	[image: image57.wmf]b

w

a

w

p

x

x

ceil

w

x

floor

x

w

b

a

b

a

´

+

´

=

-

=

-

=

d

d

d

d

)

(

)

(

[image: image58.emf]Select 1 of 10 8x2 predictors

Select 1 of 10 2x8 predictors

Select 1 of 11 4x4 predictors

4x

4x

4x

Select 1 of 11 8x8 predictors

Select 1 of 11 16x16 predictors

Select 8x8, 4x4,

2x8 or 8x2

SIP type

4x

Select 16x16 or

4x NxM

SIP type

[image: image59.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
1st Meeting: Dresden, DE, 15-23 April, 2010
	Document: JCTVC-A114

	Title:
	Description of video coding technology proposal by France Telecom, NTT, NTT DOCOMO, Panasonic and Technicolor

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	I. Amonou, N. Cammas, G. Clare, J. Jung,
L. Noblet, S. Pateux#
S. Matsuo, S. Takamura^
C.S. Boon, F. Bossen, A. Fujibayashi,
S. Kanumuri, Y. Suzuki, J. Takiue, T.K. Tan§
V. Drugeon, C.S. Lim, M. Narroschke,
T. Nishi, H. Sasai, Y. Shibahara,
K. Uchibayashi, T. Wedi, S. Wittmannǂ
P. Bordes, C. Gomila, P. Guillotel, L. Guo,
E. François, X. Lu, J. Sole, J. Vieron, Q. Xu, P. Yin, Y. Zheng@
	Email:
	
joelb.jung@orange-ftgroup.com

ttk@pacific.net.sg

steffen.wittmann@eu.panasonic.com

edouard.francois@technicolor.com

	Source:
	#France Telecom S.A., ^NTT Corp., §NTT DOCOMO, Inc., ǂPanasonic Corp., and @Technicolor S.A.

Abstract
This response to the joint call for proposal for video coding technology (JCfP) was jointly developed by France Telecom S.A., NTT Corp, NTT DOCOMO, Inc., Panasonic Corp., Technicolor S.A. and their affiliated companies. It is a complete solution comprising an encoder, a decoder, and relevant documentation. A blank-sheet approach was taken to design the algorithm and implement it in software. It is thus not an extension of the AVC
 standard, and uses neither the JM nor the KTA software.

This proposal offers clear benefits in terms of subjective video quality: better quality is observed for both constraint sets and all target bit rates, when compared to the provided anchors. Distortion is reduced, pictures are sharper, chroma reproduction is enhanced, and motion consistency artifacts are significantly reduced.

Objective quality (BD-rate) improvements are equally significant. For constraint set 1, average BD-rate improvements of 31.6% (Y component), 29.2% (U component), and 30.0% (V component) with respect to the Alpha anchor were recorded. For constraint set 2, the improvements are 30.4% (Y), 10.6% (U), and 10.9% (V) with respect to the Beta anchor, and 47.4% (Y), 34.1% (U), and 35.1% (V) with respect to the Gamma anchor.
This proposal performs equally well for all the sequence classes, target bitrates, and constraint sets, confirming that it is robust, adaptable, and not tuned to specific conditions, sequences, or resolutions. The algorithm was also designed with parallelism in mind, and both single- and multi-threaded decoding are supported by our software.
Significant coding efficiency improvements are paramount to the success of a new video coding standard. However attention has also been given to the complexity increase that is required to achieve such improvements. While our decoder is currently several times slower than the JM, this does not reflect the large potential for parallelism. Additionally, complexity is highly scalable as several tools may operate in lower-complexity modes.
Contents
1Abstract

2Contents

41
Introduction

62
Algorithm description

62.1
Motion representation

62.1.1
Reference buffer

62.1.2
Reference lists

62.1.3
MC block sizes

62.1.4
MV resolution

62.1.5
Luma interpolation

62.1.6
Chroma interpolation

62.1.7
Motion sharing

62.1.8
Motion vector competition

72.2
Intensity compensation

72.3
Intra-block prediction

72.3.1
SIP types

72.3.2
Luma and chroma prediction modes

72.3.3
Low pass filtering

72.4
Spatial transforms

72.4.1
Transform sizes

82.4.2
Transform selection

82.4.3
Transform basis

82.5
Quantization

82.6
Entropy coding / decoding

82.6.1
Zero tree coding

102.6.2
Arithmetic coding

112.6.3
Superblock re-synchronization / multi-threaded decoding

112.7
Internal precision

112.8
In-loop filtering

122.8.1
Non-linear Denoising Filter

122.8.2
Frame-adaptive denoising filter

122.8.3
Deblocking

122.9
Summary of prediction modes, partitions and transform sizes

132.10
Summary of sample prediction for intra prediction

143
Compression performance discussion

143.1
Objective versus subjective compression performance

143.2
Constraint set 1 configuration relative to Alpha anchor

153.3
Constraint set 2 configuration relative to Beta and Gamma anchors

163.4
Summary

174
Complexity analysis

174.1
Encoding time and measurement methodology

174.1.1
Measurement methodology

174.1.2
Encoding Time

194.2
Decoding time and measurement methodology

194.2.1
Measurement methodology

194.2.2
Decoding Time

214.3
Expected memory usage of encoder

214.4
Expected memory usage of decoder

224.5
Frame multi-pass encoding

224.6
Complexity characteristics of encoder motion estimation and motion segmentation selection

224.6.1
Motion Estimation

224.6.2
Simplification of motion estimation stages

234.7
Complexity characteristics of decoder motion compensation

234.8
Complexity characteristics of encoder intra-frame prediction type selection

244.8.1
TMA search process

244.8.2
Edge Prediction Mode

254.9
Complexity characteristics of decoder intra-frame prediction operation

254.10
Complexity characteristics of encoder transforms and transform type selection

264.11
Complexity characteristics of decoder inverse transform operation

264.12
Complexity characteristics of encoder quantization and quantization type selection

264.12.1
Encoder’s Quantization Process

264.12.2
Rate distortion optimized quantization

264.13
Complexity characteristics of decoder inverse quantization

274.14
Complexity characteristics of encoder in-loop filtering type selection

274.14.1
Non-Linear Denoising Filter (NDF)

274.14.2
Frame adaptive denoising filter

284.14.3
Deblocking filter

284.15
Complexity characteristics of decoder in-loop filtering operation

284.15.1
Non-Linear denoising filter (NDF)

284.15.2
Frame adaptive denoising filter

284.15.3
Deblocking filter

284.16
Complexity characteristics of encoder entropy coding type selection

284.17
Complexity characteristics of decoder entropy decoding operation

294.18
Degree of capability for encoder parallel processing

294.19
Degree of capability for decoder parallel processing

315
Algorithmic characteristics

315.1
GOP structure & random access characteristics for CS1

325.2
GOP structure for CS2 & RVM measurement

325.3
Delay characteristics

335.4
Reference Pictures

336
Software implementation description

347
Highlighted aspects discussion

347.1
Uniform MC blocks with minimum partitions

357.2
Better Chroma Fidelity

357.3
Overestimation of Sequence Header bits

357.4
Once-off QP adaptation

357.5
Adding new context

368
Improvements and bug fixes

368.1
Improvement of KLT basis function

368.2
Support of intra16x16 in P/B frames

368.3
Simplification of Lagrange multipliers

378.4
Bug fixes

378.5
Revised results

378.6
Revised results for constraint set 1 configuration relative to Alpha anchor

388.7
Revised results for constraint set 2 configuration relative to Beta and Gamma anchors

408.8
Revised results for constraint set 1 configuration relative to original submission

408.9
Revised results for constraint set 2 configuration relative to original submission

418.10
Summary

429
Closing remarks

4210
References

4211
Patent rights declaration(s)

1 Introduction
The proposed codec was jointly developed by France Telecom SA, NTT Corp., NTT DOCOMO, Inc., Panasonic Corp., Technicolor S.A. and their affiliated companies. For convenience, we henceforth refer to this proposed codec as the CDCM codec.
A design principle of the proposal is to use simple and fundamental coding tools in the decoder (and normative parts of the encoder). Past coding standards and designs may have been influenced by certain limitations of tools or computational power restrictions. Some of these limitations are no longer a significant barrier and the design of coding tools can be simplified, and tools made to work together more efficiently. Attention has also been given to algorithm designs that facilitate parallelization.
For example the usage of coded-block patterns and macroblock structures were mainly influenced by the limitation of variable-length coding which could not represent a symbol with less than one bit. Thus the solution was to aggregate multiple symbols together in order to reduce the bit count. This is no longer a limitation when arithmetic coding is used, and designing a codec based on the aggregation of symbols is no longer necessary to achieve good compression. By exploiting inter-block correlations in arithmetic coding, a simple block structure with minimum partitioning can be used. These blocks are organized into superblocks to further exploit local picture statistics. This enables consistent compression gains over a large range of bitrates and resolutions.

The core modules of the encoder and the decoder, as shown by the block diagrams in Figure 1 and Figure 2, belong to a typical block-based predictive transform codec. The encoder and decoder modules are grouped into the following categories:

· Motion and Intensity Compensation

· Intra Prediction

· Transform and Quantization

· Entropy Coding / Decoding
· Internal Precision

· Loop Filter

All of these categories are further described in Section 2.

The CDCM codec offers clear benefits in terms of subjective video quality: better quality is observed for both constraint sets and all target bit rates, when compared to the provided anchors. Distortion is reduced, pictures are sharper, chroma reproduction is enhanced, and motion consistency artifacts are significantly reduced.

Objective quality (BD-rate) improvements are equally significant. For constraint set 1, average BD-rate improvements of 31.6% (Y component), 29.2% (U component), and 30.0% (V component) with respect to the Alpha anchor were recorded. For constraint set 2, the improvements are 30.4% (Y), 10.6% (U), and 10.9% (V) with respect to the Beta anchor, and 47.4% (Y), 34.1% (U), and 35.1% (V) with respect to the Gamma anchor.

Complete objective results are presented in Section 3. A complexity analysis is provided in Section 4, and other algorithmic characteristics such as random access capabilities are described in Section 5.
Section 6 describes the software implementation, which is written in C++. It has been thoroughly tested by many companies using a variety of compilers and platforms (including Linux, Windows and OS X). The software was checked with valgrind to ensure that there are no memory leaks. It is also well documented using Doxygen tags.
Section 7 highlights additional discussion items. Further improvements and bug fixes have been integrated into the software since the submission of the bitstreams. They are described in Section 8. Updated performance results are also provided in this section. Appendix 1 contains a description of additional features that are supported by the software but were not activated for the generation of the bitstreams. Appendix 2 and 3 contain the Excel sheets with the simulation results.
Finally the complete specification of the codec is available in the following annexes to this document:
· Annex A: Decoder Specification
· Annex B: Reference Encoding Model
· Annex C: User Manual

[image: image60.png]

Figure 1: Encoder Block Diagram
[image: image61.emf]MC / IC

T Q

IQ

IT

Reference

Memory

ME

Intra

Prediction

Intra/Inter

Entropy

Coding

Transform &

Quantization

Motion & Intensity

compensation

Loop

Filter

Intra

Prediction

Entropy

coding

collapsing

expanding

Internal

precision









Denoising/

Deblocking

Figure 2: Decoder Block Diagram

2 Algorithm description
A comprehensive description of the algorithm can be found in the Decoder Specification (Annex A). Further information may also be found in the Reference Encoder Model (Annex B) and the User Manual (Annex C).
2.1 Motion representation
2.1.1 Reference buffer

The reference buffer comprises 4 frame buffers.
2.1.2 Reference lists

A frame can be coded as an intra frame (I-frame) which has no reference list, a predictive frame (P-frame) which has a single list, or a bi-predictive frame (B-frame) which has two lists. Each list can have up to 4 indices that point to frames stored in the reference buffer. This mechanism is very similar to the one specified in AVC.
2.1.3 MC block sizes

Motion vectors are signaled on an 8x8 luma block basis. There is no block partitioning. The size of motion compensated blocks is thus 8x8 samples for luma and 4x4 samples for chroma. The size of these blocks may be slightly altered by the motion sharing mechanism described in section 2.1.7.
2.1.4 MV resolution

Motion-vector resolutions up to 1/8th pel are supported (1/16th pel for chroma). The resolution can be selected at the frame level. 1/4th pel and 1/8th pel resolutions were considered for the bitstream generation.
2.1.5 Luma interpolation

2.1.5.1 Fixed interpolation filter (1/4th pel)

When a motion vector refers to a fractional-pel position, the reference image has to be interpolated. For this purpose, the AVC interpolation filters with fixed coefficients are used.
2.1.5.2 Frame adaptive interpolation filter (1/4th pel)
In order to improve motion-compensated prediction, interpolation filter coefficients are adaptively switched between fixed coefficients (AVC filter) and adaptive coefficients (adaptive interpolation filter - AIF), on a frame by frame basis. Our AIF design is referred to as SAIF_HALF, and is based on a separable AIF scheme [2]. The coefficients of the separable adaptive interpolation filter are calculated analytically for each sub-pel position though minimization of the prediction error energy. In addition to filter coefficients, filter offsets are also calculated and applied in the filtering process.

2.1.5.3 Fixed interpolation filter (1/8th pel)

For 1/8th pel positions bilinear interpolation is applied to the 1/4th pel samples obtained by either the adaptive or fixed interpolation filters.
2.1.6 Chroma interpolation
The chroma interpolation process uses bilinear interpolation.
2.1.7 Motion sharing

An 8x8 motion-compensated block can have two parts with different motion. The part that is adjacent to a neighboring block to the left or above uses the motion vector and intensity compensation information associated with the neighboring block. The other part uses the motion vector and intensity compensation information associated with the current block.

2.1.8 Motion vector competition

Motion vectors are differentially coded. A competition-based scheme is used to determine a motion vector predictor. The competition relies on an initial set of predictors (typically three, with top, left, and co-located motion vectors). A subset of two predictors is selected based on the differences between these predictors. Among these two, the optimal (in the RD sense) predictor is selected and its index is sent to the decoder. Two initial sets of 3 predictors can be configured, and the encoder can switch from one to another at the frame level.
2.2 Intensity compensation

Unlike the picture-based weighted prediction design of the AVC standard, intensity compensation parameters are signaled at the block level using scale and offset parameters.
In the single-list prediction case, one scale and one offset are transmitted. For bi-prediction, two scales and one offset are transmitted. The second scale is coded differentially with respect to the first scale. The scales are applied to all components, whereas the offsets are applied only to the luma component.

2.3 Intra-block prediction

Several spatial intra prediction types (SIP types) are used. Intra prediction uses AVC-like modes with some additional modes.

2.3.1 SIP types

A SIP type determines the size of the intra prediction block as well as the size of the transform to be used. In luma intra blocks, 16x16, 8x8, 4x4, 2x8, and 8x2 SIP types may be signaled. In chroma intra blocks, 8x8 and 4x4 block sizes are implicitly inferred based on the luma SIP type.
In AVC, a 16x16 block can be coded as one 16x16 block, four 8x8 blocks, or sixteen 4x4 blocks. In CDCM, when not using the 16x16 SIP type, a SIP type is signaled for each 8x8 block within a 16x16 block. It thus allows for more flexibility than AVC.
AVC supports a single 8x8 chroma mode wherein a cascaded transform is used. In CDCM, block sizes of 4x4 and 8x8 are supported for chroma. The chroma block size is derived from the luma SIP type. If the luma SIP type is 16x16, chroma is coded as an 8x8 block. Otherwise it is coded as a 4x4 block.
2.3.2 Luma and chroma prediction modes

Intra prediction uses AVC-like modes with the following changes and additional modes.
The same directional prediction modes are used for 16x16 blocks as for other block sizes in order to code directional patterns in high-resolution images more efficiently.
In addition, the DC prediction mode may be replaced by an edge-based prediction mode when an edge is detected in neighboring blocks. This mode is used for luma only.
Finally, template matching averaging (TMA) predictors are added as follows:

· 2 additional TMA modes for 16x16, 8x8 and 4x4 blocks
· 1 additional TMA mode for 2x8 and 8x2 blocks.
For chroma intra prediction the “planar” prediction mode of AVC is replaced by a “diagonal down left” mode and 2 TMA modes are added.
2.3.3 Low pass filtering

A low-pass filter for luma 8x8 and 16x16 and an adaptive low-pass filter for chroma 8x8 predictors are used. In AVC, low-pass filtering is used to filter the neighboring prediction samples of intra8x8. It has been proven that the filtering improves the prediction performance compared to non-filtered prediction. In CDCM, the same low-pass filter [1,2,1] is also applied to intra16x16.

For chroma 8x8 intra prediction, an adaptive version of the low-pass filter [1, 2, 1] is applied. The adaptation is based on the absolute value of the difference between the pixel and the left (top) and right (bottom) pixels. Therefore only the smooth regions are filtered and the regions with edges or with a lot of texture are not filtered, such as to not wash out color boundaries. This approach improves visual quality at low bitrates.
2.4 Spatial transforms
2.4.1 Transform sizes
In intra blocks the spatial transform size is determined by the SIP type. Intra luma blocks can use 16x16, 8x8, 4x4, 2x8 and 8x2 transforms. Intra chroma blocks can use 4x4 or 8x8 transforms, which is more efficient than the cascaded transform in AVC but has similar complexity.
In inter blocks the spatial transform size is determined by the prediction mode. Inter luma blocks can use 8x8 and 4x4 transforms. Inter chroma blocks use 4x4 transforms.
2.4.2 Transform selection
For the luma component, CDCM can adaptively choose between 2 transforms for each block size. Therefore, the selected transform can better fit the residue data. CDCM can select between the DCT and a KLT using a rate-distortion criterion. For transform sizes smaller than 16x16, no explicit flag is sent to indicate which transform is used for each block. Instead, the flag is incorporated within the transform coefficients themselves to reduce overhead. At the decoder, the transform coefficients are first recovered and the parity of their sum is computed. If the parity is even, the inverse DCT is applied. If the parity is odd, the inverse KLT is applied. When the transform size is 16x16, an explicit flag is used to indicate which transform to apply.

2.4.3 Transform basis
The 16x16 integer transform basis is formed from the scaled and rounded DCT basis. Proper scaling is applied to the quantization and de-quantization processes to guarantee that the computation can be done with 32-bit arithmetic. The 8x8 integer transform is the same as in AVC. The 4x4 integer transform differs slightly from the AVC transform, but remains a simple combination of shift and add operations. The 2x8 and 8x2 transforms use the same 1-D separable basis function as the 8x8 transform for one direction and the Haar transform for the other. This computation can be done with 16-bit arithmetic.
The separable KLT is implemented in integer arithmetic and the quantization step and tables are set to be exactly the same as those of the DCT.
2.5 Quantization
A single qp value for the luma component is sent per frame. There is currently no block based adaptation of qp, though this can be added easily. The granularity of the qp is finer than in AVC as the quantization step doubles every 16 values of qp. The qp value is used to determine the scaling to be used in the decoder. A separate qp value is used for chroma; it is derived from the luma qp value.
The quantization step is essentially equal to:

[image: image1.wmf]i

i

m

qp

´

=

D

16

2

where
[image: image2.wmf]

m

i

 is a scaling factor that accounts for the norm of the corresponding basis function and scaling due to internal implementation.

For example, for a 4x4 transform, the quantization step
[image: image3.wmf]

D

 for the i-th coefficient (in the raster-scan order) is determined according to:

[image: image4.wmf]16

216

qp

ii

n

D=´´

where
[image: image5.wmf]

n

i

 is a scaling factor that accounts for the fact that not all basis functions have equal norm, and “16” is the scaling for internal representation.
[image: image6.wmf]i

n

 is the i-th element in the 4x4 transform is defined by the vector

n =
[image: image7.wmf]÷

÷

ø

ö

ç

ç

è

æ

32

29

,

32

29

,

32

29

,

32

29

,

32

29

,

1

,

32

29

,

1

,

32

29

,

32

29

,

32

29

,

32

29

,

32

29

,

1

,

32

29

,

1

Flat perceptual scaling matrices were used for the bitstreams submitted to the subjective test.

2.6 Entropy coding / decoding
2.6.1 Zero tree coding

Zero tree coding is used for signaling information such as motion vector differences and transform coefficients.
After prediction, the resulting differential motion vectors need to be further entropy coded. However, in most cases the differential motion vectors may be equal to zero. To further enhance coding performance a zero-tree approach is employed for signaling which motion parameters are nonzero and need be further signaled in the bitstream. The structure of a zero tree is specified at the sequence level.

As an example, let us consider the single-list case where there are only 4 elements in the motion information. Logically, the zero tree would be best partitioned if motion vectors are separated from intensity compensation parameters. Hence, a zero tree of the form described in Figure 3 is generated, where intermediate nodes are marked with 1, and leaf nodes with 0. Each node uses its own set of contexts for arithmetic coding. In the coding process the tree is traversed in depth-first order, as indicated by the red arrows.

[image: image8.emf]MVx MVy Scale Offset

0 0 0 0

1 1

1

Figure 3: Example tree structure organization for 8x8 Single List Motion Vectors

Similarly, for bi-prediction, the zero tree shown in Figure 4 is used.

[image: image9.emf]MV

0,x

MV

1,x

ScaleOff Offset MV

0,y

MV

1,y

Scale

1

1

1

1

1

1 0

0 0

0 0

0

0

Figure 4: Example tree structure organization for Bi-Prediction Motion Vectors

Zero trees are also used for signaling which transform coefficients are nonzero, similarly to the significance pass of CABAC in AVC. Figure 5 shows an example of the zero tree with 16 leaves used for transform coefficients in a 4x4 block.
[image: image62.emf]0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

x

1

4

x

13

x

11

x

12 8

x

3 2

x

x

5

x

x

x

9

x

10

15 14

7 6

Figure 5: Example tree structure organization for 4x4 block of transform coefficients

The zero tree for the 8x8 transform coefficient is similar but has 64 leaves.
The zero tree for the 16x16 transform coefficients is based on cutting the zero tree and re-using iteratively the cut part of the tree. This avoids the usage of a 16x16 tree, which would dramatically increase the number of contexts. It can also be easily extended to larger block sizes.

2.6.2 Arithmetic coding

Probabilities are represented by 16-bit unsigned integers. They represent the probability of a ‘0’ symbol. The value 0x8000 represents an estimate of 50%. For syntax elements that use a fixed 50/50 probability distribution, the initial probability is set to 0x8000. For other syntax elements, the initial probabilities for the contexts are transmitted in the sequence header.

Three classes of symbols are considered: equiprobable, binary, and unary. Each class has its own encoding method.

An equiprobable symbol is a symbol that has equal probability (50%) of having value 0 or 1. This encoding method is typically used for encoding sign values. It is a simplification of the generic binary symbol encoding method. This method is similar to the one used in AVC.

Encoding a generic binary symbol essentially consists of four steps: computing a range for the symbol 0, adjusting registers, renormalizing, and adapting the probability. This method is similar to the one used in AVC. However the range computation uses a multiplication operation instead of a table look-up.

Encoding a unary symbol comprises the steps of encoding a prefix and encoding a suffix. The encoding of the prefix uses the generic binary symbol encoding method while encoding the suffix uses the equiprobable symbol encoding method. This method for encoding unary symbol tries to maximize coding efficiency while limiting the number of arithmetic encoder operations in an encoder.

After encoding a symbol, probabilities may be updated according to the value of the coded symbol. In the present case a simple method based on exponential memory decay is used. An offset δ is used to avoid highly skewed probabilities.

[image: image10.emf]Begin

End

p =p –((p -0x10000 + δ + 16)>>5) p =p –((p –δ + 16)>>5)

val = 0 ? Yes No

Figure 6: Probability update

2.6.3 Superblock re-synchronization / multi-threaded decoding

Before decoding a superblock, contexts are reset to values derived from neighboring superblocks (left and top). After decoding a superblock context values are stored for future reference. This feature enables the multithreading of entropy decoding without loss of compression efficiency. Two to four threads running in parallel are a typical situation. Please also see Sections 4.18 and 4.19 on further discussions on the multi-threading capabilities.
2.7 Internal precision
YUV 4:2:0 sampling with 8 bit per sample is used for the input and output of the codec. Internally data path are 16-bit wide with the exception of the loop filters and reference memory which use the same 8-bit data representation as the input and output. Internally 8-bit unsigned values are mapped to 16-bit signed values where an offset 128 is subtracted before inserting 6 less significant bits with value ‘0’.
2.8 In-loop filtering
A loop filter performs denoising and deblocking using a combination of filters:
· Nonlinear Denoising Filter
· Frame-Adaptive Denoising Filter
· Deblocking Filter
Figure 7 shows the generalized block diagram of the encoder with a focus on the loop filter.

[image: image11.wmf]

Transform /

Quantization

Entropy

Coder

Inverse Quantization /

Inverse

Transform

Non

-

l

inear

denoising

Deblocking

Adaptive

denoising

Filter

Predictor

s

e

s

ˆ

e

¢

s

¢

¢

s

¢

¢

¢

L

oop Filter

s

¢

Figure 7: Generalized block diagram of the encoder with a focus on the loop filter.
2.8.1 Non-linear Denoising Filter
The Non-linear Denoising Filter (NDF) aims at reducing noise by performing regularization using a sparsity constraint on the signal. It uses a thresholding-based approach in an over-complete transform domain to generate multiple estimates for each pixel. A weight is derived for each estimate that corresponds to its reliability and all the estimates are combined to derive the filtered value. NDF adapts the level of denoising at each discontinuity (due to compression) based on the type of discontinuity.
2.8.2 Frame-adaptive denoising filter
The frame-adaptive denoising filter aims at reducing quantization noise. Based on the prediction signal
[image: image12.wmf]s

ˆ

, the quantized prediction error
[image: image13.wmf]e

¢

, and the reconstructed filter signal
[image: image14.wmf]s

¢

¢

, the following linear de-noising filter operation is performed:

[image: image15.wmf]c

e

w

s

w

s

w

s

O

i

i

i

N

M

N

i

i

i

M

M

i

i

i

+

¢

×

+

×

+

¢

¢

×

=

¢

¢

¢

å

å

å

=

+

+

=

+

=

1

1

1

ˆ

All filter coefficients
[image: image16.wmf]i

w

, with
[image: image17.wmf]O

N

M

i

+

+

=

,

,

1

K

 as well as the offset
[image: image18.wmf]c

 are estimated once per frame by minimizing the mean squared error between the original input signal
[image: image19.wmf]s

and the filtered signal
[image: image20.wmf]s

¢

¢

¢

:

[image: image21.wmf](

)

[

]

min

2

®

¢

¢

¢

-

=

s

s

E

D

The estimated filter coefficients are coded and transmitted to the decoder. The filter sizes
[image: image22.wmf]O

N

M

,

,

 as well as the quantization step size used in the filter coefficients coding step are adaptive and determined by minimization of the Lagrangian costs of overall data rate
[image: image23.wmf]R

 and mean squared error
[image: image24.wmf]D

:

[image: image25.wmf]min

®

+

×

D

R

l

2.8.3 Deblocking

The deblocking filter is similar to the AVC loop filter and aims at reducing blocking artifacts. The deblocking operation is performed on the input signals
[image: image26.wmf]s

¢

¢

¢

. The AVC filter is used except for the following:

1. The filtered samples are determined by input signals
[image: image27.wmf]s

¢

¢

¢

, which are not filtered for more than one edge for a given filtering direction.
2. For each component, all vertical edges are filtered first before all horizontal edges are filtered.

3. The samples p2, q2 are not filtered.
4. Filtering associated to boundary strength bS = 4 is not used.

5. The filter coefficients for outer samples p1, q1 are different as follows:

The filtering process is applied to a set of the samples across the boundary denoted as pi and qi with i = 0..3 as shown in Figure 8.

[image: image28.emf]p

0

p

1

p

2

p

3

q

0

q

1

q

2

q

3

p

0

p

1

p

2

p

3

q

0

q

1

q

2

q

3

Figure 8: Denotation of samples across a block boundary.

p’1 = p1 + clip (p2*7 + p1*3 + p0*5 + q0 + 8) >> 4) - p1, -thd , thd)

q’1 = q1 + clip (q2*7 + q1*3 + q0*5 + p0 + 8) >> 4) - p1, -thd , thd)

where p’1, q’1 are the filtered samples. The threshold thd depends on the values of the quantization parameter and bS.
2.9 Summary of prediction modes, partitions and transform sizes

The following tables summarize the combinations of the prediction modes, partitions and transform sizes.

Table 1 - Prediction modes in P-frames
	prediction_mode
	Prediction/Coding method
	

	0
	Intra
	See Table 4

	1
	Single list Prediction using LIST_0
	See Table 5

Table 2 - Prediction modes in B-frames
	prediction_mode
	Prediction/Coding method
	

	0
	Intra
	See Table 4

	1
	Single list Prediction using LIST_0
	See Table 5

	2
	Single list Prediction using LIST_1
	See Table 5

	3
	BiPrediction
	See Table 5

Table 3 - Partitions and transform for intra blocks in I-frames
	sip_type
	Partition
	Transform

	0
	8x8
	8x8

	1
	16x16
	16x16

	2
	4x4
	4x4

	3
	2x8
	2x8

	4
	8x2
	8x2

Table 4 - Partitions and transform for intra blocks in P/B-frames
	sip_type
	Partition
	Transform

	0
	4x4
	4x4

	1
	2x8
	2x8

	2
	8x2
	8x2

	3
	8x8
	8x8

Table 5 - Partitions and transform for single list Prediction or BiPrediction blocks in P/B-frames
	MV_share
	Partition
	Transform

	0
	8x8
	8x8

	1
	size
	direction
	
	

	
	2
	up
	2x8
	4x4

	
	4
	up
	4x8
	4x4

	
	2
	left
	8x2
	4x4

	
	4
	left
	8x4
	4x4

2.10 Summary of sample prediction for intra prediction

The following tables summarize the sample prediction methods for the intra prediction

Table 6: Summary of luma prediction modes

	sip_

mode
	16x16 Intra Prediction
	4x4/8x8 Intra Prediction
	2x8 / 8x2 Intra Prediction

	0
	VERT_PRED
	VERT_PRED
	VERT_PRED

	1
	HOR_PRED
	HOR_PRED
	HOR_PRED

	2
	TMA_L9_PRED
	TMA_L5_PRED
	TMA_L5_PRED

	3
	DC_PRED
	DC_PRED
	DC_PRED

	4
	DIAG_DOWN_RIGHT_PRED
	DIAG_DOWN_RIGHT_PRED
	DIAG_DOWN_RIGHT_PRED

	5
	VERT_RIGHT_PRED
	VERT_RIGHT_PRED
	VERT_RIGHT_PRED

	6
	HOR_DOWN_PRED
	HOR_DOWN_PRED
	HOR_DOWN_PRED

	7
	VERT_LEFT_PRED
	VERT_LEFT_PRED
	VERT_LEFT_PRED

	8
	HOR_UP_PRED
	HOR_UP_PRED
	HOR_UP_PRED

	9
	DIAG_DOWN_LEFT_PRED
	DIAG_DOWN_LEFT_PRED
	DIAG_DOWN_LEFT_PRED

	10
	TMA_L17_PRED
	TMA_L9_PRED
	undefined

Table 7: Summary of chroma prediction modes

	sip_

mode
	4x4/8x8 Intra Prediction

	0
	DC_PRED

	1
	HOR_PRED

	2
	VERT_PRED

	3
	PLANE_PRED

	4
	TMA_L5_PRED

	5
	TMA_L9_PRED

3 Compression performance discussion

3.1 Objective versus subjective compression performance
Objective measure using PSNR (both BD measure and RD plots) seems to correlate well with the subjective compression capability of this proposal in general. This is similar to that of most hybrid transform codecs. However, it should be noted that the PSNR measure is not a good measure when the bitrate is low such as in the R1 and R2 cases. PSNR measure does not fully capture the effects of subjective quality such as sharpness, detail preservation, blockiness, and colour reproduction. It also does not capture abrupt temporal changes which can be very annoying in subjective viewing. The full data set is provided in Appendix 2.
3.2 Constraint set 1 configuration relative to Alpha anchor
The following are the constraint set 1 configuration performances relative to the Alpha anchors. Table 8 and Figure 9 show the BD-Rate for the CS1 configuration relative to the Alpha anchor.
Table 8: BD-Rate for CS1 configuration relative to Alpha Anchor
	
	
	Y BD-Rate
	U BD-Rate
	V BD-Rate

	A
	S01-Traffic
	32.87
	28.83
	29.81

	A
	S02-PeopleOnStreet
	24.97
	7.69
	12.30

	B
	S03-Kimono
	33.17
	16.87
	19.77

	B
	S04-ParkScene
	28.80
	24.61
	24.58

	B
	S05-Cactus
	30.44
	28.76
	28.95

	B
	S06-BasketballDrive
	34.04
	29.27
	32.91

	B
	S07-BQTerrace
	41.85
	29.97
	24.61

	C
	S08-BasketballDrill
	30.72
	42.87
	44.13

	C
	S09-BQMall
	35.31
	30.42
	31.19

	C
	S10-PartyScene
	32.28
	38.86
	38.18

	C
	S11-RaceHorses
	31.84
	45.33
	43.58

	D
	S12-BasketballPass
	27.08
	33.23
	35.60

	D
	S13-BQSquare
	39.54
	22.21
	23.57

	D
	S14-BlowingBubbles
	26.53
	28.24
	28.97

	D
	S15-RaceHorses
	23.91
	30.99
	31.26

	
	
	
	
	

	A
	A-AVERAGE
	28.92
	18.26
	21.05

	B
	B-AVERAGE
	33.66
	25.90
	26.16

	C
	C-AVERAGE
	32.54
	39.37
	39.27

	D
	D-AVERAGE
	29.26
	28.67
	29.85

	All
	All-AVERAGE
	31.56
	29.21
	29.96

[image: image29.emf]BD-Rate for CS1 configuration relative to Alpha Anchor

0

5

10

15

20

25

30

35

40

45

50

S01-Traffic

S02-PeopleOnStreet

S03-Kimono

S04-ParkScene S05-Cactus S06-BasketBallDrive

S07-BQTerrace

S08-BasketballDrill

S09-BQMall S10-PartyScene

S11-RaceHorses

S12-BasketballPass

S13-BQSquare

S14-BlowingBubbles S15-RaceHorses

A-AVERAGE B-AVERAGE C-AVERAGE D-AVERAGE All-AVERAGE

Test sequences

BD-Rate Gains %

(+ve means proposal is better)

Y BD-Rate U BD-Rate V BD-Rate

Figure 9: Plot of BD-Rate for CS1 configuration relative to Alpha Anchor

3.3 Constraint set 2 configuration relative to Beta and Gamma anchors
The following are the constraint set 2 configuration performances relative to the anchors. Since there are two anchors, the same data is presented twice relative to each of the Beta and Gamma anchors, respectively.
Table 9 and Figure 10 show the BD-Rate for the CS2 configuration relative to the Beta anchor. Table 10 and Figure 11 show the BD-Rate for the CS2 configuration relative to the Gamma anchor.

Table 9: BD-Rate for CS2 configuration relative to Beta Anchor
	
	
	Y BD-Rate
	U BD-Rate
	V BD-Rate

	B
	S03-Kimono
	34.31
	11.12
	10.88

	B
	S04-ParkScene
	29.04
	11.28
	0.77

	B
	S05-Cactus
	31.77
	25.51
	23.05

	B
	S06-BasketballDrive
	34.54
	19.58
	26.47

	B
	S07-BQTerrace
	47.18
	5.21
	-42.63

	C
	S08-BasketballDrill
	23.59
	32.01
	33.77

	C
	S09-BQMall
	31.34
	1.06
	-6.98

	C
	S10-PartyScene
	29.38
	28.05
	16.61

	C
	S11-RaceHorses
	23.56
	28.31
	18.98

	D
	S12-BasketballPass
	19.88
	21.55
	27.06

	D
	S13-BQSquare
	29.26
	-28.24
	-20.37

	D
	S14-BlowingBubbles
	17.14
	18.23
	15.93

	D
	S15-RaceHorses
	15.62
	20.25
	17.84

	E
	S16-Vidyo1
	41.71
	4.53
	15.73

	E
	S17-Vidyo3
	37.80
	-24.67
	24.12

	E
	S18-Vidyo4
	40.35
	-4.61
	13.20

	
	
	
	
	

	B
	B-AVERAGE
	35.37
	14.54
	3.71

	C
	C-AVERAGE
	26.97
	22.36
	15.59

	D
	D-AVERAGE
	20.47
	7.95
	10.12

	E
	E-AVERAGE
	39.95
	-8.25
	17.68

	All
	All-AVERAGE
	30.40
	10.57
	10.90

[image: image30.emf]BD-Rate for CS2 configuration relative to Beta Anchor

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

S03-Kimono

S04-ParkScene S05-Cactus S06-BasketBallDrive

S07-BQTerrace

S08-BasketballDrill

S09-BQMall S10-PartyScene

S11-RaceHorses

S12-BasketballPass

S13-BQSquare

S14-BlowingBubbles S15-RaceHorses

S16-Vidyo1

S17-Vidyo3 S18-Vidyo4B-AVERAGE C-AVERAGE D-AVERAGE E-AVERAGE All-AVERAGE

Test sequences

BD-Rate Gains %

(+ve means proposal is better)

Y BD-Rate U BD-Rate V BD-Rate

Figure 10: Plot of BD-Rate for CS2 configuration relative to Beta Anchor

It is noted that the performance of the chroma component in the CS2 configuration seem to show some degradation compared to the anchor. This issue has been addressed after the submission of the bitstreams. Please refer to Section 8 for further detail.
Table 10: BD-Rate for CS2 configuration relative to Gamma Anchor
	
	
	Y BD-Rate
	U BD-Rate
	V BD-Rate

	B
	S03-Kimono
	50.42
	26.23
	28.52

	B
	S04-ParkScene
	46.35
	33.33
	22.29

	B
	S05-Cactus
	49.67
	43.06
	43.90

	B
	S06-BasketballDrive
	48.66
	39.04
	42.48

	B
	S07-BQTerrace
	65.57
	44.01
	27.58

	C
	S08-BasketballDrill
	43.58
	51.82
	52.21

	C
	S09-BQMall
	46.11
	24.17
	15.69

	C
	S10-PartyScene
	51.47
	52.92
	43.16

	C
	S11-RaceHorses
	32.57
	35.26
	27.16

	D
	S12-BasketballPass
	31.87
	31.63
	34.76

	D
	S13-BQSquare
	61.96
	32.92
	38.08

	D
	S14-BlowingBubbles
	41.02
	42.68
	43.28

	D
	S15-RaceHorses
	23.24
	23.97
	21.64

	E
	S16-Vidyo1
	55.82
	27.07
	39.76

	E
	S17-Vidyo3
	52.77
	13.89
	43.56

	E
	S18-Vidyo4
	57.37
	23.46
	37.79

	
	
	
	
	

	B
	B-AVERAGE
	52.14
	37.13
	32.96

	C
	C-AVERAGE
	43.43
	41.04
	34.56

	D
	D-AVERAGE
	39.52
	32.80
	34.44

	E
	E-AVERAGE
	55.32
	21.47
	40.37

	All
	All-AVERAGE
	47.40
	34.09
	35.12

[image: image31.emf]BD-Rate for CS2 configuration relative to Gamma Anchor

0

10

20

30

40

50

60

70

S03-Kimono

S04-ParkScene S05-Cactus S06-BasketBallDrive

S07-BQTerrace

S08-BasketballDrill

S09-BQMall S10-PartyScene

S11-RaceHorses

S12-BasketballPass

S13-BQSquare

S14-BlowingBubbles S15-RaceHorses

S16-Vidyo1

S17-Vidyo3 S18-Vidyo4B-AVERAGE C-AVERAGE D-AVERAGE E-AVERAGE All-AVERAGE

Test sequences

BD-Rate Gains %

(+ve means proposal is better)

Y BD-Rate U BD-Rate V BD-Rate

Figure 11: Plot of BD-Rate for CS2 configuration relative to Gamma Anchor

3.4 Summary

The objective results show average Y, U and V BD-rate gains of 31.6%, 29.2% and 30.0% respectively for all sequences in constraint set 1 when compared to the Alpha anchor. For all sequences in constraint set 2, the average Y, U and V BD-rate gains of 30.4%, 10.6% and 10.9% respectively are achieved when compared to the Beta anchor. The average Y, U and V BD-rate gains of 47.4%, 34.1% and 35.1% respectively are achieved when compared to the Gamma anchor.

For the CS1 Y BD-rate relative to the Alpha anchor, a maximum of gain of 41.9% and a minimum gain of 23.9% is achieved. This shows that a relative consistent gain is obtained over all sequences. There is a slightly larger variation in the CS2 Y BD-Rate against the Beta anchor with a maximum and minimum of 47.2% and 15.6%, respectively. For CS2 Y BD-rate against the Gamma anchor a maximum and minimum of 65.6% and 23.2% were obtained, respectively.

4 Complexity analysis

4.1 Encoding time and measurement methodology
The encoder was executed on a computer cluster that runs a 64-bit version of Linux. The cluster has 64 cores and comprises two types of machines:

· 4 machines with 2 Quad-core Xeon E5450 @ 3.00GHz, 32GB RAM

· 4 machines with 2 Quad-core Xeon E5540 @ 2.53GHz, 32GB RAM

All the encoding jobs (75 for CS1 and 80 for CS2) were launched together and put in a queue. Each machine ran 8 jobs at a time.

Class A sequences were encoded with an option to generate motion-compensated chroma blocks on the fly such as to reduce memory requirements (by default all interpolated reference frames are stored in memory). While this reduces memory usage of the encoder, it increases encoding time.
4.1.1 Measurement methodology

The total encoding time for a job (encoding of a full-length sequence) is measured by the ‘elapsed time’
 reported by the Linux ‘/usr/bin/time’ command. The encoding time per frame is obtained by dividing the total encoding time by the number of frames encoded. All results (including the averages computed below) are rounded to the nearest integer.
4.1.2 Encoding Time

Tables 11 and 12 present the encoding time per frame measured in seconds for CS1 and CS2, respectively. The tables include the following values:

· Encoding time for each sequence at each rate

· Average encoding time (over all rates) for each sequence

· Average encoding time for each class at each rate

· Average encoding time (over all rates) for each class

Table 11: Encoding time per frame for CS1 configuration
	Class
	Sequence
	CS1 - Encoding Time Per Frame (Seconds)

	
	
	R1
	R2
	R3
	R4
	R5
	Average

	A
	S01-Traffic
	813
	801
	816
	925
	879
	847

	A
	S02-PeopleOnStreet
	749
	854
	878
	928
	925
	867

	B
	S03-Kimono
	386
	421
	397
	413
	430
	409

	B
	S04-ParkScene
	337
	373
	382
	395
	447
	387

	B
	S05-Cactus
	383
	413
	424
	430
	406
	411

	B
	S06-BasketballDrive
	353
	423
	433
	442
	415
	413

	B
	S07-BQTerrace
	355
	410
	384
	430
	404
	397

	C
	S08-BasketballDrill
	72
	74
	76
	73
	76
	74

	C
	S09-BQMall
	63
	65
	76
	72
	82
	72

	C
	S10-PartyScene
	73
	67
	77
	73
	78
	74

	C
	S11-RaceHorses
	76
	70
	82
	87
	90
	81

	D
	S12-BasketballPass
	19
	20
	19
	19
	21
	20

	D
	S13-BQSquare
	26
	20
	18
	19
	22
	21

	D
	S14-BlowingBubbles
	19
	18
	21
	22
	21
	20

	D
	S15-RaceHorses
	19
	20
	20
	22
	23
	21

	
	
	
	
	
	
	
	

	A
	A-AVERAGE
	781
	828
	847
	927
	902
	857

	B
	B-AVERAGE
	363
	408
	404
	422
	420
	403

	C
	C-AVERAGE
	71
	69
	78
	76
	82
	75

	D
	D-AVERAGE
	21
	20
	20
	21
	22
	21

Table 12: Encoding time per frame for CS2 configuration

	Class
	Sequence
	CS2 – Encoding Time Per Frame (seconds)

	
	
	R1
	R2
	R3
	R4
	R5
	Average

	B
	S03-Kimono
	346
	358
	390
	391
	427
	382

	B
	S04-ParkScene
	363
	376
	370
	408
	407
	385

	B
	S05-Cactus
	344
	372
	362
	397
	386
	372

	B
	S06-BasketballDrive
	362
	355
	382
	376
	388
	373

	B
	S07-BQTerrace
	367
	365
	384
	398
	394
	382

	C
	S08-BasketballDrill
	63
	70
	72
	69
	72
	69

	C
	S09-BQMall
	62
	64
	66
	69
	76
	67

	C
	S10-PartyScene
	69
	70
	70
	78
	78
	73

	C
	S11-RaceHorses
	71
	72
	71
	80
	82
	75

	D
	S12-BasketballPass
	17
	17
	18
	18
	21
	18

	D
	S13-BQSquare
	18
	18
	20
	19
	20
	19

	D
	S14-BlowingBubbles
	17
	18
	19
	20
	22
	19

	D
	S15-RaceHorses
	18
	19
	20
	23
	23
	21

	E
	S16-Vidyo1
	133
	138
	141
	157
	161
	146

	E
	S17-Vidyo3
	131
	135
	148
	154
	147
	143

	E
	S18-Vidyo4
	132
	147
	151
	155
	148
	147

	
	
	
	
	
	
	
	

	B
	B-AVERAGE
	356
	365
	378
	394
	400
	379

	C
	C-AVERAGE
	66
	69
	70
	74
	77
	71

	D
	D-AVERAGE
	18
	18
	19
	20
	22
	19

	E
	E-AVERAGE
	132
	140
	147
	155
	152
	145

To enable easier comparison between various classes, Tables 13 and 14 present the encoding time per luma sample measured in microseconds for CS1 and CS2 respectively. The tables indicate the following values:

· Average encoding time for each class at each rate

· Average encoding time (over all rates) for each class

· Average encoding time (over all sequences) at each rate

· Average encoding time (over all sequences and rates)

It can be noted that these normalized encoding times show that encoding time scales linearly with frame size.
Table 13: Encoding time per luma sample for CS1 configuration

	Class
	Sequence
	CS1 - Encoding Time per luma sample (microseconds)

	
	
	R1
	R2
	R3
	R4
	R5
	Average

	A
	A-AVERAGE
	191
	202
	207
	226
	220
	209

	B
	B-AVERAGE
	175
	197
	195
	204
	203
	195

	C
	C-AVERAGE
	178
	173
	195
	191
	204
	188

	D
	D-AVERAGE
	208
	195
	195
	205
	218
	205

	All
	All-AVERAGE
	188
	192
	198
	207
	211
	199

Table 14: Encoding time per luma sample for CS2 configuration

	Class
	Sequence
	CS2 - Encoding Time per luma sample (microseconds)

	
	
	R1
	R2
	R3
	R4
	R5
	Average

	B
	B-AVERAGE
	172
	176
	182
	190
	193
	183

	C
	C-AVERAGE
	166
	173
	175
	185
	193
	178

	D
	D-AVERAGE
	175
	180
	193
	200
	215
	193

	E
	E-AVERAGE
	143
	152
	159
	169
	165
	158

	All
	All-AVERAGE
	164
	170
	177
	186
	192
	178

4.2 Decoding time and measurement methodology

4.2.1 Measurement methodology

A single machine with the following specification was used to run the decoder in a single thread:

· CPU:
1 Quad-core Xeon E5420 @ 2.5GHz,
· RAM:
4GB Memory (effective memory is less since a 32-bit OS is used),
· OS:
Windows XP - 32bit

The following methodology was used to measure the decoding time. The ‘user time’
 reported by ntimer for decoding each bitstream with JM17.0 and CDCM is recorded. The ratio of the “user time” of CDCM compared to the “user time” of JM for rates R1 to R5 for each sequence is calculated. Finally, the average and the geometric mean of the ratios for each sequence as well as for each rate are also calculated.
The geometric means of the ratios for the decoding time (across all rates and sequences) are:

· CS1 cf. Alpha anchor:
11.1
· CS2 cf. Beta anchor:
14.7
· CS2 cf. Gamma anchor:
15.8

Note: ratios are consistent in most of the sequences and classes. The individual ratios are shown in Table 11, Table 12 and Table 13 below.
It is interesting to note that the difference in the user times of the Beta and Gamma anchors is quite small despite the fact that the Gamma anchor is designed to be a lower complexity anchor. This illustrates that user time measured from generic software implementations are poor estimates of complexity.
4.2.2 Decoding Time

Table 11, Table 12, and Table 13 show the decoding time for all sequences measured in seconds for CS1 and CS2 respectively. The tables include the following values:

· Decoding time for each sequence at each rate

· Average decoding time (over all rates) for each sequence

· Ratios of decoding time for each sequence at each rate

· Average decoding time ratios (over all sequences and rates)

· Geometric mean of decoding time ratios (over all sequences and rates)

Table 11: Decoding time for CS1 (cf. Aplha anchor)
	CDCM User Time (Xeon E5420 @ 2.5GHz, 4GB Memory, Windows XP - 32bit)

	
	Decoding time (seconds)
	Ratios of individual rates cf. Alpha Anchor

	CS1
	R1
	R2
	R3
	R4
	R5
	Average
	R1
	R2
	R3
	R4
	R5
	Average
	GeoMean

	S01
	236
	255
	270
	286
	309
	271
	11.9
	12.8
	12.4
	12.2
	11.6
	12.2
	12.2

	S02
	318
	331
	353
	383
	432
	363
	15.8
	15.8
	15.7
	15.9
	15.8
	15.8
	15.8

	S03
	216
	238
	261
	285
	306
	261
	8.7
	10.6
	10.0
	10.2
	10.2
	9.9
	9.9

	S04
	177
	196
	216
	240
	260
	218
	8.2
	8.3
	8.5
	8.8
	9.0
	8.6
	8.6

	S05
	363
	396
	423
	460
	497
	428
	9.9
	10.5
	10.7
	10.8
	10.9
	10.6
	10.5

	S06
	432
	471
	509
	550
	583
	509
	9.6
	9.6
	9.8
	10.1
	10.1
	9.9
	9.9

	S07
	414
	458
	504
	557
	610
	508
	7.1
	7.8
	8.4
	9.1
	9.5
	8.4
	8.3

	S08
	70
	74
	83
	94
	106
	85
	12.7
	13.2
	13.8
	14.4
	14.3
	13.7
	13.7

	S09
	78
	82
	90
	100
	111
	93
	10.4
	10.3
	10.3
	10.9
	11.1
	10.6
	10.6

	S10
	67
	73
	81
	91
	103
	83
	10.6
	10.7
	10.9
	10.9
	11.8
	11.0
	11.0

	S11
	56
	60
	65
	72
	78
	66
	12.1
	12.3
	12.1
	12.1
	11.9
	12.1
	12.1

	S12
	22
	24
	25
	28
	30
	26
	13.2
	13.3
	13.3
	12.1
	10.9
	12.6
	12.5

	S13
	22
	25
	28
	31
	36
	28
	10.5
	10.9
	11.1
	11.2
	11.1
	10.9
	10.9

	S14
	18
	20
	22
	25
	28
	23
	11.5
	11.9
	11.3
	12.1
	10.9
	11.5
	11.5

	S15
	16
	18
	19
	21
	23
	19
	12.7
	12.5
	11.9
	11.3
	10.0
	11.7
	11.6

	
	
	
	
	
	
	Average
	11.0
	11.4
	11.3
	11.5
	11.3
	11.3
	11.3

	
	
	
	
	
	
	GeoMean
	10.8
	11.2
	11.2
	11.4
	11.2
	11.1
	11.1

Table 12: Decoding time for CS2 (cf. Beta anchor)
	CDCM User Time (Xeon E5420 @ 2.5GHz, 4GB Memory, Windows XP - 32bit)

	
	Decoding time (seconds)
	Ratios of individual rates cf. Beta Anchor

	CS2
	R1
	R2
	R3
	R4
	R5
	Average
	R1
	R2
	R3
	R4
	R5
	Average
	GeoMean

	S03
	230
	257
	283
	314
	336
	284
	13.3
	13.3
	13.6
	13.9
	13.6
	13.5
	13.5

	S04
	199
	215
	233
	256
	281
	237
	12.6
	12.1
	11.6
	11.6
	11.8
	11.9
	11.9

	S05
	406
	428
	450
	489
	534
	461
	14.2
	13.5
	13.2
	13.2
	13.4
	13.5
	13.5

	S06
	456
	505
	546
	602
	644
	551
	14.0
	13.8
	13.2
	13.5
	13.5
	13.6
	13.6

	S07
	479
	523
	574
	642
	703
	584
	11.7
	12.1
	12.6
	13.1
	13.4
	12.6
	12.6

	S08
	71
	78
	88
	99
	114
	90
	17.8
	18.1
	18.0
	17.3
	16.6
	17.6
	17.6

	S09
	84
	91
	99
	110
	124
	102
	15.6
	15.7
	15.2
	14.5
	15.1
	15.2
	15.2

	S10
	75
	82
	94
	109
	124
	97
	18.1
	16.8
	16.3
	16.3
	15.8
	16.6
	16.6

	S11
	60
	65
	71
	77
	83
	71
	17.6
	16.6
	15.4
	15.3
	14.2
	15.8
	15.8

	S12
	24
	25
	27
	29
	32
	27
	18.2
	15.5
	15.9
	13.5
	12.5
	15.1
	15.0

	S13
	28
	31
	34
	38
	42
	35
	16.4
	17.2
	16.5
	15.8
	13.8
	15.9
	15.9

	S14
	22
	24
	26
	30
	33
	27
	15.1
	15.1
	15.8
	14.0
	12.6
	14.5
	14.5

	S15
	17
	19
	19
	21
	23
	20
	15.0
	13.3
	12.5
	11.7
	10.4
	12.6
	12.5

	S16
	135
	145
	152
	165
	181
	156
	16.3
	16.1
	16.8
	16.0
	15.3
	16.1
	16.1

	S17
	134
	144
	153
	170
	192
	159
	16.2
	16.9
	16.1
	17.3
	16.3
	16.6
	16.6

	S18
	131
	143
	151
	166
	184
	155
	15.7
	16.1
	15.8
	16.2
	16.0
	16.0
	16.0

	
	
	
	
	
	
	Average
	15.5
	15.2
	14.9
	14.6
	14.0
	14.8
	14.8

	
	
	
	
	
	
	GeoMean
	15.4
	15.0
	14.8
	14.5
	13.9
	14.7
	14.7

Table 13: Decoding time for CS2 (cf. Gamma anchor)

	CDCM User Time (Xeon E5420 @ 2.5GHz, 4GB Memory, Windows XP - 32bit)

	
	Decoding time (seconds)
	Ratios of individual rates cf. Gamma Anchor

	CS2
	R1
	R2
	R3
	R4
	R5
	Average
	R1
	R2
	R3
	R4
	R5
	Average
	GeoMean

	S03
	230
	257
	283
	314
	336
	284
	14.2
	14.3
	14.6
	14.8
	14.1
	14.4
	14.4

	S04
	199
	215
	233
	256
	281
	237
	13.1
	12.7
	12.5
	12.4
	12.5
	12.7
	12.6

	S05
	406
	428
	450
	489
	534
	461
	14.8
	14.8
	14.1
	14.1
	14.1
	14.4
	14.4

	S06
	456
	505
	546
	602
	644
	551
	14.7
	14.8
	14.4
	14.7
	14.6
	14.6
	14.6

	S07
	479
	523
	574
	642
	703
	584
	12.5
	13.0
	13.5
	14.0
	14.3
	13.5
	13.4

	S08
	71
	78
	88
	99
	114
	90
	18.6
	19.6
	20.4
	19.5
	18.9
	19.4
	19.4

	S09
	84
	91
	99
	110
	124
	102
	16.4
	16.7
	16.8
	16.3
	16.5
	16.5
	16.5

	S10
	75
	82
	94
	109
	124
	97
	18.2
	17.5
	17.1
	17.0
	16.9
	17.3
	17.3

	S11
	60
	65
	71
	77
	83
	71
	18.8
	17.2
	17.6
	16.4
	15.7
	17.1
	17.1

	S12
	24
	25
	27
	29
	32
	27
	19.4
	17.9
	17.0
	15.0
	14.0
	16.7
	16.6

	S13
	28
	31
	34
	38
	42
	35
	17.2
	17.7
	17.7
	17.0
	15.7
	17.0
	17.0

	S14
	22
	24
	26
	30
	33
	27
	18.1
	17.3
	17.0
	16.5
	14.2
	16.6
	16.6

	S15
	17
	19
	19
	21
	23
	20
	17.9
	14.8
	14.8
	13.4
	11.9
	14.6
	14.4

	S16
	135
	145
	152
	165
	181
	156
	17.2
	16.4
	17.0
	16.0
	16.2
	16.6
	16.6

	S17
	134
	144
	153
	170
	192
	159
	16.3
	16.6
	17.1
	17.6
	18.1
	17.1
	17.1

	S18
	131
	143
	151
	166
	184
	155
	15.4
	16.4
	16.2
	16.8
	16.5
	16.3
	16.3

	
	
	
	
	
	
	Average
	16.4
	16.1
	16.1
	15.7
	15.3
	15.9
	15.9

	
	
	
	
	
	
	GeoMean
	16.3
	16.0
	16.0
	15.6
	15.2
	15.8
	15.8

4.3 Expected memory usage of encoder

The memory usage was measured using the Linux ‘top’ command at different time instances during the encoding process. The maximum recorded memory usage for each class is shown in Table 14 and Figure 12.
Table 14: Encoder memory usage
	Class
	D
	C
	E
	B
	A

	Memory Usage (MB)
	330
	667
	1229
	2458
	2458

Note that for class A, motion-compensated chroma blocks are generated on the fly instead of using precomputed interpolated reference frames. This accounts for the difference in the memory usage compared to the other classes.

[image: image32.emf]Encoder Memory Usage

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

luma samples per frame (x1000)

Memory usage (MB)

ClassA

(chroma MC

on the fly used)

ClassB

ClassE

ClassC

ClassD

Figure 12: Expected memory usage of encoder
4.4 Expected memory usage of decoder

The memory usage is measured using the Linux ‘top’ command after 15 seconds of decoding (to allow for full allocation of reference buffers). The memory usage for each class is shown in Table 15 and Figure 13.
Table 15: Decoder memory usage
	Class
	D
	C
	E
	B
	A

	Memory Usage (MB)
	30
	53
	87
	166
	304

[image: image33.emf]Decoder Memory Usage

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

0 500 1000 1500 2000 2500 3000 3500 4000 4500

luma samples per frame (x1000)

Memory usage (MB)

ClassA

ClassB

ClassE

ClassC

ClassD

Figure 13: Expected memory usage of decoder
4.5 Frame multi-pass encoding

A frame is encoded multiple times using I, P, or B frame types, with AIF on or off, with 1/4th or 1/8th motion precision, and the best combination is selected. While improving coding efficiency, this approach also considerably increases encoding time. In order to limit the encoding time, a different number of combinations are tested depending on the frame type and the location of the frame in the GOP hierarchy structure. Table 16 shows the list of frame coding modes that are executed for each frame in the default configuration.
Table 16 Frame_coding_mode with the default coding condition
	Frame coding pass.
	Frame type
	Interpolation
filter
	Accuracy
of motion
estimation
	Position of frame in hierarchy

	
	
	
	
	Edge frame
	Intermediate frame
	Disposable frame (p)
	Disposable frame (b)

	1
	I-frame
	-
	-
	Executed
	executed
	executed
	executed

	2
	B-frame
	AVC
	1/4pel
	-
	executed
	-
	executed

	3
	P-frame
	AVC
	1/4pel
	Executed
	executed
	executed
	-

	4
	P-frame
	SAIF_HALF
	1/4pel
	Executed
	executed
	-
	-

	5
	P-frame
	AVC
	1/8pel
	Executed
	-
	executed
	-

	6
	P-frame
	SAIF_HALF
	1/8pel
	Executed
	-
	-
	-

4.6 Complexity characteristics of encoder motion estimation and motion segmentation selection

In the encoder, the interpolated reference frames are pre-computed and stored to avoid multiple computation of the same subpixel interpolation during the motion estimation process. However, this increases memory requirements, especially for 1/8th pel precision. Therefore there is an option to reduce memory requirements at the cost of increased encoding time by allowing chroma motion interpolation to be performed on the fly. This option does not affect the coding performance (also see memory usage estimates in section 4.3).
4.6.1 Motion Estimation

A poor estimation of the motion field may introduce an artificial need for unnecessary coding tools in a codec. In order to avoid this, an optimized motion estimation process is applied to achieve global rate-distortion optimization. It works in several stages, described as initial, trellis and region motion estimation.

In the initial motion estimation, the search is operated on groups of blocks arranged in a quadtree structure, ranging from 8x8 to up to 64x64. At each node of the quadtree, it is determined whether to use a single motion vector for the corresponding image area or to split it into smaller areas. When considering larger blocks, the coding syntax is maintained and the rate is still computed on an 8x8 block basis.
In the trellis motion estimation stage, rows and columns of motion vectors are optimized jointly. The algorithm proceeds by first optimizing all even rows (0, 2, 4,…), followed by odd rows (1, 3, 5,…), even columns, and finally odd columns. Note that this step is well suited for parallelization, since multiple rows or columns can be optimized concurrently.
In the region motion estimation stage, the motion vector field is first partitioned into regions that share a same motion vector. Then for each region a set of motion vector candidates is computed. Each vector in the set is then tested for the region, and the best one in the rate-distortion sense is assigned to the region.
In the trellis and region motion estimation stages, motion sharing is considered when two neighboring blocks have different motion information.
4.6.2 Simplification of motion estimation stages
As described in Section 4.5, several coding passes are conducted for each frame. The initial motion estimation stage is conducted only when encoding the first B-frame or the first P-frame within the frame multi-pass loop. When the initial motion estimation is skipped, the motion field derived in the previous frame coding pass is used as initial data for trellis motion estimation. Additionally, when the accuracy of motion vector is changed to 1/8th pel, motion vectors in the motion field are scaled accordingly. Table 17 summarizes which stages are conducted as a function of the interpolation filter and the MV accuracy.
Table 17 Simplification of ME stage
	Interpolation filter
	Accuracy of MV
	Initial ME
	Trellis ME
	Region ME

	AVC
	¼
	(
	(
	(

	SAIF_HALF
	¼
	-
	(
	(

	AVC
	1/8
	(MV scaling)
	(
	(

	SAIF_HALF
	1/8
	-
	(
	(

4.7 Complexity characteristics of decoder motion compensation
Block-based motion and intensity compensation with multiple references is performed based on the motion vector, reference index, scale and offset parameters which are decoded. In the decoder, interpolation is performed on the fly.

The complexity of motion compensation in the decoder is similar to that of AVC except for the following:
· 1/4th pel or 1/8th pel motion precision (determined at the frame level)

· fixed interpolation filter or frame adaptive interpolation filters (determined at the frame level)

· motion sharing, where a 8x8 block for luma and a 4x4 block for chroma may have two parts with distinct motion parameters

Table 18 Complexity comparison of decoder motion compensation tools

	AVC tool
	CDCM tool
	Complexity comparison

	Fixed interpolation filter
	Fixed interpolation filter
	Same

	
	Adaptive interpolation filter
	Interpolation using adaptive filter coefficients.

	Frame based weighted prediction
	Block based intensity compensation
	Similar

	Block partition up to 4x4
	Motion sharing
	CDCM is lower since only 2 parts per 8x8 block are possible

	1/4th pel MC
	1/4th or 1/8th pel adaptive MC at the frame level
	Additional bilinear interpolation is needed for 1/8th pel position.

4.8 Complexity characteristics of encoder intra-frame prediction type selection

[image: image63.wmf]b

w

a

w

p

x

x

ceil

w

x

floor

x

w

b

a

b

a

´

+

´

=

-

=

-

=

d

d

d

d

)

(

)

(

For each 16x16 block, the SIP type for luma is first determined. The encoder first selects the best prediction mode for the SIP_16x16 mode. Then for each 8x8 subblock within the 16x16 block, the encoder selects the best SIP type from the following: SIP_8x8, SIP_4x4, SIP_2x8, SIP_8x2 based on RD decision comparing the best prediction modes for each of the SIP types. The sum of RD cost for four 8x8 subblocks is compared with that of SIP_16x16 and the best SIP type is selected. Figure 14 illustrates this process.

Figure 14: SIP type and prediction mode for 16x16 luma block

The chroma SIP type is then derived from the selected luma SIP type. The best prediction mode for the selected chroma SIP type is then determined.
Compared to AVC, there are two more SIP types for luma: 2x8 and 8x2. For the intra prediction modes, there are up to two more TMA modes. And for the SIP_16x16, there are 11 prediction modes instead of 4 in AVC. In addition, if an edge is detected, the DC prediction mode is further replaced by an edge prediction mode. Both the TMA and Edge prediction modes are further described below.
4.8.1 TMA search process
The main additional complexity of the TMA prediction mode is the need to perform the template matching search to locate the best predictor. This is governed by the search area that is used and the size of the template.
The search area is defined by the Left Area and the Top Area as shown in Figure 15.
Where
sr is the search range that can be defined in the configuration

X is the width of the 16x16 or the 8x8 block;

y is the height of the 8x8, 4x4, 2x8 or 8x2 predictor block; and

[image: image64.emf]sr

sr

y

X

a

a

Left

Area

Top Area

a is the width/height of the TMA subblock, surrounded by the template.
Figure 15: Search area for TMA
Table 19: Table showing number of SAD/pel needed to create an 8x8, 4x4, 2x8 or 8x2 predictor.
	SIP type
	template L
	a
	Sr
	X
(width of block)+
	y
(height of subblock)
	Left Area
(y+sr-a) * (sr-a)
	Top area
(sr-a) * X
	Total Candidates
	Number of SAD
	SAD / predictor pel

	16x16
	9
	4
	12
	8
	16
	24 * 8
	8 * 8
	256
	2304
	144

	16x16
	17
	8
	12
	16
	16
	20 * 4
	4 * 16
	144
	2448
	38.25

	8x8
	5
	2
	8
	8
	8
	14 * 6
	6 * 8
	132
	660
	165

	8x8
	9
	4
	8
	8
	8
	12 * 4
	4 * 8
	80
	720
	45

	4x4
	5
	2
	8
	8
	4
	10 * 6
	6 * 8
	108
	540
	135

	4x4
	9
	4
	8
	8
	4
	8 * 4
	4 * 8
	64
	576
	36

	2x8
	5
	2
	8
	8
	2
	8 * 6
	6 * 8
	96
	480
	120

	8x2
	5
	2
	8
	8
	8
	14 * 6
	6 * 8
	132
	660
	165

	+ except for the L9 case of 16x16

4.8.2 Edge Prediction Mode

The edge-based prediction mode consists in two steps:

· edge detection in the available neighboring blocks to determine if an edge is present and its direction if an edge is indeed present

· extrapolation of the reference pixels along the direction of the detected edge

This mode is used only for the luma component.

The edge detection consists of applying the Sobel operators in the available neighboring blocks to compute gradient values:

[image: image34.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

-

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

-

=

1

2

1

0

0

0

1

2

1

1

0

1

2

0

2

1

0

1

y

x

Sobel

Sobel

For each group of 3x3 pixels where the Sobel operators are applied, an edge vector is defined by (
[image: image35.wmf]x

y

Sobel

Sobel

,

-

).

Only the edge vectors that intersect with the block to be predicted are considered. The norm
[image: image36.wmf]2

2

y

x

Sobel

Sobel

+

is computed for each vector. The vector with the maximum norm is considered, and this norm is compared to a threshold that is transmitted in the frame header. If the norm is smaller than the threshold, the DC mode is used to predict the block; if the norm is greater than the threshold, the edge based prediction mode is used to predict the block and the edge vector gives the direction of the prediction.

If the edge based prediction mode is used for prediction, the reference pixels are extrapolated along the direction of the detected edge as showed in Figure 16.

[image: image37.png]

[image: image65.emf]MC / IC

Reference

Memory

Intra

Prediction

Intra/Inter

Loop

Filter

Intra

Prediction

Entropy

Decoding

IQ

IT

Entropy decoding

Transform &

Quantization

Motion & Intensity

compensation

collapsing

Internal

precision





Denoising/

Deblocking

Figure 16: Computation of the edge based prediction for intra coding

The prediction of the pixel p(x,y) is:

If reference pixels from both the row up and the column left can be used for extrapolation of the edge, both are used.
4.9 Complexity characteristics of decoder intra-frame prediction operation

For a 16x16 block, if syntax sip_type is SIP_16x16, then intra16x16 is invoked. Otherwise, each 8x8 block is decoded in raster scanning order. For each 8x8 block, IntraMxN is performed according to the sip_type syntax.
Table 20 Complexity comparison of decoder intra-frame prediction operations
	tools
	AVC tool
	CDCM tool
	Complexity comparison

	MPM
	Derived from upper/left block
	MPM is fixed
	Simpler than AVC

	Directional Prediction mode
	Directional pred
	Directional pred
	same

	TMA mode
	none
	Full search of template in a search area as described in section 4.8.1.
	Not present in AVC

	Edge-based pred
	none
	Gradients computation + directional propagation
	Not present in AVC

	Low-pass filtering
	Intra8x8
	Intra8x8, intra16x16, chroma8x8
	same

4.10 Complexity characteristics of encoder transforms and transform type selection

The combinations of partitions and transform sizes are shown in section 2.9. The following are the possible transform sizes 16x16, 8x8, 4x4, 2x8 and 8x2.

For each transform size the DCT is first tested, followed by the KLT and the “zero” transform (all samples are transformed to zeroes). The transform yielding the smallest RD cost is selected.

When there are non-zero coefficients, the decoder needs to determine which transform to use. For transform sizes smaller than 16x16, the transform is determined by the parity of the sum of quantized coefficients. To satisfy this parity, the encoder may have to modify one coefficient after an initial quantization pass. The modified coefficient is selected based on distortion.
4.11 Complexity characteristics of decoder inverse transform operation

All transforms are integer transforms. If the transform size is smaller than 16x16, the transform type is decided based on the parity of the sum of quantized coefficients. If the parity is even, the DCT is used; otherwise the KLT is used. If the transform size is 16x16, then the transform type is explicitly transmitted from an encoder to a decoder using transform16x16_flag.
Table 21 Complexity comparison of decoder inverse transform operations
	Tools
	AVC tool
	CDCM tool
	Complexity comparison

	16x16
	Cascaded transform
	32-bit implementation using butterfly and multiplications
	Higher than AVC but can be simplified

	8x8
	16 bit implementation using butterfly with shift and addition
	Same
	Same

	4x4
	Yes
	Different from AVC, 16-bit implementation using butterfly with shift and addition.
	Same complexity (CDCM is a little bit more complex)

	2x8 and 8x2
	None
	8-point transform same as AVC, 2-point transform is Haar transform
	Not in AVC

	Separable KLT, all transform sizes
	None
	Implemented as matrix multiplication. 32-bit for 16x16 transform and 16-bit for other transform sizes.
	Higher

4.12 Complexity characteristics of encoder quantization and quantization type selection

4.12.1 Encoder’s Quantization Process

The quantization equation is expressed as:

[image: image38.wmf](

)

(

)

Shift

Offset

Scale

Coeff

AbsLevel

i

i

i

i

>>

+

´

=

,

0

max

where Scalei and Offseti are retrieved from look-up tables.
For each coefficient, the quantization process involves:

Table 22: Table showing number operations for quantization process.
	Operations
	Number

	Multiply
	1

	Add
	1

	Shift
	1

	Clip
	1

	Absolute value
	1

The quantization process for each coefficient can be performed in parallel.
4.12.2 Rate distortion optimized quantization
There is a further option in the encoder to enable rate-distortion-optimized quantization (RDOQ) for blocks of size 4x4, 8x2 or 2x8. Further details may be found the Encoder Reference Model.
4.13 Complexity characteristics of decoder inverse quantization
The inverse quantization equation is expressed as:

[image: image39.wmf](

)

(

)

(

)

(

)

i

i

i

i

i

sign

Scale

Offset

AbsLevel

Coeff

´

>>

+

´

+

<<

=

11

1024

7

where Scalei and Offseti are retrieved from look-up tables.

For each coefficient, the quantization process involves:

Table 23: Table showing number operations for inverse quantization process.
	Operations
	Number

	Multiply
	1

	Add
	2

	Shift
	2

	Sign copy
	1

The inverse quantization process for each coefficient can be performed in parallel.

4.14 Complexity characteristics of encoder in-loop filtering type selection
4.14.1 Non-Linear Denoising Filter (NDF)
NDF is applied on luma as well as chroma components. For each horizontal and vertical boundary of a 4x4 block, a boundary mode is derived considering the motion and residual information of the two 4x4 blocks adjoining the boundary. The boundary mode derivation is done once for luma and once for chroma. The boundary modes are used to set a threshold value and an update_flag (0/1) for each pixel.

At each pixel, the following operations are done:

· A 2-D separable transform (8x8 for luma and 4x4 for chroma) is computed with the said pixel in the top-left position of the transform support. It should be noted that the algorithm does not need the entire 2-D transform to be computed at each pixel. The 1-D transforms along the first dimension in the 2-D separable transform needs to be computed only once and can be reused multiple times.

· The transform coefficients are thresholded based on their magnitude. The threshold value is determined based on the strongest boundary mode among all the boundaries that overlap the transform support.

· The thresholded coefficients are then inverse-transformed to obtain an estimate for the pixels in the transform support. It should be noted here again that the inverse transform can be optimized in a manner similar to the forward transform.

· A weight is computed for this estimate using a look-up table based on the number of coefficients set to 0 during the thresholding process.

Multiple estimates are obtained and they are combined in a weighted fashion using the weights derived above to obtain the NDF estimate of each pixel. If the update_flag of a pixel is 1, then the pixel value is changed to its NDF estimate; else, the pixel value is unchanged. A detailed description of the operation can be found in Annex A.
The algorithm of NDF is highly parallelizable wherein the core computational operations at each pixel can be run independently.
4.14.2 Frame adaptive denoising filter
The frame adaptive denoising is applied on the luma component only. The filter coefficients are estimated at the encoder side by minimization of the mean squared error between the signal
[image: image40.wmf]s

¢

¢

¢

 resulting from this filtering step and the original input signal
[image: image41.wmf]s

:

[image: image42.wmf](

)

[

]

min

2

®

¢

¢

¢

-

=

s

s

E

D

This minimization requires the set up and the solution of a linear equation system with
[image: image43.wmf]O

N

M

+

+

+

1

 variables according to the filter operation described in Section 2.8.2. The set up of the linear equation system requires the measurement of correlation data. This measurement can be carried out in parallel.

The parameters
[image: image44.wmf]O

N

M

,

,

 as well as the quantization step size used in the filter coefficients coding step are adaptive. They are determined by minimization of the Lagrangian costs of overall data rate
[image: image45.wmf]R

 and mean squared error
[image: image46.wmf]D

:

[image: image47.wmf]min

®

+

×

D

R

l

Note that this step is well-suited to parallelization. The determination of the Lagrangian costs can be done in parallel for each tested parameter combination.
4.14.3 Deblocking filter
At each horizontal and vertical boundary, a deblocking filter operation is performed as described in Section 2.8.3. For this filter operation, the complexity is similar to the deblocking filter in AVC. This filter relies on the boundary mode decisions made by NDF.

For the inner samples, the filtering process involves the following operations:

Table 24: Table showing number operations for inner samples of deblocking filter.
	Operations
	Number

	Add
	6

	Shift
	2

	Clip
	1

For the outer samples, the filtering process involves the following operations:
Table 25: Table showing number operations for outer samples of deblocking filter.
	Operations
	Number

	Multiply
	3

	Add
	6

	Shift
	1

	Clip
	1

4.15 Complexity characteristics of decoder in-loop filtering operation
4.15.1 Non-Linear denoising filter (NDF)

The operation of NDF is the same as its operation in the encoder as described in Section 4.14.1.
4.15.2 Frame adaptive denoising filter
For each sample, a linear filter operation is performed as described in Section 4.14.2. For this filter operation,
[image: image48.wmf]O

N

M

+

+

multiplications,
[image: image49.wmf]O

N

M

+

+

+

1

additions, one bit shift, and one clipping function is required.
The filter operation can be realized for each sample in parallel.
4.15.3 Deblocking filter
A deblocking filter operation is performed as described in Section 4.14.3.
Table 26 shows the comparison of each of the above in-loop filtering operations to that of the AVC.

Table 26 Complexity comparison of decoder in-loop filtering operations

	tools
	AVC tool
	CDCM tool
	Complexity comparison

	Non-linear denoising (NDF)
	None
	Shift-dct based on 2-D 4x4 and 8x8 separable transform – luma and chroma
	Not in AVC

	Frame adaptive denoising
	None
	Wiener filter based on quantized prediction error, prediction and reconstructed signal – luma only
	Not in AVC

	deblocking
	Yes
	Similar to AVC
	Same complexity

4.16 Complexity characteristics of encoder entropy coding type selection
CDCM uses only arithmetic coding and therefore there is no selection of entropy coding type necessary. Furthermore a single set of initial probability estimates is used, and no adaptive selection thereof is required.
4.17 Complexity characteristics of decoder entropy decoding operation
The complexity of the entropy decoder is very similar to that of CABAC in AVC.
The core engine is a straightforward implementation of a binary arithmetic coder designed to work with 16-bit registers. Whereas CABAC uses a look-up table to determine interval sizes, our implementation uses an unsigned 16-bit multiplication. The probability estimation process is similar in nature to CABAC but does not require any look-up table as updated estimates can be easily be obtained using 2 additions and 1 shift operation. Similarly to CABAC, some syntax elements, such as sign values, are encoded using a fixed 50/50 estimate.

The number of contexts used by the entropy decoder is currently higher than for High Profile. However, no effort was made to reduce that number and it is expected that it could be significantly reduced without impacting coding efficiency.

The superblock synchronization mechanism adds some overhead in terms of computation and memory. However, such an operation is required only once per 64x64 block of luma samples. It brings significant benefits to parallel implementations as multiple entropy decoding threads can be run concurrently without loss of coding efficiency.

4.18 Degree of capability for encoder parallel processing
Encoding of a frame is performed using a super-block scanning pattern. Figure 17 illustrates such a structure. Since dependencies of those super-blocks is limited (i.e. a super-block only requires the knowledge of top and left previously encoded super-block), parallel processing at the encoder can be performed. For instance Figure 17 illustrates possible coding order of super-blocks. The entropy encoding module allows to generate a set of sub-streams when encoding a frame. Each sub-streams being relative to interleaved set of lines (see colored lines in Figure 17).

Additional parallel processing can also be achieved through careful pipelining of operations (e.g. residue calculation associated to one processor, transformation and quantization, binarization process, associated to other processors) as could already be done for AVC. Frame level parallel processing can also be performed upon application context (e.g. parallel encoding of disposable pictures).
[image: image50.emf]0 1 2 3 4 5

1 2 3 4 5 6

2 3 4 5 6 7

3 4 5 6 7 8

6 7 8 9 10 11

7 8 9 10 11 12

8 9 10 11 12 13

9 10 11 12 13 14

12 13 14 15 16 17

13 14 15 16 17 18

14 15 16 17 18 19

15 16 17 18 19 20

18 19 20 21 22 23

19 20 21 22 23 24

20 21 22 23 24 25

21 22 23 24 25 26

Figure 17: Super-block structure of a frame and possible processing order

4.19 Degree of capability for decoder parallel processing
Parallel processing of the decoder is possible at the early parsing process level and to further decoding levels.
Proposed implementation illustrates this concept using multi-threading decoding at two stages for each frame (see Section 5.3 of the User Manual for enabling multi-thread decoding):

· First through the splitting of the payload of each frame in a set of "sub-streams". These sub-streams are related to interleaved set of lines of super-block within a frame. Each set of line can then be associated to a decoding thread. Each decoding thread performs the associated parsing and decoding process needed for each block. Since some context synchronizations are performed for each super-block, some threads synchronizations are further needed. The coding penalty is very low (typically less than 1% bit-rate loss while enabling up to 8 threads decoding ability).

· Second through post-processing operations (NDF, LDF, DBF) that are also implemented with parallel processing thanks to independent calculation among set of lines and/or columns.

Additional parallel processing can also be achieved through careful pipelining of operations (e.g. parsing process associated to one processor, motion compensation and interpolation to another one, transformation and final reconstruction to a final processor) as could be already done for AVC. Frame level parallel processing can also be performed upon application context (e.g. parallel decoding of disposable pictures).

Software decoding real-time speedups when all threadable steps (arithmetic decoding and later filter operations) are multi-threaded depends on the number of substreams present (for the arithmetic decoding phase only), the number of threads used for each step and the number of physical cpu cores available.
As a typical example, at higher resolutions one can use 8 substreams per frame allowing effective use of up to 4 to 6 threads for arithmetic decoding. Typical speedups at these higher resolutions when all threadable steps are using the same number of threads are presented in the Table 27. A speedup factor of 's' implies the real decoding time is the original (single-threaded) decoding time divided by 's'. This example shows the speedup achieved for two sample bitstreams with a machine with 8 cores and another with 4 cores.
Table 27: Real time decoding speedups when using multiple decoding threads
	
	kimono C2R5 8substreams; 8 core
	people C1R5 8 substreams; 8 core

	threads
	seconds
	factor
	
	Seconds
	factor
	
	

	1
	294
	1.00
	
	363
	1.00
	
	

	2
	183
	1.61
	
	212
	1.71
	
	

	3
	138
	2.13
	
	166
	2.19
	
	

	4
	118
	2.49
	
	140
	2.59
	
	

	5
	105
	2.80
	
	123
	2.95
	
	

	6
	97
	3.03
	
	113
	3.21
	
	

	7
	92
	3.20
	
	105
	3.46
	
	

	8
	86
	3.42
	
	98
	3.70
	
	

	
	
	
	
	
	
	
	

	
	kimono C2R5 8substreams; 4 core
	people C1R5 8 substreams; 4 core

	1
	290
	1.00
	
	358
	1.00
	
	

	2
	175
	1.66
	
	206
	1.74
	
	

	3
	137
	2.12
	
	164
	2.18
	
	

	4
	115
	2.52
	
	136
	2.63
	
	

5 Algorithmic characteristics
5.1 GOP structure & random access characteristics for CS1
The random access characteristics of the proposal are similar to that of the Alpha anchor. Random access is achieved through the transmission of either and Instantaneous Decoding Refresh (IDR) frame or a Deferred Decoding Refresh (DDR) frame.

CS1 bitstreams were generated with DDR frames at the specified interval of not more that 1.1 seconds. Therefore a DDR picture is inserted at every 24, 32, 48 and 64 frames for sequences of 24, 30, 50 and 60 fps respectively.

[image: image66.emf]superblock superblock superblock

superblock superblock superblock

superblock superblock superblock

superblock

superblock

superblock

Frame reordering with a hierarchical GOP structure with 7 intermediate pictures is used. Intermediate pictures can have one or two reference lists. Frames at the top level pyramid of the hierarchical GOP are disposable pictures (shown as green in Figure 18). All other pictures are reference pictures.
Figure 18: Hierarchical GOP with 7 intermediate frame and random access at 1.1s (HB7I1.1s)

When random accessing into a DDR frame, one would discard the 7 intermediate frames that immediately follow the DDR frame in decoding order but preceding it in display order. The DDR frame and the first non-reordered frame (8th frame after the DDR) will be reconstructed with no mismatch and therefore can be displayed.
Random access to any frame in the sequences, the maximum number of frames that has to be decoded before decoding the desired frame is when decoding the Layer 3 disposable frame of the last GOP just prior to the DDR frame in display order. This is given numerically in Table 28.
Table 28: Frames to be decoded to decode the last disposable frame in a 1.1s interval.

	Sequence frame rate
	DDR interval
	DDR frame
	Reference P / Edge Frame
	Reference Intermediate Frame
	Disposable Frame
	Total

	24
	24
	2
	2
	2x3
	1
	11

	30
	32
	2
	3
	3x3
	1
	15

	50
	48
	2
	5
	5x3
	1
	23

	60
	64
	2
	7
	7x3
	1
	31

The maximum number of frames that has to be decoded before decoding the desired frame is given by the formula
GOP_size/2 * ((DDR_interval/GOP_size) – 1) + 3 =
DDR_interval/2 – GOP_size / 2 + 3

and in the case of GOP_size = 8, it is reduced to
DDR_interval/2 – 1.
5.2 GOP structure for CS2 & RVM measurement

A hierarchical P structure with 3 intermediate pictures and no reordering was used for CS2 bitstreams and is similar to the Gamma anchor.

[image: image67.emf]I

0

P

8

B

S4

B

S2

B

S6

B

5

B

7

B

1

B

3

Layer 3 disposable frames

Layer 2 reference frames

Layer 1 reference frames

Layer 0 reference frames

Intermediate frames

Edge frame

0 4 3 5 2 7 6 8 1

Decoding order

Coding Type

display order

Figure 19: Hierarchical GOP with 3 intermediate frames and no reordering (HP3)

There is no temporal scalability restriction and motion compensation can use reference picture from a layer with a larger number than the current layer.

Table 29: RVM for CS2 configuration for Gamma Anchor and proposal

	
	
	Gamma Anchor

	Proposal

	B
	S03-Kimono
	1.25
	1.79

	B
	S04-ParkScene
	1.30
	1.57

	B
	S05-Cactus
	1.13
	1.32

	B
	S06-BasketballDrive
	0.96
	1.14

	B
	S07-BQTerrace
	1.47
	1.77

	C
	S08-BasketballDrill
	0.81
	1.08

	C
	S09-BQMall
	1.13
	1.45

	C
	S10-PartyScene
	1.21
	1.44

	C
	S11-RaceHorses
	0.91
	1.21

	D
	S12-BasketballPass
	0.91
	1.16

	D
	S13-BQSquare
	1.37
	1.65

	D
	S14-BlowingBubbles
	1.34
	1.67

	D
	S15-RaceHorses
	0.84
	1.14

	E
	S16-Vidyo1
	1.37
	1.49

	E
	S17-Vidyo3
	1.41
	1.54

	E
	S18-Vidyo4
	1.36
	1.53

	
	
	
	

	B
	B-AVERAGE
	1.22
	1.52

	C
	C-AVERAGE
	1.01
	1.29

	D
	D-AVERAGE
	1.12
	1.40

	E
	E-AVERAGE
	1.38
	1.52

	All
	All-AVERAGE
	1.17
	1.43

5.3 Delay characteristics
The following factors affect the delay characteristics of the proposal:
1) Frame Reordering is used in CS1

A GOP size of 8 is used in CS1 bitstreams and therefore a delay of 8 frames is present due to reordering.
2) QP scaling

QP scaling is used in both CS1 and CS2 bitstreams. This can contribute to the fluctuation in bitrates from frame to frame and introduce delays into the system.

3) Frame multi-pass decision is used
Several frame coding passes are used in both CS1 and CS2 bitstreams for adaptive motion precision selection and adaptive frame type selection. This introduces encoding delay.
4) Adaptive parameters derived from the current frame.

Adaptive Interpolation Filter and Adaptive Denoising Filter are used in both CS1 and CS2 bitstreams. Both methods require the derivation of filter coefficients from the current picture and introduce encoding delay.
5.4 Reference Pictures

Motion compensated frames in CS1 bitstreams can have up to 2 reference lists. Motion compensated frames in CS2 bitstreams have 1 reference list. Both CS1 and CS2 bitstreams use up to 4 reference pictures in each reference list.

6 Software implementation description
Software is written in C++ using standard C libraries (and not C++ STL (Standard Template Library)).
The Unified Coding Style for the H.26L Reference Software (based on documents VCEG-N46 and VCEG-N47, except rule #6 in N46) and described in the coding_style.doc contained in the JM17.0 reference software is used.

Doxygen tags are included in the source code.

The software was checked with valgrind to ensure that there are no memory leaks.

The following compilers have been used:
· Microsoft Visual Studio 2005

· Microsoft Visual C++ 2008 Express Edition
· Intel C++ compiler 11.1.048
· g++ version 4.1.3 and higher
· g++ 4.2.1 (Apple custom build)
· llvm-g++ 4.2.1 (Apple custom build)
The following operating systems have been used:
· CentOS release 5.3 (64-bit)

· Red Hat Linux (32-bit and 64-bit)
· openSUSE 10.2 (64-bit)
· OS X 10.6 (64-bit)
· Ubuntu 7.10 (64-bit)
· Ubuntu 8.04 (64-bit)
· Ubuntu 9.10 (64-bit)
· Ubuntu 10.04 (64-bit)

· Windows XP (32-bit and 64-bit)
· Windows 7 (32-bit and 64-bit)
7 Highlighted aspects discussion
7.1 Uniform MC blocks with minimum partitions

A core design principle of the proposal is to use simple and fundamental coding tools in the decoder (and encoder). By exploiting inter block context in the arithmetic coding, a simple block structure with minimum partitioning can be used. These blocks are organized into superblocks to further exploit local statistics of the picture. This allows the ability to achieve the same compression gain over a large range of bitrates and resolutions.

A frame is made up of superblocks. Figure 20 shows an example of a frame containing a single substream that is made up of 12 superblocks (3 blocks high and 4 blocks wide). The superblocks within the frame are decoded one after another in raster scan order. A superblock is defined as a collection of NxM blocks (N blocks high and M blocks wide). For flexibility, the values of the N and M are indicated in the syntax elements sb_height and sb_width, respectively.

[image: image68.emf]I

0

P

S8

P

S4

P

S2

P

S6

P

5

P

7

P

1

P

3

Layer 2 disposable frames

Layer 1 reference frames

Layer 0 reference frames

Intermediate frames

Edge frame Edge frame

Intermediate frames

0 1 2 3 4 5 6 7 8

Decoding order

Coding Type

display order

Figure 20: Example of a frame that is made up of 12 superblocks (3 blocks high and 4 blocks wide).

[image: image69.emf]8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

N = 4

M = 8

8x8

Y

4x4

U

4x4

V

8x8 block

Blocks of 8x8 pixels (8x8 Y pixels followed by 4x4 U and 4x4 V pixels) are the basic unit of the codec. The blocks within the super block are decoded one after another in raster scan order except for the intra coded frame when intra16x16 is enabled. The example shown in Figure 21 is a super block with 4x8 blocks.

Figure 21: Example of 4x8 blocks group into a Superblock
When intra16x16 is enabled in an intra coded frame, the blocks within the super block are decoded one after another in the raster scan order but in a 16x16 block unit. Inside a 16x16 block, if the sip_type is not SIP16x16, a raster scan order in an 8x8 block is applied. The example shown in Figure 22 is a super block with 2x4 16x16 blocks.

[image: image51.emf]8x8

block

8x8

block

8x8

block

8x8

block

16x16

block

8x8

block

8x8

block

8x8

block

8x8

block

16x16

block

8x8

block

8x8

block

8x8

block

8x8

block

16x16

block

8x8

block

8x8

block

8x8

block

8x8

block

16x16

block

N

=

2

M=4

16x16

Y

8x8

U

8x8

V

16x16 block

Figure 22: Example of 2x4 16x16 blocks group into a Superblock in an intra coded frame

7.2 Better Chroma Fidelity

In anticipation that the quality and dynamic range of the chroma component of future content can only increase, this proposal has made several provisions to allow for better encoding of the chroma components. Therefore it is important to evaluate the proposals not only on the luma performance but also the chroma performance.

7.3 Overestimation of Sequence Header bits

In the calculation of the total average bitrate, all bits currently included in the sequence header were counted. However, this represents an overestimation of the actual sequence header bits. There is information and parameters that are no longer used, fixed or will become part of the decoder specification and therefore need not be transmitted as part of the sequence parameter.

7.4 Once-off QP adaptation

The anchors for the JCfP were created with a once-off qp change in the middle of the sequence which allows to match the target bitrate more accurately. This was not done for the CDCM bitstreams and therefore the bitrate of some sequences can be more than 5% lower than the specified bitrate.
7.5 Adding new context

Special care has been taken to simplify context management. Adding a new context in the code is very simple: a single call in the code suffices to define the context name and its categorizations; and an initial probability must be added into the external (probY0.dat) probability file. This is an advantage for any contributor during the course of the standardization process.
The complete set of contexts is defined in a single place (the entropy model constructor). These processes include statistics gathering, entropy calculation, probability updates, and the reading and writing of initial probabilities.
8 Improvements and bug fixes
This section describes bug fixes and improvements that have been implemented in the software after submission of the bitstreams. Backward compatibility has been maintained. The bitstreams submitted for the subjective test are still decodable with the improved software and the encoder continues to generate the same bitstreams by default when the same configuration files are used.

8.1 Improvement of KLT basis function

It was noticed that at very low bitrates and for a small number of sequence, some visual artifacts due to the KLT basis function may be observed. Improved KLT basis functions were designed and implemented in the software. In addition to the inter_KLT8x8 basis function as specified in Annex A, the following two new inter_KLT8x8 basis functions have been included in the codec. The first one has a smooth first basis function and the second one a flat first basis function. These new Inter KLT 8x8 (smooth and DC) can be selected by the encoding parameter alt8x8_trans_idx when it equals 1 and 2, respectively.
Inter KLT 8x8 (smooth):
	243
	247
	263
	270
	270
	263
	247
	243

	246
	352
	308
	123
	-117
	-316
	-355
	-240

	187
	185
	-36
	-300
	-305
	-43
	187
	193

	355
	127
	-326
	-235
	231
	310
	-104
	-358

	296
	-106
	-359
	165
	178
	-352
	-114
	317

	316
	-318
	-20
	336
	-335
	19
	288
	-286

	175
	-275
	189
	-97
	-86
	210
	-302
	183

	147
	-265
	316
	-340
	336
	-306
	245
	-132

Inter KLT 8x8 (DC):
	256
	256
	256
	256
	256
	256
	256
	256

	246
	353
	308
	122
	-118
	-317
	-355
	-239

	178
	177
	-44
	-309
	-314
	-50
	179
	184

	355
	127
	-326
	-235
	231
	310
	-104
	-358

	294
	-108
	-363
	160
	173
	-356
	-116
	315

	316
	-319
	-20
	336
	-335
	19
	288
	-286

	175
	-274
	190
	-96
	-85
	211
	-302
	183

	147
	-265
	316
	-340
	336
	-306
	245
	-132

With this change, the patterns have been reduced and appear like the classic block artifact. No difference is observed when using the new KLT for high bit-rate.
8.2 Support of intra16x16 in P/B frames

The lack of support of intra16x16 in P/B frames is a known issue that was not addressed in the bitstreams submitted to the JCfP. This functional is now supported in the latest CDCM codec. The software currently has a fairly basic implementation that can be improved, in particular optimization of the four 8x8 blocks included within a 16x16 block. As a result, the loss due to coarse quantization for chroma components is improved.
8.3 Simplification of Lagrange multipliers
The CDCM (and KTA) encoder has a large number of lambda multipliers to calculate RD cost for the block mode decision and RDOQ. This is not desirable and probably detrimental to future (unrelated) experiments as it may give unpredictable behavior and unexplainable results.
Therefore steps were taken to simplify the lambdas and to remove certain constant multipliers. The simulation results show that these simplifications bring about 7% average BD-rate improvements for chroma components without any significant change for luma components.

The fact that gains were achieved by removing custom designed lambda settings is a sign that the improvement made is in the right direction and would be a better basis for future experiment.
8.4 Bug fixes

The following bug fixes were made to the software. The following are related to the encoder and therefore have no impact on the bistream syntax or the decoder. When these bug fixes are not activated by configuration file, the encoder produces the same bitstreams as submitted to the JCfP.
· The interpolation process for the (7/8th, 7/8th) position of the 1/8th pel motion compensation was wrong and was corrected. There is no significant impact on the overall performance of the codec.

· The creation of candidate MVs in the motion estimation process of the encoder is corrected. This is an encoder-only parameter and is not signaled in the bitstream
· The availability of 8x2 mode for intra prediction is corrected.
· The cost of sip_type will now be considered by the encoder when choosing between 4x4, 8x2, 2x8 and 8x8 modes for intra coding. This is an encoder-only parameter and is not signaled in the bitstream.
· The bit-cost computation of block coding mode is corrected. This is an encoder-only parameter and is not signaled in the bitstream.
The following bug fix has an impact on the encoder and the decoder at high bit rates:
· A bug where a 32-bit value was stored as a 16-bit value in the inverse quantization is corrected.
8.5 Revised results

The above bug fixes and improvements were combined and the CS1 and CS2 bitstreams for the JCfP were regenerated. The following are the results obtained. Sections 8.6 and 8.7 show the revised results relative to the provided anchors. Sections 8.8 and 8.9 show the revised results relative to the original submission. The full results can be found in the excel sheet of Appendix 3.
8.6 Revised results for constraint set 1 configuration relative to Alpha anchor

The following are the constraint set 1 configuration performances after the improvements and bug fixes relative to the Alpha anchors. Table 30 and Figure 23 show the revised BD-Rate results for the CS1 configuration relative to the Alpha anchor.
Table 30: Revised BD-Rate for CS1 configuration relative to Alpha Anchor
	
	
	Y BD-Rate
	U BD-Rate
	V BD-Rate

	A
	S01-Traffic
	32.05
	35.00
	36.52

	A
	S02-PeopleOnStreet
	25.87
	12.09
	20.06

	B
	S03-Kimono
	33.68
	21.56
	24.78

	B
	S04-ParkScene
	28.23
	31.26
	32.37

	B
	S05-Cactus
	30.64
	34.79
	35.73

	B
	S06-BasketballDrive
	34.78
	34.65
	36.78

	B
	S07-BQTerrace
	41.55
	40.17
	37.58

	C
	S08-BasketballDrill
	31.06
	46.78
	47.41

	C
	S09-BQMall
	35.68
	34.51
	35.70

	C
	S10-PartyScene
	32.76
	43.50
	42.21

	C
	S11-RaceHorses
	32.24
	48.26
	47.35

	D
	S12-BasketballPass
	27.32
	35.55
	37.25

	D
	S13-BQSquare
	39.52
	31.95
	33.10

	D
	S14-BlowingBubbles
	26.47
	33.04
	33.74

	D
	S15-RaceHorses
	23.93
	33.57
	33.75

	
	
	
	
	

	A
	A-AVERAGE
	28.96
	23.55
	28.29

	B
	B-AVERAGE
	33.78
	32.49
	33.45

	C
	C-AVERAGE
	32.93
	43.26
	43.17

	D
	D-AVERAGE
	29.31
	33.53
	34.46

	All
	All-AVERAGE
	31.72
	34.45
	35.62

[image: image52.emf]Revised BD-Rate for CS1 configuration relative to Alpha Anchor

0.00

10.00

20.00

30.00

40.00

50.00

60.00

S01-Traffic

S02-PeopleOnStreet

S03-Kimono

S04-ParkScene S05-Cactus S06-BasketBallDrive

S07-BQTerrace

S08-BasketballDrill

S09-BQMall S10-PartyScene

S11-RaceHorses

S12-BasketballPass

S13-BQSquare

S14-BlowingBubbles S15-RaceHorses

A-AVERAGE B-AVERAGE C-AVERAGE D-AVERAGE All-AVERAGE

Test sequences

BD-Rate Gains %

(+ve means proposal is better)

Y BD-Rate U BD-Rate V BD-Rate

Figure 23: Plot of revised BD-Rate results for CS1 configuration relative to Alpha Anchor

8.7 Revised results for constraint set 2 configuration relative to Beta and Gamma anchors
The following are the constraint set 2 configuration performances after the improvements and bug fixes relative to the anchors. Since there are two anchors, the same data is presented twice relative to each of the Beta and Gamma anchors, respectively. Table 31 and Figure 24 show the revised BD-Rate results for the CS2 configuration relative to the Beta anchor. Table 32 and Figure 25 show the revised BD-Rate results for the CS2 configuration relative to the Gamma anchor.
Table 31: Revised BD-Rate results for CS2 configuration relative to Beta Anchor
	
	
	Y BD-Rate
	U BD-Rate
	V BD-Rate

	B
	S03-Kimono
	34.98
	13.30
	13.49

	B
	S04-ParkScene
	28.51
	16.59
	6.76

	B
	S05-Cactus
	32.14
	32.19
	30.26

	B
	S06-BasketBallDrive
	35.36
	25.47
	31.36

	B
	S07-BQTerrace
	46.92
	13.68
	-28.01

	C
	S08-BasketballDrill
	24.00
	36.46
	38.36

	C
	S09-BQMall
	31.60
	6.38
	-0.31

	C
	S10-PartyScene
	29.77
	33.38
	22.02

	C
	S11-RaceHorses
	24.12
	32.93
	25.26

	D
	S12-BasketballPass
	20.11
	24.63
	29.93

	D
	S13-BQSquare
	29.71
	-8.39
	-5.87

	D
	S14-BlowingBubbles
	16.79
	21.03
	19.18

	D
	S15-RaceHorses
	15.32
	23.00
	21.12

	E
	S16-Vidyo1
	42.22
	17.38
	27.02

	E
	S17-Vidyo3
	38.01
	-8.03
	32.02

	E
	S18-Vidyo4
	40.61
	12.59
	26.41

	
	
	
	
	

	B
	B-AVERAGE
	35.58
	20.25
	10.77

	C
	C-AVERAGE
	27.37
	27.29
	21.33

	D
	D-AVERAGE
	20.48
	15.07
	16.09

	E
	E-AVERAGE
	40.28
	7.31
	28.48

	All
	All-AVERAGE
	30.63
	18.29
	18.06

[image: image53.emf]Revised BD-Rate for CS2 configuration relative to Beta Anchor

-40.00

-30.00

-20.00

-10.00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

S03-Kimono

S04-ParkScene S05-Cactus S06-BasketBallDrive

S07-BQTerrace

S08-BasketballDrill

S09-BQMall S10-PartyScene

S11-RaceHorses

S12-BasketballPass

S13-BQSquare

S14-BlowingBubbles S15-RaceHorses

S16-Vidyo1

S17-Vidyo3 S18-Vidyo4B-AVERAGE C-AVERAGE D-AVERAGE E-AVERAGE All-AVERAGE

Test sequences

BD-Rate Gains %

(+ve means proposal is better)

Y BD-Rate U BD-Rate V BD-Rate

Figure 24: Plot of revised BD-Rate results for CS2 configuration relative to Beta Anchor

Table 32: Revised BD-Rate results for CS2 configuration relative to Gamma Anchor
	
	
	Y BD-Rate
	U BD-Rate
	V BD-Rate

	B
	S03-Kimono
	51.09
	27.75
	30.17

	B
	S04-ParkScene
	45.99
	37.28
	26.90

	B
	S05-Cactus
	49.98
	47.86
	48.73

	B
	S06-BasketballDrive
	49.37
	43.66
	46.44

	B
	S07-BQTerrace
	65.47
	48.46
	35.39

	C
	S08-BasketballDrill
	44.05
	55.22
	56.07

	C
	S09-BQMall
	46.36
	28.33
	21.26

	C
	S10-PartyScene
	51.80
	56.47
	47.26

	C
	S11-RaceHorses
	33.07
	39.38
	32.66

	D
	S12-BasketballPass
	32.13
	34.51
	37.42

	D
	S13-BQSquare
	62.17
	39.45
	42.52

	D
	S14-BlowingBubbles
	40.77
	45.53
	46.46

	D
	S15-RaceHorses
	23.00
	26.61
	24.75

	E
	S16-Vidyo1
	56.26
	37.00
	47.95

	E
	S17-Vidyo3
	52.97
	24.01
	48.84

	E
	S18-Vidyo4
	57.48
	35.34
	47.01

	
	
	
	
	

	B
	B-AVERAGE
	52.38
	41.00
	37.53

	C
	C-AVERAGE
	43.82
	44.85
	39.31

	D
	D-AVERAGE
	39.52
	36.52
	37.79

	E
	E-AVERAGE
	55.57
	32.12
	47.93

	All
	All-AVERAGE
	47.62
	39.18
	39.99

[image: image54.emf]Revised BD-Rate for CS2 configuration relative to Gamma Anchor

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

S03-Kimono

S04-ParkScene S05-Cactus S06-BasketBallDrive

S07-BQTerrace

S08-BasketballDrill

S09-BQMall S10-PartyScene

S11-RaceHorses

S12-BasketballPass

S13-BQSquare

S14-BlowingBubbles S15-RaceHorses

S16-Vidyo1

S17-Vidyo3 S18-Vidyo4B-AVERAGE C-AVERAGE D-AVERAGE E-AVERAGE All-AVERAGE

Test sequences

BD-Rate Gains %

(+ve means proposal is better)

Y BD-Rate U BD-Rate V BD-Rate

Figure 25: Plot of revised BD-Rate results for CS2 configuration relative to Gamma Anchor

8.8 Revised results for constraint set 1 configuration relative to original submission

The following are the constraint set 1 configuration performances after the improvements and bug fixes relative to the original submission. Table 33 and Figure 26 show the revised BD-Rate results for the CS1 configuration relative to the original submission.
Table 33: Revised BD-Rate results for CS1 configuration relative to the original proposal
	
	
	Y BD-Rate
	U BD-Rate
	V BD-Rate

	A
	S01-Traffic
	-1.31
	8.86
	9.48

	A
	S02-PeopleOnStreet
	0.96
	4.98
	9.48

	B
	S03-Kimono
	0.72
	6.06
	6.76

	B
	S04-ParkScene
	-0.92
	9.26
	10.67

	B
	S05-Cactus
	0.24
	8.73
	10.14

	B
	S06-BasketballDrive
	1.12
	8.45
	7.02

	B
	S07-BQTerrace
	-0.30
	15.61
	18.65

	C
	S08-BasketballDrill
	0.07
	7.91
	7.27

	C
	S09-BQMall
	0.38
	6.00
	6.68

	C
	S10-PartyScene
	0.60
	7.41
	6.25

	C
	S11-RaceHorses
	0.60
	5.84
	7.23

	D
	S12-BasketballPass
	0.23
	2.57
	2.94

	D
	S13-BQSquare
	-0.05
	10.59
	11.31

	D
	S14-BlowingBubbles
	-0.19
	6.81
	6.84

	D
	S15-RaceHorses
	-0.05
	3.69
	3.82

	
	
	
	
	

	A
	A-AVERAGE
	-0.17
	6.92
	9.48

	B
	B-AVERAGE
	0.17
	9.62
	10.65

	C
	C-AVERAGE
	0.41
	6.79
	6.86

	D
	D-AVERAGE
	-0.02
	5.92
	6.23

	All
	All-AVERAGE
	0.14
	7.52
	8.30

[image: image55.emf]Reised BD-Rate for CS1 configuration relative to original submission

-5.00

0.00

5.00

10.00

15.00

20.00

S01-Traffic

S02-PeopleOnStreet

S03-Kimono

S04-ParkScene S05-Cactus S06-BasketBallDrive

S07-BQTerrace

S08-BasketballDrill

S09-BQMall S10-PartyScene

S11-RaceHorses

S12-BasketballPass

S13-BQSquare

S14-BlowingBubbles S15-RaceHorses

A-AVERAGE B-AVERAGE C-AVERAGE D-AVERAGE All-AVERAGE

Test sequences

BD-Rate Gains %

(+ve means revised result is better)

Y BD-Rate U BD-Rate V BD-Rate

Figure 26: Plot of revised BD-Rate results for revised CS1 configuration relative to original submission
8.9 Revised results for constraint set 2 configuration relative to original submission

The following are the constraint set 2 configuration performances after the improvements and bug fixes relative to the original submission. Table 34 and Figure 27 show the revised BD-Rate results for the CS2 configuration relative to the original submission.

Table 34: Revised BD-Rate results for CS2 configuration relative to original submission
	
	
	Y BD-Rate
	U BD-Rate
	V BD-Rate

	B
	S03-Kimono
	0.92
	2.48
	3.01

	B
	S04-ParkScene
	-0.89
	5.79
	5.71

	B
	S05-Cactus
	0.43
	8.39
	9.44

	B
	S06-BasketBallDrive
	1.17
	7.43
	7.09

	B
	S07-BQTerrace
	-0.25
	9.05
	10.91

	C
	S08-BasketballDrill
	0.38
	6.59
	6.87

	C
	S09-BQMall
	0.36
	5.37
	6.20

	C
	S10-PartyScene
	0.37
	7.93
	6.32

	C
	S11-RaceHorses
	0.74
	6.03
	7.58

	D
	S12-BasketballPass
	0.19
	3.52
	3.99

	D
	S13-BQSquare
	0.75
	14.86
	9.61

	D
	S14-BlowingBubbles
	-0.37
	3.46
	3.53

	D
	S15-RaceHorses
	-0.42
	3.38
	3.80

	E
	S16-Vidyo1
	0.77
	15.71
	14.64

	E
	S17-Vidyo3
	0.32
	14.41
	11.07

	E
	S18-Vidyo4
	0.40
	16.62
	17.04

	
	
	
	
	

	B
	B-AVERAGE
	0.28
	6.63
	7.23

	C
	C-AVERAGE
	0.46
	6.48
	6.74

	D
	D-AVERAGE
	0.04
	6.30
	5.23

	E
	E-AVERAGE
	0.49
	15.58
	14.25

	All
	All-AVERAGE
	0.30
	8.19
	7.93

[image: image56.emf]Revised BD-Rate for CS2 configuration relative to original submission

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

S03-Kimono

S04-ParkScene S05-Cactus S06-BasketBallDrive

S07-BQTerrace

S08-BasketballDrill

S09-BQMall S10-PartyScene

S11-RaceHorses

S12-BasketballPass

S13-BQSquare

S14-BlowingBubbles S15-RaceHorses

S16-Vidyo1

S17-Vidyo3 S18-Vidyo4B-AVERAGE C-AVERAGE D-AVERAGE E-AVERAGE All-AVERAGE

Test sequences

BD-Rate Gains %

(+ve means revised result is better)

Y BD-Rate U BD-Rate V BD-Rate

Figure 27: Plot of revised BD-Rate results for CS2 configuration relative to original submission
8.10 Summary
The revised objective results show average Y, U and V BD-rate gains of 31.7%, 34.5% and 35.6% respectively for all sequences in constraint set 1 when compared to the Alpha anchor. For all sequences in constraint set 2, the average Y, U and V BD-rate gains of 30.6%, 18.3% and 18.1% respectively are achieved when compared to the Beta anchor. The average Y, U and V BD-rate gains of 47.6%, 39.2% and 40.0% respectively are achieved when compared to the Gamma anchor.

When comparing to the revised results to the original proposal (presented in Section 3) it is observed that the luma BD-ate performance remain relatively the same. However the chroma performance increased as follows.

For CS1 configuration the U and V BD-rate improved by 7.5% and 8.3%, respectively. For CS2 configuration the U and V BD-rate improved by 8.2% and 7.9%, respectively.
9 Closing remarks

The CDCM codec is being proposed in response to the JCfP on Video Compression Technology.
It has been shown to have superior subjective quality (significantly better than JM, better than KTA) and excellent objective quality (around 30% compared to the JM anchors). Better chroma performance in both objective and subjective measurements was observed.

The codec shows similar quality improvements for CS1 and CS2, and across all resolutions and sequence types, proving that it is robust, adaptable and not tuned to specific conditions, sequences or resolutions.
The basic design of the CDCM codec has a lot of potential for further encoder optimization and allows for more product differentiation. Attention has also been given to make the algorithm more parallelizable, as illustrated by the multi-threaded decoding capabilities of the software.
The proposal is well documented with the availability of the decoder specification, user manual and reference encoder documentation together with Doxygen support in the source code.

The software has also been thoroughly tested by many companies using a variety of compilers and operating systems. This makes it a suitable platform for the standardization work to be built upon. The clean and efficient software is suitable for further core experimentation.

Simple improvements and bug fixes applied to the proposal after the bitstream submission illustrates that further performance improvements is possible.

Therefore the CDCM is a good candidate for the JCT-VC Test Model.
10 References
[1] ITU-T Q6/16 Visual Coding and ISO/IEC JTC1/SC29/WG11 Coding of Moving Pictures and Audio, “Joint Call for Proposals on Video Compression Technology”, ISO/IEC JTC1/SC29/WG11/N11113, Kyoto, 22 January 2010.
[2] S. Wittmann, T. Wedi „Separable adaptive interpolation filter“, doc. T05-SG16-C-0219, ITU-T SG16/6 Meeting, Geneva, Switzerland, 26 June - 6 July 2007
11 Patent rights declaration(s)
France Telecom S.A. may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

Nippon Telegraph and Telephone Corporation may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

NTT DOCOMO, Inc. may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

Panasonic Corporation may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
Technicolor S.A. and/or its affiliates may have IPR relating to the technology described in this contribution and is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

� EMBED Equation.3 ���

� ITU-T Recommendation H.264 | ISO/IEC 14496-10. For brevity the AVC acronym is used throughout this document.

� Note that the Xeon E5540 has a lower clock speed but experiments show that the difference in the recorded ‘elapsed time’ is only about 10% higher than for the Xeon E5450. This difference is within the tolerance of the coarse measurement of encoding time and no normalization factor was used for the encoding time measured.

� Note that in the encoder the ‘elapsed time’ and the ‘user time’ are within 1% (average is ~0.2%) of each other.

� In the decoder, the difference between the ‘elapsed time’ and ‘user time’ time can be significant and vary depending on the I/O speeds of the system. To eliminate this variability, the ‘user time’ is used.

Page: 2
Date Saved: 2010-04-13

_1329647352.unknown

_1329668928.unknown

_1331045587.doc
[image: image1.wmf]s

¢

[image: image2.wmf]s

¢

[image: image3.wmf]s

¢

¢

¢

[image: image4.wmf]s

¢

[image: image5.wmf]e

¢

[image: image6.wmf]s

¢

¢

[image: image7.wmf]e

¢

[image: image8.wmf]s

ˆ

[image: image9.wmf]e

[image: image10.wmf]s

[image: image11.wmf]e

¢

[image: image12.wmf]s

¢

[image: image13.wmf]s

¢

� EMBED Equation.3 ���

Loop Filter

Entropy�Coder

Inverse Quantization / �Inverse Transform

Transform /

Quantization

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Predictor

Non-linear �denoising

Adaptive�denoising�Filter

Deblocking

_1325282885.unknown

_1325282950.unknown

_1325283052.unknown

_1329647015.unknown

_1329647023.unknown

_1325282974.unknown

_1325282935.unknown

_1325247831.unknown

_1325247832.unknown

_1325247830.unknown

_1331993342.unknown

_1332567644.unknown

_1332569134.unknown

_1331986658.unknown

_1329669340.unknown

_1330265486.unknown

_1330522524.unknown

_1330150362.unknown

_1330150367.unknown

_1329715314.unknown

_1329647619.unknown

_1329647843.unknown

_1329648121.unknown

_1329648658.unknown

_1329647823.unknown

_1329647612.unknown

_1329647432.unknown

_1329647598.unknown

_1329647414.unknown

_1234567893.vsd
ScaleOff

MV0,x

MV1,x

Offset

MV0,y

MV1,y

Scale

1

1

1

1

1

1

0

0

0

0

0

0

0

_1329647152.unknown

_1329647168.unknown

_1314621877.vsd
Begin

End

p =p – ((p - 0x10000 + δ + 16)>>5)

p =p – ((p – δ + 16)>>5)

val = 0 ?

Yes

No

_1329647145.unknown

_1315132462.vsd
8x8
block

8x8
block

8x8
block

8x8
block

16x16
block

8x8
block

8x8
block

8x8
block

8x8
block

16x16
block

8x8
block

8x8
block

8x8
block

8x8
block

16x16
block

8x8
block

8x8
block

8x8
block

8x8
block

16x16
block

N=2

M=4

16x16
Y

8x8
U

8x8
V

16x16 block

_1295870262.unknown

_1299051647.unknown

_1293277836.unknown

_1063704546.unknown

_1234567892.vsd
Scale

MVx

MVy

Offset

0

0

0

0

1

1

1

_1063163692.unknown

_1063704455.unknown

