	[image: image5.emf]BasketballDrill_832x480

28

30

32

34

36

38

0 20000 40000 60000 80000 100000

Bits

PSNR (dB)

1&1

0&0

1&0

[image: image6.emf]Vidyo3_720p

30

32

34

36

38

40

42

0 10000 20000 30000 40000 50000 60000 70000

Bits

PSNR (dB)

1&1

0&0

1&0

[image: image7.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
1st Meeting: Dresden, DE, 15-23 April, 2010
	Document: JCTVC-A120

	Title:
	Video Coding Technology Proposal by RIM

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Dake He, Gergely Korodi, Gaelle Martin-Cocher, En-hui Yang, Xiang Yu, and Jinwen Zan
175 Columbia St. West
Waterloo, ON N2L 5Z5
Canada
	
Tel:

Email:
	
1-519-888-7465 ext. 78760, 79732, 14591

{dhe, gkorodi, gmartincocher, ehyang, xiayu, jzan}@rim.com

	Source:
	Research In Motion Limited

Abstract

This document describes a model for video encoding and decoding, which is designed primarily to address the following challenges in wireless video communications: 1) improve rate distortion performance to save bandwidth requirements; and 2) reduce decoding complexity to save power consumption at mobile devices.
In order to reduce decoding complexity and improve decoding throughput, the model introduces the following three tools to reduce the complexity of entropy coding and in-loop filtering, two of the most computationally demanding components at the decoder.
1. A binary variable-length-to-variable-length (V2V) entropy coding method. In comparison to binary arithmetic coding (BAC) in the AVC standard, V2V provides competitive compression performance (well within 1% of that of BAC in all cases) at much lower decoding complexity (estimated 1/2 of that of BAC in standalone tests in software implementation). Moreover, it is estimated that V2V can sustain very high throughput (more than 6 bits/clock), and is more power efficient than BAC in hardware implementation.
2. A parallel processing framework in entropy coding, complete with a method balancing the computational load on any finite number of available entropy decoding units. By decoupling entropy coding and context modeling, the parallel processing framework may use any entropy coding methods, including BAC, V2V, and Huffman coding (VLC), together with any context models like the ones defined in the AVC standard or their improved versions. In the case where it is coupled with V2V, the parallel framework is particularly attractive: for example in hardware implementation it provides the capability to double the throughput with a small increase in area cost.

3. A method to perform deblocking only at the encoder. By exploiting the benefits of deblocking without repeating the process at the decoder, this method may reduce the decoding complexity by about 30% with little negative and in some cases even positive impact on rate distortion performance.
In order to improve rate distortion performance, the model uses the following two tools.

4. A soft-decision quantization algorithm to minimize the actual rate distortion cost.
5. An iterative coding framework to jointly optimize quantization, motion estimation, and mode selection.

To demonstrate the effectiveness of the above tools, the model integrates them into JM11.0 KTA2.6r1. Note that each of these tools may also be independently integrated into JM11.0 KTA2.6r1 or any new model without referencing the others.
The efficiency of the proposed model is evaluated against the existing AVC standard on the test sequences defined in the Call-for-Proposal (CfP). Using a simple frame-level rate control scheme and the group of picture (GOP) structure IPPP without hierarchical P frames, the model is on average more than 1dB better than the Gamma anchor in the CfP, and is also better, albeit marginally, than the Beta anchor, both in terms of the peak signal-to-noise ratio (PSNR) values of luminance frames at the specified rates. Note that both the Beta and Gamma anchors use more sophisticated macroblock level rate control, and the Beta anchor further benefits from a GOP structure that includes hierarchical P frames.
1Abstract

31
Introduction

42
Algorithm Description

42.a
Entropy coding

112.b
Load Balancing

132.c
In-loop filtering

162.d
Quantization

192.e
Iterative coding

192.f
Motion representation, intra-frame prediction, spatial transforms

203
Compression Performance Discussion

203.a
Objective versus subjective compression performance

203.b
Constraint set 1 configuration relative to Alpha anchor

203.c
Constraint set 2 configuration relative to Beta and Gamma anchors

203.c.1
Class B

213.c.2
Class C

223.c.3
Class D

223.c.4
Class E

233.c.5
Overall

234
Complexity analysis

234.a
Encoding time and measurement methodology

234.b
Decoding time and measurement methodology

234.c
Expected memory usage of encoder

234.d
Expected memory usage of decoder

234.e
Complexity characteristics of encoder motion estimation and motion segmentation selection

234.f
Complexity characteristics of decoder motion compensation

244.g
Complexity characteristics of encoder intra-frame prediction type selection

244.h
Complexity characteristics of decoder intra-frame prediction operation

244.i
Complexity characteristics of encoder transforms and transform type selection

244.j
Complexity characteristics of decoder inverse transform operation

244.k
Complexity characteristics of encoder quantization and quantization type selection

244.l
Complexity characteristics of decoder inverse quantization

244.m
Complexity characteristics of encoder in-loop filtering type selection

244.n
Complexity characteristics of decoder in-loop filtering operation

244.o
Complexity characteristics of encoder entropy coding type selection

244.p
Complexity characteristics of decoder entropy decoding operation

244.q
Degree of capability for encoder parallel processing

254.r
Degree of capability for decoder parallel processing

255
Algorithmic characteristics

255.a
Random access characteristics

255.b
Delay characteristics

256
Software implementation description

257
Closing remarks

258
References

269
Patent rights declaration(s)

1 Introduction
In response to the Call for Proposals (CfP) on video compression technology issued jointly by ITU-T SG16 Q.6 (VCEG) and ISO/IEC JTC1/SC29/WG11 (MPEG) [1], this document describes a model for video encoding and decoding as part of the proposal submitted by Research In Motion Limited (RIM).
In order to meet the requirements on compression capability and complexity [4], esp. for mobile entertainment and wireless video communications, the model is designed to 1) improve rate distortion performance to save bandwidth requirements; and 2) reduce decoding complexity to save power consumption at mobile devices.

In order to reduce decoding complexity and improve decoding throughput, the model introduces the following three tools to reduce the complexity of entropy coding and in-loop filtering, two of the most computationally demanding components at the decoder.

1. A binary variable-length-to-variable-length (V2V) entropy coding method. In comparison to binary arithmetic coding (BAC) in the existing AVC (ITU-T H.264 | ISO/IEC 14496-10) standard, V2V provides competitive compression performance (well within 1% of that of BAC in all cases) at much lower decoding complexity (estimated 1/3 of that of BAC in standalone tests in software implementation). Moreover, it is estimated that V2V can sustain very high throughput (more than 6 bits/clock, or equivalently more than 1Gbps at the clock rate 200MHz), and is more power efficient than BAC in hardware implementation.

2. A parallel processing framework in entropy coding, complete with a method balancing the computational load on any finite number of available entropy decoding units. By decoupling entropy coding from context modeling, within this framework any entropy coding methods, e.g. BAC, V2V, or Huffman coding(VLC) can be used together with any context models, e.g. the context models defined in the existing AVC standard, or any future context models to be specified. In the case where it is coupled with V2V, the parallel framework is particularly attractive: for example in hardware implementation it provides the capability to double the throughput with a small increase in area cost (estimated conservatively at 20%).

3. A method to perform deblocking only at the encoder. By exploiting the benefits of deblocking without repeating the process at the decoder, this method may reduce the decoding complexity by about 30% with little negative and in some cases even positive impact on rate distortion performance.
In order to improve rate distortion performance, the model uses the following two tools.

4. A soft-decision quantization algorithm to minimize the actual rate distortion cost. Building a trellis based on the AVC context models, the SDQ algorithm searches for the best quantization levels by using dynamic programming that minimizes the rate distortion cost for every discrete cosine transform (DCT) block of size 4x4 or 8x8
5. An iterative coding framework to jointly optimize quantization, motion estimation, and mode selection. In this framework, the joint optimization problem is divided into two separate problems which are solved iteratively: one of optimal (or near optimal) quantization given motion vectors and partition modes which is solved by using the SDQ algorithm, and the other one of optimal motion estimation and mode selection given quantized residuals
To demonstrate the effectiveness of the above tools, the model integrates these tools in JM11.0 KTA2.6r1. It should however be emphasized that each of these tools may also be may also be independently integrated into JM11.0 KTA2.6r1 or any new model without referencing the others. Note that for our purpose, among the tools available in JM11.0 KTA2.6r1, only the following ones are used:

· adaptive interpolation filter is enabled by setting UseAdaptiveFilter=4 (Enhanced DAIF) [2];

· rate distortion optimized quantization (RDOQ) is enabled by setting UseRDO_Q=1 [3].
In order to measure the efficiency of the proposed model, it is evaluated against the existing AVC standard on the test sequences defined in the Call-for-Proposal (CfP). At the rates specified in the CfP for the test sequences, the model is on average more than 1dB better than the Gamma anchor, and is also better, albeit marginally, than the Beta anchor, in terms of the peak signal-to-noise ratio (PSNR) values of luminance frames. In order to understand these numbers under a proper context, we note that the model uses a simple frame-level rate control scheme, whereas the Beta and the Gamma anchors use more sophisticated macroblock level-rate control. Furthermore, the model adopts the same group of picture (GOP) structure IPPP as the Gamma anchor, and in contrast the Beta anchor benefits from a GOP structure (IpPpP) that includes hierarchical P frames.

2 Algorithm Description
The design of the proposed model follows the following principles:

1. The model is based on a collection of tools such that each of which can be easily updated or changed without affecting the others;
2. The model supports parallel processing, esp. in the decoding process.

3. The decoding complexity of the model is low enough to allow for real-time decoding of 1080p or 720p sequences at 30fps on power-constrained mobile devices.
With these guiding principles in mind, we design and develop a set of coding tools and integrate them into JM11.0 KTA2.6r1, which is in turn based on JM11.0 of the AVC standard. Since the tools in JM11.0 KTA2.6r1 and JM11.0 are well documented, in the following we shall focus on describing the new tools that we introduce, and where applicable refers to JM11.0 KTA2.6r1 or JM11.0 for the rest.
2.a Entropy coding
This section consists of two parts.

i) In the first part, we propose a new entropy coding framework, which is able to benefit from parallel processing capabilities at both the encoder and the decoder. This framework can be used with any entropy coding scheme, such as BAC or Huffman coding.
ii) In the second part, we present a new V2V coding method, which aims to provide the compression efficiency of arithmetic coding at the computational complexity of Huffman coding. The V2V method is our preferred entropy coding scheme in the parallel encoding framework, as detailed below. The methods we present use the same interface as BAC, and they can be integrated into any implementation that uses CABAC.

i) The Interface
The interface we use is the same as that of CABAC. The encoder function takes three parameters: an integer for identifying the source, a flag bit to specify the most significant bit, and the bit to be encoded. Optionally, we may pass on other parameters, such as the encoding environment, if necessary. The decoder function takes two parameters: an integer for identifying the source, and a flag bit to specify the most significant bit. It returns the binary symbol, which is exactly the same as the symbol passed to the encoding function at the same stage. In the following, we refer to this interface as the CABAC interface.

Not all entropy coding methods support this interface, Huffman coding is a notable example that does not. The parallel framework, as described below, supports this interface, regardless of the entropy coding method used. Therefore this framework has multiple advantages: on the one hand, it provides independent, parallel processing for entropy coding algorithms that are serial in nature; on the other hand, it separates the entropy coding method behind a common interface, which directly ties in with any algorithm that uses CABAC. In the following, we describe this parallel framework.

i) The Entropy Coding Framework

Given is a finite set P={Pk | 1 <= k <= n, 0 < Pk <= 0.5}. The Pk values are regarded as probability values for the Least Probable Symbol (LPS) at source k; their complements are of the form 1-Pk, and they belong to the Most Probable Symbol (MPS). The n sources output binary symbols using their respective probabilities, in an arbitrary order. We use the convention “symbol is MPS”=1, “symbol is LPS”=0. The binary symbols are recorded in an array, or optionally a linked list of array segments, whichever data structure is more suitable for memory constraints. Each element of the array has two fields: a 32 bit register collecting the 32 symbols each, and a pointer to the next element of the same source. Initially, array element (k-1) is assigned to source k (1 <= k <= n) and set to active. After the active element for source k has recorded 32 symbols, the first unused element is assigned to source k and becomes active, and the recording continues.

At a specific event, which we call the flush event, and which typically occurs at the end of slice, for each source we generate its symbol output sequence from the array, and encode this sequence with an arbitrary, order-0 entropy coding algorithm. Since the array elements for each source are made up of binary symbols with the same probability distribution, they can be efficiently compressed with data-independent static codes, typically computed off-line. We recommend V2V coding, as explained below, but other methods, for example BAC, can be used as well. Let Lk be the encoded length of the output of source k, measured in bytes. We define a byte-aligned prefix code C the following way:

If n < 128, then C(n) = n << 1;
Else if n < 16512, then C(n) = ((n - 128) << 2) | 1;
Else if n < 2113664, then C(n) = ((n - 16512) << 3) | 3;
Else C(n) = ((n - 2113664) << 3) | 7;

where "<<" is a right shift, and "|" is a bit-wise OR.

The output of the parallel framework is the concatenation of the following:

1. C(Lk) for (1 <= k <= n), [this is the header]
2. The byte-aligned encoded sequence for source k (1 <= k <= n) [this is the payload].

The decoder first decodes the Lk values from the header, and uses these values to find the starting point of the encoded sequence k within the payload. After this, the n sequences can be decoded independently of each other from the payload, hence parallel decoding is feasible.

Should the number d of parallel decoding processing units differ from n, we provide a mechanism for combining source outputs (for d < n), or splitting source outputs (for d > n). The value d needs to be known prior to encoding. If the target decoding architecture does not have d decoding units, lossless decoding is still guaranteed.

ii) V2V Codes
In the following we review the V2V codes. These codes can be used in the parallel framework, just like BAC or Huffman coding. The description of these codes has three parts: code generation, encoding, and decoding. In this form, the V2V codes do not support the CABAC interface, so they need to be encapsulated in the parallel framework. Additionally, we provide an extension of these codes, which makes them support the CABAC interface without the parallel framework, that is, an extension that enables the V2V codes to directly encode the interleaved output of binary sources, which are characterized by different probability values. The main difference between this extension used alone and the V2V codes used in the parallel framework is that the former works in serial mode, and may have slightly more efficient compression. This extension has two more parts: encoding buffer and code selector. We review the parts in this order.

Code Generation

Once again, we consider the finite set of probability values P as shown above. For each pk of P, a full binary tree is generated, where every path in the tree defines a bit sequence, and every node on that path, including the leaf, designates a value of the form pk u•(1- pk)v, where u is the number of LPS and v is the number of MPS in the path. We denote by Sk the sequences associated with the leaf nodes. In our present application, we use the following constraints to guide the tree generation process:

1.
No sequence probability is lower than 2-16
2.
Sequence number |Sk| for source k is less than 4096.

3.
An efficient Huffman codeword set exists for elements of Sk.

4.
Elements of Sk have special forms that enable 30-bit representation.

The binary tree generation process results in two Huffman code sets for each index k: a primary Huffman code set HLk and a secondary Huffman code set HNk. The primary Huffman codewords in the primary Huffman code set HLk, are associated with the leaves of the binary tree for k, whereas the secondary Huffman codewords in the secondary Huffman code set HNk are associated with the internal nodes of the binary tree. In other words, the primary code words are each associated with one of the sequences Sk, whereas the secondary Huffman codewords are each associated with one of the prefixes of Sk. If the V2V scheme works in parallel mode, then only the primary codewords are needed, and the secondary codewords are discarded. As will be explained further below, in serial mode, under certain circumstances an input sequence may terminate before completing a sequence Sk, and thus the secondary codeword may be used to encode the prefix (the partially complete sequence Sk).
The code sets are written in two forms: one specifying the encoder tree, the other the decoder tree, for source k. Every leaf node of the encoder tree will have a certain probability associated with it: pk u•(1- pk)v. Therefore, the parsed phrases of Sk can be encoded using a Huffman code based on these probabilities; these are the primary codewords. Similarly, the secondary codewords are the Huffman codes for the internal nodes, based on the normalized probabilities of the internal nodes.
The encoder tree for each source k includes both primary and secondary codewords, typically in an array of 32-bit integers, where each integer corresponds to one node (internal or leaf) in the tree. The bit field for each node is structured as follows:

0 …15:
Huffman code for that node (primary or secondary)

16…19:
Length of Huffman code, minus 1

20…31:
Index of left child; 0 for leaves

In the binary tree we use the convention that the left child corresponds to the “symbol is LPS” event. The right child follows immediately behind the left child in the table. In this manner, the encoder is able to navigate the table bit-by-bit using the binary input sequence.

For the decoder tables, the primary and secondary codes are stored in separate arrays. Once again, secondary codes may be omitted if we work in the parallel framework described above. The decoder tree is like the encoder tree reversed: the paths of the decoder tree identify the codewords, and the leaves of the decoder tree store the original parsed phrases. As for the encoder tree, each decoder tree node contains a 32-bit integer. The bit field for each node is structured as follows: bits 30, 31 store the node type. Then,

For node type 0 (internal node):

0 … 15: Index of leftmost child

16 … 29: Logarithm of number of child nodes

For node type 1 (short phrase):

0 … 24: The parsed bit phrase

25 … 29: Phrase length

For node type 2 (phrase of the form 111…110):

0 … 29: Phrase length

For node type 3 (phrase of the form 111…111):

0 … 29: Phrase length

The decoder tree construction is optimized to enable parsing the largest number of available code bits at each step. For each internal node, this is determined by the minimum depth of the subtree starting at that node. This value is shown in the bit fields 16 … 29 for type 0 nodes. For any internal node, this is the maximum number of bits that can be definitely read out of the encoded file, and they belong to the same codeword. This mechanism significantly speeds up the parsing of encoded files.

Example: An example set of primary codewords is set out in the following table. The following table is generated for pk = 0.20, with a probability threshold set to 0.13 (parsing ends when the sequence probability reaches a value less than 0.13). The resulting tree contains 14 leaves. Altogether, this achieves an estimated source entropy 0.7250, which is only 0.42% higher than the theoretical limit of (pk*log(pk) + (1-pk)*log(1-pk)) = 0.7219.

	Parsed Sequence
	Probability
	Codeword

	00
	0.040000
	11010

	010
	0.032000
	11011

	011
	0.128000
	000

	100
	0.032000
	11100

	101
	0.128000
	001

	110
	0.128000
	010

	1110
	0.102400
	011

	11110
	0.081920
	1010

	111110
	0.065536
	1011

	1111110
	0.052429
	1100

	11111110
	0.041943
	11101

	111111110
	0.033554
	11110

	1111111110
	0.026844
	11111

	1111111111
	0.107374
	100

Example: An example set of primary codewords is set out in the following table. The following table is generated for pk = 0.30, with a codeword number threshold set to 10 (the code generator finds the tree that gives the best compression efficiency for 10 leaves). Altogether, this achieves an estimated source entropy 0.8872, which is only 0.68% higher than the theoretical limit of (pk*log(pk) + (1-pk)*log(1-pk)) = 0.8813.

	Parsed Sequence
	Probability
	Codeword

	00
	0.090000
	000

	010
	0.063000
	1100

	011
	0.147000
	001

	100
	0.063000
	1101

	101
	0.147000
	010

	110
	0.147000
	011

	1110
	0.102900
	100

	11110
	0.072030
	1110

	111110
	0.050421
	1111

	1111110
	0.117649
	101

Encoding

The encoder parses the encoding tree bit-by-bit. When the encoder reaches a leaf node (as indicated by the index portion of the field), the encoder knows the Huffman code is a primary codeword and it outputs the primary codeword, stored in that node, for that sequence Sk, then returns to the root node. In serial mode, when the encoder receives a flush signal and it is in an internal node, it outputs the codeword, which is a secondary code, in that node, and also returns to the root. The output is written into a 32-bit buffer, and the leftmost octets are shifted out as soon as available.

Decoding

Decoding is analogous to encoding. When a request is made for a binary symbol from source k, and no such bits are available, the decoder parses the decoding tree based on the encoded file, and retrieves the parsed phrase stored in the leaf it reaches. It then represents the parsed phrase with a (prefixlen, suffix) pair, each variable being a 32-bit integer. Prefixlen is the number of leading 1’s in the phrase, and suffix is the remaining part, terminated by a 1 bit from the left (most significant bit). Calculating the bit to return is done the following manner afterwards: if prefixlen > 0, decrement prefixlen and return 1. Otherwise, if suffix > 1, shift out the rightmost bit of suffix and return it. Otherwise, a new codeword needs to be parsed, as described above.

Parsing the decoder tree is done by bits sequences, rather than individual bits, depending on the tree shape. This achieves faster parsing at decoding. The number of bits to read out from the decoded file at each node is determined during the code generation phase, and it is stored in the decoder tree (see the Code Generation section for details).

Example: consider the first table of 14 codewords given for pk=0.2. Each codeword is at least 3 bits long, so at the root node 3 bits are looked up from the decoded file. If these bits are any of “000”, “001”, “010”, “011”, “100”, then we have a complete codeword, and we can generate the parsed phrase of (prefixlen, suffix) pairs. If the bits are “101” or “110”, we have to read one more bit to complete a codeword, and for “1101” another bit. Finally, if the first three bits were “111”, then we look up two more bits at once to complete the code. This way each code is read by at most three look-ups. After this we can generate the parsed phrase in (prefixlen, suffix) form. This process is illustrated in the following table:

	1st look-up
	2nd look-up
	3rd look-up
	Phrase(binary)
	Prefixlen(decimal)
	Suffix(binary)

	000
	
	
	011
	0
	1011

	001
	
	
	101
	1
	101

	010
	
	
	110
	2
	10

	011
	
	
	1110
	3
	10

	100
	
	
	1111111111
	10
	1

	101
	0
	
	11110
	4
	10

	101
	1
	
	111110
	5
	10

	110
	0
	
	1111110
	6
	10

	110
	1
	0
	00
	0
	100

	110
	1
	1
	010
	0
	1010

	111
	00
	
	100
	1
	100

	111
	01
	
	11111110
	7
	10

	111
	10
	
	111111110
	8
	10

	111
	11
	
	1111111110
	9
	10

In serial mode, the decoding process is the same for primary and secondary codes. Whether the next code is primary or secondary, is decided by the code selector (see below).

Encoding buffer

This part is only for the V2V codes in serial mode. For correct decoding, codewords must enter the output stream in the order their first bit is referenced. This order may differ from the order of code completion (i.e. when their last bit is referenced). In the encoder we use a cyclic buffer to store codewords in the correct order. When parsing of a code tree starts, the next free entry in the cyclic buffer is allocated to the incomplete codeword. Once a codeword is complete, it is written in the buffer to its appropriate position. The oldest entry in the buffer is written out when it is complete, and the code selector (see below) decides that writing is possible. If the buffer is full, a request for a new entry forces a flush on the oldest code tree, using its secondary code set.

Example: We have two sources, A and B, and they output symbols in this order: “A0 B0 B1 B0 B0 B1 B1 B1 B1 A0”. For this example we use the codeword set in the second table, for pk=0.3, for both trees. The following table shows the encoding process from the point of view of the buffer:

	Tree
	Symbol
	Event

	A
	0
	Reserve buffer entry 0 for A

	B
	0
	Reserve buffer entry 1 for B

	B
	1
	

	B
	0
	Buffer entry 1 is complete, codeword: 1100, pending

	B
	0
	Reserve buffer entry 2 for B

	B
	1
	

	B
	1
	Buffer entry 2 is complete, codeword: 001, pending

	B
	1
	Reserve buffer entry 3 for B

	B
	1
	

	A
	0
	Buffer entry 0 is complete, codeword: 000, ready

	
	
	Buffer entry 1 is ready

	
	
	Buffer entry 2 is ready

As this example illustrates, an entry is pending when the associated codeword is complete, that is, parsing has reached a leaf in the encoding tree, but there is at least one incomplete entry earlier in the buffer. An entry is ready when complete, and all of the earlier entries are ready.

Typically, when an entry becomes ready, it is still retained in the buffer. It is the code selector that decides when ready entries can be moved out of the buffer, and written in the encoded file.

Code selector

This part is only for the V2V codes in serial mode. This part communicates to the decoder which codes are primary and which are secondary. The bitstream contains codewords from either a primary codeset or secondary codeset, where the primary codeset is used much more frequently than the secondary codeset and the secondary codewords tend to come in bursts. To avoid excessive overhead associated with inserting this codeword type indicator, the following method relies upon the fact that the secondary codewords are used much less frequently.

At any position, when a new codeword starts, an estimate ps of the probability of a secondary codeword is formed. From the estimate, a predicted number of consecutive primary codewords is generated as L(ps). If the prediction is true, i.e. if the next L(ps) consecutive codewords are primary, then a “true” flag is output (such as a “1” bit) in the bitstream, and then L(ps) codewords are written to the bitstream. Then the prediction is made again. The true flag is one example of the codeword type indicator.

If the prediction is false, i.e. if there is a secondary codeword within the next L(ps) consecutive codewords, then a “false” flag (such as a “0” bit) is output in the bitstream followed by the location of the next secondary codeword, as the number of codewords until the secondary codeword, in ceil(log L(ps)) bits. The consecutive codewords up to and including the secondary codeword are output to the bitstream. Then following the secondary codeword, the decoder returns to make a new prediction. The false flag and location information is another example of the codeword type indicator.

The estimation of the probability ps of a secondary codeword depends on whether the immediately preceding codeword was primary or secondary. If it was secondary, and that secondary codeword was itself preceded by N primary codewords, then the probability estimation for ps is given by ps = 1/(N+1). If the preceding codeword was primary, and if M primary codewords have occurred since the last secondary codeword, then the Krichevsky-Trofimov estimator may be used to give ps = 1/(2M +2).

By having a probability estimate for the occurrence of a secondary codeword, we can formulate an estimate L(ps) on the run length of primary codewords coming next, which gives the shortest expected code overhead. Through a mathematical derivation, this number is calculated using the expression L(ps)= ln2/ps. This means that a good approximate estimate for the number of consecutive primary codewords is 0.7 times the number of primary codewords that were observed between the two previous secondary codewords, or 1.4 times the number of primary codewords seen from the last secondary codeword, based on whether the last codeword was primary or secondary, respectively.

With this, the V2V algorithm is fully specified.
ii) Compression Performance and Computational Complexity

We evaluate the compression performance and computational complexity of V2V against BAC in standalone Bernoulli tests on binary i.i.d.(independent and identically distributed) sources with known probabilities between 0 and 0.5. In every case, the compression rate of V2V is within 1% of that of BAC and the theoretical limit given by entropy. In terms of computational complexity, the encoding time of V2V ranges from 1/3 to less than 1/5 of that of BAC; and the decoding time of V2V is no more than 1/2 of that of BAC in all cases. The following table illustrates this for the LPS probabilities 0.3853, 0.1763, 0.08068 and 0.02845. This is a subset of the 64 probabilities used by CABAC; the total size of the V2V codes for these 64 probabilities is 56192 bytes for encoding, and 68344 bytes for decoding. The columns show, in this order, the probability of LPS, the entropy of that source, the BAC throughput for encoding and decoding in Mbps timed on a desktop PC, the BAC compression rate in bits/symbol, the V2V throughput for encoding and decoding in Mbps on the same machine, and the V2V compression rate.

	LPS prob
	Entropy
	BAC enc
	BAC dec
	BAC rate
	V2V enc
	V2V dec
	V2V rate

	0.385299
	0.9617
	36.735
	56.519
	0.9650
	174.233
	151.473
	0.9660

	0.176312
	0.6719
	44.296
	65.313
	0.6760
	191.132
	172.953
	0.6767

	0.080680
	0.4046
	56.146
	84.790
	0.4067
	203.272
	196.870
	0.4072

	0.028450
	0.1866
	75.536
	112.783
	0.1891
	230.704
	290.938
	0.1895

Since V2V is based on table lookups and can decode multiple bits at a time, its architecture is particularly attractive in hardware implementation. Our initial estimates show that V2V can sustain very high throughput (at more than 6 bits/clock), and thus can reach 1Gbps/sec at the clock rate 200MHz. It is also estimated that at the same throughput, V2V is more power efficient than BAC, which translates well into longer battery life in wireless video communications.
V2V is also well suited in the parallel framework described earlier in this section. This coupling becomes even more attractive in hardware implementation for increasing throughput while keeping clock rate and power consumption at reasonable levels. Indeed, it is estimated that we can easily double the throughput rate by instantiating two V2V entropy decoder blocks with a conservative estimate of 20% increase in area cost.
2.b Load Balancing

In this section we propose an extension to the framework described in Section 2.a. The parallel framework in Section 2.a makes provisions for the encoded video stream being decodable starting at various offsets, thereby enabling parallel decoding, but the positions of these offsets do not guarantee that computational load on the decoding CPUs is distributed evenly. In fact, it is likely in practical scenarios that most of the CPUs will sit idly, having already done their chores, while the rest of them are still busy decoding the appropriate encoded source streams. In the present section we provide for the parallel framework an improvement, which aims at balancing the computational load at decoding time, for an arbitrary (possibly unknown) number of CPUs.

The solution has two parts: the encoding and the decoding of the data. This solution has the same interface as the framework in Section 2.a, and it can be used wherever that framework is applicable. In this section all length values are expressed in bits, unless stated otherwise.

The encoding part creates the encoded bit streams S’k of length M’k for each of the input sources Sk, k=1,…,n, with the given entropy coder. If the entropy coder is properly designed, M’k should be close enough to Mk= Lk*(pk*log(1/pk) + (1-pk)*log(1/(1-pk))).

The output of the load balancing extension to the parallel framework is the concatenation of the following:

1. C(M’k) for (k = 1,…,n), [this is the first part of the header]

2. The second part of the header, which depends on the entropy coding algorithm

3. S’k (k=1,…,n) [this is called the payload]

The byte-aligned prefix code C() was defined in Section 2.a.

The format and content of the second part of the header depends on which entropy coding algorithm was used to encode the Sk sequences, and a distributor function. This part is a self-delimiting sequence. In practical implementations it preferably takes a full number of bytes, though this is not mandatory.

Let D(a, b) be the set of all (v1,…,vb) vectors, for which vk is a positive integer (k=1,…,b), and v1 + v2 + … + vb = a. Let S’ = S’1 + … + S’n. Then, using the notations above, the distributor function is a function of the form F : {0,1}^K -> D(K, b). The distributor partitions the concatenated encoded sequences into b units, such that decoding each unit would take approximately the same time.

In this form, the distribution function gives the lengths of the decodable segments. We shall also make use of the starting positions of these segments, given by the associated function F’(x), where for F(x)= (v1,…,vb), F’(x)=(0, v1, v1+v2, v1+v2+v3, …, v1+…+vb). Obviously, the functions F and F’ mutually determine each other.

Example: the uniform distributor assumes that the decoding complexity of any S’k depends only on M’k, that is, the length of S’k. Then, for the concatenated encoded bit stream x of length S’, F(x) = (S’/b, S’/b, …, S’/b) (the division may be rounded up or down to meet the final sum M’1+…+M’n). This distributor may be applied to any entropy coding algorithm.

Example: the weighted distributor assumes that the decoding complexity of any S’k is uniform within S’k, but may vary according to k. Let wk be this complexity for S’k, and W=w1*M’1 + … + wn*M’n. Then the distributor assigns the values F’(x) = (v1,…,vb) such that for any k < b: the decoding complexity of the segment x[vk,…,vk+1-1] is W/b. Using a simple linear algorithm, these values can be determined in O(n) running time. This distributor may be applied to any entropy coding algorithm.

We now describe the format of the second part of the header for two algorithms: first, an arbitrary variable-length encoder, such as Huffman or V2V; second, for binary arithmetic coding.

Example: consider an arbitrary VLC encoder. For all k=1,…,b-1, let Bk be the number of bits, which we have to read ahead from F’(x)[k] to arrive at the start of the next codeword. That is, Bk=0 if a codeword starts right at F’(x)[k], Bk=1 if the next codeword starts at F’(x)[k+1], and so on. Then the second part of the header is the concatenation of the values C(Bk) for k=1,…,b-1.

Example: let the variables Z=(z1,…,zs) be associated to the arithmetic decoder (in the H.264 JM/KTA implementation of CABAC, these are (low, range, value, bits_to_go, buffer)). Consider the decoding process of x, and let Z[p] be the value of Z immediately before reading the value x[p]. Then the second part of the header is the concatenation of the values C(z1[F’(x)[k]])C(z2[F’(x)[k]])…C(zs[F’(x)[k]]) for k=1,…,b-1.

After this, the encoder output is fully specified.

The decoder first decodes the M’k values from the header, then uses these values and the known distributor function to compute F(x)[k], k=1,…,b. Once these values are known, the decoder distributes the F(x) segments among the d available processors, using the following load distribution algorithm. Let Gk be the number of F(x) segments given to the kth processor, k=1,…,d. Then

· if d >= b (there is at least one processor for each segment):

 Gk = 1 for k=1,…,b and Gk=0 for k>b (the last d-b processors are unused)

· if d < b (there are more segments than processors):

B0=b

G0=0

Bk=Bk-1-Gk-1
Gk=[Bk/(d-k+1)] (here the [] operator means rounding)

Using the output of the algorithm, the first G1 segments are assigned to the first processor, the next G2 segments to the 2nd processor, and so on. This algorithm creates the best equalized load for d processors, provided the b segments are already equalized for decoding complexity.

The starting points for the encoded segments within the encoded file x are identified using the contents of the second part of the header. After this, each processor is given a pointer to the start of its respective stream, its variables are initialized (optionally, as is in the case of arithmetic coding, from the header), and simultaneous, independent decoding of x can commence.

The load distribution algorithm provides optimal performance for any specific set of b segments and d processors; however, some sets obviously perform better than others. The best performance among all (b, d) values is reached when b is a multiple of d.

Example. If d divides b, then the load distribution algorithm simplifies to Gk=b/d for all k=1,…,d.

Our general method works with the case when the encoder has no information about the number d of processing units at the side of the decoder. In the case that the encoder has a knowledge of some potential candidates d1, d2, …, dk for the number of processors, we present the following improvement: let b be a number which is a multiple of all of d1, …, dk (the least common multiple of the numbers d1, …, dk is adequate). In this case, for all the candidates the load distribution algorithm simplifies to the previous example, while for all other processor numbers it resorts to the general algorithm.

Example. Suppose that the encoder knows that target decoders may be equipped with any one of 1, 2, 3, 4, 6, 8, 10, 12 or 16 processors. The least common multiple of these numbers is 240, so the encoder should set b=240.

Example. If the encoder sets b=2t, then optimal load balancing is achieved for each of 1, 2, 4, 8, …, 2t decoding processors.

2.c In-loop filtering
This section describes a tool that makes it possible to perform deblocking only at the encoder side with little or no rate distortion performance loss compared to the case where in-loop filtering is used both at the encoder and at the decoder. Since the deblocking process easily accounts for one-third of the computational power of an AVC decoder [5], by enabling this tool one can significantly reduce the decoding complexity. Note that due to time constraints, the submitted test materials are generated before this tool was integrated.
For brevity, let us focus on the case of inter-coding. Define X as the original frame, P as the motion compensated prediction, and U as the reconstructed residuals. The reconstruction before deblocking Y = P+U might be different from the reconstruction Z after deblocking. In order to save the deblocking process at the decoder, the effect of deblocking needs to be taken into account during the encoding process. To this end, we formulate the following problem.

Problem Formulation
Given X, Y, and Z, how to find P and U such that the resulting rate distortion cost ||X-P-U||2 + ((r(U) is as small as possible, where r(U) denotes the number of bits needed to reconstruct U.

The problem is difficult to solve in general because P and U are dependent on each other. In the following, we describe an efficient alternating minimization procedure to solve the problem iteratively.
Step 0) Initialize a counter J = 1;
Step 1) Generate an intermediate frame F, by combining the regions from either Y or Z whichever is closer to the original frame X. Note that the sizes (could be down to a single pixel) and shapes of the regions (not necessarily rectangular) to choose between Y and Z may be adaptive.
Step 2) Generate X* = X – (F – P), the term (F – P) could be regarded as the residuals modified by deblocking;

Step 3) Use X* as the original frame for motion estimation, get the motion compensated prediction P*, and the motion compensated residuals X – P*, which are then transformed, quantized, and reconstructed as U*.
Step 4) If the number of iterations J reached a pre-defined maximum limit, or the rate distortion cost decrease between two consecutive round of iterations is less than a pre-determined threshold, store the reconstructed frame into the frame buffer (without deblocking) and stop; otherwise, increment J by one, and repeat Steps 1-4.
In the case of the number of iterations is limited to 1, for each inter-frame, two rounds of encoding are conducted, in which deblocking is only needed in the first round to obtain Z. The detailed encoding steps are described below.

Encoding
1st Round:

Step 1): For the inter video frame, follow the regular KTA encoding procedures, find its best motion prediction P, get the residuals, transform and quantize, until the reconstructed video frame is about to go through the deblocking process;

Step 2): Keep one copy of the reconstructed video frame before deblocking Y, and keep another copy of the reconstructed video frame after deblocking Z;

Step 3): Generate an intermediate frame F, by analyzing the original video frame statistics, choosing appropriate regions, and copying the corresponding regions from one of the two video frames obtained in Step 2), which has the smaller distortion measurement with respect to the original video frame;

2nd Round:

Step 4): Generate X* = X – (F- P);

Step 5): Using X* as the original frame for motion estimation, one obtains the motion compensated prediction P*, and the residuals X – P*, which are then transformed, quantized, and reconstructed as U*.

Step 6): Store the reconstructed frame P*+U* into the frame buffer.

Step 7): If present, clear the flag bit signaling the decoder whether deblocking is not necessary for the current frame.

Decoding

Step 1): Decode P* and U*, and then reconstruct P*+U*;

Step 2): If present, check the flag bit (see Step 7 in Encoding above). Deblock P*+U* only if the bit is set.

Finally, we point out that the tool described in this section can work with any deblocking filters.

Sample Results
The following figures show the rate distortion performance for P frames resulting from using the above tool (labeled as 1&0), in comparison to the two benchmark configurations: (labeled as 1&1) for in-loop filtering switched on at both the encoder and decoder, and (labeled as 0&0) for in-loop filtering switched off at both the encoder and the decoder, all implemented in JM11.0 KTA2.6r1.
In terms of decoding complexity, it is found that by removing deblocking at the decoder, the decoding time is reduced by about 30% (again in JM11.0 KTA2.6r1).

[image: image1]

[image: image2]
[image: image3.emf]BQTerrace_1920x1080

26

28

30

32

34

36

38

0 100000 200000 300000 400000 500000 600000 700000 800000 900000

Bitrate

PSNR (dB)

1&1

0&0

1&0

2.d Quantization
Quantization in the proposed model is the based on soft-decision quantization (SDQ) in contrast to hard-decision quantization (HDQ) implemented in JM11.0. In comparison to RDOQ in JM11.0 KTA2.6r1, SDQ offers better rate distortion performance at the cost of a slight increase in encoding complexity. In the following, we provide a brief description of SDQ, and further describe a method to balance rate distortion performance and computational complexity in SDQ.

Consider a block of pixels denoted as x. In a hybrid coding scheme, it will be coded into a group of parameters as (u, m, f, v, q), where u stands for quantized transform coefficients, m is the prediction mode, f stands for the reference frame index, v is a motion vector, and q is the quantization step size. Given (u, m, f, v, q), the reconstruction x' is computed by

x' = p(m, f, v) + T-1(u (q) (2.d.1)

where p(m, f, v) is the prediction corresponding to m, f, v and T-1() is the inverse transform.

Conventionally, the constraint of (2.d.1) is used to derive a deterministic quantization procedure, i.e.,

HDQ(T(z)) = round ([T(z) + δ(q] /q) , (2.d.2)

which mainly minimizes the quantization distortion d(x, x'), where z = x - p(m, f, v). The factor δ is an offset parameter for adapting the quantization outputs to the source distribution to some extend. There are empirical studies on determining δ according to the signal statistics to improve the RD (rate distortion) performance, such as the adaptive rounding scheme in H.264. This is called an HDQ process.

Our SDQ scheme is based on a general framework of minimizing the actual RD cost as follows,

 min [d(x, x') + (((r(u) + r(m) + r(f) + r(v) + r(q))] (2.d.3)

where the minimization is taken over all possible choices of (u, m, f, v, q). In general, the problem of (2.d.3) is too complicated to be solved completely. Thus, we propose an iterative solution, where SDQ accords to one iteration stage, as follows,

 min [d(x, x') + ((r(u)] , (2.d.4)

where the minimization is taken over all possible choices of u. Equation (2.d.4) stands for the case where the motion prediction p(m, f, v) and the quantization step size q are assumed to be fixed. Consider d(x, x') = d(z, T-1(u (q)). In addition, employ the Euclidean distance for distortion calculation. We have d(z, T-1(u (q))=|| c - u (q ||2, where c=T(z), due to the fact that DCT is a unitary transform. As a result, the SDQ is formulated as

min [|| c - u (q ||2 + ((r(u)]. (2.d.5)

where the minimization is taken over all possible choices u.
SDQ design based on CABAC
Because CABAC [6] employs an adaptive context updating scheme besides the adaptive context selection scheme, SDQ design based on CABAC calls for a further decomposition of (2.d.5) into a two-step optimization as follows,

 minu minΩ [|| c - u (q ||2 + ((r(u | Ω)] (2.d.6)

where Ω represents context states, or the probabilities in all context models used for coding non-zero transform coefficients u. This decomposition enables an iterative solution to (2.d.5), in which the objective function is optimized over u and Ω alternately. Specifically, the iteration goes as follows,
1. Fix the context states Ω and optimize the RD cost over the quantization outputs u, i.e.,

 minu [|| c - u (q ||2 + ((r(u | Ω)], with given Ω. (2.d.7)

 2. Let u* denote the solution to (2.d.7). Update context states Ω by the obtained quantization output u*.

Clearly, the second step is simple. The main challenge is to solve (2.d.7), for which a graph-based design is proposed in the following.

As shown in Figure 2.d, a graph is constructed based on coding features of CABAC for 4(4 DCT blocks. Basically, states are defined based on the context model selection, which depends on two parameters NumEq1 and NumLg1. Thus, states are named by values of NumEq1 and NumLg1, in the form of NumEq1_NumLg1, e.g., 2_0 corresponds with NumEq1=2 and NumLg1=0. When NumLg1>0, the context is irrelevant with NumEq1. Thus, there are three states as X_1, X_2, and X_3. The context is fixed for all NumLg1>= 4. Accordingly, one state X_X is defined. For a N(N luma block, there are N2 columns with each of them corresponding to one coefficient. In each column there are up to 8 states. Transitions are established between states according to the increase of NumEq1 and NumLg1, e.g., the state 1_0 is connected to 1_0, 2_0, or X_1 according to quantization outputs of 0, 1, or greater than 1, respectively. In cases where necessary (for example, when quantization outputs are greater than 1), parallel transitions are established so that each corresponds with a unique value. In practice, because the distortion is a quadratic function with respect to the quantization output, it is sufficient to investigate only a few parallel transitions. Thus the complexity is greatly reduced without sacrificing the RD performance. Finally, a graph structure is shown in Figure 2.d. Note that this figure is based on 4(4 DCT blocks. The graph may be extended for coding 8(8 DCT blocks easily as adding more columns and changing the starting column to C63.

Now consider a transition from the state H to the mth state at the coefficient ci and denote it as si,m. Note that si,m cannot output 0 because any transition from H must go to a so-called last significant coefficient. Denote rs((|Ω), rl ((|Ω), and rc ((|Ω) as the coding rate for a significant-coefficient-flag bit, a last-coefficient-flag bit, and a quantized coefficient ui, respectively. Define a metric for this transition as follows,

 gm,i = (c15 - q (u15)2+ …+(ci+1 - q (ui+1)2+(ci - q (ui)2+(((rs(1|Ω) + rl (1|Ω) + rc (ui |Ω)) (2.d.8)

Note that both the significant-coefficient-flag bit and the last-coefficient-flag bit are 1. Note further that when i=15, rs(1|Ω) + rl (1|Ω) is always 0.
Further consider a transition from the mth state si+1,m at coefficient ci+1 to the nth state si,n at coefficient ci. There are multiple parallel transitions. Different metrics are assigned to transitions with output zero and transitions with outputs greater than zero. Specifically,

gn,m,,i = (ci - q (ui)2+(((rs(1|Ω) + rl (0|Ω) + rc (ui |Ω)), for ui>=1 ;

 gn,m,,i = ci2+(((rs(0|{Ω) + rl (0|Ω)), for ui=0 ; (2.d.9)

where the significant-flag bit is 0 or 1 for ui=0 or ui>0 and the last-coefficient-flag bit is always 0.

Given selected context models with fixed context states, the rate functions of rs((|Ω), rl ((|Ω), and rc ((|Ω) in (2.d.8) and (2.d.9) are estimated as the self-information of the corresponding probability event. Specifically, context states in CABAC are specified by a pair of (LPS,(), where LPS indicates the least probable symbol, and (=0,(,63. Correspondingly, the probability for LPS is specified as [6],

 p((LPS) = 0.5 * 0.0375(/63,

Then, for a selected context model with (LPS,()(Ω and an input bit b, the rate is estimated by

 rcontext(LPS, ()(b) = - log2(p((LPS)) , b = LPS ;

 rcontext(LPS, ()(b) = - log2(1- p((LPS)) , b ≠ LPS ;

This estimation is applicable to rs((|Ω), rl ((|Ω), and rc ((|Ω) all in the same way, except that different context models are selected.

Based on the graph design and the metric computation discussed above, the solution to (2.d.7) now becomes a problem of searching for a path in the graph for the minimal RD cost. It is not hard to see that the proposed graph design would allow an element-wise additive computation of the RD cost in (2.d.7) with given Ω. In this case, the Viterbi algorithm can be used to do the search. Overall, the SDQ algorithm for solving (2.d.7) is summarized as follows,

1. Initialize all context states at each column by extracting context states for the current block, and updating it according to the HDQ outputs.

2. Fix context states at each column, and search for a path with the minimal RD cost using Viterbi algorithm.

3. Update context states at each column using the quantization outputs corresponding to the path obtained in Step 2. Repeat Step 2 until the algorithm converges, meaning that the resulted path does not change.

[image: image4.png]

Figure 2.d. The graph structure for SDQ based on CABAC for 4x4 DCT blocks.
In order to reduce the computational complexity in SDQ, the candidate choices of u in (2.d.7) can be limited to the ones that are close to the HDQ output u*. One possible constraint is to add the following constraint to u in (2.d.7)

|| u - u*||1 < Tq

(2.d.10)

where ||•||1 denotes the L1 norm, and Tq denotes a prescribed threshold depending upon q. By selecting Tq appropriately, one can find the desired tradeoff between computational complexity of SDQ and rate distortion performance in solving (2.d.7).
2.e Iterative coding
In addition to the tools described above and provided JM11.0 KTA2.6r1, the proposed model adopts an iterative coding framework to jointly optimize motion estimation, mode decision, and quantization.
The proposed iterative coding scheme contains two major stages, i.e., to refine the motion prediction with given residuals and to optimize residual coding with given motion prediction. In the following, we first present the main iterative procedures. Then, we provide details of the two major stages.

Given a frame X, denote prediction modes for all macroblocks as m; denote reference frame indexes for all macroblocks as f; denote motion vectors as V; denote quantization step sizes as q, and quantization outputs as U. The iterative coding scheme is as follows,

1. (Motion estimation) For given residual reconstruction Z'(q, U), we compute (m, f , V) by solving

 Min [d(X - P(m, f, V), Z') + (((r(m) + r (f) + r(V))], (2.e.1)

 which minimizes the actual RD cost.

2. (Residual coding) For given (m, f , V), the SDQ as described above is applied to optimize the quantization outputs, which determine the residual reconstruction.

3. Repeat Steps 1 and 2 until the change of the actual RD cost is less than a given threshold.

The solution to (2.e.1) involves mode selection and motion estimation. In general, the prediction mode is selected for each macroblock by computing the actual RD cost corresponding to each mode and choosing the one with the minimum. Specifically, for a pixel block x with its residual reconstruction z' and a given mode m, the prediction parameter (f, v) is computed by

 (f, v) = arg min [d(x-z', p(m, f, v)) + (((r(f) + r (v))] .

(2.e.2)

Note that (2.e.2) is based on the real distortion, while algorithmically it bears the same form as the motion estimation method used in H.264, where the objective function is based on the prediction error instead of the real distortion. Hence, computationally the complexity is hardly increased, while the RD coding performance is improved.
2.f Motion representation, intra-frame prediction, spatial transforms
Motion representation, intra-frame prediction, and spatial transforms in the proposed model are the same as in JM11.0.

3 Compression Performance Discussion
3.a Objective versus subjective compression performance
The primary purpose of the model is to demonstrating the potential of the technical tools described in Section 2. With that in mind, the model only uses the following KTA tools in JM11.0 KTA2.6r1:
· adaptive interpolation filter is enabled by setting UseAdaptiveFilter=4 (Enhanced DAIF);

· rate distortion optimized quantization (RDOQ) is enabled by setting UseRDO_Q=1
where the second option allows us to replace RDOQ with SDQ for 4x4 and 8x8 DCT blocks.
In order to maintain uniformity in objective and visual quality, the model implements a simple frame-level rate control scheme where the Qp values are not allowed to change by more than 1 in two consecutive frames (with exceptions only in Class A). Within the frame, the model also uses the same Qp for every macroblock (in other words, the delta Qp feature is not used).
3.b Constraint set 1 configuration relative to Alpha anchor

In the following, we compare the compression performance of the proposed model against Alpha anchor.

To put the numbers below in a proper context, we note that

· [Comparison at Fixed Rates] All gains or losses are expressed in terms of differences in PSNRs of luminance frames at the target rates specified in the CfP, regardless what the actual rates are.

· [Rate Control] The proposed model uses a simple frame-level rate control scheme as described in Section 3.a, whereas the Alpha anchor use more sophisticated macroblock level-rate control.

· [Numbers] Since our focus was on the low-delay Constraint Set 2, which is most relevant to wireless applications, not all Constraint Set 1 sequences are completed with relevant configuration settings. The numbers provided below are directly copied from Constraint Set 2 results where applicable.

Specific to the proposed model, we note that the numbers presented are obtained by using the parallel processing framework with one entropy decoding unit, and the VLC entropy coding method.

3.b.1 Class A
The very large format Class A sequences are not completed for Constraint Set 1 with relevant configuration settings.
3.b.2 Class B
The large format Class B sequences are not completed for Constraint Set 1 with relevant configuration settings. The numbers for the proposed model are copied from the corresponding Constraint Set 2 numbers.
	Sequence@Rate
	Proposed Model
	Alpha Anchor

	(See CfP)
	Size

(in bits)
	PSNR-Y
	Size

(in bits)
	PSNR-Y

	S03R1
	985634
	34.002
	997336
	34.68

	S03R2
	1591602
	36.248
	1588499
	36.639

	S03R3
	2490738
	38.079
	2493930
	38.341

	S03R4
	3994120
	39.843
	3999056
	39.987

	S03R5
	5987438
	41.043
	5980180
	40.998

	S04R1
	980385
	31.116
	989232
	31.761

	S04R2
	1581373
	32.865
	1589840
	33.53

	S04R3
	2475152
	34.46
	2480192
	35.211

	S04R4
	3999583
	36.135
	3987782
	37.012

	S04R5
	5981104
	37.518
	5986456
	38.363

	S05R1
	1998628
	31.366
	1997655
	32.178

	S05R2
	2997528
	32.902
	2997260
	33.717

	S05R3
	4496992
	34.295
	4494984
	35.064

	S05R4
	6998010
	35.635
	6979800
	36.29

	S05R5
	9992307
	36.604
	9977405
	37.039

	S06R1
	1994117
	31.262
	1993553
	32.199

	S06R2
	2994722
	33.15
	2980560
	33.859

	S06R3
	4494868
	34.749
	4490393
	35.3

	S06R4
	6987846
	36.148
	6967810
	36.593

	S06R5
	9991524
	37.121
	9966301
	37.434

	S07R1
	1996799
	31.271
	1979592
	32.031

	S07R2
	2997635
	32.312
	2972940
	33.1

	S07R3
	4492141
	33.272
	4452562
	33.891

	S07R4
	6997969
	34.132
	6940692
	34.52

	S07R5
	9972486
	34.719
	9943072
	34.923

3.b.3 Class C
For the Class C sequences at the specified rates, the model is on average 0.28dB better than the Alpha anchor.

	Sequence@Rate
	Proposed Model
	Beta Anchor

	(See CfP)
	Size

(in bits)
	PSNR-Y
	Size

(in bits)
	PSNR-Y

	S08R1
	381484
	29.174
	382936
	29.163

	S08R2
	507310
	30.67
	510980
	30.411

	S08R3
	767704
	32.416
	766836
	32.096

	S08R4
	1196949
	34.125
	1196346
	33.849

	S08R5
	1996498
	36.005
	1999127
	35.917

	S09R1
	382466
	28.666
	383470
	28.54

	S09R2
	511976
	30.411
	511800
	30.172

	S09R3
	766021
	32.51
	766053
	32.163

	S09R4
	1189432
	34.532
	1197244
	34.231

	S09R5
	1996987
	36.735
	1996406
	36.471

	S10R1
	383292
	25.203
	382864
	25.111

	S10R2
	511147
	26.198
	510312
	25.931

	S10R3
	767204
	27.691
	767501
	27.444

	S10R4
	1189268
	29.328
	1199761
	29.049

	S10R5
	1997075
	31.339
	1997676
	31.035

	S11R1
	383568
	27.902
	383296
	27.595

	S11R2
	510195
	29.131
	509687
	28.722

	S11R3
	761380
	30.89
	765838
	30.414

	S11R4
	1197792
	32.776
	1198058
	32.179

	S11R5
	1989730
	34.828
	1996268
	34.423

3.b.4 Class D
For the Class D sequences at the specified rates, the model is on average 0.3166dB better than the Alpha anchor.

	Sequence@Rate
	Proposed Model
	Alpha Anchor

	(See CfP)
	Size

(in bits)
	PSNR-Y
	Size

(in bits)
	PSNR-Y

	S12R1
	253952
	30.568
	255856
	30.107

	S12R2
	375628
	32.299
	383320
	31.844

	S12R3
	505380
	33.642
	511728
	33.165

	S12R4
	834940
	36.028
	849399
	35.649

	S12R5
	1480500
	38.986
	1496818
	38.765

	S13R1
	252160
	29.38
	255520
	29.158

	S13R2
	378790
	30.882
	383417
	30.585

	S13R3
	504622
	31.825
	511510
	31.559

	S13R4
	836400
	33.539
	848094
	33.329

	S13R5
	1472145
	35.538
	1498191
	35.506

	S14R1
	254065
	29.291
	254996
	28.973

	S14R2
	383008
	30.823
	382491
	30.494

	S14R3
	509672
	31.903
	511693
	31.638

	S14R4
	845800
	33.947
	847602
	33.636

	S14R5
	1497996
	36.384
	1498078
	36.11

	S15R1
	251841
	30.637
	255815
	30.248

	S15R2
	380593
	32.427
	383155
	32.008

	S15R3
	509552
	33.8
	509675
	33.362

	S15R4
	842427
	36.289
	845704
	35.935

	S15R5
	1487942
	39.28
	1493175
	39.066

3.b.5 Overall
Since a number of sequences in Class A and Class B are not completed with relevant configuration settings, the overall results are not concluded.

3.c Constraint set 2 configuration relative to Beta and Gamma anchors
In the following, we compare the compression performance of the proposed model against Beta and Gamma anchors.
To put the numbers below in a proper context, we note that
· [Comparison at Fixed Rates] All gains or losses are expressed in terms of differences in PSNRs of luminance frames at the target rates specified in the CfP, regardless what the actual rates are.
· [Rate Control] The proposed model uses a simple frame-level rate control scheme as described in Section 3.a, whereas the Beta and the Gamma anchors use more sophisticated macroblock level-rate control.

· [GOP Structure] the model adopts the same GOP structure IPPP as the Gamma anchor, and in contrast the Beta anchor benefits from a GOP structure (IpPp) that includes hierarchical P frames.
Specific to the proposed model, we note that the numbers presented are obtained by using the parallel processing framework with one entropy decoding unit, and the VLC entropy coding method.
3.c.1 Class B
For the Class B sequences at the specified rates, the model is on average 0.9566dB better than the Gamma anchor, and is 0.01232dB worse than the Beta anchor.
	Sequence@Rate
	Proposed Model
	Beta Anchor
	Gamma Anchor

	(See CfP)
	Size

(in bits)
	PSNR-Y
	Size

(in bits)
	PSNR-Y
	Size

(in bits)
	PSNR-Y

	S03R1
	985634
	34.002
	995880
	33.953
	999357
	33.012

	S03R2
	1591602
	36.248
	1598178
	35.943
	1598997
	34.925

	S03R3
	2490738
	38.079
	2499091
	37.656
	2499195
	36.687

	S03R4
	3994120
	39.843
	3997710
	39.412
	3996575
	38.417

	S03R5
	5987438
	41.043
	5998526
	40.631
	5998076
	39.787

	S04R1
	980385
	31.116
	998438
	31.383
	996808
	30.222

	S04R2
	1581373
	32.865
	1598960
	33.11
	1599880
	32.017

	S04R3
	2475152
	34.46
	2499440
	34.731
	2497768
	33.693

	S04R4
	3999583
	36.135
	3987256
	36.398
	3997845
	35.481

	S04R5
	5981104
	37.518
	5999099
	37.744
	5998312
	36.972

	S05R1
	1998628
	31.366
	1998872
	31.67
	1999703
	30.758

	S05R2
	2997528
	32.902
	2999541
	33.234
	2998399
	32.119

	S05R3
	4496992
	34.295
	4498711
	34.513
	4498696
	33.529

	S05R4
	6998010
	35.635
	6998631
	35.804
	6999166
	34.93

	S05R5
	9992307
	36.604
	9999548
	36.675
	9997458
	36.079

	S06R1
	1994117
	31.262
	1998179
	31.366
	1998528
	30.155

	S06R2
	2994722
	33.15
	2997260
	33.095
	2999033
	32.073

	S06R3
	4494868
	34.749
	4498504
	34.586
	4499185
	33.717

	S06R4
	6987846
	36.148
	6997974
	35.973
	6998373
	35.255

	S06R5
	9991524
	37.121
	9999820
	36.944
	9999844
	36.303

	S07R1
	1996799
	31.271
	1997942
	31.355
	1999979
	29.576

	S07R2
	2997635
	32.312
	2998660
	32.417
	2997931
	31.011

	S07R3
	4492141
	33.272
	4498874
	33.349
	4499100
	32.215

	S07R4
	6997969
	34.132
	6998400
	34.079
	6995118
	33.312

	S07R5
	9972486
	34.719
	9997306
	34.534
	9997925
	34.086

3.c.2 Class C
For the Class C sequences at the specified rates, the model is on average 1.0286dB better than the Gamma anchor, and is 0.0465dB better than the Beta anchor.

	Sequence@Rate
	Proposed Model
	Beta Anchor
	Gamma Anchor

	(See CfP)
	Size

(in bits)
	PSNR-Y
	Size

(in bits)
	PSNR-Y
	Size

(in bits)
	PSNR-Y

	S08R1
	383076
	28.822
	382016
	28.919
	383438
	27.823

	S08R2
	511645
	30.079
	509383
	30.129
	511976
	28.972

	S08R3
	767577
	31.712
	764573
	31.742
	767819
	30.585

	S08R4
	1197587
	33.434
	1194356
	33.407
	1199316
	32.261

	S08R5
	1997485
	35.227
	1991556
	35.388
	1999590
	34.173

	S09R1
	383685
	28.106
	381580
	27.784
	383752
	26.581

	S09R2
	511333
	29.646
	509346
	29.353
	511680
	28.2

	S09R3
	767864
	31.628
	762978
	31.286
	767724
	30.19

	S09R4
	1199396
	33.645
	1193482
	33.424
	1198850
	32.366

	S09R5
	1999877
	35.731
	1991035
	35.673
	1999306
	34.653

	S10R1
	382839
	24.114
	382713
	24.265
	383800
	23.22

	S10R2
	510944
	24.982
	511336
	25.159
	511576
	24.151

	S10R3
	764032
	26.247
	766936
	26.61
	767923
	25.367

	S10R4
	1192673
	27.736
	1194824
	28.203
	1199116
	26.873

	S10R5
	1996144
	29.572
	1997484
	30.287
	1999380
	28.764

	S11R1
	383161
	28.156
	382268
	27.859
	383574
	27.497

	S11R2
	510233
	29.248
	511635
	28.926
	511944
	28.471

	S11R3
	766077
	30.833
	761924
	30.455
	767554
	29.977

	S11R4
	1195663
	32.564
	1190980
	32.191
	1199786
	31.731

	S11R5
	1996688
	34.728
	1989740
	34.22
	1998999
	33.784

3.c.3 Class D
For the Class D sequences at the specified rates, the model is on average 0.9276dB better than the Gamma anchor, and is 0.1740 dB worse than the Beta anchor.

	Sequence@Rate
	Proposed Model
	Beta Anchor
	Gamma Anchor

	(See CfP)
	Size

(in bits)
	PSNR-Y
	Size

(in bits)
	PSNR-Y
	Size

(in bits)
	PSNR-Y

	S12R1
	253232
	30.01
	255098
	29.779
	255592
	29.166

	S12R2
	378824
	31.736
	383060
	31.454
	383968
	30.818

	S12R3
	503911
	33.004
	510562
	32.684
	512000
	32.022

	S12R4
	837304
	35.426
	847230
	35.108
	849845
	34.316

	S12R5
	1471074
	38.359
	1494989
	38.152
	1499933
	37.319

	S13R1
	255659
	27.661
	255286
	28.524
	255361
	26.758

	S13R2
	382089
	29.009
	383259
	29.911
	383868
	27.992

	S13R3
	511856
	29.976
	510775
	30.851
	511873
	28.817

	S13R4
	848326
	31.677
	847699
	32.528
	849520
	30.384

	S13R5
	1499932
	33.81
	1494965
	34.492
	1499181
	32.433

	S14R1
	255617
	27.985
	254859
	28.312
	255904
	27.115

	S14R2
	381419
	29.396
	383554
	29.713
	383947
	28.496

	S14R3
	511664
	30.501
	510647
	30.943
	511642
	29.578

	S14R4
	849141
	32.525
	848736
	32.987
	849551
	31.529

	S14R5
	1498771
	34.949
	1496667
	35.336
	1499713
	34.043

	S15R1
	255427
	30.461
	254336
	30.151
	255871
	29.829

	S15R2
	383048
	32.145
	383481
	31.875
	383969
	31.381

	S15R3
	509798
	33.421
	510519
	33.172
	511692
	32.684

	S15R4
	847436
	35.939
	843478
	35.702
	849696
	35.273

	S15R5
	1494250
	38.986
	1498128
	38.781
	1499829
	38.472

3.c.4 Class E
For the Class E sequences at the specified rates, the model is on average 1.1877dB better than the Gamma anchor, and is 0.2757 dB better than the Beta anchor.

	Sequence@Rate
	Proposed Model
	Beta Anchor
	Gamma Anchor

	(See CfP)
	Size

(in bits)
	PSNR-Y
	Size

(in bits)
	PSNR-Y
	Size

(in bits)
	PSNR-Y

	S16R1
	255462
	33.729
	233718
	33.674
	255960
	32.56

	S16R2
	382766
	36.032
	365916
	35.843
	383912
	34.809

	S16R3
	511016
	37.479
	460851
	36.996
	511834
	36.304

	S16R4
	846514
	39.64
	776350
	39.089
	849110
	38.365

	S16R5
	1496075
	41.436
	1430893
	41.129
	1499954
	40.423

	S17R1
	253995
	33.257
	228932
	32.804
	255555
	31.849

	S17R2
	383220
	35.344
	335070
	34.66
	383790
	33.949

	S17R3
	511960
	36.713
	503116
	36.556
	511837
	35.302

	S17R4
	849472
	38.78
	765878
	38.333
	849980
	37.605

	S17R5
	1499329
	40.659
	1472800
	40.453
	1498556
	39.708

	S18R1
	255705
	33.822
	249939
	34.034
	255953
	32.546

	S18R2
	383312
	35.987
	346248
	35.715
	383461
	34.835

	S18R3
	511634
	37.277
	494104
	37.281
	511773
	36.214

	S18R4
	847969
	39.314
	747200
	38.899
	849388
	38.141

	S18R5
	1498885
	41.024
	1470111
	40.891
	1499675
	40.068

3.c.5 Overall
For all the sequence in Constraint Set 2 at the specified rates, the model is on average 1.011dB better than the Gamma anchor, and is 0.016 dB better than the Beta anchor.
4 Complexity analysis

4.a Encoding time and measurement methodology
Since absolute timing results are highly dependent on computing hardware, and more importantly on the degree of optimization in the programs themselves, we choose to measure the encoding time relatively against that of JM11.0 KTA2.6r1 with the following KTA tools enabled: UseAdaptiveFilter=4, UseRDO_Q=1, which can be easily generated independently as a benchmark on any target platform. Whenever applicable, both the proposed model and the KTA software use the same configurations. The notable exceptions are the KTA uses CABAC, and the proposed model uses VLC.
On a single CPU core, the encoding time of the proposed model in software implementation is twice of the encoding time of the KTA software, primarily due to two iterations of coding described in Section 2.e. Note that even though VLC or V2V is significantly faster than BAC as shown in our standalone tests, their contributions to the respective overall encoding time are dominated by the other parts in the model.
4.b Decoding time and measurement methodology
We again measure the decoding time relatively against that of JM11.0 KTA2.6r1 with the following KTA tools enabled: UseAdaptiveFilter=4, UseRDO_Q=1. Note that the KTA uses CABAC, and the proposed model uses VLC.

On a single CPU core, the decoding time of the proposed model in software implementation is slightly less than the decoding time of JM11.0 KTA2.6r1 with the following KTA tools enabled: UseAdaptiveFilter=4. Note in this measurement, the tool described in Section 2.c is not enabled, and the entropy coding method used is VLC (Similar results hold for V2V as well). The reduction in decoding time is due to the reduced complexity in entropy decoding, as demonstrated earlier in standalone tests of VLC, V2V, and BAC. If the tool in Section 2.c is enabled, it is expected that the decoding time may be reduced by another 30%.
4.c Expected memory usage of encoder
Same as in JM11.0 KTA2.6r1.
4.d Expected memory usage of decoder
Same as in JM11.0 KTA2.6r1.
4.e Complexity characteristics of encoder motion estimation and motion segmentation selection
The complexity of encoder motion estimation and motion segmentation selection in the proposed model can be easily adjusted in the iterative coding framework. In our submission, the complexity is selected to be roughly twice of that in JM11.0 KTA2.6r1.
4.f Complexity characteristics of decoder motion compensation
Same as in JM 11.0

4.g Complexity characteristics of encoder intra-frame prediction type selection
Same as in JM 11.0.

4.h Complexity characteristics of decoder intra-frame prediction operation
Same as in JM 11.0.
4.i Complexity characteristics of encoder transforms and transform type selection
Same as in JM 11.0.

4.j Complexity characteristics of decoder inverse transform operation
Same as in JM 11.0.

4.k Complexity characteristics of encoder quantization and quantization type selection
For 4x4 DCT and 8x8 DCT, the model uses SDQ, whose computational complexity can be adjusted according to application requirements. For example, in our submission we implemented an SDQ algorithm that achieves better rate distortion performance than the RDOQ algorithm in JM11.0 KTA2.6r1, at the cost of slightly higher complexity. The rest of the complexity characteristics of quantization and quantization type selection is the same as in JM 11.0
4.l Complexity characteristics of decoder inverse quantization
Same as in JM 11.0.

4.m Complexity characteristics of encoder in-loop filtering type selection
By using the tool proposed in Section 2.c above, the deblocking process can be removed at the decoder.
4.n Complexity characteristics of decoder in-loop filtering operation
By using the tool described in Section 2.c, the proposed model may skip the deblocking process entirely or selectively to reduce the decoder complexity.
4.o Complexity characteristics of encoder entropy coding type selection
Three (binary) entropy coding methods are provided as options: BAC, V2V, and VLC. Among these three entropy coding methods, in term of encoding time complexity in software implementation, VLC and V2V range from 2 to 5 times as fast as BAC.
4.p Complexity characteristics of decoder entropy decoding operation
Among the three available entropy coding methods, BAC, V2V, and VLC, in term of decoding time complexity in software implementation, VLC and V2V are both at least twice as fast as BAC.

4.q Degree of capability for encoder parallel processing
The framework described in Section 2.a above address the problem of parallelizing entropy encoding. With the load balancing method described in Section 2.b, any desired degree of parallelism can be achieved for entropy coding. Furthermore, it is expected that any techniques that enable encoder parallel processing in JM 11.0 KTA2.6r1 can be applied to the proposed model as well.
4.r Degree of capability for decoder parallel processing
The framework described in Section 2.a above address the problem of parallelizing entropy decoding, and the method described in Section 2.b is aimed at balancing the load of each entropy decoder at the decoder with any given number of parallel entropy decoders. Furthermore, it is expected that any techniques that enable decoder parallel processing in JM 11.0 KTA2.6r1 can be applied to the proposed model as well.
5 Algorithmic characteristics

5.a Random access characteristics
For Constrained Set 1, our model can be configured to have the same random access characteristics as the Alpha Anchor specified in [1].

5.b Delay characteristics
For Constrained Set 2, our model can be configured to have the same delay characteristics as the Gamma Anchor specified in [1].
6 Software implementation description
Our model is implemented in software on the basis of JM 11.0 KTA2.6r1. Note that among the tools available in JM11.0 KTA2.6r1, only the following ones are used:

adaptive interpolation filter is enabled by setting UseAdaptiveFilter=4 (Enhanced DAIF);

rate distortion optimized quantization (RDOQ) is enabled by setting UseRDO_Q=1.

7 Closing remarks
This document presents a set of tools for video coding. Some of these tools, like SDQ in Section 2.d and iterative coding in Section 2.e, are proposed to improve rate distortion performance. The deblocking tool described in Section 2.c and the V2V entropy coding method described in Section 2.a are designed to reduce decoding complexity. Furthermore, the entropy coding framework described in Section 2.a and the load balancing technique in Section 2.b are proposed for parallel processing capability. It is worth mentioning that these tools are provided as a tool box, and each of them may be integrated independently into the JM KTA software or any new model.
8 References
[1] “Joint call for proposals on video compression technology,” VCEG-AM91, January 2010.

[2] Arild Fuldseth, Gisle Bjontegaard, Dmytro Rusanovskyy, Kemal Ugur, and Jani Lainema, “Low Complexity Directional Interpolation Filter,” VCEG-AI12, July 2008.

[3] Marta Karczewicz, Yan Ye, and Insuk Chong, “Rate distortion optimized quantization,” VCEG-AH21, January 2008.
[4] “Draft requirements for next generation video coding,” VCEG-AL96, July 2009.
[5] P. List, A. Joch, J. Lainema, G. Bjontegaard, and M. Karczewicz, “Adaptive deblocking filter,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, pp. 614-619, July 2003.

[6] D. Marpe, H. Schwarz, and T. Wiegand, ``Context-based adaptive binary arithmetic coding in the h.264/AVC video compression standard,’’ IEEE Transactions on Circuits and Systems for Video Technlogy, 13(7):620–636, Jul. 2003.

9 Patent rights declaration(s)
Research In Motion Limited may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

Page: 21
Date Saved: 2010-04-13

[image: image8.png]

