

JCTVC-A117 Description of video coding technology proposal by TOSHIBA

Takeshi Chujoh Akiyuki Tanizawa Tomoo Yamakage

TOSHIBA CORPORATION April 18, 2010

Summary

Submission method

- Several tools are added to H.264/AVC
 - QALF (Quadtree-based Adaptive Loop Filter)
 - HAIF (High Accuracy Interpolation Filter)
 - IBDI (Internal Bit Depth Increase)
 - SAQMS (Subjectively Adaptive Quantization Matrix Selection)
 - BIP (Bidirectional Intra Prediction)
 - DUT (Directional Unified Transform)
 - STDS (Spatio-Temporal Direct Selection)
 - Others

JCTVC-A117

Results

- On average, 28.66% (alpha), 25.88% (beta), 42.36% (gamma)
- Results of (Y, Cb, Cr) are balanced.

QALF

Quadtree-based Adaptive Loop Filter (VCEG-AK22)

Loop filter based on Wiener filter

Variable size block-based filter on-off approach

Circular sharp filters

HAIF

High Accuracy Interpolation Filter

- QALF has already reduced noise.
- 8-tap filter for ¼-pel resolution
 - 1/4 pixel position: {-3, 12, -37, 229, 71, -21, 6,-1} // 256
 - 1/2 pixel position: {-3, 12, -39, 158, 158, -39, 12, -3} // 256
- QALF + HAIF produce a synergistic effect

IBDI

Internal Bit Depth Increase (VCEG-AE13)

High Accuracy Internal processing

- Internal arithmetic error is decreased.
 - Interpolation filter, Debloking filter, Weighted prediction, et al.

Decoded Picture Compression in DPB (VCEG-AF07)

- Introduction of MB based adaptive rounding
- Memory bandwidth of DPB is kept 8-bit.

SAQMS

Subjectively Adaptive Quantization Matrix Selection

Multiple kinds of Quantization Matrix is selected MB by MB subjectively.

BIP

Bidirectional Intra Prediction (VCEG-AG18)

- Bidirectional spatial prediction
 - Weighted average of two kinds of unidirectional prediction

- Changing sub-block coding order in macroblock
 - Select sub-block coding order MB-by-MB
 - Raster order or Reverse order
 - Reverse order
 - Intra_8x8 : "D \rightarrow B \rightarrow C \rightarrow A"
 - Intra_4x4 : "D \rightarrow B \rightarrow C \rightarrow A \rightarrow D \rightarrow ..."

(b) Sub-block size = 4x4

DUT

Directional Unified Transform (Intra)

- 4/8/16-point Directional Unified Transform
- Fixed Alternative Scan

STDS

Spatio-Temporal Direct Selection

Spatial reference block and temporal reference block are selected adaptively

Other

M3C (Multiple Macroblock based Motion Compensation)

- Additional MC block size
 - 64x64, 64x32, 32x64, 32x32, 32x16, 16x32

Additional Transform size

- 16x16, 16x8, 8x16 DCT

Overview

JCTVC-A117

Results

- The encoder configurations are as follows:
 - Most of conditions based on alpha and beta anchor
 - Addition to one long-term reference for P-slice
- All results of bitrate are less than -3 % of targets.
- Bitrate saving (ΔBitrate) are calculated based on BD-SNR (VCEG-M33) using BJM add-in supplied in VCEG-AE07.
- "high" means the higher 4 bitrate points and "low" means the lower 4 bitrate points.

Constraint set 1 (Alpha anchor)

Constraint set 2 (Beta anchor)

Constraint set 2 (Gamma anchor)

Software and Complexity analysis

Software

Proprietary C++ software (Microsoft Visual Studio 2005)

Decoder complexity is a few times higher relative to H.264/AVC

- Filtering process: QALF and HAIF
- Transform: Large size transforms and UDT

Encoder complexity is several times higher relative to H.264/AVC

- ME: M3C, HAIF
- Mode decision: BIP, M3C, and large size transform
- Filter design: QALF

JCTVC-A117

Conclusion

- Toshiba's submission method for CfP in JCT-VC is reported
- ABitrate of (high, low) and (Y, Cb, Cr) are balanced
- Useful tools for core experiments and test model
 - QALF (Quadtree-based Adaptive Loop Filter)
 - HAIF (High Accuracy Interpolation Filter)
 - IBDI (Internal Bit Depth Increase)
 - SAQMS (Subjectively Adaptive Quantization Matrix Selection)
 - BIP (Bidirectional Intra Prediction)

JCTVC-A117

- DUT (Directional Unified Transform)
- STDS (Spatio-Temporal Direct Selection)

TOSHIBA

Leading Innovation >>>>