	[image: image30.bmp][image: image31.png]

[image: image32.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11

1st Meeting: Dresden, DE, 15-23 April, 2010
	Document: JCTVC-A119_
Appendix_Decoder_Description

	Title:
	Appendix to Description of video coding technology proposal by Tandberg Nokia Ericsson

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Kemal Ugur
Nokia Research Center
Visiokatu 1
33720 Tampere, Finland

Kenneth R. Andersson,
LM Ericsson
164 80 Stockholm, Sweden

Arild Fuldseth
Tandberg Telecom AS
Philip Pedersens vei 22, Norway
	
Tel:
Email:

Tel:
Email:

Tel:
Email:
	
+358 50 4860857
kemal.ugur@nokia.com

+46 10 7141538
kenneth.r.andersson@ericsson.com

+47 92414082
arild.fuldseth@tandberg.com

	Source:
	Tandberg, Nokia, Ericsson

Abstract

This document aims to provide more detailed description of the TENTM proposal by describing the syntax of the TENTM bitstream and the decoding process.

 TENTM Decoder Description

1Abstract

2TENTM Decoder Description

 HYPERLINK \l "_Toc258783297"

5Introduction

61
Syntax elements

61.1
Acronyms used in syntax tables

61.2
Sequence Level

71.3
Picture level

81.4
Macroblock level

172
Semantics

172.1
Sequence level

182.2
Picture level

182.3
Macroblock level

203
Decoding Process

203.1
Decoding mbMode, tr16_flag, ref_pred_idx, dQP_idx, CBPval and las_pos_idx

203.1.1
modeIdx

223.1.2
cbpIdx and cbpVal

243.1.3
last_posIdx

253.1.4
Derivation of SVT position and shape

263.1.4.1
Derivation of motion vector criterion parameters

263.1.4.2
Derivation of number of available SVT indexes (svt_idx_num)

283.1.4.3
Derivation of SVT index (svt_idx)

283.2
Motion representation

293.2.1
Inter-Prediction Modes

313.2.1.1
Inter Prediction Modes for Large Macroblocks (LMB64, LMB32)

313.2.1.2
Inter Prediction Modes for Macroblock (MB16)

323.2.1.3
Reference Picture Selection

323.2.1.4
SKIP Mode

333.2.1.5
DIRECT Mode

333.2.1.6
SPECIAL B Mode

343.2.1.7
Bi-directional Prediction Mode

343.2.2
Decoding of Motion Vectors

353.2.2.1
Motion Vector Prediction

363.2.2.2
SKIP mode motion vector prediction

363.2.3
Interpolation

363.2.3.1
Luma Interpolation

383.2.3.2
Chroma Interpolation

393.3
Prediction of Intra Coded Blocks

393.3.1
INTRA_4x4 Luminance Prediction

393.3.2
INTRA_8x8 Luminance Prediction

413.3.3
INTRA_16x16 Luminance Prediction

423.3.4
Chrominance Prediction of Intra coded Macroblocks

443.4
Inverse Quantization and Inverse Transforms

443.4.1
Quantization parameter

443.4.2
Inverse Quantization

453.4.3
Inverse Transform

483.5
In-loop filtering

483.5.1
Luma filtering

493.5.2
Chroma filtering

493.5.3
Planar mode filtering

493.5.4
Filtering in SVT macroblocks

503.6
Entropy Coding

503.6.1
Decoding of 4x4 and 8x8 Transform Coefficients

503.6.1.1
Scanning of coefficients

513.6.1.2
Position, levelID, and sign of the last nonzero transform coefficient

523.6.1.3
Magnitude and sign of the last nonzero transform coefficient

523.6.1.4
Run-Mode Coding

543.6.1.5
Level-Mode Coding

553.6.1.6
VLC Tables

554
Patent rights declaration(s)

List of Figures
25Figure 1 Illustration of SVT, type 0

25Figure 2 Illustration of SVT, type 1

26Figure 3 Denotation of motion vectors of a macroblock

29Figure 4 Various Supported Prediction Structures

30Figure 5 Scanning of macroblocks

31Figure 6 Various grouping alternatives for macroblocks

32Figure 7 Motion Partitions for INTER modes

34Figure 8 Neighbouring reference indices used for prediction

35Figure 9 Motion vectors used for prediction

36Figure 10 Directional motion vector prediction

36Figure 11 Locations used for SKIP mode motion vector prediction

37Figure 12 Image samples notation

48Figure 13 Notation of Block Edge for Deblocking

50Figure 14 Scanning of 8x8 transform coefficients

50Figure 15 Scanning of 4x4 transform coefficients

51Figure 16 Scanning of 16x4 transform coefficients

51Figure 17 Deinterleaving chroma coefficients

List of Tables
20Table 1 Decoding mbCBP

20Table 2 Decoding of mbMode, tr16_flag, and dQP_idx for I frames

21Table 3 Decoding of mbMode, tr16_flag, ref_pred_idx, and dQP_idx for P frames

22Table 4 Decoding of mbMode, tr16_idx, and dQP_idx for B frames

22Table 5 VLC table numbers for last mode decoding

23Table 6 VLC table numbers for cbp decoding

26Table 7 svt_idx, svt_type, dir, dx, dy

28Table 8 svt_idx_num and svt_idx_base

29Table 9 Allowed Prediction Modes for LMB64, LMB32 and MB16

31Table 10 Motion Partitions for LMB64, LMB32

32Table 11 Motion Partitions for various mbModes

32Table 12 reference_index variable for different picture types

34Table 13 ReferenceIndexProcess()

41Table 14 Derivation of lumimance Intra prediction mode in INTRA_16x16 Macroblock mode

42Table 15 Derivation of chrominance Intra Prediction mode

44Table 16 Corr_qpc, tc and β.

52Table 17 VLC table numbers for last non-zero coefficient

52Table 18 VLC Tables used for decoding isLevelOne_run

53Table 19 Mapping from k, level, and run into codeNumber

54Table 20 VLC Table Index for Decoding Level

55Table 21 VLC Tables

Introduction
The TENTM was developed to give significant coding efficiency and complexity benefit over H.264/AVC. The TENTM algorithm consists of the following normative tools that provide a coding gain over H.264/AVC:

· Improved interpolation filters.

· Larger macroblock sizes.

· Improved definition of skip mode, including the possibility of two MV skip candidates.

· Improved bi-directional prediction.

· Improved Intra prediction.

· Larger transform sizes (16x4, 16x16, 32x32, and 64x64) and spatially varying transform.
· Special intra mode (planar mode) for improved subjective quality.

· Improved adaptive (non-arithmetic) entropy coding compared to CAVLC.
· Improved in-loop filtering.
1 Syntax elements

1.1 Acronyms used in syntax tables

- I_PICTURE = 0

- P_PICTURE = 1

- B_PICTURE = 2

- u(n): fixed length code of n bits. When n is “v” in the syntax table, the number of bits varies in a manner dependent on the value of other syntax elements.
- vlc(x,v): unsigned variable length code with v bits using the VLCx table. VLC tables are given in Section 3.6.1.6
- svlc(x,v): signed variable length code with v bits using the VLCx table. VLC tables are given in Section 3.6.1.6
1.2 Sequence Level

	sequence_Start() {
	Descriptor

	
sequence_start_code
	u(30)

	
sequence_header()
	

	}
	

	sequence_header() {
	Descriptor

	
coded_picture_width
	u(16)

	
coded_picture_height
	u(16)

	
orig_picture_width
	u(16)

	
orig_picture_height
	u(16)

	
reserved_bit
	u(1)

	
svt_flag
	u(1)

	
switched_interp_flag
	u(1)

	
tr4
	u(2)

	
reserved_bit
	u(1)

	
num_B_level
	u(2)

	

if (num_B_level = = 0)
	

	

num_B_frames
	u(3)

	
ltr_period
	u(8)

	
reserved_bit
	u(1)

	
reserved_bit
	u(12)

	
reset_contexts
	u(8)

	
picture_header()
	

	}
	

1.3 Picture level
	picture_header() {
	Descriptor

	
picture_start_code
	u(30)

	
reserved_bits
	u(9)

	
constrained_intra_flag
	u(1)

	
picture_level_quant
	u(6)

	
picture_type
	u(2)

	
if(picture_type = = I_PICTURE)
	

	

sequence_header()
	

	
if (picture_type = = P_PICTURE)
	

	

multiple_reference_frames_flag
	u(1)

	
reserved_bit
	u(1)

	
if (picture_type ! = I_PICTURE && svt_flag = = 1)
	

	

use_svt_set_flag
	u(1)

	
if (picture_type ! = I_PICTURE)
	

	

reserved_bit
	u(1)

	
picture_data()
	

	}
	

	picture_data() {
	

	
if (picture_type ! = I_PICTURE) {
	

	

run
	vlc(10,v)

	

for(i = 0; i < run; i++)
	

	

decodeSkipMBs()
	

	
}
	

	
while(mbAddr < mbTotal){
	

	

mbHeader()
	

	
}
	

	}
	

1.4 Macroblock level

	decodeSkipMBs() {
	

	
getSkipMVCandidate()
	

	
if (numSkipCandidate > 1)
	

	

skip_mv_idx
	u(1)

	}
	

	mbHeader() {
	Descriptor

	
if (picture_type ! = I_PICTURE) {
	

	

if (isStartLMB64(mbAddr)) {
	

	

lmb64_flag
	u(1)

	

if(lmb_flag = = 1)
	

	

lmb32_flag
	u(1)

	

}
	

	

else if(isStartLMB32(mbAddr))
	

	

lmb32_flag
	u(1)

	

if ((!lmb64_flag) && (!lmb32_flag)){
	

	

mbMode = getMBMode()
	

	

if (dqpIdx)
	

	

dqp
	vlc(10,v)

	

}
	

	

if (lmb64_flag | | lmb32_flag) {
	

	

if(picture_type = = B_PICTURE)
	

	

reference_index = getReferenceIndexBpicture()
	

	

else {
	

	

lmb_ref
	u(1)

	

reference_index = lmb_ref
	

	

}
	

	

getMVData()
	

	

lmb_cbp
	vlc(0,v)

	

yCBP = (cbpVal >> 0) & 1
	

	

uCBP = (cbpVal >> 1) & 1
	

	

vCBP = (cbpVal >> 2) & 1
	

	

getCoefData()
	

	

mbAddr = UpdateMBAddr()
	

	

}
	

	

else {
	

	

if(mbMode = = MODE_INTRA)
	

	

getIntraPredData()
	

	

if(mbMode = = INTER_16x16 | | mbMode = = INTER_16x8 | |

mbMode = = INTER_8x16 | | mbMode = = INTER_8x8) {
	

	

for(mbPartIndx = 0; mbPartIndx < numPartitions; mbPartIndx++)
	

	

getMVData()
	

	

}
	

	

mbResidual()
	

	

mbAddr = UpdateMBAddr()
	

	

}
	

	getMBMode () {
	Descriptor

	
mode_table_idx
	vlc(n,v)

	modeIdx variable is used to decode macroblock mode (mbMode), and in some cases macroblock reference index (reference_index), macroblock coded block pattern (yCBP, uCBP, vCBP) and macroblock transform mode (mbTransform) as described in Section 3.1
	

	
if(modeIdx = = 0 & & picture_type = = I_PICTURE)
	

	

planar_flag
	u(1)

	
if(!planar_flag) {
	

	

getCBP()
	

	

if(mb_svt_flag = = 0)
	

	

tr4_flag
	u(1)

	

if(tr4_flag) {
	

	

for(i=0; i<4;i++) {
	

	

if(yCBP[i])
	

	

cbp4[i]
	u(4)

	

}
	

	

}
	

	

if((mbMode = = INTER_16x16 | | mbMode = = INTER_16x8 | |

mbMode = = INTER_8x16 | | mbMode = = INTER_8x8) &&

picture_type = = B_PICTURE)
	

	

reference_index = getReferenceIndexBpicture()
	

	
}
	

	}
	

	getCBP () {
	Descriptor

	
if(modeIdx = = 1 | | modeIdx = = 6)
	

	

yCBP = 0xf
	

	
else if(modeIdx = = 2) {
	

	

cbp_id0
	u(1)

	

yCBP = (cbp_id0 ? 0xf : 0)
	

	

uvCBP = 1
	

	
}
	

	
else if (modeIdx = = 7) {
	

	

cbp_id1
	u(2)

	

if(cbp_id1 < 2)
	

	

cbp_id2
	u(1)

	

cbpVal is computed using cbp_id1 cbp_id2 syntax elements
	

	

yCBP = ((cbpVal & 1) ? 0xf : 0)
	

	

uCBP = (cbpVal >> 1) & 1
	

	

vCBP = (cbpVal >> 2) & 1
	

	
}
	

	
else if (modeIdx = = 4 | | modeIdx = = 8 | | modeIdx = = 10 | | modeIdx = = 12 | | modeIdx = = 14 | | modeIdx = = 15 | |) {
	

	

if(mbMode != MODE_INTRA && mbMode != MODE_8x8 &&

mbTransform ! = TR16 && svt_flag = 1)
	

	

mb_svt_flag
	u(1)

	
if(mb_svt_flag = = 1)
	

	

getSVTcbp()
	

	
else {
	

	

cbp_table_idx
	vlc(n,v)

	cbpVal is derived from the cbp_table_idx syntax element as described in Section 3.1
	

	

yCBP = ((cbpVal >> 0) & 0xf)
	

	

uCBP = (cbpVal >> 4) & 1)
	

	

vCBP = (cbpVal >> 5) & 1)
	

	
}
	

	}
	

	getSVTcbp () {
	Descriptor

	
svt_cbp_id1
	u(1)

	
if(svt_cbp_id1) {
	

	

svt_cbp_id2
	u(1)

	

if(svt_cbp_id2)
	

	

svt_cbp_id3
	u(1)

	
}
	

	
updateCTXProcess(cbpCTX)
	

	
yCBP = 0x8
	

	
cbpVal is computed using svt_cbp_idx syntax elements
	

	
uCBP = (cbpVal >> 1) & 1)
	

	
vCBP = (cbpVal >> 0) & 1)
	

	}
	

	getIntraPredData () {
	Descriptor

	
if(planar_flag) {
	

	

planar_delta_y = getPlanarDelta()
	

	

planar_delta_uv_present
	u(1)

	

if(planar_delta_uv_present) {
	

	

planar_delta_u = getPlanarDelta()
	

	

planar_delta_v = getPlanarDelta()
	

	

}
	

	
}
	

	
else {
	

	

Intra prediction mode for chrominance component of the macroblock
	

	

if(!up_available() && !left_available())
	

	

ipred_mode_uv = PRED_DC
	

	

else if(mbTransform = = TR_8x8)
	

	

getIntraPredModeUV8x8()
	

	

Else
	

	

getIntraPredMode()
	

	

Intra prediction modes for the luminance blocks in one macroblock
	

	

if(!up_available() && !left_available())
	

	

ipred_mode_y[0] = PRED_DC
	

	

first_block = (!up_available() && !left_available()) ? 1 : 0
	

	

for(i = first_block; i < numTransformBlocksLuma; i++) {
	

	

if(mbTransform = = TR_8x8)
	

	

getIntraPredModeY8x8(i)
	

	

Else
	

	

getIntraPredMode(i)
	

	

}
	

	
}
	

	}
	

	getPlanarDelta() {
	Descriptor

	
planar_qdelta_indicator
	vlc(5,v)

	
if (qdelta_indicator > 21)
	

	

qdelta = ((qdelta_indicator - 14) << 3) + 4
	

	
else if(qdelta_indicator > 9)
	

	

qdelta = ((qdelta_indicator - 6) << 2) + 2
	

	
else if (qdelta_indicator > 3)
	

	

qdelta = (qdelta_indicator - 2) << 1
	

	
else
	

	

qdelta = qdelta_indicator
	

	
if (qdelta > 0) {
	

	

planar_sign
	u(1)

	

planar_delta = sign ? –qdelta : qdelta
	

	
}
	

	
else
	

	

planar_delta = qdelta
	

	}
	

	getIntraPredMode (i) {
	Descriptor

	
ipred_mode_ver
	u(1)

	
if(ipred_mode_ver)
	

	

ipred_mode_y[i] = PRED_VER
	

	
else {
	

	

ipred_mode_hor
	u(1)

	

ipred_mode_y[i] = ipred_mode_hor ? PRED_HOR : PRED_DC
	

	
}
	

	}
	

	getIntraPredModeY8x8 (i) {
	Descriptor

	
ipred_mode_8x8_diag_or_DC
	u(1)

	
if(ipred_mode_diag_or_DC) {
	

	

ipred_mode_8x8_diag
	u(1)

	

ipred_mode_y[i] = ipred_mode_diag ? PRED_VER : PRED_DC
	

	

ipred_angle[i] = ipred_mode_diag ? -8 : 0
	

	
}
	

	
else {
	

	

ipred_mode_8x8_hor
	u(1)

	

ipred_mode_y[i] = ipred_mode_hor ? PRED_HOR : PRED_VER
	

	

ipred_angle_8x8_plus_7
	u(4)

	

ipred_angle[i] = ipred_angle_plus_7 – 7
	

	
}
	

	}
	

	getIntraPredModeUV8x8 () {
	Descriptor

	
ipred_mode_UV8x8_indicator
	u(2)

	
if (ipred_mode_indicator == 0)
	

	

ipred_mode_uv = PRED_VER
	

	
else if (ipred_mode_indicator == 1)
	

	

ipred_mode_uv = PRED_HOR
	

	
else if (ipred_mode_indicator == 2)
	

	

ipred_mode_uv = PRED_DC
	

	
Else
	

	

ipred_mode_uv = PRED_ANG
	

	}
	

	getMVData () {
	Descriptor

	
Intended to describe MVD and switched interpolation related code
	

	
mvPredProcess()
	

	
 if (mbMode = = MODE_16x16 && !cbpVal && picture_type ! =
B_PICTURE){
	

	

If (modeIdx != 35){
	

	

mvdy
	svlc(10,v)

	

if (mvdy==0){
	

	

mvdxMinus1
	vlc(10,v)

	

mvdxSign
	u(1)

	

else{
	

	

mvdx
	svlc(10,v)

	

}
	

	

}
	

	
}
	

	
else{
	

	

mvdx
	svlc(10,v)

	

mvdy
	svlc(10,v)

	
}
	

	
if(IsBiPred(reference_index)) {
	

	

mvdBWx
	svlc(10,v)

	

mvdBWy
	svlc(10,v)

	
}
	

	
mvx, mvy, mvBWx ,mvBWy are computed using mvdx, mvdy, mvdBWx,
mvdBWy syntax elements and mvPredProcess
	

	
if(switched_interp_flag & & useSwitch(mvx,mvy)) {
	

	

interp_idx
	u(1)

	

If(IsBiPred(reference_index))
	

	

interp_idxBW
	u(1)

	
}
	

	}
	

	getReferenceIndexBpicture() {
	Descriptor

	
ref_pred_idx
	vlc(8,v)

	
reference_index_p = GetReferenceIndexPrediction()
	

	
reference_index = ReferenceIndexProcess(ref_pred_idx, reference_index_p)
	

	}
	

	mbResidual() {
	Descriptor

	Intended to describe decode_luma_16x16I, decode_luma_4x4I, decode_luma_SVT_P, decode_chroma_8x8I, decode_chroma_8x8P.
	

	
if (!planar_flag) {
	

	

for(i = 0; i < numTransformBlocksLuma; i++) {
	

	

if(mbMode = = MODE_INTRA & & transmitIntraDC) {
	

	

side_intra_dc_y
	vlc(3,v)

	

side_intra_dc_y_sign
	u(1)

	

}
	

	 if(mb_svt_flag){
	

	 svt_idx1
	u(v)

	 if(svt_idx<svt_idx_num-2^basetable[svt_idx_num-1])
	

	 svt_idx2
	u(1)

	 }
	

	

if(codedBlock)
	

	

getCoefData(is4x4Flag)
	

	

}
	

	

if(mbTransform = = TR_16x16) {
	

	

if(mbMode = = MODE_INTRA && transmitIntraDC) {
	

	

side_intra_ dc_u
	vlc(1,v)

	

side_intra_ dc_u_sign
	u(1)

	

side_intra_ dc_v
	vlc(1,v)

	

side_intra_ dc_v_sign
	u(1)

	

}
	

	 if(codedBlock)
	

	

 getCoefData(is4x4Flag)
	

	

} else {
	

	

if(mbMode = = MODE_INTRA && transmitIntraDC) {
	

	

side_intra_ dc_u
	vlc(1,v)

	

side_intra_ dc_u_sign
	u(1)

	

}
	

	 if(codedBlock)
	

	

 getCoefData(is4x4Flag)
	

	

if(mbMode = = MODE_INTRA && transmitIntraDC) {
	

	

side_intra_ dc_v
	vlc(1,v)

	

side_intra_ dc_v_sign
	u(1)

	

}
	

	 if(codedBlock)
	

	

 getCoefData(is4x4Flag)
	

	

}
	

	 }
	

	getCoefData (is4x4Flag) {
	Descriptor

	Intended to describe get_8x8 function in decoder
	

	
last_pos_table_idx
	vlc(n,v)

	lastPos and levelMagnitudeGreaterThanOneFlag are derived from the lastPosIdx syntax elementas described in Section 3.1.3
	

	
if(levelMagnitudeGreaterThanOneFlag)
	

	

last_pos_level
	vlc(0,v)

	
last_pos_sign
	u(1)

	
Start with run mode decoding
	

	
runMode = 1
	

	
while(runMode & & i < 64) {
	

	

if(63 - i > 27)
	

	

vlcIdx = 3
	

	

else
	

	

vlcIdx = vlcTable[63 - i]
	

	

isLevelOne_run
	vlc(vlcIdx,v)

	

isLevelOne and run variables are computed using isLevelOne_run syntax

element
	

	

i += run
	

	

if(!isLevelOne) {
	

	

level_magnitude_sign
	svlc(0,v)

	

levelMagnitude and levelSign variables are computed using

level_magntude_sign variable
	u(1)

	

runMode = checkRunMode()
	

	

} else
	

	

level_sign
	u(1)

	
}
	

	
Get the rest in level mode
	

	
vlcMagIdx = 0
	

	
while (i < 64) {
	

	

level_magnitude
	vlc(
vlcMagIdx,v)

	

vlcMagIdx = updateVLCTable(level_magnitude)
	

	

if(level_magnitude)
	

	

level_sign
	u(1)

	

i++
	

	
}
	

2 Semantics

2.1 Sequence level

sequence_start_code shall have the value 17
coded_picture_width indicates the width of the coded picture and it shall be divisible by 16
coded_picture_height indicates the height of the coded picture and it shall be divisible by 16

orig_picture_width indicates the width of the original picture and it shall be larger than coded_picture_width
orig_picture_height indicates the height of the original picture and it shall be large than coded_picture_height

reserved_bit reserved for future use
svt_flag indicates if spatially varying transform (svt) is enabled for the sequence (1) or not (0)

switched_interp_flag indicates if switched interpolation is enabled for the sequence (1) or not (0)

tr4 indicates if 4x4 transform is enabled for both INTER and INTRA macroblocks (2), only for INTRA macroblocks (1) or not enabled (0)
num_B_level indicates the number of B hierarchies present in the sequence.

num_B_frames indicates the number of B pictures present between I and P pictures.
ltr_period indicates the long term picture period used for reference picture list construction, as described in Section 3.2.1.3.
reset_contexts indicates when the VLC tables are reset; only on the first intra frame (0), on every intra frame (1), or on every frame (2)
2.2 Picture level

picture_start_code shall have the value 1
constrained_intra_flag indicates whether intra macroblocks can use pixels from inter macroblocks for prediction (0) or not (1).
picture_level_quant indicates the quantization parameter used for the picture. Values shall be in the range of 0 to 31 inclusive.
picture_type indicates if the picture is and I_PICTURE (0), P_PICTURE (1), or -B_PICTURE (2).

multiple_reference_frames_flag indicates whether multiple reference frames shall be allowed (1) or not(0).

use_svt_set_flag indicates which set of svt candidate positions are used as described in Section 3.1.4.2
run indicates the number of skipped macroblocks before the next coded macroblock.

2.3 Macroblock level

skip_mv_idx indicates the index for the motion vector used to decode the SKIP macroblock.

lmb64_flag indicates if large macroblock of size 64x64 pixels is enabled (1) or not (0)

lmb32_flag indicates if large macroblock of size 32x32 pixels is enabled (1) or not (0)
lmb_ref indicates the reference index for the large macroblock when the picture_type is P_PICTURE.

lmb_cbp indicates the coded block pattern for the large macroblock.

mode_table_idx indicates the rank of the modeIdx variable in the modeCTX context list. modeIdx variable is calculated using mode_table_idx syntax element as described in Section 3.1. modeIdx variable is used to compute the macroblock mode (mbMode), and in some cases macroblock reference index (reference_index), macroblock coded block pattern (yCBP, uCBP, vCBP) and macroblock transform mode (mbTransform) as described in Section 3.1
planar_flag indicates if planar mode is enabled for the macoblock (1) or not (0)

tr4_flag indicates if 4x4 transform is used for the macroblock or not.

cbp4[i] indicates the coded block pattern of the 4 4x4 blocks within the 8x8 block with index i.

cbp_table_idx indicates the rank of cbpIdx variable in the cbpCTX context list. cbpIdx variable is calculated using cbp_table_idx syntax element as described in Section 3.1.2. cbpIdx variable is used to compute the coded block pattern for luminance (yCBP) and chrominance (uCBP, vCBP) as described in Section 3.1.2
mb_svt_flag indicates if SVT is enabled for the macroblock (1) or not (0).
cbp_id0, cbp_id1, cbp_id2 are the syntax elements used to code the coded block pattern for luminance (yCBP) and chrominance (uCBP, vCBP), as described in Section 3.1.2. _
svt_cbp_id1 , svt_cbp_id2, svt_cbp_id3 are the the syntax elements used to calculate the coded block pattern for luminance (yCBP) and chrominance (uCBP, vCBP) when svt is enabled for the macroblock.

mvdx indicates the motion vector difference used to compute the horizontal component of the forward motion vector data (mvx).
mvdy indicates the motion vector difference used to compute the vertical component of the forward motion vector data (mvy).
mvdBWx indicates the motion vector difference used to compute horizontal component of the backward motion vector data (mvBWx).

mvdBWy indicates the motion vector difference used to compute vertical component of the backward motion vector data (mvBWy)
mvdxMinus1 plus 1 indicates the motion vector difference used to compute the horizontal component of the forward motion vector data (mvx).
mvdxSign indicates the sign of the motion vector difference used to compute the horizontal component of the forward motion vector data (mvx).
interp_idx indicates the interpolation index corresponding to forward motion vector. If switched_interp_flag is 0, interp_idx is inferred to be 0.

interp_idxBW indicates the interpolation index corresponding to backward motion vector. If switched_interp_flag is 0, interp_idxBW is inferred to be 0.
ref_pred_idx indicates how to determine the reference index (reference_index) when the picture_type is B_PICTURE and is specified in subclause 3.2.1.7.1.

side_intra_dc_y indicates the magnitude of the DC coefficient of the luminance component of the intra block. side_intra_dc_y_sign indicates the sign of the DC coefficient of the luminance component of the intra block.

side_intra_dc_u indicates the magnitude of the DC coefficient of the chrominance (U) component of the intra block.
side_intra_dc_u_sign indicates the sign of the DC coefficient of the chrominance (U) component of the intra block.

side_intra_dc_v indicates the magnitude of the DC coefficient of the chrominance (V) component of the intra block.
side_intra_dc_v_sign indicates the sign of the DC coefficient of the chrominance (V) component of the intra block.
svt_idx1 indicates the first part of the bitstream to derive the used index of svt, and shall be used as described in Section 3.1.4.3.

svt_idx2 indicates the potential second part of the bitstream to derive the used index of svt, and shall be used as described in section 3.1.4.3.planar_delta_uv_present indicates if the planar coding utilizes non-zero delta values for chrominance components (1) or not (0)

planar_qdelta_indicator indicates magnitude of the planar delta variable

planar_sign indicates if the planar delta variable has negative (1) or positive (0) value

ipred_mode_ver indicates if the block is utilizing vertical intra prediction (1) or not (0)

ipred_mode_hor indicates if the block is utilizing horizontal intra prediction (1) or DC prediction (0)

ipred_mode_8x8_diag_or_DC indicates if the block utilizes either diagonal or DC intra prediction (1) or if it utilizes prediction with other angularity (0)

ipred_mode_8x8_diag indicates if the block utilizes diagonal intra prediction (1) or DC prediction (0)

ipred_mode_8x8_hor indicates if the block utilizes intra prediction with the main reference pixel from the left of the block (1) or from above the block (0)

ipred_angle_8x8_plus_7 indicates the exact intra prediction angle for the block

ipred_mode_UV8x8_indicator indicates the prediction mode for chrominance blocks when luminance is predicted in 8x8 mode
last_pos_table_idx indicates the rank of the lastPosIdx variable in the lastPosCTX context list. lastPosIdx variable is calculated using vlc_last_pos_ptr syntax element as described in Section 3.1.3. lastPosIdx variable is used to decode the position of the last non-zero coefficient in zigzag scan order (lastPos), and if the magnitude of the last non-zero coefficient in zigzag scan order is greater than one (levelMagnitudeGreaterThanOneFlag) as described in Section 3.6.1.2
last_pos_level indicates the magnitude of the last non-zero coefficient in zigzag scan order.
last_pos_sign indicates the sign of the last non-zero coefficient in zigzag scan order.

isLevelOne_run indicates jointly the values for isLevelOne and run variables as described in Section 3.6.1.4. isLevelOne variable indicates if the magnitude of the next non-zero coefficient is greater than one (1) or not (0). run indicates the number of zero-coefficients before the next non-zero coefficient in reverse zigzag scan order,

level_magnitude_sign indicates the magnitude and sign of the next non-zero coefficient in reverse zigzag scan order.
level_sign indicates the sign of the next non-zero coefficient in reverse zigzag scan order.

Semantics for variables and processes
reference_index indicates which reference picture index it corresponds to. For picture_type equal to P_PICTURE reference_index equal to 0 corresponds to the closest reference frame and reference_index equal to 1 corresponds to the second closest reference frame. For picture_type equal to B_PICTURE the reference_index corresponds to both reference mode (uni -or bi-directional) and reference picture index, see 3.2.1.7. When only 1 reference frame is used, reference_index is set to 0 and only forward prediction is used.

IsBiPred() indicates if the reference_index corresponds to a bi-directional prediction, see subclause 3.2.1.7,
reference_index_p indicates the reference index prediction index when picture_type is equal to B_PICTURE.

GetReferenceIndexPrediction() determines a prediction of the reference_index when picture_type is equal to B_PICTURE and is specified in subclause 3.2.1.7.2.

ReferenceIndexProcess() determines the reference_index when picture_type is equal to B_PICTURE and is specified in subclause 3.2.1.7.1.
mbAddr indicates the position of the macroblock in the picture. Position is indicated using the position of the upper-left pixel of the macroblock.
isStartLMB64(mbAddr) process determines if the current macroblock position is located on the upper left corner of a 64x64 large macroblock.
isStartLMB32(mbAddr) determines if the current position is located on the upper left corner of a 32x32 large macroblock.

UpdateMBAddr (mbAddr) process calculates the position for the next macroblock or large macroblock. This is done using a Z-scan as shown in Figure 5.

numTransformBlocksLuma indicate the number of luminance transform blocks present for the macroblock.
3 Decoding Process
3.1 Decoding mbMode, tr16_flag, ref_pred_idx, dQP_idx, CBPval and las_pos_idx
3.1.1 modeIdx
The modeIdx parameter is derived from the mode_table_idx syntax element as follows:

modeIdx = modeIdxTable[pic_type][mode_table_idx]

Next, the entries of the modeIdxTable are updated as follows:

 mode_table_idx2 = max(0, mode_table_idx-1);

 modeIdx2 = modeIdxTable[pic_type][mode_table_idx2]
 modeIdxTable[pic_type][mode_table_idx2] = modeIdx

 modeIdxTable[pic_type][mode_table_idx] = modeIdx2

Initial values of modeIdxTable are defined as:

modeIdxTable[pic_type][n] = n

The tables are re-initialized for every I frame.
The parameters mbMode, mbTransform, mbCBP, dQPidx and refIdxP are derived from modeIdx according to Table 2, Table 3and Table 4 The mbCBP indicates various information about the luminance cbp (ycbp) and chrominance cbp (ucbp, vcbp) of the macroblock as described below.
Table 1 Decoding mbCBP

	mbCBP
	Meaning
	Additional CBP data present in bitstream

	0
	None of the transform blocks (luminance and chrominance) are coded
	-

	1
	The single luminance block within the macroblock is coded and the single chrominance block within the macroblock is not coded
	-

	2
	The single chrominance block within the macroblock is coded
	For yCBP:

cbp_id0

	3
	One of the two chrominance blocks within the macroblock is coded
	For yCBP, uCBP, vCBP

cbp_id1

cbp_id2

	4
	At least one of the luminance or chrominance blocks within the macroblock is coded
	If mb_svt_flag = = 1
For uCBP and vCBP

svt_cbp_id1

svt_cbp_id1

svt_cbp_id1

else

For yCBP,uCBP and vCBP

cbp_table_idx

Table 2 Decoding of mbMode, tr16_flag, and dQP_idx for I frames
	modeIdx
	mbMode
	tr16_flag
	dQP_idx
	mbCBP

	0
	INTRA_16x16
	NA
	0
	0

	1
	INTRA_16x16
	1
	0
	1

	2
	INTRA_16x16
	1
	0
	2

	3
	INTRA_8x8
	NA
	0
	0

	4
	INTRA_8x8
	0
	0
	4

	5
	INTRA_16x16
	1
	1
	1

	6
	INTRA_16x16
	1
	1
	2

	7
	INTRA_8x8
	0
	1
	4

Table 3 Decoding of mbMode, tr16_flag, ref_pred_idx, and dQP_idx for P frames
	modeIdx
	mbMode
	tr16_flag
	ref_pred_idx
	dQPidx
	mbCBP

	0
	 INTRA_16x16
	NA
	NA
	0
	0

	1
	 INTRA_16x16
	1
	NA
	0
	1

	2
	 INTRA_16x16
	1
	NA
	0
	2

	3
	 INTRA_8x8
	NA
	NA
	0
	0

	4
	 INTRA_8x8
	0
	NA
	0
	4

	5
	 INTER_16x16
	NA
	0
	0
	0

	6
	 INTER_16x16
	1
	0
	0
	1

	7
	 INTER_16x16
	1
	0
	0
	3

	8
	 INTER_16x16
	0
	0
	0
	4

	9
	 INTER_16x8
	NA
	0
	0
	0

	10
	 INTER_16x8
	0
	0
	0
	4

	11
	 INTER_8x16
	NA
	0
	0
	0

	12
	 INTER_8x16
	0
	0
	0
	4

	13
	 INTER_8x8
	NA
	0
	0
	0

	14
	 INTER_8x8
	0
	0
	0
	4

	15
	 INTER_16x16
	NA
	1
	0
	0

	16
	 INTER_16x16
	1
	1
	0
	1

	17
	 INTER_16x16
	1
	1
	0
	3

	18
	 INTER_16x16
	0
	1
	0
	4

	19
	 INTER_16x8
	NA
	1
	0
	0

	20
	 INTER_16x8
	0
	1
	0
	4

	21
	 INTER_8x16
	NA
	1
	0
	0

	22
	 INTER_8x16
	0
	1
	0
	4

	23
	 INTER_8x8
	NA
	1
	0
	0

	24
	 INTER_8x8
	0
	1
	0
	4

	25
	 INTRA_16x16
	1
	NA
	1
	1

	26
	 INTRA_16x16
	1
	NA
	1
	2

	27
	 INTRA_8x8
	0
	NA
	1
	4

	28
	 INTER_16x16
	1
	0
	1
	1

	29
	 INTER_16x16
	1
	0
	1
	3

	30
	 INTER_16x16
	0
	0
	1
	4

	31
	 INTER_16x8
	0
	0
	1
	4

	32
	 INTER_8x16
	0
	0
	1
	4

	33
	 INTER_8x8
	0
	0
	1
	4

	34
	 INTER_16x16
	1
	1
	1
	1

	35
	 INTER_16x16
	1
	1
	1
	3

	36
	 INTER_16x16
	0
	1
	1
	4

	37
	 INTER_16x8
	0
	1
	1
	4

	38
	 INTER_8x16
	0
	1
	1
	4

	39
	 INTER_8x8
	0
	1
	1
	4

Table 4 Decoding of mbMode, tr16_idx, and dQP_idx for B frames
	modeIdx
	mbMode
	tr16_flag
	ref_pred_idx
	dQPidx
	mbCBP

	0
	 INTRA_16x16
	NA
	NA
	0
	0

	1
	 INTRA_16x16
	1
	NA
	0
	1

	2
	 INTRA_16x16
	1
	NA
	0
	2

	3
	 INTRA_8x8
	NA
	NA
	0
	0

	4
	 INTRA_8x8
	0
	NA
	0
	4

	5
	 INTER_16x16
	NA
	NA
	0
	0

	6
	 INTER_16x16
	1
	NA
	0
	1

	7
	 INTER_16x16
	1
	NA
	0
	3

	8
	 INTER_16x16
	0
	NA
	0
	4

	9
	 INTER_16x8
	NA
	NA
	0
	0

	10
	 INTER_16x8
	0
	NA
	0
	4

	11
	 INTER_8x16
	NA
	NA
	0
	0

	12
	 INTER_8x16
	0
	NA
	0
	4

	13
	 INTER_8x8
	NA
	NA
	0
	0

	14
	 INTER_8x8
	0
	NA
	0
	4

	15
	DIRECT
	0
	NA
	0
	4

	16
	SPECIAL-B
	1
	NA
	0
	4

	 25
	 INTRA_16x16
	1
	NA
	1
	1

	26
	 INTRA_16x16
	1
	NA
	1
	2

	27
	 INTRA_8x8
	0
	NA
	1
	4

	28
	 INTER_16x16
	1
	NA
	1
	1

	29
	 INTER_16x16
	1
	NA
	1
	3

	30
	 INTER_16x16
	0
	NA
	1
	4

	31
	 INTER_16x8
	0
	NA
	1
	4

	32
	 INTER_8x16
	0
	NA
	1
	4

	33
	 INTER_8x8
	0
	NA
	1
	4

	34
	DIRECT
	1
	NA
	1
	4

	35
	SPECIAL-B
	1
	NA
	1
	4

The VLC table number, n (in VLCn) to be used for decoding mode_table_idx is determined as follows:
VLC table number depends on picture type and context variable mode_vlc_index[x], where x is 0 for intra and 1 for inter pictures. Entries of mode_vlc_index are initially 0 and are updated as the vlc codes are decoded. Table 5 lists the VLC table numbers to be used. To get a VLC table number, picture type is used to select a row and mode_vlc_index[x] indicates the individual the element on the row. If nonzero_pos_vlc_idx[idx] is bigger than 6, the last element on the selected row is used.

Table 5 VLC table numbers for last mode decoding

	Picture type
	VLC table numbers (0,1,…,6)

	Intra
	0,0,5,5,5,5,2

	Inter
	5,5,5,5,5,5,2

After VLC table number and the decoded mode_table_idx are known, mode_vlc_index[x] is updated according to the following:

If (mode_vlc_index[x] < mode_table_idx)

mode_vlc_index[x] = mode_vlc_index[x] + 1

else if (mode_vlc_index[x] > mode_table_idx)

mode_vlc_index[x] = mode_vlc_index[x] - 1

3.1.2 cbpIdx and cbpVal
The following paragraph applies if modeidx = 4,8,10,12,14,15 and mb_svt_flag = 0:
First, the cbpIdx parameter is derived from the cbp_table_idx syntax element as follows:

cbpIdx = cbpIdxTable[idx][cbp_table_idx]

where idx = 0 for intra modes, idx = 1 for inter modes in P pictures, and idx=2 for inter modes in B pictures.

Next, the entries of the cbpIdxTable are updated as follows:

 cbp_table_idx2 = max(0, cbp_table_idx-1);

 cbpIdx2 = cbpIdxTable[idx][cbp_table_idx2]
 cbpIdxTable [idx][cbp_table_idx2] = cbpIdx

 cbpIdxTable[idx][cbp_table_idx] = cbpIdx2

Finally, the cbpVal is defined as
cbpVal = cbpIdx+1
Initial values of the cbpIdxTable are defined as:
{14,7,3,11,1,0,4,2,9,12,6,10,13,5,8,30,31,62,15,46,28,34,22,35,41,33,39,17,18,20,36,47,16,26,44,23,25,43,29,27,19,32,42,38,56,45,50,52,24,57,60,49,61,54,51,58,55,40,59,37,21,48,53} for idx=0
 {14,11,2,12,4,6,10,9,13,1,3,5,8,0,7,15,31,46,30,62,38,42,44,20,45,36,18,22,34,27,41,25,43,28,29,26,47,40,21,19,52,16,60,37,61,32,23,58,17,24,54,39,33,35,59,57,50,53,56,51,49,48,55} for idx=1
 {14,11,2,12,4,6,10,9,13,1,3,5,8,0,7,15,31,46,30,62,38,42,44,20,45,36,18,22,34,27,41,25,43,28,29,26,47,40,21,19,52,16,60,37,61,32,23,58,17,24,54,39,33,35,59,57,50,53,56,51,49,48,55} for idx=2
The tables are re-initialized for every I frame.
The following paragraph applies if modeIdx = 7:

if (cbp_id1==0)

cbpVal = 6 + cbp_id2

else if(cbp_id1==1)
cbpVal = 4 + cbp_id2

else

cbpVal = cbp_id1
The VLC table number, n (in VLCn) to be used for decoding cbp_table_idx is determined as follows:
VLC table number depends on picture type and context variable cbp_vlc_index[x], where x is 0 for intra and 1 for inter pictures.. Entries of cbp_vlc_index are initially 0 and are updated as the vlc codes are decoded. Table 6 lists the VLC table numbers to be used. To get a VLC table number, picture type is used to select a row and cbp_vlc_index[x] indicates individual the element on the row. If cbp_vlc_idx[idx] is bigger than 7, the last element on the selected row is used.

Table 6 VLC table numbers for cbp decoding

	Picture type
	VLC table numbers (0,1,…,7)

	Intra
	10,10,10,2,2,2,2,7

	Inter
	10,10, 6,6,6,6,7,7

After VLC table number and the decoded cbp_table_idx are known, mode_vlc_index[x] is updated according to the following:

If (cbp_vlc_index[x] < cbp_table_idx)

cbp_vlc_index[x] = cbp_vlc_index[x] + 1

else if (cbp_vlc_index[x] > cbp_table_idx)

cbp_vlc_index[x] = cbp_vlc_index[x] - 1
3.1.3 last_posIdx

The last_posIdx parameter is derived from the last_pos_table_idx syntax element as follows:

last_pos Idx = last_pos IdxTable[idx][last_pos _table_idx]

Next, the entries of the last_pos IdxTable are updated as follows:

 last_pos _table_idx2 = max(0, last_pos _table_idx-1);

 last_pos Idx2 = last_pos IdxTable[idx][last_pos _table_idx2]
 last_pos IdxTable[idx][last_pos _table_idx2] = last_pos Idx
 last_pos IdxTable[idx][last_pos _table_idx] = last_pos Idx2

where for N=8:

idx = 0 for U and UV blocks

idx = 1 for V blocks

idx = 2 for 8x8 intra blocks

idx = 3 for 8x8 inter blocks in P pictures

idx = 4 for 8x8 inter blocks in B pictures

idx = 5 for 16x16 intra blocks

idx = 6 for 16x16 inter blocks in P pictures

idx = 7 for 16x16 inter blocks in B pictures

idx = 8 for SVT type 1 block

idx = 9 for SVT type 0 block

and for N=4:

idx = 0 for 4x4 intra blocks

idx = 1 for 4x4 inter blocks in P pictures

idx = 2 for 4x4 inter blocks in B pictures

Finally, last_nonzero_pos_levelID is defined as

last_nonzero_pos_levelID = last_posIdx
Initial values of the = last_pos IdxTable are defined as:
N=4:

last_pos IdxTable[idx][n] = n;
n=0,31

N=8:

For idx = 5,6,7: last_pos IdxTable[idx][n] = n;
n=0,127

For idx = 0,1:

{0,2,1,4,7,3,6,11,13,9,18,22,19,17,8,10,20,24,28,27,21,26,38,42,37,31,23,12,16,33,30,44,45,49,46,36,57,50,55,47,39,43,35,75,66,56,60,58,54,70,63,29,77,87,69,48,51,64,71,65,80,85,76,94,5,15,14,34,52,25,41,72,74,53,59,81,82,68,40,62,95,127,89,84,67,73,126,79,125,93,90,61,32,124,123,83,86,122,88,78,121,92,91,120,119,118,117,116,115,114,113,112,111,110,109,108,107,106,105,104,103,102,101,100,99,98,97,96}

For idx=2:

{0,1,2,9,14,3,5,17,15,6,8,16,23,18,4,11,24,27,25,20,10,26,50,40,34,31,21,12,13,28,33,32,35,43,57,46,76,65,55,45,38,36,22,39,47,49,53,60,75,95,70,61,59,51,64,63,68,101,111,69,67,74,99,97,7,30,19,42,66,41,54,83,72,29,37,71,81,86,52,58,79,85,84,77,48,62,104,92,89,80,78,56,44,88,93,87,94,96,105,82,127,114,110,109,100,91,73,90,106,103,126,118,125,124,113,117,107,98,112,116,115,123,122,102,108,121,120,119}
For idx=3,4,8,9:
{0,3,1,4,6,5,12,16,7,2,10,14,15,17,8,13,22,21,18,20,19,37,35,30,26,24,23,11,9,27,29,28,31,38,45,57,71,50,41,36,34,32,25,33,39,40,44,55,79,90,62,46,49,42,54,53,63,87,94,60,64,74,86,95,43,58,52,51,65,66,67,76,59,47,56,61,73,81,69,72,88,84,78,75,70,77,98,85,83,82,92,68,48,91,97,93,100,102,106,112,127,110,107,104,96,101,80,89,103,109,117,113,126,125,124,116,105,99,108,115,114,123,122,121,111,120,119,118}
The tables are re-initialized for every I frame.
3.1.4 Derivation of SVT position and shape
The variable svt_idx denotes the shape and position of SVT transform illustrated in Figure above, and is derived from the svt_idx1 and svt_idx2 syntax elements as described in the following sub-sections.
[image: image1.emf]
Figure 1 Illustration of SVT, type 0
[image: image2.emf]
Figure 2 Illustration of SVT, type 1
3.1.4.1 Derivation of motion vector criterion parameters

[image: image3.emf]MVA MVB

MVC MVD

16

pixels

16

pixels

As shown in the above figure, MVA is the motion vector of the top-left 8x8 block in the current macroblock, and MVB is the motion vector of the top-right 8x8 block in the current macroblock, and MVC is the motion vector of the bottom-left 8x8 block in the current macroblock, and MVD is the motion vector of the bottom-right 8x8 block in the current macroblock.

The variables edge1, edge2, edge3, edge4 are set to be 0 when mbMode is Mode_16x16, or derived as follows otherwise:
· if the absolute difference between x component of MVA and MVB is larger than or equal to one pixel, or if the absolute difference between y component of MVA and MVB is larger than or equal to one pixel, then variable edge1 is set to be 1, otherwise it is set to be 0.
· if the absolute difference between x component of MVA and MVC is larger than or equal to one pixel, or if the absolute difference between y component of MVA and MVC is larger than or equal to one pixel, then variable edge2 is set to be 1, otherwise it is set to be 0.
· if the absolute difference between x component of MVB and MVD is larger than or equal to one pixel, or if the absolute difference between y component of MVB and MVD is larger than or equal to one pixel, then variable edge3 is set to be 1, otherwise it is set to be 0.
· if the absolute difference between x component of MVC and MVD is larger than or equal to one pixel, or if the absolute difference between y component of MVC and MVD is larger than or equal to one pixel, then variable edge4 is set to be 1, otherwise it is set to be 0.

The variables of edge1, edge2, edge3 and edge4 are used as described in section 3.1.4.2 to derive the number of available SVT indexes (svt_idx_num).
3.1.4.2 Derivation of number of available SVT indexes (svt_idx_num)

The range of variable svt_idx is from 0 to 57, and its correlation with variables svt_type, dir, dx and dy are shown in the following table. The variables svt_type, dir, dx, dy are used to derive variable skip as described below.
Table 7 svt_idx, svt_type, dir, dx, dy

	svt_idx
	svt_type
	dir
	dx
	dy

	0
	0
	NA
	0
	0

	1
	0
	NA
	1
	0

	2
	0
	NA
	2
	0

	3
	0
	NA
	3
	0

	4
	0
	NA
	4
	0

	5
	0
	NA
	5
	0

	6
	0
	NA
	6
	0

	7
	0
	NA
	7
	0

	8
	0
	NA
	8
	0

	9
	0
	NA
	0
	8

	10
	0
	NA
	1
	8

	11
	0
	NA
	2
	8

	12
	0
	NA
	3
	8

	13
	0
	NA
	4
	8

	14
	0
	NA
	5
	8

	15
	0
	NA
	6
	8

	16
	0
	NA
	7
	8

	17
	0
	NA
	8
	8

	18
	0
	NA
	0
	1

	19
	0
	NA
	0
	2

	20
	0
	NA
	0
	3

	21
	0
	NA
	0
	4

	22
	0
	NA
	0
	5

	23
	0
	NA
	0
	6

	24
	0
	NA
	0
	7

	25
	0
	NA
	8
	1

	26
	0
	NA
	8
	2

	27
	0
	NA
	8
	3

	28
	0
	NA
	8
	4

	29
	0
	NA
	8
	5

	30
	0
	NA
	8
	6

	31
	0
	NA
	8
	7

	32
	1
	0
	NA
	0

	33
	1
	0
	NA
	1

	34
	1
	0
	NA
	2

	35
	1
	0
	NA
	3

	36
	1
	0
	NA
	4

	37
	1
	0
	NA
	5

	38
	1
	0
	NA
	6

	39
	1
	0
	NA
	7

	40
	1
	0
	NA
	8

	41
	1
	0
	NA
	9

	42
	1
	0
	NA
	10

	43
	1
	0
	NA
	11

	44
	1
	0
	NA
	12

	45
	1
	1
	0
	NA

	46
	1
	1
	1
	NA

	47
	1
	1
	2
	NA

	48
	1
	1
	3
	NA

	49
	1
	1
	4
	NA

	50
	1
	1
	5
	NA

	51
	1
	1
	6
	NA

	52
	1
	1
	7
	NA

	53
	1
	1
	8
	NA

	54
	1
	1
	9
	NA

	55
	1
	1
	10
	NA

	56
	1
	1
	11
	NA

	57
	1
	1
	12
	NA

The variable skip for each svt_idx is derived as follows:

· if svt_type==0,

· if svt_idx==0,8,9,17, skip=0;

· otherwise

· if svt_idx==1,2,3,4,5,6,7, skip=1 if edge1==1 and skip=0 if edge1==0

· if svt_idx==18,19,20,21,22,23,24, skip=1 if edge2==1 and skip=0 if edge2==0

· if svt_idx==25,26,27,28,29,30,31, skip=1 if edge3==1 and skip=0 if edge3==0

· if svt_idx==10,11,12,13,14,15,16, skip=1 if edge4==1 and skip=0 if edge4==0

· if svt_type==1,

· if dir==0

· if dy==0,1,2,3,4, skip=1 if edge1==1 and skip=0 if edge1==0

· if dy==5,6,7, skip=1 if either edge1 or edge2 or edge3 or edge4 is 1 and skip=0 otherwise

· if dy==8,9,10,11,12, skip=1 if edge4==1 and skip=0 if edge4==0

· if dir==1

· if dy==0,1,2,3,4, skip=1 if edge2==1 and skip=0 if edge2==0

· if dy==5,6,7, skip=1 if either edge1 or edge2 or edge3 or edge4 is 1 and skip=0 otherwise

· if dy==8,9,10,11,12, skip=1 if edge3==1 and skip=0 if edge3==0

· if use_svt_set_flag==1, skip=1 if svt_idx==1,2,3,4,5,6,7,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,30,31,33,34,35,37,38,39,41,42,43,46,47,48,50,51,52,54,55,56.

The variable svt_idx_num is set to be the number of svt_idx for which skip is 0:
The variable svt_idx_num is used to derive SVT index (svt_idx) in section 3.1.4.3.
3.1.4.3 Derivation of SVT index (svt_idx)

The variable svt_idx_base is derived from svt_idx_num in the following table and will be used to derive variable svt_idx as described below.

Table 8 svt_idx_num and svt_idx_base
	svt_idx_num
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	13
	13
	14
	15
	16
	17

	svt_idx_base
	1
	2
	2
	4
	4
	4
	4
	8
	8
	8
	8
	8
	8
	8
	8
	16
	16

	svt_idx_num
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35

	svt_idx_base
	16
	16
	16
	16
	16
	16
	16
	16
	16
	16
	16
	16
	16
	16
	32
	32
	32
	32

	svt_idx_num
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53

	svt_idx_base
	32
	32
	32
	32
	32
	32
	32
	32
	32
	32
	32
	32
	32
	32
	32
	32
	32
	32

	svt_idx_num
	54
	55
	56
	57
	58
	
	
	
	
	
	
	
	
	
	
	
	
	

	svt_idx_base
	32
	32
	32
	32
	32
	
	
	
	
	
	
	
	
	
	
	
	
	

The variable svt_idx is derived from svt_idx1, svt_idx2, svt_idx_num, svt_idx_base, skip as follows:

 if (svt_idx<svt_idx_num-svt_idx_base)

 svt_idx = svt_idx1*2+svt_idx2;

 else

 svt_idx = svt_idx1+svt_idx_num-svt_idx_base;

for svt_idx_tmp = 0..57

if (skip == 1)

svt_idx = svt_idx-1

if (svt_idx<0)

svt_idx = svt_idx_tmp;

break;

end for
3.2 Motion representation
Three different picture types are used, I_PICTURE, P_PICTURE and B_PICTURE. The macroblocks in an I_PICTURE do not use inter-prediction and can only be coded using intra prediction methods. The macroblocks in P_PICTURE and B_PICTURE can utilize both intra prediction and inter prediction modes. The inter-prediction modes are further described in Section 3.2.1 and intra-prediction methods are further described in Section 3.3.

The prediction structure of the sequence is configured using the values of syntax elements num_B_level, num_B_pictures, ltr_period and multiple_reference_frames_flag. Figure 4 illustrate two prediction structures as examples that are used to generate bitstreams for generating Class A and Class B bitstreams respectively.

[image: image4]
Figure 4 Various Supported Prediction Structures
3.2.1 Inter-Prediction Modes

The macroblocks in P_PICTURE and B_PICTURE type pictures can be either coded individually (indicated as MB16) or grouped in large macroblocks of size 64x64 (LMB64) or of size 32x32 (LMB32). For large macroblocks (LMB64, LMB32), only inter prediction modes are enabled. If macroblocks are coded individually (MB16), both inter and intra prediction modes are enabled. The coding mode of a macroblock is indicated by the mbMode variable. The allowed prediction modes for MB16, LMB32 and LMB64 are illustrated in Table 9.
Table 9 Allowed Prediction Modes for LMB64, LMB32 and MB16

	Macroblock Size
	picture_type = = I_PICTURE
	picture_type = = P_PICTURE
or picture_type = = B_PICTURE

	
	INTRA
	INTER
	INTRA
	INTER

	LMB64
	X
	X
	X
	

	LMB32
	X
	X
	X
	

	MB16
	
	X
	
	

The scanning of macroblocks are done using a Z-scan as indicated in Figure 5 (as an example picture width is assumed to be of 8 macroblocks or 128 pixels)

[image: image5]
Figure 5 Scanning of macroblocks

The syntax elements lmb64_flag and lmb32_flag are transmitted in the bitstream to indicate if the macroblocks are grouped into large macroblocks of size 64x64 and 32x32 respectively. lmb64_flag is only transmitted when the upper left pixel of the macroblock position is aligned with 64 pixel by 64 pixel grid. Similarly, lmb32_flag is only transmitted when the upper left pixel of macroblock position is aligned with 32 pixel by 32 pixel grid. Figure 6 illustrates different ways macroblocks could be grouped to large macroblocks.

[image: image6]
Figure 6 Various grouping alternatives for macroblocks

For all inter modes, the reconstructed samples, R(i,j) of an MxN partition, are derived from a prediction, P(i,j),
and a residual, D(i,j) as

R(i,j) = Clip0-255(P(i,j) + D(i,j)), i=0,M-1, j=0,N-1

The residual samples, D(i,j) are derived as described in Section 3.6. The prediction signal, P(i,j) are calculated differently for different modes as described in the following.

3.2.1.1 Inter Prediction Modes for Large Macroblocks (LMB64, LMB32)

Large macroblock modes (LMB64, LMB32) are always coded with INTER prediction, with the following restrictions:

· No SKIP mode or DIRECT modes are utilized.

· A large macroblock does not contain any motion partitions.

The motion partitions for large macroblock modes are given in Table 10.

Table 10 Motion Partitions for LMB64, LMB32

	lmbMode
	numPartitions
	MxN, luma
	MxN, chroma

	LMB64
	1
	64x64
	32x32

	LMB32
	1
	32x32
	16x16

3.2.1.2 Inter Prediction Modes for Macroblock (MB16)

If a macroblock is coded individually (MB16), it can either be coded in one of INTRA prediction modes or one of INTER prediction modes. The available INTER prediction modes are shown in Figure 7. As seen in Figure 7, a macroblock could be divided into motion partitions and motion vector data for each partition is signaled separately. No motion vector data is signaled if the mbMode is either a DIRECT mode or a SKIP mode. The number of motion partitions for each mode is given by variable numPartitions and shown in Table 11.

[image: image7]
Figure 7 Motion Partitions for INTER modes

Table 11 Motion Partitions for various mbModes

	mbMode
	numPartitions
	MxN, luma
	MxN, chroma

	INTER_16x16
	1
	16x16
	8x8

	INTER_16x8
	2
	16x8
	8x4

	INTER_8x16
	2
	8x16
	4x8

	INTER_8x8
	4
	8x8
	4x4

	SKIP
	1
	16x16
	8x8

	DIRECT
	1
	16x16
	8x8

	SPECIAL-B
	1
	16x16
	8x8

If bi-prediction mode is not utilized, the prediction signal, P(i,j) for an MxN partition is calculated from a reference picture, Z as

P(i,j) = Z(i+MVx,j+MVy), i=0,M-1,j=0,N-1

where MVx and MVy indicate the motion vector data of the motion partition and are determined as described in Section 3.2.2 and where fractional sample values of Z are obtained by using the interpolation procedure described in Section 3.2.3.

If Z(i+MVx,j+MVy) is located outside the frame boundary the sample values are defined by replicating the edge pixels of the frame or of the coding unit horizontally and/or vertically.
3.2.1.3 Reference Picture Selection

The reference_index variable indicates which one of the reference pictures in the reference picture list is used for prediction, as given in Table 12.

Table 12 reference_index variable for different picture types

	reference_index
	picture_type
	reference picture, Z

	0
	P_PICTURE
	closest reference frame

	1
	P_PICTURE
	farthest reference frame

	2
	P_PICTURE
	not allowed

	0
	B_PICTURE
	Forward reference frame ZF

	1
	B_PICTURE
	Backward reference ZB

	2
	B_PICTURE
	Bi-directional prediction using ZF and ZB

The reference picture list contains at most two pictures, and it is updated after the decoding of a picture is completed.
For the case of IPPP coding, the reference picture with reference index 0 is the lastly coded picture and the reference picture with reference index 1 is the long term picture. The period of long term pictures is given by the syntax element ltr_period.
For the case of Hierarchical-B coding, the reference picture with reference index 0 is the lastly coded picture in forward direction and the reference picture with reference index 1 is the lastly coded picture in backwards direction.
3.2.1.4 SKIP Mode

For SKIP mode, the samples of the residual signal, D(i,j) are always equal to 0. The number of macroblocks that are skipped in Z-scan order are indicated using run syntax element.
For P frames, the prediction signal, P(i,j) is derived from a reference picture ZF(i,j) as

P(i,j) = Z(i+skip_MVx j+skip_MVy), i,j = 0-15
For B frames, the prediction signal, P(i,j) is derived from a forward reference frame ZF(i,j) and a backward reference ZB(i,j) using the skip motion vector rounded to integer as:
P(i,j) = (ZF(i+Bskip_MVx j+Bskip_MVy) + ZB(i-Bskip_MV_BWx j-Bskip_MV_BWy) + rnd_offset)>>1, i,j = 0-15
where Bskip_MV = round(skip_MV) and Bskip_MV_BW is mirrored of Bskip_MV
The skip motion vector and the reference index are given with the variables skip_MV and skip_ref and are calculated as described in Section 3.2.2.2
The rnd_offset is 1 for all the macroblocks in a B picture belonging to the highest hierarchy level, and 0 otherwise.
3.2.1.5 DIRECT Mode

For DIRECT mode, the residual samples, D(i,j) are derived as described in Section 3.6. The prediction samples, P(i,j) are derived using the predicted motion vector.
The prediction signal, P(i,j) is derived from a forward reference frame ZF(i,j) and a backward reference ZB(i,j) using the direct motion vector as
P(i,j) = (ZF(i+direct_MVx j+direct_MVy) + ZB(i-direct_MV_BWx j-direct_MV_BWy) + rnd_offset)>>1, i,j = 0-15

The motion vector used for DIRECT mode, direct_MV, is calculated as follows. First the motion vector prediction process as described in Section 3.2.2.1 is invoked. The resulting motion vector predictor is is then rounded to integer pixel accuracy. The backward predicted motion vector, direct_MV_BW, is calculated by mirroring the forward DIRECT motion vector, direct_MV.
The rnd_offset is 1 for all the macroblocks in a B picture belonging to the highest hierarchy level, and 0 otherwise.
3.2.1.6 SPECIAL B Mode
For SPECIAL B mode, the residual samples, D(i,j) are derived as described in Section 3.6. The prediction samples, P(i,j) are derived using the predicted motion vector and the signaled reference index. If bi-prediction is not utilized, the prediction signal, P(i,j) for the macroblock is calculated from a reference picture, Z as
P(i,j) = Z(i+specialB_MVx,j + specialB MVy), i=0,M-1,j=0,N-1

where specialB MV indicate the motion vector data of the macroblock and is calculated using the motion vector prediction process as described in Section 3.2.2.1.
If bi-prediction is utilized, the prediction signal, P(i,j) is derived from a forward reference frame ZF(i,j) and a backward reference ZB(i,j) using the direct motion vector as

P(i,j) = (ZF(i+direct_MVx j+direct_MVy) + ZB(i-direct_MV_BWx j-direct_MV_BWy) + rnd_offset)>>1, i,j = 0-15

The variable, direct_MV is calculated as described in Section 3.2.1.5.

The rnd_offset is 1 for all the macroblocks in a B picture belonging to the highest hierarchy level, and 0 otherwise.
3.2.1.7 Bi-directional Prediction Mode

Bi-directional Prediction can be applied to mbMode equal to INTER_16x16, INTER_16x8, INTER_8x16, INTER_8x8, or large macroblock modes LMB32 and LMB64. It is used when the picture_type is equal to B_PICTURE and when the reference_index corresponds to a bi-directional prediction, see IsBiPrediction().
IsBiPrediction() is true if the reference_index corresponds to a bi-directional prediction otherwise it is false.
The reference_index derivation for B_PICTURE is specified in subclause 3.2.1.7.1. The prediction signal, P(i,j) is derived from a forward reference frame ZF(i,j) and a backward reference ZB(i,j) as

PY(i,j) = (ZF(i+MVx, j+MVy) + ZB(i+MV_BWx, j+MV_BWy) + rnd_offset)>>1, i,j = 0-15
Where MV is the motion vector pointing to forward reference frame and MV_BW is the motion vector pointing to a backward reference frame.
The rnd_offset is 1 for all the macroblocks in a B picture belonging to the highest hierarchy level, and 0 otherwise.
3.2.1.7.1 Decoding of Reference Index for B_PICTURE

The reference_index variable is derived by ReferenceIndexProcess() in Table 13.

Table 13 ReferenceIndexProcess()

	
	reference_index_p = = 0
	reference_index_p = = 1
	reference_index_p = = 2

	ref_pred_idx = = 1
	0
	1
	2

	ref_pred_idx = = 00
	1
	0
	0

	ref_pred_idx = = 01
	2
	2
	1

Where reference_index_p is derived in 3.2.1.7.2.
3.2.1.7.2 Reference Index Prediction

[image: image8]
Figure 8 Neighbouring reference indices used for prediction

The reference_index_p is derived by GetReferenceIndexPrediction() as follows:

· For each possible reference_index value, a count number is calculated indicating the number of neighbour block that has this reference_index. There are 3 blocks being considered as neighbour as shown in Figure 8.
· The reference_index with highest count number is selected as reference_index_p

If more than one reference_index have the same highest count number, select the smallest reference_index as reference_index_p.
3.2.2 Decoding of Motion Vectors

 The motion vector difference is signaled for every motion partition of the macroblock or large macroblock in scan order. First, the horizontal component (mvdx), then the vertical component (mvdy) of the motion vector difference is signaled. If MVdxSign is pesent in the bitstream, mvdx is computed as

mvdx = (1-2*MvdxSing)*(MvdxMinus1 + 1)

Otherwise, if mvdx or mvdy are not present in the bitstream (mbMode==SPECIAL), their value should be set to zero.
The horizontal and vertical components of the forward motion vector are derived as follows:

MVx = mvpx + mvdx
MVy = mvpy + mvdy

where mvpx and mvpy are the horizontal and vertical components of the predicted forward motion vector.

If the macroblock reference index corresponds to a bi-directional prediction, see 3.2.1.7,, motion vectors for backward reference are also indicated for every motion partition of the macroblock in the scan order. The horizontal and vertical components of the backward motion vector are derived as follows:

MV_BWx = mvpBWx + mvdx
MV_BWy = mvpBWy + mvdy

where mvpBWx and mvpBWy are the horizontal and vertical components of the predicted backward motion vector.

3.2.2.1 Motion Vector Prediction

When calculating the prediction of motion vectors it is assumed that each previously decoded 8x8 block has a vector and a reference index associated with it. For example, if a previously decoded macroblock was encoded as INTER_16x16, it is assumed that all of the four 8x8 partitions of that block have the same vector and the same reference index. Concerning the motion vector and the reference index of a previously decoded macroblock or large macroblock:

· If the macroblock is intra coded or is unavailable, the corresponding motion vector is set to (0,0) and reference index is set to -1. A block is considered to be unavailable if it is outside the frame or belongs to another slice.

· If the macroblock uses backward prediction, the horizontal and vertical components of the motion vector are inverted
· If the referred macroblock is a skipped macroblock, the vector is the 16x16 vector prediction of the referred macroblock

The motion vector prediction, mvp, for a partition is derived as follows:

· If only one of the reference indices in {mva, mvb, mvc} is equal to the reference index of the current macroblock, the motion vector corresponding to the equal reference index is selected as the prediction for the whole macroblock

· Else if the macroblock mode is one of {INTER_16x8, INTER_8x16, INTER_8x8} and directional prediction is valid for the block as shown in Figure 10 and the reference index of the referred block is equal to the reference index of the current macroblock, prediction is performed from the arrow direction

· Else if (|mvax - mvcx|+|mvay - mvcy|) < (|mvbx - mvcx|+|mvby - mvcy|), vector mva is selected, otherwise vector mvb is selected. The positions of macroblocks for mva, mvb, mvc are shown in Figure 9.

[image: image9]
Figure 9 Motion vectors used for prediction

[image: image10]
Figure 10 Directional motion vector prediction
3.2.2.2 SKIP mode motion vector prediction

The motion vector and the reference frame used for SKIP mode prediction are given with the variables skip_MV and skip_ref and calculated as follows

Consider Figure 11, where the current macroblock is drawn with solid line and neighboring macroblocks A, B and C are separated with dotted line. Neighboring macroblocks have associated motion vectors mvA, mvB, mvC and reference indices refA, refB and refC. If a macroblock is coded as intra or it is not availanle, its reference index is equal to -1. If a motion vector points to a reference frame in backward direction, the direction of the motion vector is reversed before using it for mv prediction.

A list of motion vectors containing at most two candidate vectors is constructed using the following algorithm:

· Arrange vectors mvA, mvB and mvC into a list so that vectors having reference index equal to the reference index of the current macroblock are first in the list, and vectors having reference index not equal to the reference index of the current macroblock are next in the list. Vectors having reference index -1 are not added to the list.
· Remove duplicates from the list. If current picture is B-picture, integer precision motion vectors are used when checking equality of motion vectors.

· If the list is empty, put zero motion vector to the list. If the list contains 3 motion vectors, the last vector removed from the list.

If the resulting list contains only one vector, that vector and its reference index are selected as the SKIP mode motion vector and the reference index respectively. If the list contains two motion vectors, SKIP mode motion vector and reference index are selected based on skip_mv_idx. Value of 0 indicates that first motion vector and its associated reference index in the list are selected and value of 1 indicates that second motion vector and its associated reference index are selected.

[image: image11]
Figure 11 Locations used for SKIP mode motion vector prediction
3.2.3 Interpolation

3.2.3.1 Luma Interpolation
Luma interpolation function utilizes a combination of directional and separable 2D filters. The luminance interpolation function could be implemented using 16-bit integer arithmetic. Consider Figure 12 where the reference frame pixel locations in the original image grid (integer-pixels locations) are labeled by upper-case letters {A1,…,F6} within the shaded boxes, and lower-case symbols {a,b,…,o} represent locations of samples at sub-pixel image grid (sub-pixel locations) that are to be interpolated.

[image: image12.png]A6

B6

c6

88

D6

E6

F6

f

D5

E5

E5

Ad

ce

E4

F4

bb

B3

Cc3

D3

E3

F3

B2

c2

D2

E2

F2

Al

Bl

Cc1

D1

El

F1

Figure 12 Image samples notation
Reference luma samples at sub-pixel locations {a,b,c} are interpolated with horizontally aligned 6-tap filter:

a = Clip0-255 ((3*C1 – 15*C2 + 111*C3 + 37*C4 – 10*C5 + 2*C6 + 64)>>7),

b = Clip0-255 ((3*C1 – 17*C2 + 78*C3 + 78*C4 – 17*C5 + 3*C6 + 64)>>7),

c = Clip0-255 ((2*C1 – 10*C2 + 37*C3 + 111*C4 – 15*C5 + 3*C6 + 64)>>7),

Reference luma samples at sub-pixel locations {d,h,l} are interpolated with vertically aligned 6-tap filter:

d = Clip0-255 ((3*A3 – 15*B3 + 111*C3 + 37*D3 – 10*E3 + 2*F3 + 64)>>7),

h = Clip0-255 ((3*A3 – 17*B3 + 78*C3 + 78*D3 – 17*E3 + 3* F3 + 64)>>7),

l = Clip0-255 ((2*A3 – 10*B3 + 37*C3 + 111*D3 – 15*E3 + 3* F3 + 64)>>7),

The luma samples at sub-pixel locations {e,f,g,i,j,k,m,n,o} are computed differently depending on the interp_idx and interp_idxBW syntax elements. If the syntax element interp_idx is 0 or the interp_idxBW is 0, the reference luma samples at sub-pixel locations are interpolated as follows:
Luma samples at sub-pixel locations {e,o,g,m} are interpolated with diagonally aligned 6-tap filter:

e = Clip0-255 ((3*A1 – 15*B2 + 111*C3 + 37*D4 – 10*E5 + 2*F6 + 64)>>7),

o = Clip0-255 ((2*A1 – 10*B2 + 37*C3 + 111*D4 – 15*E5 + 3*F6 + 64)>>7),

g= Clip0-255 ((3*A6 – 15*B5 + 111*C4 + 37*D3 – 10*E2 + 2*F1 + 64)>>7),

m= Clip0-255 ((2*A6 – 10*B5 + 37*C4 + 111*D3 – 15*E2 + 3*F1 + 64)>>7),

Luma samples at sub-pixel locations {f,i,k,n}, are interpolated with a diagonal-cross 12-tap filter:

f= Clip0-255((3*(A1+A6) – 15*(B2+B5) + 111*(C3+C4) + 37*(D4+D3) – 10*(E5+E2) + 2*(F6+F1) + 128)>>8),

n= Clip0-255((2*(A1+A6) – 10*(B2+B5) + 37*(C3+C4) + 111*(D4+D3) – 15*(E5+E2) + 3*(F6+F1) + 128)>>8),

i= Clip0-255 ((3*(A1+F1) – 15*(B2+E2) + 111*(C3+D3) + 37*(D4+C4) – 10*(E5+B5) + 2*(F6+A6) + 128)>>8),

k= Clip0-255((2*(A1+F1) – 10*(B2+E2) + 37*(C3+D3) + 111*(D4+C4) – 15*(E5+B5) + 3*(F6+A6) + 128)>>8),

Luma samples at the sub-pixel location {j}, are interpolated with the following 12-tap filter:

j= Clip0-255 ((5*(B3+B4+C2+C5+D2+D5+E3+E4) + 22*(C3+C4+D3+D4) + 64)>>7),

If the syntax element interp_idx is 1 or interp_idxBW is 1, the reference luma samples at the sub-pixel locations {e,f,g,i,j,k,m,n,o} are filtered with 2D separable filters. Horizontal 6-tap filtering is applied first, followed by vertical 6-tap filtering.

In order to interpolate samples {e,i,m}, intermediate samples at the locations {aa,bb,hh,ii,jj} are first obtained as:

aa = Clip0-255 ((3*A1 – 15*A2 + 111*A3 + 37*A4 – 10*A5 + 2*A6 + 64)>>7),

bb = Clip0-255 ((3*B1 – 15*B2 + 111*B3 + 37*B4 – 10*B5 + 2*B6 + 64)>>7),

hh = Clip0-255 ((3*D1 – 15*D2 + 111*D3 + 37*D4 – 10*D5 + 2*D6 + 64)>>7),

ii = Clip0-255 ((3*E1 – 15*E2 + 111*E3 + 37*E4 – 10*E5 + 2*E6 + 64)>>7),

jj = Clip0-255 ((3*F1 – 15*F2 + 111*F3 + 37*F4 – 10*F5 + 2*F6 + 64)>>7),

The final luma samples are calculated with vertical 6-tap filtering:

e = Clip0-255 ((3*aa – 15*bb + 111*b + 37*hh – 10*ii + 2*jj + 64)>>7),

i = Clip0-255 ((3*aa – 17*bb + 78*b + 78*hh – 17*ii + 3*jj + 64)>>7),

m= Clip0-255 ((2*aa – 10*bb + 37*b + 111*hh – 15*ii + 3*jj + 64)>>7),

In order to interpolate samples {f,j,n}, intermediate samples at the locations {aa,bb,hh,ii,jj} are first filtered as:

aa = Clip0-255 ((3*A1 – 17*A2 + 78*A3 + 78*A4 – 17*A5 + 3*A6 + 64)>>7),

bb = Clip0-255 ((3*B1 – 17*B2 + 78*B3 + 78*B4 – 17*B5 + 3*B6 + 64)>>7),

hh = Clip0-255 ((3*D1 – 17*D2 + 78*D3 + 78*D4 – 17*D5 + 3*D6 + 64)>>7),

ii = Clip0-255 ((3*E1 – 17*E2 + 78*E3 + 78*E4 – 17*E5 + 3*E6 + 64)>>7),

jj = Clip0-255 ((3*F1 – 17*F2 + 78*F3 + 78*F4 – 17*F5 + 3*F6 + 64)>>7),

The final luma samples are calculated with vertical 6-tap filtering:

f = Clip0-255 ((3*aa – 15*bb + 111*b + 37*hh – 10*ii + 2*jj + 64)>>7),

j = Clip0-255 ((3*aa – 17*bb + 78*b + 78*hh – 17*ii + 3*jj + 64)>>7),

n= Clip0-255 ((2*aa – 10*bb + 37*b + 111*hh – 15*ii + 3*jj + 64)>>7),

In order to interpolate samples {g,k,o}, intermediate samples at the locations {aa,bb,hh,ii,jj} are first filtered as:

aa = Clip0-255 ((2*A1 – 10*A2 + 37*A3 + 111*A4 – 15*A5 + 3*A6 + 64)>>7),

bb = Clip0-255 ((2*B1 – 10*B2 + 37*B3 + 111*B4 – 15*B5 + 3*B6 + 64)>>7),

hh = Clip0-255 ((2*D1 – 10*D2 + 37*D3 + 111*D4 – 15*D5 + 3*D6 + 64)>>7),

ii = Clip0-255 ((2*E1 – 10*E2 + 37*E3 + 111*E4 – 15*E5 + 3*E6 + 64)>>7),

jj = Clip0-255 ((2*F1 – 10*F2 + 37*F3 + 111*F4 – 15*F5 + 3*F6 + 64)>>7),

The final luma samples are calculated with vertical 6-tap filtering:

e = Clip0-255 ((3*aa – 15*bb + 111*b + 37*hh – 10*ii + 2*jj + 64)>>7),

i = Clip0-255 ((3*aa – 17*bb + 78*b + 78*hh – 17*ii + 3*jj + 64)>>7),

m= Clip0-255 ((2*aa – 10*bb + 37*b + 111*hh – 15*ii + 3*jj + 64)>>7),

3.2.3.2 Chroma Interpolation

Prior to the chroma interpolation, the luma vectors are downscaled to obtain chroma vectors in ¼ chroma pixel units. Given the luma motion vector mvx, mvyl the chroma motion vector is given as

mvxchroma = (mvx + offset)>>1

mvychroma = (mvx + offset)>>1

where offset is 0 or 1 for every other picture.

Using the same notation indicated in Figure 12, the chroma interpolation is described with the following equations:

b = (C3+C4)>>1

h = (C3+D3)>>1

j = (b+hh)>>1

a = (C3+b+1)>>1

c = (b+C4+1)>>1

d = (C3+h+1)>>1

e = (b+h+1)>>1

f = (C3+ee+1)>>1

g = (b+ee+1)>>1

i = (b+D3+1)>>1

k = (C4+hh+1)>>1

l = (h+D3+1)>>1

m = (h+hh+1)>>1

n = (h+D4+1)>>1

o = (hh+ee+1)>>1

3.3 Prediction of Intra Coded Blocks
All Intra coded blocks are predicted by spatial means. The list of available prediction methods depend on the Macroblock mode (INTRA_16x16, INTRA_8x8 or INTRA_4x4). The selected prediction method is indicated for each block by planar_flag, planar_delta_(y/u/v), ipred_mode_(y[i]/uv) and ipred_angle[i] variables derived from the bitstream.

A pixel is considered available for prediction if it is inside the picture boundaries. If constrained_intra_flag is 1, the pixel also has to belong to an Intra coded macroblock to be considered available.
3.3.1 INTRA_4x4 Luminance Prediction
In INTRA_4x4 mode there are three available luminance prediction methods: Vertical, Horizontal and DC prediction. The selected method is indicated by the ipred_mode_y[i] variables derived from bitstream for each of the 4x4 block within the INTRA_4x4 coded Macroblock separately.

The predicted pixel values are calculated as follows. Assume that M(-1,j) are the reconstructed pixels prior to deblocking to the left of the block and M(i,-1) are the reconstructed pixels prior to deblocking above the block. P(i,j) are the predicted pixel values of a 4x4 block and calculated as:

Vertical prediction:
P(i,j) = M(i,-1), i,j = 0…3
(only valid if all M(i,-1) are available)

Horizontal prediction:
P(i,j) = M(-1,j), i,j = 0…3
(only valid if all M(-1,j) are available)

DC prediction:

P(i,j) = DC, i,j = 0…3 where DC is calculated as:
If all M(i,-1) are available and all M(-1,j) are available then

DC =
[image: image13.wmf]3

4

)

)

,

1

(

)

1

,

(

(

3

0

>>

ú

û

ù

ê

ë

é

+

-

+

-

å

=

k

k

M

k

M

else if all M(i,-1) are available then

DC =
[image: image14.wmf]2

2

)

)

1

,

(

(

3

0

>>

ú

û

ù

ê

ë

é

+

-

å

=

k

k

M

else if all M(-1,j) are available then

DC =
[image: image15.wmf]2

2

)

)

,

1

(

(

3

0

>>

ú

û

ù

ê

ë

é

+

-

å

=

k

k

M

else

DC = 128

3.3.2 INTRA_8x8 Luminance Prediction
In INTRA_8x8 mode there are three master prediction methods: Vertical, Horizontal and DC prediction. In the case of Vertical and Horizontal prediction there is additional signalling describing the angle of the prediction in 1/8th pixel displaments between rows (in the case of vertical prediction) or columns (in the case of horizontal prediction). The selected method and angularity of directional prediction is indicated by a combination of ipred_mode_y[i] and ipred_angle[i] variables derived from the bitstream.

The predicted pixel values are calculated as follows. Assume that M(-1,j) are the reconstructed pixels prior to deblocking to the left of the block and M(i,-1) are the reconstructed pixels prior to deblocking above the block. P(i,j) are the predicted pixel values of a 8x8 block and calculated as:

DC prediction:

P(i,j) = DC, i,j = 0…7 where DC is calculated as:

If all M(i,-1) are available and all M(-1,j) are available then

DC =
[image: image16.wmf]4

8

)

)

,

1

(

)

1

,

(

(

7

0

>>

ú

û

ù

ê

ë

é

+

-

+

-

å

=

k

k

M

k

M

else if all M(i,-1) are available then

DC =
[image: image17.wmf]3

4

)

)

1

,

(

(

7

0

>>

ú

û

ù

ê

ë

é

+

-

å

=

k

k

M

else if all M(-1,j) are available then

DC =
[image: image18.wmf]3

4

)

)

,

1

(

(

7

0

>>

ú

û

ù

ê

ë

é

+

-

å

=

k

k

M

else

DC = 128

Vertical and Horizontal prediction:

The reference samples for Vertical and Horizontal prediction consist of top row (TR) constructed based on reconstructed samples M(i,-1) i = -1…15 prior to deblocking and left column (LC) constructed based on reconstructed samples M(-1,j) j = -1…15 prior to deblocking. As all the pixels are not always available as reference samples, TR and LC are constructed as follows:

LC(0) = (M(0,-1) + 2*M(-1,-1) + M(-1,0) + 2) >> 2
if M(0,-1), M(-1,-1), M(-1,0) are all available

LC(0) = M(-1,0)

if M(-1,0) is available, but M(0,-1) is not

LC(0) = M(0,-1)

if M(0,-1) is available, but M(-1,0) is not

LC(0) = 128

otherwise

TR(0) = LC(0)

If M(-1,j), j = 0…7 are available:

LC(1) = (M(-1,-1) + 2*M(-1,0) + M(-1,1) + 2) >> 2
 if M(-1,-1) is available

LC(1) = M(-1,0)

 if M(-1,-1) is not available

LC(j+1) = (M(-1,j-1) + 2*M(-1,j) + M(-1,j+1) + 2) >> 2, j = 1…6

LC(j+1) = (M(-1,j-1) + 2*M(-1,j) + M(-1,j+1) + 2) >> 2, j = 7…14 if M(-1,j), j = 8…15 are available

LC(16) = M(-1,15)

 if M(-1,j), j = 8…15 are available

LC(j) = M(-1,7), j = 8…16

 if M(-1,j), j = 8…15 not available

If M(-1,j), j = 0…7 are not available:

LC(j) = LC(0), j = 1…16

If M(i,-1), i = 0…7 are available:

TR(1) = (M(-1,-1) + 2*M(0,-1) + M(1,-1) + 2) >> 2
 if M(-1,-1) is available

TR(1) = M(0,-1)

 if M(-1,-1) is not available

TR(i+1) = (M(i-1,-1) + 2*M(i,-1) + M(i+1,-1) + 2) >> 2, i = 1…6

TR(i+1) = (M(i-1,-1) + 2*M(i,-1) + M(i+1,-1) + 2) >> 2, i = 7…14 if M(i,-1), i = 8…15 are available

TR(16) = M(15,-1)

 if M(i,-1), i = 8…15 are available

TR(i) = M(7,-1), i = 8…16

 if M(i,-1), i = 8…15 not available

If M(i,-1), i = 0…7 are not available:

TR(i) = TR (0), i = 1…16

The prediction angle indicated by ipred_angle[i] can have any integer value ranging from -8 to 8. In the case of Vertical prediction the prediction angle describes the displacement of the bottom row of the block with respect to the reference row TR in units of pixels. Similarly in the case of Horizontal prediction the prediction angle describes the displacement of the rightmost column of the block with respect to the reference column LC in units of pixels. Angle of -8 corresponds to diagonal prediction from up-left to bottom-right. The angle of +8 corresponds to diagonal prediction from up-right to bottom-left in the case of Vertical prediction and diagonal prediction from bottom-left to up-right direction in the case of Horizontal prediction. The 0 angle corresponds to copying reference samples directly from above or left in the case of Vertical and Horizontal prediction, respectively.

The predicted samples are obtained using the following process from the reference pixels in TR and LC:

refMain = (ipred_mode == PRED_VER) ? TR : LC

refSide = (ipred_mode == PRED_VER) ? LC : TR

for k = 0…7

deltaInt = ((k+1)*ipred_angle) >> 3

deltaFract = ((k+1)*abs(ipred_angle)) % 8

if (ipred_angle < 0)

deltaFract = (8 - deltaFract) % 8

for l = 0…7

refMainInd = l+deltaInt+1

if (ipred_angle >= 0)

if (deltaFract != 0)

p(k,l) = ((8-deltaFract)*refMain[refMainInd]+deltaFract*refMain[refMainInd+1]+4) >> 3

else

p(k,l) = refMain[refMainInd]

else

if (refMainInd >= 0)

p(k,l) = ((8-deltaFract)*refMain[refMainInd]+deltaFract*refMain[refMainInd+1]+4) >> 3

else

deltaIntSide = (8*8*(l+1)/abs(ipred_angle)) >> 3

deltaFractSide = (8*8*(l+1)/abs(ipred_angle)) % 8

refSideIndex = k+1-deltaIntSide

if (deltaFractSide)

p(k,l) = ((8-deltaFractSide)*refSide[refSideIndex]+deltaFractSide*refSide[refSideIndex-1]+4) >> 3

else

p(k,l) = refSide[refSideIndex]

if (ipred_mode == PRED_VER)

P(k,l) = p(k,l)

else

P(l,k) = p(k,l)

end for

end for

3.3.3 INTRA_16x16 Luminance Prediction
In INTRA_16x16 mode there are four available luminance prediction methods: Planar, Vertical, Horizontal and DC prediction. The selected method is indicated by a combination of planar_flag and ipred_mode_y[0] as defined in the table below.

Table 14 Derivation of lumimance Intra prediction mode in INTRA_16x16 Macroblock mode
	planar_flag
	ipred_mode_y[0]
	Prediction method

	true
	N/A
	Planar

	false
	PRED_VER
	Vertical

	false
	PRED_HOR
	Horizontal

	false
	PRED_DC
	DC

The predicted pixel values are calculated as follows. Assume that M(-1,j) are the reconstructed pixels prior to deblocking to the left of the block and M(i,-1) are the reconstructed pixels prior to deblocking above the block. P(i,j) are the predicted pixel values of a 16x16 block and calculated as:

Vertical prediction:
P(i,j) = M(i,-1), i,j = 0-15
(only valid if all M(i,-1) are available)

Horizontal prediction:
P(i,j) = M(-1,j), i,j = 0-15
(only valid if all M(-1,j) are available)

DC prediction:

P(i,j) = DC, i,j = 0…15 where DC is calculated as:
If all M(i,-1) are available and all M(-1,j) are available then

DC =
[image: image19.wmf]5

16

)

)

,

1

(

)

1

,

(

(

15

0

>>

ú

û

ù

ê

ë

é

+

-

+

-

å

=

k

k

M

k

M

else if all M(i,-1) are available then

DC =
[image: image20.wmf]4

8

)

)

1

,

(

(

15

0

>>

ú

û

ù

ê

ë

é

+

-

å

=

k

k

M

else if all M(-1,j) are available then

DC =
[image: image21.wmf]4

8

)

)

,

1

(

(

15

0

>>

ú

û

ù

ê

ë

é

+

-

å

=

k

k

M

else

DC = 128

Planar prediction:

In the case of planar prediction the predicted pixel values are calculated by bilinear interpolation between the top row (TR), bottom row (BR), left column (LC) and right column (RC) of pixels in the macroblock. In order obtain the predicted pixel values for reference rows and columns the value for the bottom-right sample (BRS) in the macroblock is caltulated as follows:

BRS = DC + planar_delta_y

where DC is calculated identically to the DC value in DC prediction above.

The values for the top row (TR) are calculated as follows:

TR(i) = M(i,-1)

i = 0-15
if M(i,-1) are available

TR(i) = ((15-i)*M(-1,0) + i*BRS + 7) / 15

i = 0-15
if M(i,-1) not available

but M(-1,0) is available

TR(i) = 128

otherwise

The values for the left column (LC) are calculated as follows:

LC(j) = M(-1,j)

j = 0-15
if M(-1,j) are available

LC(j) = ((15-j)*M(0,-1) + j*BRS + 7) / 15

j = 0-15
if M(-1,j) not available

but M(0,-1) is available

LC(j) = 128

otherwise

The values for the bottom row (BR) are calculated as follows:

BR(i) = ((15-i)*LC(15) + i*BRS + 7) / 15

i = 0-15

The values for the right column (RC) are calculated as follows:

RC(j) = ((15-j)*TR(15) + j*BRS + 7) / 15

j = 0-15

Predicted pixel values for the Macroblock are calculated as follows:

P(i,j) = ((15-j)*TR(i) + j*BR(i) + (15-i)*LC(j) + i*RC(j) + 15) / 30
i,j = 0-15

3.3.4 Chrominance Prediction of Intra coded Macroblocks
The two 8x8 chrominance blocks belonging to the Macroblock are both decoded utilizing the same prediction method. The prediction method can be one of the following: Vertical, Horizontal, DC, Angular or Spatial prediction. The selected method is indicated by a combination of planar_flag and ipred_mode_uv variables derived from the bitstream as follows:

Table 15 Derivation of chrominance Intra Prediction mode
	planar_flag
	ipred_mode_uv
	Prediction method

	true
	N/A
	Planar

	false
	PRED_VER
	Vertical

	false
	PRED_HOR
	Horizontal

	false
	PRED_DC
	DC

	false
	PRED_ANG
	Angular

The Planar prediction is available only if the Macroblock is coded in INTRA_16x16 mode and the Anglular prediction is available only if the Macroblock is coded in INTRA_8x8 mode.

The following process is repeated for both 8x8 chrominance blocks belonging to the Macroblock utilizing the reconstructed samples in the corresponding chrominance component as reference in the prediction process. Assume that M(-1,j) are the reconstructed pixels prior to deblocking to the left of the block and M(i,-1) are the reconstructed pixels prior to deblocking above the block. P(i,j) are the predicted pixel values of the 8x8 chrominance block and calculated as:

Vertical prediction:
P(i,j) = M(i,-1), i,j = 0…7
(only valid if all M(i,-1) are available)

Horizontal prediction:
P(i,j) = M(-1,j), i,j = 0…7
(only valid if all M(-1,j) are available)

DC prediction:

P(i,j) = DC, i,j = 0…7, where DC is calculated as:
If all M(i,-1) are available and all M(-1,j) are available then

DC =
[image: image22.wmf]4

8

)

)

,

1

(

)

1

,

(

(

7

0

>>

ú

û

ù

ê

ë

é

+

-

+

-

å

=

k

k

M

k

M

else if all M(i,-1) are available then

DC =
[image: image23.wmf]3

4

)

)

1

,

(

(

7

0

>>

ú

û

ù

ê

ë

é

+

-

å

=

k

k

M

else if all M(-1,j) are available then

DC =
[image: image24.wmf]3

4

)

)

,

1

(

(

7

0

>>

ú

û

ù

ê

ë

é

+

-

å

=

k

k

M

else

DC = 128

Angular prediction:

In order to obtain the prediction P(i,j) the prediction process described in the INTRA_8x8 Luminance Prediction is invoked by using relevant chrominance reconstruction as reference and setting:

ipred_mode = ipred_mode_y[i]

ipred_angle = ipred_angle[i]

where i is the smallest index for which iped_mode_y[i] is not PRED_DC and ipred_angle[i] is not 0.

Planar prediction:

In the case of planar prediction the predicted pixel values are calculated by bilinear interpolation between the top row (TR), bottom row (BR), left column (LC) and right column (RC) of pixels in the macroblock. In order obtain the predicted pixel values for reference rows and columns the value for the bottom-right sample (BRS) in the macroblock is caltulated as follows:

BRS = DC + planar_delta_u

for U component

BRS = DC + planar_delta_v

for V component

where DC is calculated identically to the DC value in DC prediction above.

The values for the top row (TR) are calculated as follows:

TR(i) = M(i,-1)

i = 0-7
if M(i,-1) are available

TR(i) = ((7-i)*M(-1,0) + i*BRS + 3) / 7

i = 0-7
if M(i,-1) not available

but M(-1,0) is available

TR(i) = 128

otherwise

The values for the left column (LC) are calculated as follows:

LC(j) = M(-1,j)

j = 0-7
if M(-1,j) are available

LC(j) = ((7-j)*M(0,-1) + j*BRS + 3) / 7

j = 0-7
if M(-1,j) not available

but M(0,-1) is available

LC(j) = 128

otherwise

The values for the bottom row (BR) are calculated as follows:

BR(i) = ((7-i)*LC(7) + i*BRS + 3) / 7

i = 0-7

The values for the right column (RC) are calculated as follows:

RC(j) = ((7-j)*TR(7) + j*BRS + 3) / 7

j = 0-7

Predicted pixel values for the Macroblock are calculated as follows:

P(i,j) = ((7-j)*TR(i) + j*BR(i) + (7-i)*LC(j) + i*RC(j) + 7) / 14
i,j = 0-7

3.4 Inverse Quantization and Inverse Transforms
3.4.1 Quantization parameter

The quantization parameter is updated for each macroblock according to

QP = QPprev + dqp
where QPprev is equal to the value of QP of the previous macroblock in scan order. If dqp is not present in the bitstream, its value shall be set to zero. If the macroblock is the first macroblock of the coding unit, QPprev is equal to picture_level_quant as signaled in the picture header

3.4.2 Inverse Quantization
The whole process of inverse quantization and inverse transform is designed so that 16-bit calculations can be used throughout. The inverse quantization applies to NxN blocks where N=4 for 4x4 the transform and N=8 for the 8x8, 16x6, 32x32, and 64x64 transforms. (Note: For the 16x16, 32x32, and 64x64 transforms, N is less than the transform size M, since the corresponding basis vectors of the transforms are equal to zero.) The following steps are performed:

Establish qp’, q0, q1

For luma:
qp’ = qp

For chroma
qp’ = qp - corr_qpc(qp) (see Table 8 for corr_qpc)

q0 = qp’/6

q1 = mod(qp’,6)

Let level(i,j), i,j=0,N-1 be the level values (including zero values) as specified in section 4.3, and indexed in the NxN two-dimensional array using the zig-zag scans of Figure 14 and Figure 15. The dequantized transform coefficients, c(i,j), i,j=0,N-1 are calculated as

c(i,j) = level(i,j)*(q1+6), i,j=0,N-1
Table 16 Corr_qpc, tc and β.

	qp
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	13
	13
	14
	15
	16
	17

	Corr_qpc
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	tc
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	1
	1
	1
	1
	1
	1
	2

	Β
	0
	0
	0
	0
	0
	0
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17

	Qp
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35

	Corr_qpc
	0
	0
	1
	1
	1
	1
	2
	2
	2
	3
	3
	4
	4
	5
	5
	6
	6
	6

	tc
	2
	2
	2
	3
	3
	3
	3
	4
	4
	4
	5
	5
	6
	6
	7
	8
	9
	9

	Β
	18
	20
	22
	24
	26
	28
	30
	32
	34
	36
	38
	40
	42
	44
	46
	48
	50
	52

	Qp
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	
	
	
	
	
	
	
	

	Corr_qpc
	7
	7
	7
	8
	8
	8
	
	
	
	
	
	
	
	
	
	
	
	

	tc
	10
	10
	11
	11
	12
	12
	13
	13
	14
	14
	
	
	
	
	
	
	
	

	Β
	54
	56
	58
	60
	62
	64
	
	
	
	
	
	
	
	
	
	
	
	

3.4.3 Inverse Transform

Two dimensional MxM integer transforms are used. It is implemented by separable operations in the horizontal and vertical directions. Hence only the one dimensional transforms have to be specified. The basis functions are given as follows:

4 pixel transform:

13, 13, 13, 13,

 17, 7, -7,-17,

 13,-13,-13, 13,

 7,-17, 17, -7,
8 pixel transform:

 13, 13, 13, 13, 13, 13, 13, 13

 17, 16, 11, 3, -3,-11,-16,-17

 17, 7, -7,-17,-17, -7, 7, 17

 16, -3,-17,-11, 11, 17, 3,-16

 13,-13,-13, 13, 13,-13,-13, 13

 11,-17, 3, 16,-16, -3, 17,-11

 7,-17, 17, -7, -7, 17,-17, 7

 3,-11, 16,-17, 17,-16, 11, -3
16 pixel transform:

 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13

 18, 18, 16, 14, 12, 9, 5, 2, -2, -5, -9,-12,-14,-16,-18,-18

 17, 16, 11, 3, -3,-11,-16,-17,-17,-16,-11, -3, 3, 11, 16, 17

 18, 12, 2, -9,-16,-18,-14, -5, 5, 14, 18, 16, 9, -2,-12,-18

 17, 7, -7,-17,-17, -7, 7, 17, 17, 7, -7,-17,-17, -7, 7, 17

 16, 2,-14,-18, -5, 12, 18, 9, -9,-18,-12, 5, 18, 14, -2,-16

 16, -3,-17,-11, 11, 17, 3,-16,-16, 3, 17, 11,-11,-17, -3, 16

 14, -9,-18, 2, 18, 5,-16,-12, 12, 16, -5,-18, -2, 18, 9,-14

Rows 8-15 are equal to zero.

32 pixel transform:

13, 13

18, 18, 18, 17, 17, 16, 15, 14, 12, 11, 9, 8, 6, 4, 3, 1, -1, -3, -4, -6, -8, -9,-11,-12,-14,-15,-16,-17,-17,-18,-18,-18

18, 18, 16, 14, 12, 9, 5, 2, -2, -5, -9,-12,-14,-16,-18,-18,-18,-18, -16,-14,-12, -9, -5, -2, 2, 5, 9, 12, 14, 16, 18, 18

18, 17, 14, 9, 4, -1, -6,-11,-15,-17,-18,-18,-16,-12, -8, -3, 3, 8, 12, 16, 18, 18, 17, 15, 11, 6, 1, -4, -9,-14,-17,-18

18, 15, 10, 5, -5,-10,-15,-18,-18,-15,-10, -5, 5, 10, 15, 18, 18, 15, 10, 5, -5,-10,-15,-18,-18,-15,-10, -5, 5, 10, 15, 18

18, 14, 6, -3,-11,-17,-18,-16, -9, -1, 8, 15, 18, 17, 12, 4, -4,-12, -17,-18,-15, -8, 1, 9, 16, 18, 17, 11, 3, -6,-14,-18

18, 12, 2, -9,-16,-18,-14, -5, 5, 14, 18, 16, 9, -2,-12,-18,-18,-12, -2, 9, 16, 18, 14, 5, -5,-14,-18,-16, -9, 2, 12, 18

17, 9, -3,-14,-18,-15, -4, 8, 17, 18, 11, -1,-12,-18,-16, -6, 6, 16, 18, 12, 1,-11,-18,-17, -8, 4, 15, 18, 14, 3, -9,-17
Rows 8-31 are equal to zero.

64 pixel transform:

13, 13

18, 18, 18, 18, 18, 18, 18, 17, 17, 16, 16, 16, 15, 15, 14, 13, 13, 12, 11, 11, 10, 9, 8, 7, 7, 6, 5, 4, 3, 2, 1, 0, 0, -1, -2, -3, -4, -5, -6, -7, -7, -8, -9,-10,-11,-11,-12,-13,-13,-14,-15,-15,-16,-16, -16,-17,-17,-18,-18,-18,-18,-18,-18,-18

18, 18, 18, 17, 17, 16, 15, 14, 12, 11, 9, 8, 6, 4, 3, 1, -1, -3, -4, -6, -8, -9,-11,-12,-14,-15,-16,-17,-17,-18,-18,-18,-18,-18,-18,-17, -17,-16,-15,-14,-12,-11, -9, -8, -6, -4, -3, -1, 1, 3, 4, 6, 8, 9, 11, 12, 14, 15, 16, 17, 17, 18, 18, 18

18, 18, 17, 16, 15, 13, 11, 8, 6, 3, 0, -2, -5, -7,-10,-12,-14,-16, -17,-18,-18,-18,-18,-18,-16,-15,-13,-11, -9, -7, -4, -1, 1, 4, 7, 9, 11, 13, 15, 16, 18, 18, 18, 18, 18, 17, 16, 14, 12, 10, 7, 5, 2, 0, -3, -6, -8,-11,-13,-15,-16,-17,-18,-18

18, 18, 16, 14, 12, 9, 5, 2, -2, -5, -9,-12,-14,-16,-18,-18,-18,-18, -16,-14,-12, -9, -5, -2, 2, 5, 9, 12, 14, 16, 18, 18, 18, 18, 16,14, 12, 9, 5, 2, -2, -5, -9,-12,-14,-16,-18,-18,-18,-18,-16,-14,-12, -9, -5, -2, 2, 5, 9, 12, 14, 16, 18, 18

18, 17, 15, 12, 8, 4, 0, -5, -9,-13,-16,-18,-18,-18,-17,-15,-11, -7, -3, 1, 6, 10, 13, 16, 18, 18, 18, 16, 14, 11, 7, 2, -2, -7,-11,-14, -16, -18,-18,-18,-16,-13,-10, -6, -1, 3, 7, 11, 15, 17, 18, 18, 18, 16, 13, 9, 5, 0, -4, -8,-12,-15,-17,-18

18, 17, 14, 9, 4, -1, -6,-11,-15,-17,-18,-18,-16,-12, -8, -3, 3, 8, 12, 16, 18, 18, 17, 15, 11, 6, 1, -4, -9,-14,-17,-18,-18,-17,-14, -9, -4, 1, 6, 11, 15, 17, 18, 18, 16, 12, 8, 3, -3, -8,-12,-16,-18,-18, -17,-15,-11, -6, -1, 4, 9, 14, 17, 18

{18, 16, 12, 7, 0, -6,-11,-16,-18,-18,-16,-13, -7, -1, 5, 11, 15,18, 18, 17, 13, 8, 2, -4,-10,-15,-18,-18,-17,-14, -9, -3, 3, 9, 14, 17, 18, 18, 15, 10, 4, -2, -8,-13,-17,-18,-18,-15,-11, -5, 1, 7, 13, 16, 18, 18, 16, 11, 6, 0, -7,-12,-16,-18

Rows 8-63 are equal to zero.
For 16x16, 32x32 and 64x64 transform, the coefficients for rows starting from 8 are zero as always the lowest 8x8 frequency coefficients are coded and transmitted
The inverse MxM transform is performed by matrix multiplications between inverse quantized transform coefficients, c(i,j), i,j=0,N-1, and columns in the basis functions.

The following steps are performed when mb_svt_flag=0 and SVT type 0 block when mb_svt_flag=1:

· Perform inverse transform of pixels in the horizontal direction to obtain Th(i,j), i,j = 0-N-1, j=0-M-1
· To keep within 16 bit resolution, perform downscaling according to

Th’(i,j) = (Th(i,j)<<(qp/6)) + M/4)>>(log2(M)-1)

· Perform inverse transform of Th’(i,j) in the vertical direction to obtain T(i,j), i,j = 0-M-1
· Perform downscaling to obtain the decoded residual signal, D(i,j)

D(i,j) = (T(i,j) + 512)>>10
The following steps are performed for SVT type 1 block when mb_svt_flag=1:

· Perform inverse transform of pixels in the horizontal direction to obtain Th(i,j), i,j = 0-N-1, j=0-M-1

· To keep within 16 bit resolution, perform downscaling according to

isk = IMIN(4,6-qp0);

Th’(i,j) = (Th(i,j)<<(qp/6)) + isk/2)>>isk
· Perform inverse transform of Th’(i,j) in the vertical direction to obtain T(i,j), i,j = 0-M-1

· Perform downscaling to obtain the decoded residual signal, D(i,j)

D(i,j) = (T(i,j) + 32)>>6
The residual signal is used to produce the reconstructed pixels R(i,j) as described in section 4.1.2 and section 4.2.2 for intra and inter macroblocks respectively.
3.5 In-loop filtering

Deblocking filter operates across 8x8 block edges for luma as well as for chroma blocks. Figure 13 show pixels on both sides of a vertical edge between the two 8x8 blocks A and B. Filtering is first performed across vertical edges, then across horizontal edges, and no filtering takes place at frame edges or at edges between coding units.

Sections 3.5.1 and 3.5.2 describes the operation only for filtering across vertical edges, horizontal filtering is done with the same operations

[image: image25]
Figure 13 Notation of Block Edge for Deblocking

3.5.1 Luma filtering

The luma edge between blocks A and B can be filtered if one of the following conditions is true

· Block A or Block B has mbMode==INTRA
· or Block A or block B has nonzero transform coefficients

· or The absolute difference between the horizontal or vertical component of the motion vectors used for Block A and Block B is greater than or equal to 4 in units of quarter luma samples,
· and |p22 - 2*p12 + p02| + |q22 - 2*q12 + q02| + |p25 - 2*p15 + p05| + |q25 - 2*q15 + q05| < β

The luma edge between blocks A and B is not filtered if one of the following conditions is true.

· Block A and Block B belong to the same macroblock and mb_svt_flag==1

· or Block A and Block B belong to the same macroblock and (mbMode==INTER_16x16 or mbMode==INTRA) and transform 16x16 is used

· or the edge is an internal edge of a large macroblock LMB32

· or the edge is an internal edge of a large macroblock LMB64

· or the edge is a macroblock border and both Block A and Block B have planar_flag ==1.

If the edge between Block A and Block B is filtered, one of two types of filtering (weak or strong filtering) is performed. The choice between the strong and the weak filtering is done separately for each line depending on the following conditions. For each line i = 0,7, the strong filtering is performed if all the following conditions are true, otherwise, weak filtering is performed.

· d < (β>>2)
· and (|p3i - p0i| + |q0i – q3i|) < (β>>3)
· and |p0i – q0i| < ((5*tC + 1)>>1),

where tC and β depends on qp their relations are shown in Table 16. tC is increased by 4 when one of Block A or Block B has mbMode==INTRA.
Weak filtering

Weak filtering mode filtering is performed based on the above conditions,

(= Clip(-tC,tC, (13*(q0i - p0i) + 4*(q1i - p1i) - 5*(q2i - p2i)+16)>>5))

i = 0,7

p0i = Clip0-255(p0i + ()

i = 0,7

q0i = Clip0-255(q0i - ()

i = 0,7

p1i = Clip0-255(p1i + (/2)

i = 0,7

q1i = Clip0-255(q1i - (/2)

i = 0,7

Strong filtering

Strong filtering mode is performed with the following set of operations.

p00=Clip0-255((p2i + 2*p1i + 2*p0i +2*q0i + q1i + 4)>>3);

i = 0,7
q00=Clip0-255((p1i + 2*p0i + 2*q0i + 2*q1i + q2i + 4)>>3);

i = 0,7
p10=Clip0-255((p2i + p1i + p0i + q0i +2)>>2);

i = 0,7
q10=Clip0-255((p0i + q0i + q1i + q2i +2)>>2);

i = 0,7
p20=Clip0-255((2*p3i + 3*p2i + p1i + p0i + q0i + 4)>>3);

i = 0,7
q20=Clip0-255((p0i + q0i + q1i + 3*q2i + 2*q3i + 4)>>3);

 i = 0,7
3.5.2 Chroma filtering

The chroma edge between blocks A and B can be filtered if the following condition is true.

· Block A or Block B has mbMode==INTRA
The filtering is not applied if both following conditions are true.

· The edge is a macroblock edge

 and both Block A and Block B have planar_flag==1.

If filtering is performed based on the above condition,

(= Clip(-tC,tC,((((q0i - p0i) << 2) + p1i - q1i + 4) >> 3))

i = 0,7

p0i = Clip0-255(p0i + ()

i = 0,7

q0i = Clip0-255(q0i - ()

i = 0,7

tC depend on qp and their relations are shown in Table 16. For chroma filtering tC is increased by 4.
3.5.3 Planar mode filtering

There is a special filtering mode which is applied to the macroblock edge when both macroblocks are encoded in intra planar mode. Luma and chroma edges between blocks A and B are filtered with planar filtering if all of the following conditions are true, otherwise normal filtering described in 3.5.1 and 3.5.2 are performed.

· Edge between Macroblock A and Macroblock B is a macroblock edge

· Both Macroblock A and Macroblock B have planar_flag==1

Planar luma filtering

The planar mode filtering for luma component is performed with the following set of operations.

p3i = (7*p3i + 3)/7

i = 0,15
p2i = (6*p3i + q3i
 + 3)/7

i = 0,15
p1i = (5*p3i + 2*q3i + 3)/7

i = 0,15
p0i = (4*p3i + 3*q3i + 3)/7

i = 0,15
q0i = (3*p3i + 4*q3i + 3)/7

i = 0,15
q1i = (2*p3i + 5*q3i + 3)/7

i = 0,15
q2i = (p3i + 6*q3i + 3)/7

i = 0,15
q3i = (7*q3i + 3)/7

i = 0,15
Planar chroma filtering

The planar mode filtering for chroma component is performed with the following set of operations.

p1i = (4*p1i + 2)/4

i = 0,7
p0i = (3*p1i + q1i
 + 2)/4

i = 0,7
q0i = (2*p1i + 2q1i + 2)/4

i = 0,7

q1i = (p1i + 3*q1i + 2)/4

i = 0,7

3.5.4 Filtering in SVT macroblocks

Deblocking filtering is also performed inside SVT macroblocks. Then, only the weak filtering mode described in Section 3.5.1 is applied on the edges between the SVT residual and the rest of the macroblock.
3.6 Entropy Coding
3.6.1 Decoding of 4x4 and 8x8 Transform Coefficients

For the 4x4 and 8x8 transform coefficient blocks where CBP indicate nonzero transform coefficients the sign and magnitude of each transform coefficient in the block needs to be signaled using the following processes
3.6.1.1 Scanning of coefficients
Figure 14 indicates the normal zig-zag scanning of an 8x8 block of transform coefficients starting from the DC coefficient and ending at the highest spatial frequency component.

[image: image26]
Figure 14 Scanning of 8x8 transform coefficients
Figure 15 indicates the scanning of an 4x4 block of transform starting from the DC coefficient and ending at the highest spatial frequency component.

[image: image27]
Figure 15 Scanning of 4x4 transform coefficients
Figure 16 indicates the scanning of a 16x4 block of transform starting from the DC coefficient and ending at the highest spatial frequency component.

[image: image28]
Figure 16 Scanning of 16x4 transform coefficients
If mbTransform = = TR_16x16 and mbMode = = MODE_INTRA, a single 8x8 coefficient block is transmitted for both of the chroma components. The 8x8 block is de-interleaved for U and V components as shown in Figure 17.

[image: image29.emf]V0 V2

U2

U3 U7 V7 V13

V3 V6 U8 U13

U4

V5

V9

U11

U17

U18

U6

U9

U0

U1

V1

V4

U5

U10

V10

V17

V11

V16

V18

U24

V8

U12

U16

U19

V23

V24

V12

V15

V19

U23

U25

V28

U15

U20

V22

V25

U28

U29

V14

V20

U14

U21

V21

V26 U22

U26 U27

U30 V27

V29 V30

V31 U31

V1 V5

V4

V6 V14 V15 V27

V7 V13 V16 V26

V8

V11

V19

V22

0

0

V12

V18

V0

V2

V3

V9

V10

V20

V21

0

V23

0

0

0

V17

V24

0

0

0

0

V25

V31

0

0

0

0

V30

0

0

0

0

0

V29

0

V28

0

0

0 0

0 0

0 0

0 0

0 0

U1 U5

U4

U6 U14 U15 U27

U7 U13 U16 U26

U8

U11

U19

U22

0

0

U12

U18

U0

U2

U3

U9

U10

U20

U21

0

U23

0

0

0

U17

U24

0

0

0

0

U25

U31

0

0

0

0

U30

0

0

0

0

0

U29

0

U28

0

0

0 0

0 0

0 0

0 0

0 0

Figure 17 Deinterleaving chroma coefficients
3.6.1.2 Position, levelID, and sign of the last nonzero transform coefficient

The parameters to be decoded are the position k, in the one dimensional array defined by Figure 14 and Figure 15, of the last nonzero coefficient and levelID which indicates whether |level| of this coefficient is 1 or > 1. The parameter last_pos_table_idx is decoded using VLCn into lastPosIdx as described in Section 3.1.3, and the value of k and the level information is determined according to:

For an 8x8 coefficient block (is4x4Flag variable is 0):

k =. lastPosIdx%64

levelMagnitudeGreaterThanOneFlag = lastPosIdx>>6

For a 4x4 coefficient block (is4x4Flag variable is 1)
k =. lastPosIdx%16

levelMagnitudeGreaterThanOneFlag = lastPosIdx>>4

The VLC table number, n (in VLCn) to be used is determined as follows:

VLC table number depends on idx that is defined in 3.x.x and context variable last_nonzero_pos_vlc_idx[idx]. Entries of last_nonzero_pos_vlc_idx are initially 0 and are updated as the vlc codes are decoded. Table 17 lists the VLC table numbers to be used. To get a VLC table number, idx is used to select a row and nonzero_pos_vlc_idx[idx] indicates individual the element on the row. If nonzero_pos_vlc_idx[idx] is bigger than 16, the last element on the selected row is used.

Table 17 VLC table numbers for last non-zero coefficient

	idx
	VLC table numbers (0,1,…,16)

	0
	10,10,10,10, 2,2,2,7,9,9,9,9,9,4,4,4,4

	1
	10,10,10,10,10,2,9,9,9,9,9,9,9,4,4,4,4

	2
	2, 2, 2, 2, 2,7,7,7,7,7,7,7,7,7,4,4,4

	3
	2, 2, 2, 2, 7,7,7,7,7,7,7,7,7,7,7,7,4

	4
	2, 2, 2, 2, 7,7,7,7,7,7,7,7,7,7,7,7,4

	5
	10, 1, 2, 2, 2,2,7,7,7,7,9,9,9,4,4,4,4

	6
	10,10, 2, 2, 7,7,7,7,7,7,7,7,4,4,4,4,4

	7
	10,10, 2, 2, 7,7,7,7,7,7,7,7,4,4,4,4,4

	8
	2, 2, 2, 2, 7,7,7,7,7,7,7,7,7,7,7,7,4

	9
	2, 2, 2, 2, 7,7,7,7,7,7,7,7,7,7,7,7,4

After VLC table number and the decoded last_pos_table_idx are known, nonzero_pos_vlc_idx[idx] is updated according to the following:

If (nonzero_pos_vlc_idx[idx] < last_pos_table_idx)

nonzero_pos_vlc_idx[idx] = nonzero_pos_vlc_idx[idx] + 1

else if (nonzero_pos_vlc_idx[idx] > last_pos_table_idx)

nonzero_pos_vlc_idx[idx] = nonzero_pos_vlc_idx[idx] - 1
3.6.1.3 Magnitude and sign of the last nonzero transform coefficient
If last_nonzero_pos_levelID indicates that |level| of last nonzero transform coefficient is larger than 1 (levelId=1), its magnitude is decoded with the last_nonzero_level_magnitude_minus2 syntax element using VLC0 into cn. The magnitude of the last nonzero transform coefficient is given as cn+2.
If last_nonzero_pos_levelID indicates that |level| of last nonzero transform coefficient is larger than 1, level-mode is used to decode the remaining coefficients as specified in Section 3.6.1.5. Otherwise, continue in run-mode to decode the remaining coefficients as specified in Section 3.6.1.4.
The sign of the last nonzero coefficient is indicated with 1 bit syntax element sign, (0) positive (1) negative.

3.6.1.4 Run-Mode Coding
In this mode, the number of zero coefficients is signalled starting from the previous nonzero coefficient. The syntax element isLevelOne_run describes the number of zero coefficients between the current nonzero coefficient and the next non-zero coefficient in the inverse scan order and levelID which indicates whether |level| of that coefficient is 1 or >1. Given that the run to the next non-zero coefficient is run and current nonzero coefficient is in position k, run can be in the range 0-k. isLevelOne_run is decoded with different VLC tables depending on the value of k, as indicated in Table 18.
Table 18 VLC Tables used for decoding isLevelOne_run
	VLC Table Number
	k-1

	8
	0

	0
	1

	0
	2

	5
	2< k <=9

	6
	9< k <=27

	7
	k>27

Note that the table describes the mapping from {k,level,run} to codeNumber. The decoding process involves applying table to perform the ‘inverse process’ from {k,codeNumber} to {levelID, run}, where codeNumber is determined using the appropriate VLC table according to Table 19.
Table 19 Mapping from k, level, and run into codeNumber
	
	
	CodeNumber

	k-1
	|level|
	run = 0,…

	0
	1
	1,0

	
	>1
	2

	1
	1
	2,1,0

	
	>1
	4,3

	2

	1
	1,3,2,0

	
	>1
	4,6,5

	3
	1
	2,1,3,4,0

	
	>1
	6,5,7,8

	4
	1
	1,5,3,2,4,0

	
	>1
	6,10,8,7,9

	5
	1
	1,2,6,5,3,4,0

	
	>1
	7,8,11,10,9,12

	6
	1
	2,1,3,5,4,7,6,0

	
	>1
	9,8,10,12,11,13,14

	7
	1
	1,5,4,2,3,6,8,7,0

	
	>1
	9,13,12,10,11,14,15,16

	8
	1
	1,3,8,7,5,2,4,9,6,0

	
	>1
	10,12,16,15,14,11,13,18,17

	9
	1
	1,2,5,10,9,7,3,4,11,6,0

	
	>1
	8,12,15,17,18,16,13,14,20,19

	10
	1
	2,1,3,4,7,8,5,6,9,11,10,0

	
	>1
	13,12,14,15,17,18,16,19,20,22,21

	11
	1
	1,4,3,2,5,7,6,8,10,11,12,9,0

	
	>1
	13,17,15,14,16,19,18,20,22,23,24,21

	12
	1
	1,2,6,7,5,3,4,8,9,13,11,12,10,0

	
	>1
	14,16,18,21,19,15,17,20,22,26,23,24,25

	13
	1
	1,2,4,8,9,7,6,3,5,12,14,13,11,10,0

	
	>1
	15,16,19,21,23,22,20,17,18,26,28,27,24,25

	14
	1
	1,2,3,5,9,10,8,7,4,6,13,16,15,14,12,0

	
	>1
	11,17,18,20,22,24,23,26,19,21,27,30,29,25,28

	15
	1
	1,2,3,4,5,8,10,7,6,9,11,13,18,15,16,12,0

	
	>1
	14,17,19,20,21,23,25,24,22,26,27,29,31,28,32,30

	16
	1
	1,3,4,2,5,6,10,9,7,8,11,12,13,16,17,18,14,0

	
	>1
	15,19,22,20,21,24,26,25,23,27,32,29,28,30,33,34,31

	17
	1
	1,2,4,7,6,3,5,8,9,10,11,18,15,13,14,17,19,12,0

	
	>1
	16,21,24,25,26,20,22,27,23,28,30,35,31,29,34,33,36,32

	18
	1
	1,2,5,7,9,10,6,3,4,8,11,17,20,18,15,13,14,19,12,0

	
	>1
	16,21,24,25,29,28,27,23,22,26,31,36,34,37,33,32,30,38,35

	19
	1
	1,3,5,7,9,14,12,8,6,2,4,15,18,21,20,16,10,11,22,13,0

	
	>1
	17,23,25,27,29,31,33,30,26,19,24,35,37,39,40,36,32,28,38,34

	20
	1
	0,2,4,7,10,9,16,15,14,8,3,5,17,19,22,20,18,11,13,21,12

	
	>1
	6,23,25,29,27,31,30,34,38,32,24,26,36,82,39,37,83,28,33,84,35

	21
	1
	2,1,3,4,5,8,9,11,13,10,6,7,12,14,21,24,23,18,15,19,22,16,0

	
	>1
	20,17,25,26,27,28,31,34,35,30,29,32,33,36,37,43,44,38,39,40,41,42

	22
	1
	1,5,4,2,3,6,8,7,11,12,9,10,13,14,15,18,22,21,17,19,20,25,16,0

	
	>1
	26,28,27,23,24,29,31,32,38,34,30,33,35,37,36,43,44,40,41,85,42,86,39

	23
	1
	1,4,8,6,5,2,3,7,9,12,10,11,13,16,15,14,18,20,21,19,23,22,25,17,0

	
	>1
	24,28,33,29,31,26,27,34,35,36,32,30,37,40,38,42,45,47,39,43,46,41,87,44

	24
	1
	0,3,7,12,10,6,5,2,4,8,9,11,13,17,24,21,16,15,19,20,22,25,26,23,18,1

	
	>1
	14,28,34,36,33,35,31,27,30,29,32,37,40,46,38,44,39,47,48,49,45,41,42,50,43

	25
	1
	0,2,5,9,13,11,10,8,6,3,4,7,12,15,19,26,23,20,16,14,18,22,27,24,25,21,1

	
	>1
	17,28,31,36,35,39,37,34,33,30,29,32,38,43,86,87,45,46,44,41,40,88,48,89,47,42

	26
	1
	1,2,4,7,11,15,12,9,10,8,5,3,6,14,16,23,24,25,21,20,13,19,27,28,26,22,17,0

	
	>1
	18,29,31,33,39,36,35,38,41,40,34,30,32,43,48,53,90,49,42,50,37,44,51,47,52,45,46

	27
	1
	0,2,3,5,7,11,15,14,12,10,13,8,4,9,17,19,22,24,26,21,23,16,20,29,30,28,25,18,1

	
	>1
	6,27,31,33,34,38,39,37,40,42,41,35,32,36,44,45,87,48,88,49,46,89,43,47,90,50,51,91

	>=28

	1
	0,1,2,3,4,5,7,9,10,13,8,12,11,6,14,15,18,20,24,31,32,30,28,26,22,25,33,37,38,17,19,21,23,29,36,34,45,40, 43,42,44,39,35,46,48,53,54,51,61,62,67,66,68,65,73,74,71,69,86,82,90,88,98,94

	
	>1
	16,27,41,47,50,57,58,60,59,55,52,63,56,49,64,70,72,77,76,80,84,81,79,78,75,83,85,87,91,95,92,104,89,93,96,99,100,102,101,97,105,103,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126

Notice that the situation run = k means that all remaining coefficients are zero and there is no need to signal whether |level| = 1 or |level| > 1.
The sign of the next non-zero coefficient is indicated with 1 bit syntax element sign, (0) positive (1) negative. If |level| is larger than 1, the magnitude of the coefficient is decoded with the last_nonzero_level_magnitude_minus2 syntax element using VLC0 into cn. The magnitude of the last nonzero transform coefficient is given as cn+2.

If |level| is larger than 1 for a coefficient, the remaining coefficients are signalled in Level-Mode instead of Run-Mode. The Run-Mode coding is stopped when all transform coefficients have been defined.

3.6.1.5 Level-Mode Coding
The remaining coefficients of the 4x4 or 8x8 block which are not decoded in Run-Mode are decoded in Level-Mode. The procedure to switch from Run-Mode to Level-Mode can be described as follows
Switching from run-mode to level-mode is decided based on magnitudes of the coefficients that are decoded. Last non-zero coefficient is not considered is the decision.

· If the block is coded as 4x4 or coded as luma intra, mode is switched after a coefficient having magnitude bigger than 1 is decoded.

· Otherwise, if the block is not coded as 4x4 and not as luma intra, a cumulative variable sumBigCoef is initialized to 0 and coefficient magnitudes bigger than 1 are added to it as they are decoded. Mode is switched if sumBigCoef is bigger than 2 or the position of coefficient with magnitude bigger than 1 is bigger than 49 in inverse scan order (0 being the first position in inverse scan order).

The value of |level| is decoded using VLCx, where x is 0 for the first coefficient that is being decoded in Level-Mode. After level-Mode decoding of each coefficient, if |level| > vlc_level_table[x] then the VLC table index, x, is incremented by one. The values of vlc_level_table[x] is given in Table 20.

Table 20 VLC Table Index for Decoding Level

	x
	vlc_level_table[x]

	0
	4

	1
	6

	2
	14

	3
	28

	4
	∞

3.6.1.5.1 Coding Intra-DC Separately

If none of the neighboring pixels are available for prediction for an intra block, the transmitIntraDC variable is set to 1 and that block is treated differently. The quantized DC coefficient of the residual block is signaled separately, using syntax elements side_intra_dc_y, side_intra_dc_y_sign for luminance and side_intra_dc_u, side_intra_dc_u_sign, side_intra_dc_v, side_intra_dc_v_sign for chrominance respectively.
3.6.1.6 VLC Tables
Table 21 VLC Tables

	VLC0
	VLC1
	VLC2
	VLC3
	VLC4
	VLC5
	VLC6
	VLC7
	VLC8
	VLC9
	VLC10

	1
	1x
	1xx
	1xxx
	1xxxx
	1x
	1xx
	1xxx
	1
	100
	1

	01
	01x
	01xx
	01xxx
	01xxxx
	01x
	01xx
	01xxx
	01
	1010
	01x

	001
	001x
	001xx
	001xxx
	001xxxx
	001x
	001xx
	001xxx
	00
	1011
	001xx

	0001
	0001x
	0001xx
	0001xxx
	0001xxxx
	..
	..
	..
	
	11xxx
	0001xxx

	00001
	00001x
	00001xx
	00001xxx
	00001xxxx
	
	
	
	
	01xxxx
	..

	0000001
	0000001x
	0000001xx
	0000001xxx
	0000001xxxx
	
	
	
	
	001xxxx
	

	00000001
	00000001x
	00000001xx
	00000001xxx
	00000001xxxx
	
	
	
	
	..
	

	000000001x
	000000001xx
	000000001xxx
	000000001xxxx
	000000001xxxxx
	
	
	
	
	
	

	0000000001xx
	0000000001xxx
	0000000001xxxx
	0000000001xxxxx
	0000000001xxxxxx
	
	
	
	
	
	

	..
	..
	..
	..
	..
	
	
	
	
	
	

The tables list the codes for code number 0,1,2,3..etc. However, for a more compact description most of the entries in the table ends with a number of “x” -es. As an example 1xx in VLC2 represents 4 codes with code numbers 0-3:

100

101

110

111

Generally the code numbers increase in the same way as the natural number representation of the codes increase. The symbol “..” in the tables indicate that the tables continue in the obvious way.
4 Patent rights declaration(s)

Tandberg Telecom may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
Nokia Corporation may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

LM Ericsson may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

INTER_8x8

INTER_8x16

INTER_16x8

INTER_16x16

B

 LMB32

 LMB32

 LMB32

 LMB32

 LMB32

 LMB32

 LMB64

B

q00 q10 q20 q30

q01 q11 q21 q31

q02 q12 q22 q32

q03 q13 q23 q33 B

q04 q14 q24 q34

q05 q15 q25 q35

q06 q16 q26 q36

q07 q17 q27 q37

P

P

mvc

mvb

mva

mvc

mvb

mva

mvc

mvb

mva

mvc

mvb

mva

HQR- P

P

P

P

I

(b)

num_B_level = 3, num_B_pictures = 7

P

refB

refA

Figure � SEQ Figure * ARABIC �3� Denotation of motion vectors of a macroblock

HQR- P

(a)

HQR Period = 4

P

B

 p30 p20 p10 p00

 p31 p21 p11 p01

 p32 p22 p12 p02

A p33 p23 p13 p03

 P34 p24 p14 p04

 P35 p25 p15 p05

 P36 p26 p16 p06

 P37 p27 p17 p07

refC

A

B

C

B

B

B

B

I

PAGE
1

_1330337801.unknown

_1330337839.unknown

_1330337859.unknown

_1330337943.unknown

_1331382959.vsd
MVA

MVB

MVC

MVD

_1330337942.unknown

_1330337846.unknown

_1330337816.unknown

_1330337832.unknown

_1330337809.unknown

_1330337763.unknown

_1330337781.unknown

_1330337759.unknown

_1248806850.vsd
V0

V2

U2

U3

U7

V7

V13

V3

V6

U8

U13

U4

V5

V9

U11

U17

U18

U6

U9

U0

U1

V1

V4

U5

U10

V10

V17

V11

V16

V18

U24

V8

U12

U16

U19

V23

V24

V12

V15

V19

U23

U25

V28

U15

U20

V22

V25

U28

U29

V14

V20

U14

U21

V21

V26

U22

U26

U27

U30

V27

V29

V30

V31

U31

U1

U5

U4

U6

U14

U15

U27

U7

U13

U16

U26

U8

U11

U19

U22

0

0

U12

U18

U0

U2

U3

U9

U10

U20

U21

0

U23

0

0

0

U17

U24

0

0

0

0

U25

U31

0

0

0

0

U30

0

0

0

0

0

U29

0

U28

0

0

0

0

0

0

0

0

0

0

0

0

V1

V5

V4

V6

V14

V15

V27

V7

V13

V16

V26

V8

V11

V19

V22

0

0

V12

V18

V0

V2

V3

V9

V10

V20

V21

0

V23

0

0

0

V17

V24

0

0

0

0

V25

V31

0

0

0

0

V30

0

0

0

0

0

V29

0

V28

0

0

0

0

0

0

0

0

0

0

0

0

