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Abstract

The technical detail of FUJITSU’s proposal for CfP on HVC (High-performance Video Coding) is described in this document.

The proposed technique improves coding efficiency of the sign of a quantized DCT coefficient in CABAC entropy coding mode.

Current MPEG-4 AVC/H.264 encodes a sign by bypass process of CABAC, and therefore does not fully utilize the merit of CABAC coding.

The proposed technique estimates the signs of a block from pixels in neighboring blocks and encodes the difference (0: same, 1: not same) between estimated signs and true signs by CABAC. If the signs are well estimated, the difference tends to be '0', and the coding efficiency can be improved by CABAC.

This proposed technique is implemented onto JM version 16.2. 

Overall improvement for alpha anchor is 0.04 dB in BD-PSNR and -1.0 % in BD-Bitrate. Overall improvement for beta anchor is 0.03 dB in BD-PSNR and -0.75 % in BD-Bitrate. 
Increment of processing complexity compared with JM is 8% for encoder and 5% for decoder in average. Increment of memory usage is negligible.
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1 Introduction

In response to the CfP on HVC issued at 91st MPEG meeting in Kyoto, we propose a technology which improves coding efficiency of MPEG-4 AVC/H.264.
2 Algorithm description

The proposed technique improves coding efficiency of the sign of a quantized DCT coefficient in CABAC entropy coding mode. 

Current MPEG-4 AVC/H.264 encodes a sign using bypass process of CABAC, and therefore does not fully utilize the merit of CABAC coding.

The proposed technique estimates the signs of a block from pixels in neighboring blocks and encodes the difference (0: same, 1: not same) between estimated signs and true signs using CABAC. When the signs are well estimated, the difference tends to be '0', and the coding efficiency can be improved by CABAC.
Other coding techniques such as motion representation or intra-frame prediction are identical to those of MPEG-4 AVC/H.264.
2.1 Entropy coding

2.1.1 Overview

2.1.1.1 Concept of sign estimation
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Figure 1 – Overview of sign estimation

Generally there is high correlation among pixels at the boundary of current block and that of neighboring blocks. The proposed technique predicts the signs of DCT coefficients of current block using this property.

When there are N non-zero coefficients in current block, the number of possible combinations of these signs is 2N. The proposed technique compares reconstructed pixels at the upper boundary and left boundary of current block using each combination of signs with pixels extrapolated from neighboring blocks. The combination of signs which minimizes the square error is defined as estimated signs.

2.1.1.2 Encoding Process

[image: image2.wmf]-

2

3

0

1

2

-

1

0

0

1

1

0

0

1

0

0

0

coeff

_

sign

_

flag

-

1

1

1

1

-

1

1

1

1

Bypass 

Encoding

Sign 

Estimation

CABAC 

Encoding

Scan order

Pixels in 

neighboring blocks

Quantized

DCT

Coefficients

Intra

/

Inter

-

predicted

Pixels

Sort

1

1

-

1

1

1

1

-

1

1

Original signs 

(

sorted

)

|

level

|

Estimated signs

1

1

-

1

-

1

1

1

0

0

0

1

0

0

XOR

Conventional method

coeff

_

sign

_

diff

3

2

-

2

1

1

1

-

1

1

Bypass 

Encoding

Proposed method

M

abs

(

Level

)

M

=

4 

(

4

x

4 

block

)

M

=

6 

(

8

x

8 

block

)

-

2

3

2

1

-

1

1

1

1

coeff

_

sign

_

flag


Figure 2 – Overview of proposed technique
The proposed technique consists of the following steps.

	1
	Sorting of coefficients
	Coefficients are sorted by their absolute value of level.

	2
	Sign estimation
	Signs of coefficients are estimated as illustrated in Figure.1

Specifically, there is the limitation of maximum number of signs to be estimated. Up to first M signs in the sorted coefficients are estimated, where M is equal to 4 for 4x4 block and 6 for 8x8 block. The reason of this limitation is that the estimation result of a sign of coefficient with small level tends to be wrong.

The fast sign estimation method is introduced in order to reduce the computational complexity.

	3
	Entropy coding
	Exclusive OR operation is performed to the first Mth signs of the sorted coefficients and their estimated values. The result, coeff_sign_diff is encoded using CABAC process.

Other signs are encoded using the bypass process of CABAC (i.e. encoding process of coeff_sign_flag).


At the current implementation, only signs of luminance coefficients in a MB of any type excluding INTRA16x16 are encoded by the proposed technique. Other signs of coefficients (i.e. signs of chrominance coefficients or signs of coefficients in INTRA16x16 MB) are encoded by the conventional method (i.e. coeff_sign_flag in MPEG-4 AVC/H.264).
2.2 Proposed Syntax
The residual block CABAC syntax is replaced with the following. The highlighted parts are modified for inclusion of the proposed technique. 

The detail of the function estimateSign(), which performs sign estimation, is described in subclause 2.4.
	residual_block_cabac( coeffLevel, startIdx, endIdx, maxNumCoeff ) {
	C
	Descriptor

	
if( “current block is luma” ) {
	
	

	

lumaFlag = 1
	
	

	

if( maxNumCoeff == 16)
	
	

	


numCoefEval = 4
	
	

	

else
	
	

	


numCoefEval = 6
	
	

	
}
	
	

	
else 
	
	

	 

lumaFlag = 0
	
	

	
numSignificantCoeff = 0
	
	

	
state = 0
	
	

	
if( maxNumCoeff  !=  64  | |  ChromaArrayType  = =  3 )
	
	

	

coded_block_flag
	3 | 4
	ae(v)

	
for( i = 0; i < maxNumCoeff; i++ )
	
	

	

coeffLevel[ i ] = 0
	
	

	
if( coded_block_flag ) {
	
	

	

numCoeff = endIdx + 1
	
	

	

i = startIdx
	
	

	

do {
	
	

	


significant_coeff_flag[ i ]
	3 | 4
	ae(v)

	


if( significant_coeff_flag[ i ] ) {
	
	

	



numSignificantCoeff ++
	
	

	



last_significant_coeff_flag[ i ]
	3 | 4
	ae(v)

	



if( last_significant_coeff_flag[ i ] ) 
	
	

	




numCoeff = i + 1
	
	

	


} 
	
	

	


i++
	
	

	

} while( i  <  numCoeff − 1 )
	
	

	

coeff_abs_level_minus1[ numCoeff − 1 ]
	3 | 4
	ae(v)

	

if(( MbPartPredMode( mb_type, 0 ) != Intra_16x16 ) 




&&  ( lumaFlag == 1 )) {
	
	

	


for( i = numCoeff − 2; i >= 0; i− − ) {
	
	

	



if( significant_coeff_flag[ i ] )
	
	

	




coeff_abs_level_minus1[ i ]
	3 | 4
	ae(v)

	


}
	
	

	


for( i = 0; i < min(numSignificantCoeff, numCoefEval ); i ++ ) {
	
	

	



coeff_sign_diff[ i ]
	3 | 4
	ae(v)

	



if( coeff_sign_diff[ i ] == 1 ) {
	
	

	




state = 1
	
	

	



}
	
	

	


}
	
	

	


for( i = min(numSignificantCoeff, numCoefEval ); 




i < numSignificantCoeff; i ++ ) {
	
	

	



coeff_sign_flag[ i ]
	3 | 4
	ae(v)

	


}
	
	

	


estimateSign( numSignificantCoeff, maxNumCoeff,  




coeff_sign_diff, coeff_sign_flag,  




coeff_abs_level_minus1, coeffLevel )
	
	

	

}
	
	

	

else {
	
	

	


coeff_sign_flag[ numCoeff – 1 ]
	3 | 4
	ae(v)

	


coeffLevel[ numCoeff − 1 ] =




( coeff_abs_level_minus1[ numCoeff − 1 ] + 1 ) *




( 1 − 2 * coeff_sign_flag[ numCoeff − 1 ] )
	
	

	


for( i = numCoeff − 2; i >= 0; i− − )
	
	

	



if( significant_coeff_flag[ i ] ) {
	
	

	




coeff_abs_level_minus1[ i ]
	3 | 4
	ae(v)

	




coeff_sign_flag[ i ]
	3 | 4
	ae(v)

	




coeffLevel[ i ] = ( coeff_abs_level_minus1[ i ] + 1 ) *










  ( 1 − 2 * coeff_sign_flag[ i ] )
	
	

	



}
	
	

	

}
	
	

	
}
	
	

	}
	
	


The order of coeff_sign_diff and coeff_sign_flag in a bitstream is identical to the order of corresponding coefficients in a sorted coefficients list (see subclause 2.3).

The design of state is based on our observation that the probability of correct estimation of signs which follow the sign whose estimation result is wrong also tends to be wrong. By separating contexts for signs with more probable estimation and signs with poor estimation, higher coding gain can be achieved.

The variable state is zero at the beginning of residual_block_cabac(), and remains zero as long as decoded value of coeff_sign_diff is equal to zero (i.e. the correct sign estimation is performed). Once decoded value of coeff_sign_diff becomes one, then the rest of coeff_sign_diff in the same block are decoded with contexts corresponding to state equals to one.
2.3 Sorting coefficients
All coefficients in a block are sorted in descending order of their absolute levels. As the result, a coefficient with highest fidelity in estimating its sign comes first in the list.

If coefficients have the same absolute level, those are sorted in descending order of their zigzag-scan order.

Figure 3 is the example of the sorting result.
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Figure 3 – Example of sorting of coefficients

2.4 Detail of estimateSign()
The process of estimateSign() in detail is described in this subclause. The true values of first M signs in the sorted coefficients list (which can be created by coeff_abs_level_minus1) are reconstructed and then signed levels of all coefficients are obtained.
Inputs to the process are:

	Name
	Meaning

	numSignificantCoeff
	Number of non-zero coefficients of the current block

	maxNumCoeff
	Number of maximum coefficients (16 for 4x4 transform, 64 for 8x8 transform)

	coeff_sign_flag
	Array of decoded syntax element coeff_sign_flag
Those values are for signs which appears after the first M signs in the sorted coefficient list.

	coeff_abs_level_minus1
	Array of decoded syntax element coeff_abs_level_minus1

	block_U
	Decoded luma pixels of the block above of the current block

	block_UL
	Decoded luma pixels of the block above-left of the current block

	block_L
	Decoded luma pixels of the block to the left of the current block

	pred
	Intra/Inter-predicted luma pixels of the current block


Outputs of the process are:

	Name
	Meaning

	coeffLevel
	Array of signed level of all coefficients


2.4.1 Prediction of pixels at block boundary
Firstly, pixel values at the boundary of current block are predicted by extrapolating from neighboring blocks. 

Figure 4 and Figure 5 show how the pixels at the boundary of the current block are extrapolated from neighboring blocks. As a result, predicted pixels q[x, 0] (x = [0, N-1]) and q[0, y] (y = [0, N-1]) are obtained.
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Figure 4 – Pixels at block boundary extrapolated from neighboring blocks
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Figure 5 – Position of pixels used for extrapolation

The detailed process for extrapolating for q[ x, 0 ] is the following. The same process is applied also for q[ 0, y ] with exchange of X axis and Y axis.

2.4.1.1 Pixels used for filtering
Pixels p[x, y] in already-decoded neighboring blocks block_L, block_UL, and block_U, whose pixel positions (relative to the left-top of the current block) are shown in the following, are used for the filtering process.

block_L:
y = [0, (N – 1)], x = [-2, -1]

block_UL:
(y, x) = (-2, -1), (-1, -2), and (-1, -1)

block_U:
y = [-2, -1], x = [0, -1]

When a neighboring block is not available (e.g. its position is outside the picture boundary), pixel values of the block are inferred as ( 1 << (bit_depth_luma_minus8 + 7) ).
2.4.1.2 Selection of filter coefficients for extrapolation
A 3x2-tap edge-adaptive spatial filter is applied to pixels p[x, y] described in Figure 5 to extrapolate the pixel values at the boundary of the current block. There are 25 types of filter coefficients. The type of filter is determined by evaluating the direction of edges at p[x, y].
Firstly, two types of 2x2 filter shown in Figure 6 are applied to p [ (x – 1), -1 ] and p [ x, -1 ] to calculate the strength of horizontal edge and vertical edge at [ (x – 1), -1 ] and [ x, -1 ]. If x is equal to (N – 1), the pixels at [ (x + 1), -1 ] and [ (x + 1), -2 ] are regarded as “not available” and their values are inferred as the pixel values at [ (N – 1), -1 ]  and  [ (N – 1), -2 ], respectively.
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Figure 6 – 2x2-tap filters for edge detection
Then the direction of the edge is calculated using the strength of horizontal edge and vertical edge at each position. The direction is categorized in 5 types.

	index
	Edge type

	0
	No edge (Edge strength is below threshold)

	1
	Horizontal

	2
	Up-right

	3
	Vertical

	4
	Down-right
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Figure 7 – 5 types of edge detection
Finally, the index of 3x2-tap filter is calculated as ( index_1 + ( 5 * index_2 ) ), where index_1 and index_2 are edge indexes at [ (x – 1), -1 ] and [ x, -1 ], respectively. The total number of filters is 25.

2.4.1.3 Extrapolation
The 3x2-tap spatial filter with the index determined at subclause 2.4.1.2 is applied to p[x, y] in Figure 5. The resulting q[ x, 0 ], predicted values of pixels at the boundary of the current block, are used for the following step.

The coefficients of twenty-five 3x2 spatial filters are listed in Annex A.  Those values are empirically obtained from varies kinds of sequences.
2.4.2 Sign Estimation
After predicting the pixel values at the boundary of current block, sign estimation process is performed.

2.4.2.1 Definition of estimated signs
The definition of estimated signs 
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	Combination of signs to be evaluated
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	Set of possible combination of signs

The size of the space is equal to 
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	Reconstructed pixels (before deblocking filter) using the combination of signs
[image: image16.wmf]s
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Reconstruction process involves inverse quantization, inverse transform, and summation with prediction value pred.

	
[image: image17.wmf]'

M


	Number of evaluated coefficients in the sign estimation process


[image: image18.wmf])

,

min(

'

cantCoeff

numSignifi

M

M

=





[image: image19.wmf]s

p

 can be decomposed into 3 terms: 


[image: image20.wmf]'

s

p

:
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pred[]: Intra/Inter-predicted luma pixels of the current block
The latter two terms are constant in the sign estimation process of a block. Therefore, the definition of SSD can be rewritten as follows.
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is also constant in the sign estimation process of a block and is calculated before performing sign estimation.
2.4.2.2 Fast sign estimation method
The estimation process which is outlined in Figure 1 and defined in subclause 2.4.2.1 iterates the operation of inverse quantization and inverse transform (
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1

M

<<

) times. To reduce the computational complexity, the following fast estimation method is used.

The fast sign estimation method utilizes the fact that the difference in SSD between two combinations of signs, Sk and S(k+1), can be calculated with 2 times of multiplication and 7 times of addition of pre-calculated values when there is exactly one sign is different among Sk and S(k+1). Instead of directly calculating SSD values of all combinations of signs, the fast sign estimation method iterates the calculation (i.e. the difference of SSD among two combinations of signs) (2M’-1) times and obtain SSD values of all combinations of signs relative to SSD value of one combination of signs.
Let x be the position of the sign (= [0, M’-1]) whose value is skx in Sk and s(k+1)x = - skx in S(k+1). The calculation is expressed as the following equation.
-skx *{(SqValH[x] * ((SqCoefH[ux] << 1) + SqValH[x]) + (SqValV[x] * ((SqCoefV[vx] << 1) + SqValV[x]) + LnVal[x]}

The definition of each variable in above equation is the following:
	Variable
	Value

	SqValH[m]
	2*A[um]*T[0, um]*Level[m]

	SqValV[m]
	2*A[vm]*T[0, vm]*Level[m]

	SqCoefH[i]
	ΣSqValH[m'], where m' satisfies (um' = i)

	SqCoefV[j]
	ΣSqValV[m'], where m' satisfies (vm' = j)

	LnVal[m]
	- Level[m]*{Σk(q"[k, -1]* T[um, k]) * T[0, um] +Σk(q"[-1, k]* T[vm, k]) * T[0, vm])}


Where

	Level[m]
	The absolute value of mth inverse-quantized coefficient

	m
	= [0, (M' - 1)]

	i, j
	= [0, (N - 1)]

	um
	Horizontal frequency of mth coefficient (0 <= um < N)

	vm
	Vertical frequency of mth coefficient (0 <= vm < N)

	A[]
	Scaling factor for restoring the orthogonal property of DCT

	T[u, v]
	N*N matrix of N-point one-dimensional inverse transform as defined in current MPEG-4 AVC/H.264 specification.


At each calculation (see the following description for detail), SqCoefH[uk] and SqCoefV[vk] are updated after calculation as follows.

SqCoefH[uk] += -skx * SqValH[k]

SqCoefV[vk] += -skx * SqValV[k]

The derivation of this calculation is described in Annex B. 
To fully utilize this feature, the order of the calculation is arranged so that SSD values of all combination of signs are obtained after performing (2M’-1) times of the calculation. The (M’)-bit Gray code is used to define such order. The main characteristic of Gray code is that only one bit changes from any one code to next code (see the example of 3-bit Gray code in Figure 8). 
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Figure 8 – Order of evaluating each signs (M'=3)
Each bit in the word of Gray code (0 or 1) is mapped into each sign in the combination of signs (plus or minus). Thus each word in (M’)-bit Gray code is mapped into each combination of signs. For example, the first word of 3-bit Gray code is (0, 0, 0) and corresponding combination of signs is (+1, +1, +1).

Let 
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The loop of calculation starts with c(0) which corresponds the difference of SSD between the combination of signs (+1, +1,...,+1, +1) (corresponding Gray code is (0, 0,...,0, 0) and the combination of signs (+1, +1,...,+1, -1) (corresponding Gray code is (0, 0,...,0, 1) and iterates the calculation (2M'-1) times. The last calculation is c(2M'-2) which corresponds the difference of SSD between the combination of signs (-1, +1,...,+1, -1) (corresponding Gray code is (1, 0,..,0, 1) and the combination of signs (-1, +1,...,+1, +1) .(corresponding Gray code is (1, 0,...0, 0).
Finally, the SSD value of each combination of signs relative to that of the combination of signs (+1,...,+1) is calculated by iterating the following calculation.
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The combination of signs which yields minimum cost 
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 is employed as the estimated signs 
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Note that the result of this method is not always equal to that of the subclause 2.4.2.1 due to the rounding process in inverse transform. But the degradation of coding gain caused by this fast method is negligible.
2.4.3 Coding of coeff_sign_diff
At the CABAC encoding process, coeff_sign_diff of ith sorted coefficient is calculated as follows:

coeff_sign_diff[i] = sign[i] ^ sE [i]

, where sign[i] is the true sign value of ith sorted coefficient.

At the CABAC decoding process, sign[i] is calculated as follows:

  sign[i] = (coeff_sign_diff[i] == 0 ? 1 : -1) * sE [i]

Then coeffLevel of ith sorted coefficient is reconstructed as follows:

coeffLevel[i] = sign[i] * coeff_abs_level_minus1[i]

Coefficients whose sorted order is larger than M are reconstructed in the same way of MPEG-4 AVC/H.264.
2.5 CABAC context
This proposal defined additional 80 contexts for encoding coeff_sign_diff.

Half of 80 contexts are used when the variable state equals to 0. The rest are for used when the variable state equals to 1.

The condition of usage of each context is as following:

	ctxIdx

Offset
	Condition

	
	Block type
	state
	| coeff_abs_level_minus1 |

	0
	Intra 4x4
	0
	0

	1
	↑
	↑
	1

	2
	↑
	↑
	2

	..
	
	
	

	9
	↑
	↑
	>= 9

	10
	Intra 4x4
	1
	0

	11
	↑
	↑
	1

	12
	↑
	↑
	2

	..
	
	
	

	19
	↑
	↑
	>= 9

	20
	Intra 8x8
	0
	0

	21
	↑
	↑
	1

	..
	
	
	

	29
	↑
	↑
	>= 9

	30
	Intra 8x8
	1
	0

	31
	↑
	↑
	1

	32
	↑
	↑
	2

	..
	
	
	

	39
	↑
	↑
	>= 9

	40
	Inter 4x4
	0
	0

	41
	↑
	↑
	1

	42
	↑
	↑
	2

	..
	
	
	

	49
	↑
	↑
	>= 9


	50
	Inter 4x4
	1
	0

	51
	↑
	↑
	1

	52
	↑
	↑
	2

	..
	
	
	

	59
	↑
	↑
	>= 9

	60
	Inter 8x8
	0
	0

	61
	↑
	↑
	1

	62
	↑
	↑
	2

	..
	
	
	

	69
	↑
	↑
	>= 9

	70
	Inter 8x8
	1
	0

	71
	↑
	↑
	1

	72
	↑
	↑
	2

	..
	
	
	

	79
	↑
	↑
	>= 9


The set of variables m and n for initializing contexts is listed in Annex C. Those values are obtained experimentally from varies kinds of MPEG-4 AVC/H.264 sequences. 
3 Compression performance discussion

3.1 Objective versus subjective compression performance

We have not performed subjective testing of the resulting sequences coded by the proposed technique yet.
3.2 Constraint set 1 configuration relative to Alpha anchor
3.2.1 Class A

BD-PSNR: 0.053, BD-Bitrate: -1.15%
3.2.2 Class B

BD-PSNR: 0.042, BD-Bitrate: -1.29%
3.2.3 Class C

BD-PSNR: 0.038, BD-Bitrate: -0.90%
3.2.4 Class D

BD-PSNR: 0.033, BD-Bitrate: -0.72%
3.2.5 Overall

BD-PSNR: 0.040, BD-Bitrate: -1.01%

Coding gain tends to increase as the image size increases.
3.3 Constraint set 2 configuration relative to Beta and Gamma anchors
We did not perform coding test to Gamma anchor because the proposed technique is only applied to CABAC entropy coding.
3.3.1 Class B

BD-PSNR: 0.033, BD-Bitrate: -0.95%
3.3.2 Class C

BD-PSNR: 0.033, BD-Bitrate: -0.81%
3.3.3 Class D

BD-PSNR: 0.028, BD-Bitrate: -0.61%
3.3.4 Class E
BD-PSNR: 0.022, BD-Bitrate: -0.55%
3.3.5 Overall

BD-PSNR: 0.030, BD-Bitrate: -0.75%

Coding gain is smaller than that of alpha anchor.
4 Complexity analysis

4.1 Encoding time and measurement methodology

As mentioned in clause 6, the proposed technique is implemented onto JM16.2. Therefore we compared the encoding time of both original JM16.2 and JM16.2 with the proposed technique at the same condition and configuration.

Roughly speaking, the encoding time of JM16.2 with the proposed technique increases in proportion to bitrate. The average ratio of the encoding time of JM16.2 with the proposed technique and that of original JM16.2 is 108% with the variance of 4.

4.2 Decoding time and measurement methodology and comparison vs. anchor bitstreams decoded by JM 17.0
Due to the time limitation, we could not implement the proposed technique onto JM17.0 decoder.

The average ratio of the decoding time of JM16.2 with the proposed technique and that of original JM16.2 is 105% with the variance of 40.
4.3 Description of computing platform used to determine encoding and decoding times reported in sections 4.1 and 4.2
Information is summarized in the following table.
	Hardware
	Xeon X5570 2.93GHz, 4GB Memory

	Use of multicore
	No

	OS
	Windows Server 2003R2 (32-bit)


4.4 Expected memory usage of encoder

The additional memory usage of the proposed technique is small (less than 0.1% of usage of original JM) because there is no necessary for having additional frame memory or huge buffers.
4.5 Expected memory usage of decode
The additional memory usage of the proposed technique is small (less than 0.1% of usage of original JM) because there is no necessary for having additional frame memory or huge buffers.
4.6 Complexity characteristics of encoder motion estimation and motion segmentation selection

No analysis related to motion estimation/segmentation is necessary because the proposed technique is only applied to CABAC entropy coding.
4.7 Complexity characteristics of decoder motion compensation

No analysis related to motion compensation is necessary because the proposed technique is only applied to CABAC entropy coding.
4.8 Complexity characteristics of encoder intra-frame prediction type selection

No analysis related to intra-frame prediction is necessary because the proposed technique is only applied to CABAC entropy coding.
4.9 Complexity characteristics of decoder intra-frame prediction operation

Same as described in subclause 4.8.
4.10 Complexity characteristics of encoder transforms and transform type selection

No analysis related to transform is necessary because the proposed technique is only applied to CABAC entropy coding.
4.11 Complexity characteristics of decoder inverse transform operation

Same as described in subclause 4.10.
4.12 Complexity characteristics of encoder quantization and quantization type selection

No analysis related to quantization is necessary because the proposed technique is only applied to CABAC entropy coding.
4.13 Complexity characteristics of decoder inverse quantization

Same as described in subclause 4.12.
4.14 Complexity characteristics of encoder in-loop filtering type selection
No analysis related to in-loop filter is necessary because the proposed technique is only applied to CABAC entropy coding.
4.15 Complexity characteristics of decoder in-loop filtering operation

Same as described in subclause 4.14.
4.16 Complexity characteristics of encoder entropy coding type selection

The additional computation for entropy coding with proposed technique is the sign estimation described in subclause 2.4. The most of the computational complexity comes from the (1 << M’) time’s iteration of sign evaluation. But using the fast sign estimation method described in subclause in 0, each of sign evaluation is performed with 7-times of add-operation and 2-times of multiplex-operation.

4.17 Complexity characteristics of decoder entropy decoding operation

The same discussion of subclause 4.16 can be applied to this subclause.
4.18 Degree of capability for encoder parallel processing

The degree of capability for parallel processing of the proposed technique is equal to that of CABAC processing of MPEG-4 AVC/H.264. The merit of parallel processing for sign estimation is small because of the fast estimation method.
4.19 Degree of capability for decoder parallel processing

The same discussion of subclause 4.18 can be applied to this subclause.
5 Algorithmic characteristics

5.1 Random access characteristics

The proposed technique can be applied to any type of random access.
5.2 Delay characteristics

The proposed technique can be applied to any type of coding delay.
6 Software implementation description

The proposed technique is implemented onto JM16.2.
7 Highlighted aspects discussion

None.
8 Closing remarks

The proposed technique improves the coding efficiency of the signs of DCT coefficients with slight increase of computational complexity, and can co-exist with other tools without sacrificing their performance.
9 Patent rights declaration(s)
FUJITSU LIMITED may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
Annex A: Coefficients of 3x2 spatial filter

int coef_filter[25][6] = {

   //  C0    C1    C2    C3    C4    C5

    { 140,   84,  137,  -31,  -71,   -3},

    { 118,  -56,  271,  -17, -216,  156},

    {  44,  243,  172,  -15,  -41, -147},
    {  13,  235,  101,   -5,  -34,  -54},

    { 151,   91,   -1,  -23,   18,   20},

    { 230,  -45,  184,  147, -232,  -28},

    { 126,   13,  148,   19,  -66,   16},

    {  57,  101,  182,   29,  -20,  -93},

    { 124,  118,  114,   75, -127,  -48},

    { 197,   44,   27,   46,  -84,   26},

    {  -8,  104,  169,   36,  -36,   -9},

    { -10,   63,  208,   41,  -88,   42},

    { -13,  154,  169,   28,  -13,  -69},

    { -30,  222,  126,   27,  -28,  -61},

    {  35,  151,   24,   15,   13,   18},

    {  83,  217,   38,  -41,  -54,   13},

    {  93,  150,  134,  -48, -156,   83},

    {  55,  226,   96,  -14,  -80,  -27},

    {  60,  328,   64,  -27, -141,  -28},

    { 129,  218,  -25,  -61,  -33,   28},

    { 157,  238,   35, -122,  -61,    9},

    { 156,  124,   49,  -74,  -30,   31},

    { 102,  151,  109,  -35,  -24,  -47},

    {  94,  209,   55,  -20,  -72,  -10},

    { 170,  145,   -7,  -62,  -19,   29},

};

Annex B: Deviation of the fast sign estimation algorithm
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Equation B-2 can be rewritten as follows.
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Where
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Each term in Equation B-3 can be expanded according to the orthogonal property of 
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Where
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Where 
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Finally, Equation B-6 can be rewritten as follows.
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The correspondence of variables between in subclause 0 and in Equation B-7 is the following.

	Variables in subclause 2.4.2
	Variables in Equation B-7

	SqValH[m]
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	SqCoefH[i]
	
[image: image88.wmf](

)

å

Î

w

u

w

w

V

v

v

v

u

v

u

t

c

s

0

2



	SqCoefV[j]
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	LnVal[m]
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Annex C: Values of m and n for additional 80 contexts

Note: Value of cabac_init_idc does not affect the values of m and n of each ctxIdxOffset at current implementation.
	ctxIdx
Offset
	
	ctxIdx
Offset
	Value of cabac_init_idc

	
	
	
	0
	1
	2

	
	m
	n
	
	m
	n
	m
	n
	m
	n

	0
	0
	54
	40
	-6
	68
	-6
	68
	-6
	68

	1
	4
	42
	41
	-7
	64
	-7
	64
	-7
	64

	2
	6
	33
	42
	-8
	60
	-8
	60
	-8
	60

	3
	5
	35
	43
	-13
	64
	-13
	64
	-13
	64

	4
	6
	30
	44
	-15
	64
	-15
	64
	-15
	64

	5
	7
	27
	45
	-21
	70
	-21
	70
	-21
	70

	6
	4
	30
	46
	-18
	60
	-18
	60
	-18
	60

	7
	-4
	45
	47
	-14
	50
	-14
	50
	-14
	50

	8
	8
	20
	48
	-28
	73
	-28
	73
	-28
	73

	9
	8
	15
	49
	-5
	23
	-5
	23
	-5
	23

	10
	7
	51
	50
	3
	57
	3
	57
	3
	57

	11
	12
	44
	51
	9
	47
	9
	47
	9
	47

	12
	16
	37
	52
	12
	42
	12
	42
	12
	42

	13
	12
	46
	53
	8
	50
	8
	50
	8
	50

	14
	10
	51
	54
	-1
	68
	-1
	68
	-1
	68

	15
	3
	65
	55
	-1
	68
	-1
	68
	-1
	68

	16
	-2
	74
	56
	-4
	72
	-4
	72
	-4
	72

	17
	8
	57
	57
	-11
	87
	-11
	87
	-11
	87

	18
	-11
	92
	58
	-43
	-122
	-43
	-122
	-43
	-122

	19
	4
	63
	59
	-12
	81
	-12
	81
	-12
	81

	20
	0
	53
	60
	-4
	63
	-4
	63
	-4
	63

	21
	4
	39
	61
	-4
	57
	-4
	57
	-4
	57

	22
	6
	30
	62
	-4
	48
	-4
	48
	-4
	48

	23
	9
	22
	63
	-3
	41
	-3
	41
	-3
	41

	24
	10
	18
	64
	-5
	40
	-5
	40
	-5
	40

	25
	8
	19
	65
	-2
	29
	-2
	29
	-2
	29

	26
	8
	18
	66
	-1
	23
	-1
	23
	-1
	23

	27
	12
	8
	67
	-6
	28
	-6
	28
	-6
	28

	28
	7
	15
	68
	1
	10
	1
	10
	1
	10

	29
	10
	7
	69
	0
	8
	0
	8
	0
	8

	30
	4
	55
	70
	2
	58
	2
	58
	2
	58

	31
	10
	44
	71
	9
	45
	9
	45
	9
	45

	32
	19
	29
	72
	18
	29
	18
	29
	18
	29

	33
	20
	30
	73
	15
	35
	15
	35
	15
	35

	34
	13
	45
	74
	12
	42
	12
	42
	12
	42

	35
	18
	35
	75
	12
	44
	12
	44
	12
	44

	36
	16
	41
	76
	14
	40
	14
	40
	14
	40

	37
	18
	36
	77
	10
	48
	10
	48
	10
	48

	30
	23
	31
	78
	0
	69
	0
	69
	0
	69

	39
	8
	57
	79
	-12
	90
	-12
	90
	-12
	90
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