4Part
	B_4Part
	B_1Part_BI
	8x8 or 4x4
	SPL1


2.5.2 Adaptive DCT/DST transform for chroma components
DCT has been suitable as transform coding for video compression because it has the ability to express DC power by one coefficient. AVC/H.264 and its extended coding methods have a lot of new prediction scheme, e.g. high complexity intra prediction, high precision MC. Then the DC power of the coded residual signal may be reduced using new prediction scheme. In this case, DCT is not suitable to obtain efficient coded representation of such signal. Given this motivation, the proposed coding scheme introduces adaptive use of Discrete Sine Transform (DST) for residual signal of chroma components. This DCT/DST adaptive decision is allowed per each 8x8 coded block of U and V component, which means each chroma coded block contains 1-bit signaling flag to indicate which transform type is used.
The proposed 8x8 DST is specified as integer precision transform similar to the 8x8 integer transform adopted in AVC/H.264. The variable r is a 8x8 array of residual samples with element ri,j with i, j=0…7. The variable r is transformed producing transform coefficients c according to:
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These transform matrices are put the highest order basis in the lowest line for quantization process. These DST coefficients can be processed by the same way of scaling process of DCT coefficients.

The variable c’ is scaled by quantization parameter. The two dimensional array c’ is serialized by scanning process as described in Section 2.6. The variable c’ is transform to residual samples r’ by inverse transform process. The inverse transform process is as follows.
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2.6 Quantization

The proposed coding scheme relies on the concept of AVC/H.264 quantization process for transform coefficients. For 4x4 and 8x8 transform coefficients, completely the same quantization process as that of the AVC/H.264 has been adopted in the proposed scheme. On the other hand, no level scaling process is applied to 16x16 transform coefficients, where elements of transform matrix are integer-rounded real-value of 16x16 DCT. In this case, direct quantization with step size derived from Qp is applied to each coefficient. Scanning for 16x16 DCT coefficients is based on zig-zag scanning method, which is a straight-forward extension of conventional zig-zag scan to support 16x16 DCT coefficients. 
DST can selectively used for chroma residual coding. With the proposed DST defined in Section 2.5.2, the level scaling process can be equal to the quantization process for AVC/H.264 8x8 transform coefficient. Scanning to be applied to DST coefficients is specified in Figure 2‑9 and Table 2‑12. The integer precision DST is not composed in ascending order sequence. The lowest order component is allocated at (1, 1) position since it has most DC energy. When transform coefficients are serialized, values are read as following:
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Figure 2‑9  8x8 DST block scanning order

Table 2‑12  Specification of mapping of idx to cij
	idx
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	
	c11
	c21
	c12
	c13
	c22
	c31
	c41
	c32
	c23
	c14
	c15
	c24
	c33
	c42
	c51
	c61


	idx
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31

	
	c52
	c43
	c34
	c25
	c16
	c17
	c26
	c35
	c44
	c53
	c62
	c71
	c01
	c72
	c63
	c54


	idx
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47

	
	c45
	c36
	c27
	c10
	c20
	c37
	c46
	c55
	c64
	c73
	c02
	c03
	c74
	c65
	c56
	c47


	idx
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	62
	62
	63

	
	c30
	c40
	c57
	c66
	c75
	c04
	c05
	c76
	c67
	c50
	c60
	c77
	c06
	c07
	c70
	c00


For non-normative encoding optimization, single-path RDO-Q [8] is applied to all transform blocks. For constraint set1 condition, the coding performance to be reported in Section 3 was obtained by using the same hierarchical B structure and frame Qp setting rule as those are used in Alpha anchor. For constraint set2, the reported gain in Section 3 was observed by using normal IPPP structure with hierarchical P style Qp offset. It is noted that Beta anchor adopts 3-layered hierarchical P with Qp offsets, but the proposed scheme for constraint set2 did use 2-layered Qp offset.
2.7 In-loop filtering
2.7.1 De-blocking filter

An extended version of in-loop de-blocking filter of the AVC/H.264 is employed to reduce blocking artifact. The basic algorithm itself is almost the same as that of AVC/H.264, and the main modifications are the support of 16x16 transform block size and mixed intra/inter block in a MB for P-, and B-pictures. Filter strength derivation is performed only with luma component, and filter length and coefficients are based on those from the AVC/H.264.
2.7.2 Adaptive Wiener filter

The (locally) decoded video frame output from an extended de-blocking filter process is further input to an adaptive Wiener filtering process for restoring distortion introduced by the lossy encoding process with some expense on additional small bit budget. The proposed adaptive Wiener filtering tool is based on BALF (Block-based Adaptive Loop Filtering) [9], which is enhanced to utilize multiple Wiener filters. The operation of BALF at the encoder side depends on the information of such an input picture and the original picture of the same frame. The Wiener filtering technique is applied to extract the “optimal” Wiener filter coefficients. The extracted Wiener filter coefficients and their associated adaptive switching on and off flags are sent to the decoder. Based on the decoded information from the video bitstreams, the decoder can operate correctly for an encoder matching in-loop filtering. 
The operational function block of the enhanced BALF can be further described in Figure 2‑10. In addition to the original BALF algorithm, the enhanced BALF evaluates feasibility of using additional Wiener filtering operation for image area where the first Wiener filtering is not effective. At the end of the enhanced BALF process, if BALF filtering has been triggered, the decoded picture buffer will be then updated with the newly filtered version of the picture and such a picture is also output as the final decoded video picture.
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Figure 2‑10  Block diagram of enhanced BALF decoding
2.8 Entropy coding

The proposed coding scheme extends CABAC (Context-Based Adaptive Binary Arithmetic Coding) specification adopted in the AVC/H.264, in order to support efficient entropy coding of MB syntax elements with MB size extension. The arithmetic coding engine itself is based on that of the AVC/H.264. Major modifications are listed as follows.

· Introduce quad-tree based representation of coded_block_pattern to accommodate mixed transform block-size within a MB, and adaptation of CABAC process to it

· Unification of symbol representation of intra16x16 mode with other intra modes, to limit increase of bit budget required to represent mode information as MB size is going to be increased.

· Skip mode representation is supported not only at MB level but also at sub-partition levels.
3 Compression performance discussion
3.1 Constraint set 1 configuration relative to Alpha anchor

Luma BD values using low-rate 4Qp points and high-rate 4Qp points are shown inTable 3-1 to Table 3-5. Bitrate and PSNR values of all color components for each test sequence are recorded into the attached Excel sheet JCTVC-A122-PSNR.xls.
Table 3‑1  Class A, Constraint Set 1 relative to Alpha anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	Traffic
	-25.45 
	1.08 
	-22.62 
	0.84 

	PeopleOnStreet
	-16.91 
	0.95 
	-13.93 
	0.76 

	average
	-21.18 
	1.02 
	-18.28 
	0.80 


Table 3‑2  Class B, Constraint Set 1 relative to Alpha anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	Kimono
	-32.25 
	1.37 
	-29.93 
	1.10 

	ParkScene
	-21.20 
	0.86 
	-16.86 
	0.65 

	Cactus
	-24.58 
	0.87 
	-23.29 
	0.69 

	BasketballDrive
	-28.05 
	1.05 
	-25.47 
	0.80 

	BQTerrace
	-32.88 
	0.69 
	-32.76 
	0.53 

	average
	-27.79 
	0.97 
	-25.66 
	0.75 


Table 3‑3  Class C, Constraint Set 1 relative to Alpha anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	BasketballDrill
	-23.49 
	1.07 
	-22.24 
	0.99 

	BQMall
	-20.62 
	1.10 
	-18.68 
	0.93 

	PartyScene
	-21.15 
	0.83 
	-19.95 
	0.82 

	RaceHorses
	-23.48 
	1.05 
	-20.79 
	0.92 

	average
	-22.19 
	1.01 
	-20.41 
	0.91 


Table 3‑4  Class D, Constraint Set 1 relative to Alpha anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	BasketballPass
	-13.43 
	0.66 
	-11.18 
	0.60 

	BQSquare
	-22.31 
	0.88 
	-21.95 
	0.87 

	BlowingBubbles
	-9.66 
	0.40 
	-10.34 
	0.45 

	RaceHorses
	-8.74 
	0.43 
	-6.85 
	0.37 

	average
	-13.54 
	0.59 
	-12.58 
	0.57 


Table 3‑5  Overall, Constraint Set 1 relative to Alpha anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	Overall average
	-21.61 
	0.89 
	-19.79 
	0.75 


3.2 Constraint set 2 configuration relative to Beta and Gamma anchors
3.2.1 Performance relative to Beta anchors

Luma BD values using low-rate 4Qp points and high-rate 4Qp points are shown in Table 3-6 to Table 3-10. Bitrate and PSNR values of all color components for each test sequence are recorded into the attached Excel sheet JCTVC-A122-PSNR.xls.

Table 3‑6  Class B, Constraint Set 2 relative to Beta anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	Kimono
	-33.85 
	1.53 
	-32.59 
	1.31 

	ParkScene
	-15.48 
	0.60 
	-12.47 
	0.46 

	Cactus
	-18.70 
	0.65 
	-17.45 
	0.53 

	BasketballDrive
	-30.28 
	1.21 
	-28.37 
	0.98 

	BQTerrace
	-27.24 
	0.63 
	-25.03 
	0.47 

	average
	-25.11 
	0.92 
	-23.18 
	0.75 


Table 3‑7  Class C, Constraint Set 2 relative to Beta anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	BasketballDrill
	-15.76 
	0.67 
	-15.17 
	0.62 

	BQMall
	-15.61 
	0.81 
	-13.27 
	0.64 

	PartyScene
	-12.42 
	0.45 
	-8.80 
	0.34 

	RaceHorses
	-15.92 
	0.65 
	-14.19 
	0.58 

	average
	-14.93 
	0.64 
	-12.86 
	0.55 


Table 3‑8  Class D, Constraint Set 2 relative to Beta anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	BasketballPass
	-9.44 
	0.43 
	-7.84 
	0.40 

	BQSquare
	10.21 
	-0.32 
	14.61 
	-0.44 

	BlowingBubbles
	7.06 
	-0.26 
	7.57 
	-0.30 

	RaceHorses
	-3.40 
	0.16 
	-2.38 
	0.12 

	average
	1.11 
	0.00 
	2.99 
	-0.05 


Table 3‑9  Class E, Constraint Set 2 relative to Beta anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	Vidyo1
	-27.66 
	1.40 
	-27.29 
	1.12 

	Vidyo3
	-20.37 
	1.00 
	-20.37 
	0.84 

	Vidyo4
	-20.74 
	0.98 
	-19.63 
	0.72 

	average
	-22.93 
	1.13 
	-22.43 
	0.89 


Table 3‑10  Overall, Constraint Set 2 relative to Beta anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	Overall average
	-15.60 
	0.66 
	-13.91 
	0.52 


3.2.2 Performance relative to Gamma anchors

Luma BD values using low-rate 4Qp points and high-rate 4Qp points are shown in Table3-11 to Table3-15. Bitrate and PSNR values of all color components for each test sequence are recorded into the attached Excel sheet JCTVC-A122-PSNR.xls.
Table 3‑11  Class B, Constraint Set 2 relative to Gamma anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	Kimono
	-49.11 
	2.52 
	-49.17 
	2.28 

	ParkScene
	-37.00 
	1.65 
	-33.12 
	1.43 

	Cactus
	-40.72 
	1.65 
	-38.79 
	1.45 

	BasketballDrive
	-45.78 
	2.16 
	-43.91 
	1.79 

	BQTerrace
	-55.99 
	1.89 
	-51.19 
	1.43 

	average
	-45.72 
	1.98 
	-43.24 
	1.67 


Table 3‑12  Class C, Constraint Set 2 relative to Gamma anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	BasketballDrill
	-37.71 
	1.83 
	-38.18 
	1.80 

	BQMall
	-33.82 
	1.95 
	-31.72 
	1.74 

	PartyScene
	-40.07 
	1.63 
	-38.20 
	1.64 

	RaceHorses
	-26.38 
	1.13 
	-24.45 
	1.07 

	average
	-34.50 
	1.64 
	-33.14 
	1.56 


Table 3‑13  Class D, Constraint Set 2 relative to Gamma anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	BasketballPass
	-22.61 
	1.11 
	-21.68 
	1.17 

	BQSquare
	-42.70 
	1.67 
	-40.57 
	1.65 

	BlowingBubbles
	-24.66 
	1.07 
	-24.03 
	1.10 

	RaceHorses
	-12.90 
	0.63 
	-10.59 
	0.58 

	average
	-25.72 
	1.12 
	-24.22 
	1.12 


Table 3‑14  Class E, Constraint Set 2 relative to Gamma anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	Vidyo1
	-44.39 
	2.60 
	-45.39 
	2.17 

	Vidyo3
	-40.54 
	2.32 
	-39.80 
	1.98 

	Vidyo4
	-40.99 
	2.26 
	-42.65 
	1.89 

	average
	-41.98 
	2.39 
	-42.61 
	2.01 


Table 3‑15  Overall, Constraint Set 2 relative to Gamma anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	Overall average
	-37.21 
	1.75 
	-35.84 
	1.57 


3.3 Discussions on coding performance
In terms of rate-distortion performance, around 1dB PSNR gain at the same bitrate relative to Alpha anchor is achievable with the proposed scheme. More gain can be observed especially around lower bitrate range. Given that Alpha anchors have been generated with extremely high-complexity encoding configuration to get the best rate-distortion performance including frame multi-pass coding, the observed gain with the proposed scheme can be said as significant. It should also be noted that the proposed scheme does not use any frame-level multi-pass coding mode decision to obtain the reported gain.
A simple summary on subjective check made by proponents is that objective PSNR gain reflects visible subjective improvement. Temporal flickers typically observed for higher compression conditions can drastically be reduced by the proposed scheme, and subjective improvements on chroma components can obviously be found.
4 Complexity analysis

4.1 Complexity factors in encoding process
4.1.1 Encoding time and measurement methodology
The encoding time obtained per each encoding case is summarized in the attached Excel sheet JCTVC-A122-EncodingTime.xls. It is noted that these measurement results have been obtained by using various Linux x86_64 workstations typically having Intel Xeon processor around 3GHz clock, with two different time measurement methods depending on each encoding case. The attached Excel sheet contains notes to specify which time measurement method was used per each stream.
4.1.2 Expected memory usage
Any encoder compliant to the proposed coding scheme needs to equip frame-wise memory to store temporal motion vectors per each reference picture to support adaptive PMV and direct vector derivation, which is the same situation as the case of AVC/H.264 profiles enabling B-picture coding. Additional frame memory to store the result of in-loop de-blocking filter is required for use as input to adaptive Wiener filtering process. Local memory usage should depend on which implementation platform is selected.
4.1.3 Motion estimation and motion segmentation selection

In the proposed scheme, motion vector is estimated per each luma motion partition up to quarter-pel accuracy by using EPZS based motion search algorithm [14] with multiple reference frames. The best motion vector is determined as the one that gives minimum motion estimation cost 
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 represents coded bits for the motion parameter for the current motion partition, respectively. The motion estimation processes for P- and B-pictures are summarized in Figure 4‑1 and Figure 4‑2.
It is noted that process for fractional sample generation is identical to that of AVC/H.264, thus no additional complexity can be assumed relative to AVC/H.264 for obtaining prediction samples of one motion partition. It should also be noted that the proposed scheme does not use smaller motion blocks that 8x8 those require extra memory bandwidth than that for larger motion blocks due to a need of MC interpolation filtering at block edge. A non-rectangular motion partition may require proper reference frame memory access, where one is obtaining a full rectangle block that covers the focused non-rectangular partition area and the other is splitting memory access into two rectangular partition areas. Considering that the ME process needs to find the best motion vectors for other prediction modes for the block covering non-rectangular motion partition, actual memory bandwidth should depend on which ME strategy is used.
Performance reported in Section 3 was obtained by applying this motion search process to all possible motion partition shapes of all partition layers. Thus computational penalty relative to AVC/H.264 (especially, anchors) can be interpreted as difference of number of motion vectors to be estimated within a MB. Note that, during this motion search process, any coding cost computations do not happen.
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Figure 4‑1  Motion estimation process for P-picture
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Figure 4‑2  Motion estimation process for B-picture

4.1.4 Intra-frame prediction type selection
Figure 4‑3 and Figure 4‑4 illustrate mode decision in encoding process of intra block. All intra coding modes and prediction modes are evaluated with their coding cost given by
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Figure 4‑3  coding mode decision for intra block
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Figure 4‑4  Intra prediction mode decision for each intra sub-block
Figure 4‑5 shows an intra16x16 prediction mode selection. In intra16x16, there are 4 prediction modes. Prediction mode 0 and 1 are the same as those of AVC/H.264. Prediction mode 2 is the iterative adjustment prediction described in 2.4.1.3. It conducts local DCT and IDCT transforms at each iteration, which is specific for this type of intra prediction. Prediction mode 3 is the global planer prediction specified in 2.4.1.2. The other intra predictions (intra4x4 and intra8x8) are the same as AVC/H.264.
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Figure 4‑5  Intra 16x16 prediction mode decision
4.1.5 Transforms and transform type selection
For intra blocks, transform block size for luma component is determined per MB by its intra coding mode. For chroma components, the residual signal of each 8x8 sub-block resulting from intra8x8 prediction is encoded with DCT or DST. The encoder used to obtain coding performance reported in Section 3 performed combined RDO decision on transform type and intra8x8 prediction mode as illustrated in Figure 4‑6. For inter pictures, this decision is performed only on transform type (i.e., DCT or DST) as shown in Figure 4‑7.
The transform block size decision for inter luma residual is performed per each motion partition equal to or larger than 16x16 block size as specified in Section 2.5.1. The best transform block size is determined based on R-D cost competition, by applying all candidate transform block sizes for each partition of inter residual signal obtained with the best motion vector for the partition. Complexity of transform/quantization for DST is the same level as that of DCT.
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Figure 4‑6 Transform related encoding flow for intra chroma components
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Figure 4‑7 Transform related encoding flow for inter chroma components
4.1.6 Quantization and quantization type selection
The proposed scheme simply adopts the AVC/H.264 based quantization process for 4x4 and 8x8 transform blocks. Modifications to support quantization of DST coefficient are adjustment of scaling matrices and scanning order to be used for entropy coding. For 16x16 DCT, the current implementation does not use decomposition of transform matrix to “core + scaling” ones like AVC/H.264. So, total (transform + quantization) process takes much more computational time than that of AVC/H.264. It is recommended to conduct core experiment to choose a low-complexity 16x16 transform process. RDO-Q is used but it is similar level of complexity to that of anchors.
4.1.7 In-loop filtering type selection

In-loop filtering of the proposed scheme is a simple sequentially combined process of de-blocking and adaptive Wiener filtering. The de-blocking part is a straight-forward extension of AVC/H.264 in-loop filter process, and the use of a larger transform block size (e.g., 16x16 DCT or chroma 8x8 transform) saves a significant amount of filtering operation steps inside each partition. No additional computation to that of AVC/H.264 is required for determining strength value at block boundaries. It is also noted that, from the viewpoint of its principle, it should be possible to implement it as a MB level process.

The operation of the enhanced BALF at the encoder side depends on the information of such an input picture and the original picture of the same frame. The Wiener filtering technology is applied to extract the “optimal” Wiener filter coefficients. The extracted Wiener filters coefficients and their associated adaptive switching “on” and “off” flags, namely alf flags (adaptive loop filter), need to be sent to the decoder. Based on this overhead information decoded from the video bitstream, the decoder can operate correctly and match encoder’s in-loop filtering. The operational function blocks of the enhanced BALF encoding process are depicted in Figure 4‑8. As indicated in this figure, the basic encoding process can be described as follows: (1) Initial Wiener filter coefficients generation (both set of Wiener filters coefficients will update from such initial values); (2) With the initially available Wiener filter coefficients, identify the effective alf block-size and switch “on” and “off” alf flag conditions; (3) Iteration loops to find the best (in RDO terms) filter coefficients for the first Wiener filter and the second Wiener filter as well as the alf flag decision (alf block size decision also made jointly inside the iteration loops); (4) BALF bitstreams generation on the packing of all BALF flags and the Wiener filters coefficients; (5) Updating the decoded picture buffer with the correct BALF filtered version of pictures for possible future references.

Note that during the encoder optimization process for capturing effective Wiener filters coefficients and associated alf flags, the Wiener filters coefficients are only updated in a statistical “optimal” way: If at one iteration loop stage, the alf flag at the time is “on” for an alf block, the associated video data at the location will be used for the first Wiener filter coefficients updating; also if the alf flag is “off”, the video data at the location will be used for updating the second Wiener filter coefficients. When the first Wiener filter coefficients are updated, they can be used for further updating the alf block flag (since the newly obtained coefficients will filter the same alf block differently, therefore, it can achieve a better coding efficiency gain or end up otherwise – preferring a different Wiener filter – the second Wiener filter). Because the updating of the coefficients and the alf flag has to be at the separate steps, the iteration loop is needed in order to reach the most effective BALF parameter settings. In a real encoding operation, such iteration loops will be limited to no more than 3 times.
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Figure 4‑8  Block diagram of enhanced BALF encoding
4.1.8 Entropy coding
The proposed scheme employs a CABAC engine identical to that of AVC/H.264, which is the most significant complexity part of entropy coding process. A set of context models has been modified to fit to new syntax supporting extended MB size, but the memory requirement needed to accommodate all modified context models can be considered as similar level of memory size. It should be noted that real-time H/W implementation of existing AVC/H.264 CABAC have already been available in the real market, and future H/W technologies could solve its applications to higher-resolution video sources than HD.
4.1.9 Mode decision
Figure 4‑9 to Figure 4‑11 illustrate inter coding mode decision in P-picture encoding process. All inter coding modes are evaluated with their coding cost given by 
[image: image50.wmf]1

1

1

1

R

D

J

l

+

=

, where 
[image: image51.wmf]1

D

 is coding distortion for the current MB or partition measured by SSE, 
[image: image52.wmf]1

l

is Lagrangian parameter to be used for coding cost calculation and 
[image: image53.wmf]1

R

 represents coded bits for the current MB or partition, respectively. After finding the best inter modes, intra mode evaluation is performed at the level of partition having 16x16 block size.
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Figure 4‑9  mb_type decision for P-picture
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Figure 4‑10  sub_mb_type_L0 decision for P-picture
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Figure 4‑11  sub_mb_type_L1 decision for P-picture (only for 64x64MB)
Figure 4‑12 to Figure 4‑17 illustrate inter coding mode decision in the B-picture encoding process. All inter coding modes are evaluated with their coding cost given by 
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 represents coded bits for the current MB or partition, respectively. After finding the best inter modes, intra mode evaluation is performed at the level of partition having 16x16 block size.
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Figure 4‑12  mb_type decision for B-picture
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Figure 4‑13  sub_mb_type_L0 decision for B-picture (for 64x64MB)
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Figure 4‑14  sub_mb_type_L1 decision for B-picture (for 64x64MB)
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Figure 4‑15  sub_mb_type_L2 decision for B-picture (only for 64x64MB)
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Figure 4‑16  sub_mb_type_L0 decision for B-picture (for 32x32MB)
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Figure 4‑17  sub_mb_type_L1 decision for B-picture (for 32x32MB)
4.1.10 Degree of capability for encoder parallel processing

As in the conventional MPEG/H.26x standard compliant products, MB-level pipelining can be designed except for the enhanced BALF process. 
4.2 Complexity factors in decoding process
4.2.1 Decoding time and measurement methodology
The decoding time results obtained for anchor and proposed streams are summarized in the attached Excel sheet JCTVC-A122-DecodingTime.xls. All time measurements were performed by running the JM17.0 decoder and submitted binary proposed decoder on a single Linux x86_64 workstation equipped with an Intel Xeon processor at around 3GHz. The “user time” obtained by standard “time” command was used as measurement method.
4.2.2 Expected memory usage
Any decoder compliant to the proposed coding scheme needs to equip frame-wise memory to store temporal motion vectors per each reference picture to support adaptive PMV and direct vector derivation, , which is the same situation as the case of AVC/H.264 profiles enabling B-picture coding. Additional frame memory to store the result of in-loop de-blocking filter is required for use as input to frame-wise adaptive Wiener filtering process. New intra coding modes just require relatively wider local memory to store reference samples for global planer prediction and intermediate result of iterative adjustment process. 
4.2.3 Motion compensation 
The process for fractional sample generation is completely the same as that of AVC/H.264, thus no additional complexity can be assumed relative to AVC/H.264 for obtaining prediction samples of one motion partition. Non-rectangular motion partition may require proper reference frame memory access, where one is obtaining full rectangle block that covers the focused non-rectangular partition area and the other is splitting memory access into two rectangular partition areas. It should be noted that the proposed scheme does not use smaller motion blocks than 8x8 those require extra memory bandwidth than that for larger motion blocks due to a need of MC interpolation filtering at block edge. Adaptive direct motion vector derivation introduces an increase of computation and memory bandwidth, due to the need of block SAD calculations to determine the best direct vector per each partition coded with direct mode.
4.2.4 Intra-frame prediction operation
Figure 4‑18 shows intra16x16 prediction process. Prediction mode 0 and 1 are the same as those of AVC/H.264. Prediction mode 2 is the iterative adjustment prediction described in 2.4.1.3. It conducts local DCT and IDCT transforms at each iteration, as performed at encoder side. Prediction mode 3 is the global planer prediction specified in 2.4.1.2. The other intra predictions (intra4x4 and intra8x8) are the same as AVC/H.264.
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Figure 4‑18 Intra 16x16 prediction

4.2.5 Inverse transform / quantization operation
Use of 16x16 DCT without “core + scaling” de-composition introduces additional computations. Relevant “low-complexity” 16x16 transform can be discussed as a topic of core experiments. Complexity of inverse transform/quantization for DST is the same level as that of DCT.
4.2.6 In-loop filtering operation
In-loop filtering of the proposed scheme is a simple sequentially combined process of de-blocking and adaptive Wiener filtering. The de-blocking part is a straight-forward extension of AVC/H.264 in-loop filter process, and the use of a larger transform block size (e.g., 16x16 DCT or chroma 8x8 transform) saves lots of filtering operations inside each partition. No additional computation to that of AVC/H.264 is required for determining Strength value at block boundaries.

In general, the complexity of enhanced BALF at a decoder is close to or probably a little bit more than that of the BALF implemented in ITU-T VCEG Key Technical Areas (KTA) software. In KTA technology, for each video component, e.g., luma, only one Wiener filter is adaptively used. During a decoding process, for each alf (adaptive loop filter) processing block, it can be filtered by the provided Wiener filter or transparently passed through without any filtering. In enhanced BALF, the algorithm has been modified with an assistance of “Use_ad_luma_filter_flag”. If this flag is “off”, the enhanced BALF decoding process is the same as that of the KTA BALF operation; when this flag is “on”, all those alf blocks which are not subject to the first Wiener filter filtering will now go through a Wiener filtering with the second set of the transmitted Wiener filter coefficients.
The maximum operation for KTA BALF at a decoder can be described as in an extreme case that the Wiener filtering process will filter every single alf blocks with the maximum filter tap numbers as 9x9. For the enhanced BALF, the maximum operations will not exceed that of maximum required from the KTA BALF. For a single alf block, with enhanced BALF, the video data will be subject to (1) filtering by the first Wiener filter, or (2) filtering by the second Wiener filter, or (3) no filtering. Since these three decisions are independent and at a time we can only have one of them; therefore, there should be no further processing delay from enhanced BALF than KTA BALF. Note that before the BALF filtering process, all the filtering decisions for all the alf blocks are known. Therefore, the loading or set-up of the Wiener filter for each alf block will only need once for both the enhanced BALF and the KTA BALF.

The luma BALF filtering is independent from chroma, and the luma will have separate Wiener filter coefficients from that of chroma. The two chroma components will share the same Wiener filter in the current design. This is the case for both the enhanced BALF and the KTA BALF.

The Wiener filters are two dimensional (2-D) symmetric filters with tap numbers of 5x5, or 7x7, or 9x9. The maximum operations for a video picture can then be described as: to filter all the pixels for the complete picture; and for each pixel location, a standard 9x9 2-D filtering will apply. So far the adaptive nature of the BALF design will automatically optimize the use of the Wiener filters; when a 5x5 filter is used the BALF operations for that picture will be reduced from the maximum complexity. All the evidence so far suggest that the trade-off of the BALF decoding complexity against the video coding efficiency gain indicates that it is well-justified to include the in-loop adaptive Wiener filtering technology into the future video coding standard.
4.2.7 Entropy decoding
The proposed scheme employs a CABAC engine identical to that of AVC/H.264, which is the most significant complexity part of entropy coding process. A set of context models has been modified to fit to new syntax supporting extended MB size, but the memory requirement needed to accommodate all modified context models can be considered as similar level of memory size. It should be noted that real-time H/W implementation of existing AVC/H.264 CABAC have already been available in the real market, and future H/W technologies could solve its applications to higher-resolution video sources than HD.
4.2.8 Degree of capability for decoder parallel processing

As in the conventional MPEG/H.26x standard compliant products, MB-level pipelining can be designed except for the enhanced BALF process. 
5 Algorithmic characteristics
5.1 Random access characteristics
The proposed scheme provides the same level of random access capability as that of AVC/H.264. Though the performance report in Section 3 includes only the results with open GOP condition, video coding experts could easily expect that closed GOP is possible with IDR picture and difference on R-D characteristics between open and closed GOPs. 

5.2 Delay characteristics
From the viewpoint of algorithmic architecture, the proposed scheme provides the same level of delay characteristics as that of AVC/H.264, since the same coded data structure as conventional video coding standard (i.e., sequence, GOP, picture, slice and macroblock) can be used.
5.3 Extensibility

The proposed scheme has flexibility to support 4:4:4/high bit-depth video sources through relevant modifications to prediction methods, transform/quantization as defined in AVC/H.264 High444 profiles. Error resilience is also the same level of AVC/H.264 since the proposed scheme supports slice structure and multiple reference picture management as adopted in AVC/H.264. It can also be said that scalability extension is possible with the similar technical approach to SVC.
6 Software implementation description

The codec simulator developed for this submission has been implemented using pure C language, without using any platform specific instructions such as MMX/SSE. In this sense, simulator binaries can be built on any PC platforms (Windows, Linux, Mac OS X as UNIX etc…). This software has been implemented from scratch under a concept of easy function modularization, but JM and KTA software modules have been re-used for implementation of encoding/decoding process based on the conventional AVC/H.264 specification or formally adopted KTA coding tools. It can be said that the current software is a clean and extensible implementation that is suitable for further investigation of coding architectures with extended MB sizes and adaptive transforms combined with adaptive in-loop filtering.
7 Closing remarks

This contribution has presented a specification, coding performance report and complexity assessment of a new video coding algorithm jointly proposed by NHK and Mitsubishi Electric, as a response to the Call for Proposals for next-generation video coding standard to be developed by ISO/MPEG and ITU-T Q6/SG16. The proposed scheme is based on a “traditional” MB-based MC + transform hybrid coding architecture, which has been a well-known video coding architecture that is helpful for practical implementation purposes, but its reported performance shows significant coding efficiency enhancements relative to the current “state-of-the-art” standard AVC/H.264, especially for higher-resolution video sources. This characteristic should meet an important requirement of the new standard to achieve high coding efficiency for future Ultra HDTV up to 8Kx4K, since real-time codec implementation for such higher resolution video will become more difficult due to the huge increase of raw pixel rate. Given these observations, the proponents recommend starting the development of a reference model of the new standard by considering the algorithm framework and new coding tools proposed in this contribution. 
8 Patent rights declaration

NHK may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
Mitsubishi Electric Corporation may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
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