JCTVC-A114 Annex C: User’s Manual

2010/04/13

	[image: image10.emf]qp mapping

better_colour=7, qp_chroma_th=60, qp_chroma_scale=32

0

20

40

60

80

100

120

140

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99106113120127

qp

mapped qp values

qp

qp’chroma

qpDCchroma

[image: image11.emf]sr

sr

y

X

a

a

Left

Area

Top Area

[image: image12.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11

1st Meeting: Dresden, DE, 15-23 April, 2010
	Document: JCTVC-A114-Annex C

Annex C

CDCM Video Codec:

User’s Manual
61
Introduction

62
Software package/INSTALLATION AND COMPILATION

62.1
Compiling the codec

62.1.1
Windows using MS Visual Studio

62.1.2
Unix/Linux and Windows using gcc

62.2
Files

62.2.1
software folder

72.2.2
software/bin folder

72.2.3
software/bin/tab folder

72.2.4
software/bin/dat folder

82.2.5
software/bin/qm folder

82.2.6
software/src and software/inc folders

103
Encoder usage

103.1
Encoder syntax

103.2
Encoder output

123.3
Encoder limitations

124
Encoder parameters

124.1
Configuration file

124.1.1
Source sequence parameters

134.1.1.1
srcfile

134.1.1.2
width

134.1.1.3
height

134.1.1.4
nframes

134.1.1.5
f_header

134.1.1.6
frame_offset

144.1.2
GOP structure parameters

144.1.2.1
intermed_frame

144.1.2.2
intermed_disp

154.1.2.3
pyramid_coding

164.1.2.4
no_reordering

164.1.2.5
expPrmdFrmt

174.1.2.6
expPrmdFrmtIdr

174.1.2.7
onlyI

184.1.2.8
enableB

184.1.3
Decoder Refresh Parameters

184.1.3.1
idr_interval

184.1.3.2
deferred_decoder_refresh

184.1.4
Superblock parameters

194.1.4.1
sb_height

194.1.4.2
sb_width

194.1.5
Quantization parameters

204.1.5.1
qp

204.1.5.2
qp_frame_mod

204.1.5.3
qp_off_intra

204.1.5.4
qp_off_intra_disposable_pic

204.1.5.5
qp_off_onlyI

204.1.5.6
qp_off_intra_scene_cut

204.1.5.7
qp_off_intref

204.1.5.8
qp_off_intdisp

204.1.5.9
better_color

214.1.5.10
chroma_dc_th

214.1.5.11
chroma_dc_scale

214.1.5.12
bc_offset

224.1.5.13
lumaDC

224.1.5.14
q_rdoffset

224.1.5.15
q_rdoffset8x8

224.1.5.16
q_adaptoffset

224.1.5.17
q_offsetXX parameters

234.1.5.18
theta_intra

234.1.5.19
theta_inter

234.1.5.20
theta8x8_intra

234.1.5.21
theta8x8_inter

234.1.5.22
qtabfile_4x4

234.1.5.23
qtabfile_8x8

244.1.5.24
qtabfile_2x8

244.1.5.25
qtabfile_8x2

244.1.6
Customizable quantization parameters

244.1.6.1
qmatrixfile

244.1.6.2
qmatrix_enable_flag

244.1.7
Customizable quantization offset parameters

244.1.7.1
qoffsetmatrixfile

244.1.7.2
qoffsetmatrix_enable_flag

244.1.8
Spatial prediction parameters

254.1.8.1
mpm_default

254.1.8.2
edge_prediction_ipd

254.1.8.3
threshold_edge_vector

254.1.8.4
intra8x8

254.1.8.5
transform_selection

254.1.8.6
intra16x16

254.1.8.7
chroma8x8

264.1.8.8
transform_selection_16x16

264.1.8.9
candidate_search_region

264.1.8.10
candidate_search_region_intra16x16

264.1.8.11
num_candidate_averaged

264.1.8.12
candidate_sad_threshold

264.1.9
Temporal prediction parameters

274.1.9.1
nref_frames

274.1.9.2
adapt_frame_type

274.1.9.3
adapt_list_size

284.1.9.4
chroma_mc

284.1.9.5
luma_mc

284.1.9.6
me_subpel

284.1.9.7
gen8pel_filter

284.1.9.8
P_subpel

294.1.9.9
B_subpel

294.1.9.10
mc_round

294.1.9.11
enable_intcomp

294.1.9.12
enable_motion_sharing

294.1.9.13
mvshare_two_enable

294.1.9.14
motion_sharing_log

304.1.9.15
weight_diff_scale

304.1.9.16
weight_diff_max

304.1.9.17
DC_mult

304.1.9.18
chroma_on_fly

304.1.10
Loop filter parameters

304.1.10.1
Parameters of the non-linear denoising filter

324.1.10.2
Parameters of the adaptive de-noising filter

334.1.10.3
Parameters of the deblocking filter

344.1.11
Motion estimation parameters

364.1.11.1
chroma_me

364.1.11.2
lime_size

364.1.11.3
me_range

364.1.11.4
me_loopsX

364.1.11.5
me_repeat_X

364.1.11.6
me_refine_sX

364.1.11.7
me_trellis_sX

364.1.11.8
me_region_sX

364.1.11.9
me_trellis_oX

374.1.11.10
me_region_oX

374.1.11.11
treillis_ncand

374.1.11.12
region_ncand

374.1.11.13
trellis_mode

374.1.11.14
fastME

374.1.11.15
fastMEDual

374.1.11.16
fastMEFixed

384.1.11.17
hadamard

384.1.11.18
h0_mult

384.1.11.19
ssd_qp_P

384.1.11.20
ssd_qp_B

384.1.11.21
ssd_disp_only

384.1.11.22
ssd_mult

384.1.11.23
enable_motion_sharing_me_init_offset

384.1.11.24
enable_motion_sharing_me_refine

394.1.11.25
enable_motion_sharing_me_ refine_full

394.1.11.26
enable_motion_sharing_me_trellis

394.1.11.27
enable_motion_sharing_me_trellis_full

394.1.11.28
enable_motion_sharing_me_region

394.1.11.29
mvshare_two_enable_me

394.1.12
8x8 Transform

394.1.12.1
trans8x8_enable

394.1.13
Entropy coding parameters

394.1.13.1
loss_rate

404.1.13.2
ac_exp_limit

404.1.13.3
prob_file

404.1.13.4
ztreefile

404.1.13.5
ztreefile_8x8

404.1.14
Adaptive interpolation filter parameter

404.1.14.1
AIF

404.1.15
Output file parameters

404.1.15.1
dstfile

404.1.15.2
recfile

404.1.15.3
sadfile

404.1.15.4
logfile

404.1.15.5
sadlogfile

414.1.16
RD optimization parameters

414.1.16.1
melq_base

414.1.16.2
mel_offset

414.1.16.3
learn_offset

414.1.16.4
lambdaq_base

414.1.16.5
lambdaq_offset

414.1.16.6
lambda_mode_chroma

414.1.17
Motion Vector Competition Parameters

424.1.17.1
mvcomp_default_config

424.1.17.2
mvcomp0_zero_residue, mvcomp1_zero_residue

424.1.17.3
mvcomp0_predictor_0, mvcomp0_predictor_1, mvcomp0_predictor_2

434.1.17.4
mvcomp0_max_temporal_diff, mvcomp1_max_temporal_diff

434.1.17.5
mvcomp0_auto_max_temporal_diff, mvcomp1_auto_max_temporal_diff

434.1.17.6
mvcomp0_keep_learned_movement, mvcomp1_keep_learned_movement

434.1.18
CABAC synchronization points

434.1.18.1
superblock_synchro

434.1.18.2
superblock_nsubstreams

434.1.19
Bugfix parameters

444.1.19.1
bugfix80

444.1.19.2
bugfix87

444.1.19.3
bugfix88

444.1.19.4
bugfix89

444.1.19.5
bugfix90

444.1.19.6
bugfix92

444.1.19.7
bugfix93

444.1.19.8
bugfix94

454.1.20
Other parameters

454.1.20.1
mvs_realcost

454.1.20.2
reffile

454.1.20.3
parfile

454.1.20.4
open_loop

454.2
Customizable quantization scaling matrix file

474.2.1
Parameters of quantization scaling matrix for a transform block

474.2.2
Modes of generating matrixes.

474.2.2.1
Update mode (_MOD_TYPE_= 0).

484.2.2.2
Refresh mode (_MOD_TYPE_= 1).

484.3
Customizable quantization offset matrix file

484.3.1
Parameters of quantization offset matrix for luminance block

494.3.2
Additional mode of generating matrixes.

494.3.2.1
Flat Matrix Mode (_MOD_TYPE_=2)

495
Decoder usage

495.1
Decoder syntax

495.2
Decoder output

515.3
Decoder features

515.3.1
Transcoding

515.3.2
Multi-threading

526
Trace file

526.1
Trace file

527
References

1 Introduction

This document describes how to use the CDCM Video Codec software. It includes information about both the decoder and the encoder. It describes the content of the software package, and compilation issues under different environments (i.e. Windows and Unix/Linux based platforms). It details encoder usage and all corresponding parameters, and decoder usage and features. Finally it contains and explains encoder and decoder log reports that arrive as codec outputs.
For a quick launch and test of the CDCM Video Codec, it is suggested to read the Quick Start Guide [1]. The interested reader might also go through the Overall Technical Document Proposal [2], the Decoder Specification [3], and the Reference Encoder Manual [4].
2 Software package/INSTALLATION AND COMPILATION
This section describes the main software package available for download from an FTP site whose details will be disclosed separately.

2.1 Compiling the codec

2.1.1 Windows using MS Visual Studio

The software package contains a Visual Studio 6 workspace named “dcm.dsw”, which includes both the encoder and the decoder workspaces. A specific workspace for the encoder “encoder.dsw” and one for the decoder “decoder.dsw” are also provided. The compilation creates the binaries “encoder.exe” or “decoder.exe” in the “bin” directory. The workspaces are compatible with more recent Visual C++ editions, such as 2008 Visual C++ Express Edition, or .NET2005: an automatic conversion of the workspaces is required and automatically requested at the first launch.
2.1.2 Unix/Linux and Windows using gcc

On Unix-like platforms (including Linux, and including Windows with a unix compatible toolset installed) a Makefile is provided to allow compilation of the encoder and decoder binaries. In order to build the binaries, it suffices to use the following commands from within the 'software' directory:

make clean

make

This will create both the encoder and decoder binaries, named as bin/encoder and bin/decoder respectively.

 By default, the Makefile will use the 'g++' compiler. It is possible to change this to 'icc' using the option ICC=1 to make, i.e. make ICC=1.

2.2 Files

2.2.1 software folder

	Filename
	Content

	Makefile
	Makefile for compiling under Unix/Linux

	dcm.dsw
	Visual C++ workspace for codec

	decoder.dsp
	Visual C++ project file for decoder

	decoder.dsw
	Visual C++ workspace for decoder

	encoder.dsp
	Visual C++ project file for encoder

	encoder.dsw
	Visual C++ workspace for encoder

	history.txt
	Log of changes in the CDCM software

	Software_copyright.txt
	Copyrights for the different parts of the code

	version.txt
	Software version

2.2.2 software/bin folder

	Filename
	Content

	encoder_HB3I1s
	Sample encoder configuration file for hierarchical B structure

	encoder_HB7I1.1s
	Sample encoder configuration file for hierarchical B structure

	encoder_HP3
	Sample encoder configuration file for hierarchical P structure

	encoder_IbBbBbBbP.cfg
	Sample encoder configuration file for IbBbBbBbP structure

	encoder_IbBbBbBbP_I1s.cfg
	Sample encoder configuration file for IbBbBbBbP structure

	encoder_Ionly.cfg
	Sample encoder configuration file for Ionly structure

	encoder_IPPP.cfg
	Sample encoder configuration file for IPPP structure

	tempete_cif_9fr
	Test sequence

2.2.3 software/bin/tab folder

	Filename
	Content

	quant_2x8.tab
	File containing inverse and forward quantization scaling values as well as the norm values, for the 2x8 coefficients.

	quant_8x2.tab
	File containing inverse and forward quantization scaling values as well as the norm values, for the 8x2 coefficients.

	quant_4x4.tab
	File containing inverse and forward quantization scaling values as well as the norm values, for the 4x4 coefficients.

	quant_8x8.tab
	File containing inverse and forward quantization scaling values for the 8x8 coefficients.

Note: All the files contain the inverse and forward quantization scaling values (and the norm except for the 8x8 case) for all qp values. These files are used by the encoder and the decoder. The latter, though, only needs the inverse quantization scaling values for one selected qp. As the inverse quantization scales are static, it is not expected to be sent in the sequence header, unlike the initial probabilities, which may be transmitted to adapt to the sequence statistics.

The information is present in groups starting with the inverse quantization scaling values followed by the forward quantization scaling values and finally the norm if present. Each group consists of rows of values, each row being for a given qp value starting from qp=0 and ending with qp=127: Each row contains N values separated by spaces. The values are ordered in the raster scan of the 2x8, 8x2, 4x4 and 8x8 blocks and N is the number of coefficients in the blocks, respectively.

2.2.4 software/bin/dat folder

	Filename
	Content

	probY0.dat
	File containing initial probabilities

	ztree.dat
	File containing zerotree information

	ztree_8x8.dat
	File containing zerotree information for 8x8ztree

Note: The files containing the initial probabilities and the zerotree information must always be provided to the encoder. The decoder does not require them as their content is encoded in the sequence header.

The zerotree information is equivalent to scan information but it is more general. A traditional zigzag scan for a 4x4 block may be represented by the following sequence:

16

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1

0 1 4 8 5 2 3 6 9 12 13 10 7 11 14 15
In addition to coding transform coefficients, the zerotree structure is also used for coding motion information.

2.2.5 software/bin/qm folder

	Filename
	Content

	q_matrix.cfg
	File containing customizable scaling values of quantization for 4x4, 8x2, 2x8, 8x8, 16x16 coefficients.

	q_offsetmatrix.cfg
	File containing customizable rounding offset values of quantization for 4x4, 8x2, 2x8, 8x8, 16x16 coefficients.

	q_matrix_sample.cfg
	Sample file containing customizable scaling values of quantization for 4x4, 8x2, 2x8, 8x8, 16x16 coefficients.

	q_offsetmatrix_sample.cfg
	Sample file containing customizable rounding offset values of quantization for 4x4, 8x2, 2x8, 8x8, 16x16 coefficients.

Note: Customizable quantization values and customizable quantization rounding offset values are encoded in sequence and frame headers. They are used in inverse and forward quantization to customize quantization scale and quantization rounding offset. The values are ordered in the raster scan of the 4x4, 2x8, 8x2, 8x8 and 16x16 blocks.

Targeting different frame locations, 5 sets of quantization matrix values and 5 sets of quantization offset matrices are defined as "common set", "set1", "set2", "set3" and "set4". Correspondingly, the name of variables in each set ends with “_COMMON”, “_1”, “_2”, “_3” and “_4”.
Set1 is used for frames at I/IDR frame locations.
Set2 is used for frames at P frame locations.
Set3 is used for reference frames in the middle between I and P frame locations.
Set4 is used for frames at other locations.
If any set between set1 and set4 is not defined, common set is used instead of the missing set.

The relationship between value set and frame location is shown in Figure 1.

[image: image1.emf]I

0

Bs

4

P

8

Bs

6

B

5

B

7

B

3

Bs

2

B

1

Use set1 Use set2

Use set3 Use set4

Figure 1. Application of different matrix sets at different frame locations.

In each quantization set, there are 16 matrices for each set. The range of values in each matrix is clipped to be in within [1 to 255].

2.2.6 software/src and software/inc folders
	Filename
	Content

	AIF_adaptive_filter.cpp .h
	Adaptive interpolation filter function

	ArithDecoder.cpp .h
	Arithmetic decoder core engine

	ArithEncoder.cpp .h
	Arithmetic encoder core engine

	ArithTranscoder.cpp .h
	Arithmetic transcoder core engine

	Block.cpp .h
	Simple block class with associated manipulation functions

	Buffer.cpp .h
	Bit buffer used for reading and writing bit streams

	ChromaFrames.cpp .h
	Base class for chroma motion interpolation

	ChromaFrames8pel.cpp .h
	Chroma motion interpolator based on H.264 including 8pel

	ContextMap.cpp .h
	Class containing array indicating zero/non-zero blocks

	Deblocking_Filter.cpp .h
	Class for deblocking filter

	Decoder.cpp .h
	Main frame decoding functions

	DenoiseThreshold.cpp .h
	Class for denoise threshold functions

	DenoiseTransform.cpp .h
	Implementation of denoise transform class

	DenoiseTransformDCT4.cpp .h
	Implementation of denoise transform dct4 class

	DenoiseTransformDCT8.cpp .h
	Implementation of denoise transform dct8 class

	DenoiseTransformHadamard4.cpp .h
	Implementation of denoise transform hadamard4 class

	DenoiseTransformHadamard8.cpp .h
	Implementation of denoise transform hadamard8 class

	Encoder.cpp .h
	Main frame encoding functions

	EntropyCoder.cpp .h
	

	EntropyDecoder.cpp .h
	Entropy decoding functions

	EntropyEncoder.cpp .h
	Entropy encoding functions

	EntropyModel.cpp .h
	Class defining context models

	ExplicitGop.cpp .h
	GOP construction functions, including pyramid

	FastDCT.cpp .h
	Fast integer DCT functions

	FixedProbEst.cpp .h
	Simple probability estimator always returning 50% probability

	Frame.cpp .h
	Frame class and associated functions. Contains 8-bit sample values

	Global.h
	Global definitions

	IEncoder6.cpp .h
	I-frame encoder with SIP and TMA

	IntraPrediction.cpp .h
	IntraPrediction class

	LoopFilter.cpp .h
	Base class for loop filters

	LoopFilterNull.cpp .h
	Implements a null loop filter (no processing)

	LoopFilterOvercomplete3.cpp .h
	Implements overcomplete loop filter with integer arithmetic

	LumaFrames.cpp .h
	Base class for luma motion interpolation

	LumaFrames8pel.cpp .h
	Luma motion interpolator based on H.264 including 8pel

	MainDecoder.cpp
	Main decoder function including I/O

	MainEncoder.cpp
	Main encoder function including I/O

	MCRefBlk8.cpp .h
	Contains all SAD computation functions for 8x8 MC

	MLC_Stat.cpp .h
	Simple class containing frame statistics

	MotionEst.cpp .h
	Base class for motion estimators

	MotionEstRefine.cpp .h
	Motion estimator that refines one block at a time

	MotionEstRegion.cpp .h
	Motion estimator that refines one region at a time

	MotionEstTrellis.cpp .h
	Motion estimator that refines one row or column at a time

	MotionEstUZSearchBiPred.cpp .h
	Motion estimator using zonal search

	MotionField.cpp .h
	Class containing motion field

	Param.cpp .h
	Class containing various parameters

	Plane.cpp .h
	Implements Plane class

	PredBlk.cpp .h
	Simple class containing temporal prediction information for one block

	ProbEst.cpp .h
	Base class for probability estimators

	Quantizer.cpp .h
	Base class for quantizers

	QuantTables.cpp .h
	Contains quantization tables

	RefFrame.cpp .h
	Frame class used by the reference frame manager

	RefFrameManager.cpp .h
	Reference frame manager

	RefProcess.cpp .h
	Reference frame process

	SimpleProbEst.cpp .h
	Probability estimator with simple adaptive rule

	SimpleProbEstTabulatedLog.cpp .h
	Probability estimations

	Trace.cpp .h
	Implementation of the trace output

	UnaryProbEst.cpp .h
	Probability estimator suited for unary binarization

	WFrame.cpp .h
	Implementation of wframe class

	WienerFilter.cpp .h
	Class for adaptive denoising filter

	Win32.h
	Contains definitions for Windows compatibility

	ZeroTree.cpp .h
	Zerotree class

	ZTNode.cpp .h
	Node of a zerotree

3 Encoder usage

This section provides a detailed description of the encoder usage.
3.1 Encoder syntax
The encoder is invoked by:

./encoder [options] <parameter_file.cfg>
parameter_file.cfg is a file specifying the encoding parameters, as detailed in Section 4.

	Options:

	-h
	Help mode

	-s
	Silent mode

	-m
	Computes average PSNR based on average MSE

3.2 Encoder output

When running the encoder, it prints on the standard output. An example of generated output is given below, when using the encoder_HB7I1.1s.cfg configuration file.
	CDCM video encoder

--

Frame Bits QP SNR Y SNR Cr SNR Cb Time Blks (Z/N/I) Bits (M/L/C) SIP (L/C) TMA (L9/L5/L9c/L5c) MS (OFF/ZERO/TWO/FOUR/USAGE) AIF MELQ LmdQ RL0 RL1

00000(H) 00015064

00000(R) 00168451 061 038.840 039.843 041.550 004.212 0000 0000 6336 000000 148449 019948 001229 000000 00044 00627 00193 00144 00000 00000 00000 00000 000.000 000000 0053 0073 000 000

00008(P) 00050596 065 035.997 038.806 040.965 028.142 3498 2458 0380 008137 040337 001848 000309 000000 00000 00042 00006 00005 00376 00841 00191 00176 023.169 000000 0057 0081 001 000

00004(B) 00020685 073 034.527 038.342 040.549 034.289 4916 1372 0048 005933 013996 000427 000042 000000 00000 00002 00000 00000 00586 00765 00115 00118 014.710 000000 0065 0097 001 001

00002(B) 00009153 081 033.223 038.356 040.323 033.820 5711 0569 0056 003632 005060 000312 000049 000000 00000 00002 00000 00001 00824 00657 00039 00064 006.503 000000 0073 0113 001 002

00001(b) 00004410 085 033.405 038.517 040.331 022.496 6074 0186 0076 002266 001897 000106 000071 000000 00000 00001 00003 00000 01014 00540 00015 00015 001.894 000000 0077 0137 001 003

00003(b) 00004648 085 032.908 037.786 039.708 022.542 6031 0261 0044 002383 001920 000196 000038 000000 00000 00001 00001 00000 00945 00606 00012 00021 002.083 000000 0077 0137 002 002

00006(B) 00007921 081 033.292 038.127 040.295 035.475 5961 0347 0028 004078 003415 000161 000022 000000 00000 00008 00000 00000 00719 00752 00050 00063 007.134 000000 0073 0113 003 001

00005(b) 00004134 085 033.134 037.873 040.102 020.998 6149 0127 0060 002505 001408 000089 000043 000000 00000 00005 00000 00000 00905 00657 00009 00013 001.389 000000 0077 0137 002 002

00007(b) 00003174 085 033.190 038.144 040.439 019.766 6171 0145 0020 001863 001130 000033 000018 000000 00000 00002 00000 00000 01033 00539 00010 00002 000.758 000000 0077 0137 003 001

--

AVE:00009 00030352 034.279 038.422 040.473 024.665 4945 0607 0783 003421 024179 002568 000202 000000 00004 00076 00022 00016 00800 00669 00055 00059 007.205 000000

--

XXXXX 00032030

The following information is given as the output of the encoder:
· 5 digit frame number

· Frame type:

· H:
header
· R:
I frame with instant decoder refresh
· D:
I frame with deferred decoder refresh until the next picture
· i:
I frame (non reference)
· I:
I frame
· p:
predictive frame (non reference – disposable)

· P:
predictive frame

· b:
bi-predictive frame (non reference – disposable)
· B:
bi-predictive frame
· Bits: number of bits for the frame
· QP: selected QP
· PSNR Y / Cr / Cb: PSNR of luma and chroma components
· Time: time difference measured using clock() function, before and after encode_frame()
· Blks (Z / N / I):
· Z represents number of blocks with zero residual among the INTER blocks,
· N represents number of blocks with non-zero residual among the INTER blocks and
· I represents the number of INTRA blocks.
· Bits (M / L / C): number of bits for motion, luma and chroma components
· SIP (L / C): bits used to signal SIP mode (luma/chroma)
· TMA (L9 / L5 / L9c / L5c): number of blocks using TMA L9/L5 modes for luma/chroma (block size is 8x8 for luma and 4x4 for chroma)
· MS (OFF / ZERO / TWO / FOUR / USAGE): number of 8x8 luma blocks related to Motion Sharing

· OFF: MS is not tested;

· ZERO: MS is tested but not used;

· TWO: MS used for 2 rows/columns out of 8 rows/columns;

· FOUR: MS used for 4 rows/columns out of 8 rows/columns;

· USAGE: percentage of blocks that use MS.
· AIF: bits used for encoding AIF filter information
· MELQ: parameter representing the lambda value used for motion estimation
· LmdQ: parameter representing the Lambda value used in determining the frame-type in multipass encoding
· RL0: number of reference frames in LIST 0
· RL1: number of reference frames in LIST 1
3.3 Encoder limitations
The current software only supports concatenated input sources (i.e., all components and frames should be included in a single file) in 4:2:0 raw (yuv) format.

4 Encoder parameters

4.1 Configuration file

The table below contains a simple configuration file:

sample encoder configuration file

format: parameter=value or parameter="stringvalue", no SPACES!

#use everything in the encoder default except the location of the prob and ztree files.

Probability definition files

prob_file="dat/probY0.dat"

ztreefile="dat/ztree.dat"

ztreefile_8x8="dat/ztree_8x8.dat"

Encoder Reconstruction and Bitstream files

recfile="localdec.yuv"

dstfile="stream.dcm"

Input Source Information

srcfile="./tempete_cif_9fr.yuv"

width=352

height=288

frame_offset=0

frame_skip=0

Hierarchical P Prediction Structure Information

nframes=9

onlyI=0

enableB=0

intermed_frame=3

pyramid_coding=2

no_reordering=1

Quantization Parameter

qp=55
#End of file <Do NOT Remove>
4.1.1 Source sequence parameters

This section describes the parameters directly related to the input source file used by the encoder.

	Parameter
	Short description
	Default value

	srcfile
	Filename of source sequence
	“”

	width
	Width in pixels of source image
	176

	height
	Height in pixels of source image
	144

	nframes
	Number of frames to encode
	1

	frame_skip
	Number of frames skipped between two coded frames in source
	0

	f_header
	Number of header bytes in source image file
	0

	frame_offset
	Start frame number
	0

4.1.1.1 srcfile

Class: Text

Description: Filename of the source sequence. The name could include a file path. The current software only supports concatenated input sources (i.e., all components and frames should be included in a single file) in 4:2:0 raw (yuv) format.

Note: For DOS / Windows based systems, directories should be separated using a backslash “\”, whereas for Unix/Linux systems, directories should be separated using a forward slash “/”.

4.1.1.2 width

Class: Numeric (Integer)

Description: Width in pixels of source image.

4.1.1.3 height

Class: Numeric (Integer)

Description: Height in pixels of source image.

4.1.1.4 nframes

Class: Numeric (Integer)

Description: Total number of frames to encode. frame_skip

Class: Numeric (Integer)

Description: Number of frames skipped between two coded frames in source.

Note: The number of frames in the source file should be at least equal to (frame_skip + 1) * (nframes - 1) + frame_offset + 1.

4.1.1.5 f_header

Class: Numeric (Integer)

Description: Number of header bytes (if present) in source sequence file.

Example:

Assuming a raw sequence file that consists of 300 frames at 30 frames per second and has a 128-byte header, in order to convert to 10 frames per second, the following settings need to be used:

nframes=100

frame_skip=2

f_header=128

4.1.1.6 frame_offset

Class: Numeric (Integer)

Description: Number of frames to skip at begining of sequence.
4.1.2 GOP structure parameters

In this section, the parameters affecting the behavior of the encoder in terms of coding order and frame coding types are presented.

	Parameter
	Short description
	Default value

	intermed_frame
	Number of intermediate frames
	5

	intermed_disp
	Enables non-reference disposable frames
	1

	pyramid_coding
	defines type of pyramid structure

0: no pyramid

1: 2-level pyramid

2: n-level pyramid

3: explicit GOP
7: 4-level pyramid
	2

	no_reordering
	Flag to disable reordering in pyramid coding to create Hierarchical P
	0

	onlyI
	Periodicity of pre-determined intra frames
	0

	enableB
	Enables usage of B-frames
	1

	expPrmdFrmt
	Explicit definition of GOP structure
	“”

	expPrmdFrmtIdr
	Explicit definition of GOP structure for the intermediate frames following an IDR/DDR frame in decoding order
	“”

4.1.2.1 intermed_frame

Class: Numeric (Integer)

Description: Specifies the number of intermediate, or out of order frames (intermediate layer) inserted between two primary containing frames (primary layer). Such frames are somewhat reminiscent of the B frame concept in older MPEG standards, i.e. frames inserted in between I and P frames. However in the CDCM context such frames are not restricted to be of B type only, and their coding order can be quite arbitrary within the limits of the two containing frames (Figure 2).

Note: Unlike as found in other similar encoders (e.g., the JM reference encoder), this parameter in the CDCM is completely independent of the use of frame skipping.

[image: image2.wmf]I

C

P

C

P

C

B

I

B

I

B

I

B

I

B

I

B

I

Intermediate Frames

Primary Frames

Figure 2. Coding Structure with 3 intermediate frames.
4.1.2.2 intermed_disp

Class: Numeric (Integer)

Description: Enables the use of disposable frames (i.e., frames that are explicitly signaled as not being used as a reference for other frames). Although fully permissible by the syntax of this codec, the software currently does not allow the use of disposable frames for the primary layer.

Note: If this parameter is enabled, its behavior is affected by the value used for the parameter pyramid_coding. See description of this parameter for more details.

4.1.2.3 pyramid_coding

Class: Numeric (Integer)

Description: Enables the use of advanced coding orders for the intermediate layer. This includes the use of a pyramid type order, or explicit frame coding types/ordering.

	Options:

	0
	Disabled. Use default coding types. All intermediate frames are set as references or non references depending on the value of intermed_disp (0:reference, 1: disposable)

	1
	Use a double layer approach. More specifically, if N intermediate frames are used, all intermediate frames at even positions (starting from 1) will be coded first and stored in the reference buffer and used as references. The remaining frames (i.e., the ones at odd positions) will then be coded. These will be used as references only if the parameter intermed_disp is set to 0, and will be set as non reference otherwise.

	2 (default)
	Use a pyramid layer approach with multiple levels. The number of levels depends on the value of intermed_frame. Basically a power-of-two approach is used, where each level is assigned a different priority. Note that frames in the final level will be again set as reference or non reference, depending on the value of intermed_disp.

	3
	Explicit Coding type & order. Requires the presence of the expPrmdFrmt parameter.

	7
	Use a pyramid layer approach with 4 levels. intermed_frame should be set to 7. expPrmdFrmt is automatically created based on the parameters qp, qp_off_intref and qp_off_intdisp.

Example 1:

We would like to encode video with the following coding order I0-P8-Bs4-Bs2-Bs6-B1-B3-B5-B7-P16… Note that thisstructure looks as follows:

[image: image3.wmf]I

0

Bs

4

P

8

Bs

6

B

5

B

7

B

3

Bs

2

B

1

Figure 3. 4 Level Pyramid structure.

The above can be achieved using pyramid coding mode 2, which automatically generates this pyramid. It should be noted however that since the codec only supports up to 4 reference frames frame I0 might not be available for reference for coding frame B1. An alternative method would be to use pyramid coding mode 3, and to appropriately set the coding order using the expPrmdFrmt parameter avoiding also the referencing problem of I0 (i.e., coding frame at position B1 before coding Bs6).

intermed_frame=7

intermed_disp=1

pyramid_coding=2

or

intermed_frame=7

pyramid_coding=3

expPrmdFrmt=”b3r60b1r62b0e64b2e64b5r62b4e64b6e64

The semantics of expPrmdFrmt are detailed in Section4.1.2.5.

Example 2:

Let us assume that for the previous example we would prefer having only 3 pyramid levels, and that each level follows a sequential coding order. More specifically we would like the coding order to be as I0-P8-Bs2-Bs4-Bs6-B1-B3-B5-B7-P16… Note that this structure would now look as follows (we observe that references are now differently organized than in the previous case):

[image: image4.wmf]P

B

P

B

B

B

B

B

B

Figure 4. 3 Level Pyramid structure.
The above structure can be achieved using pyramid coding mode 1, which automatically generates this pyramid. Again, pyramid coding mode 3 could also be used.

intermed_frame=7

intermed_disp=1

pyramid_coding=1

4.1.2.4 no_reordering
Class: Numeric (Integer)

Description: Flag to disable reordering in pyramid coding to create Hierarchical P. When this flag is set to “1”, the reordering of frames for encoding is disabled and frames are encoded in their display order. The periodic and hierarchical structure of the pyramid is maintained.

4.1.2.5 expPrmdFrmt

Class: Text

Description: Parameter used with pyramid_coding==3 and specifies the coding method (i.e., type, quantizer, coding order, etc.) of a frame. Note that the number of entries needs to be the same as the number of intermediate frames. Also note that it is possible that the last intermediate group of the coded sequence be smaller than the originally specified number of intermediate frames. In this case, the coding order of the last group is automatically adjusted using a pyramid coding type 2.

Syntax: [TypeFrame0][OrderFrame0][ReferenceFrame0][QPFrame0][TypeFrame1][OrderFrame1][ReferenceFrame1][QPFrame1]… [TypeFrameN][OrderFrameN][ReferenceFrameN][QPFrameN]

	Allowed entries:

	[TypeFrameN]
	I/i (Intra coded frame)

	
	P/p (P type coded frame)

	
	B/b (B type coded frame)

	
	X/x (Any type)

	[OrderFrameN]
	1 - intermed_frame (specifies display order of coded frame. No duplicates are allowed)

	[ReferenceFrameN]
	R/r (Reference)

	
	E/e (Non Reference/Disposable)

	[QPFrameN]
	Frame QP

Note: TypeFrameN is currently ignored and not used during the encoding process.

Note: The frame QP values passed with this parameter override the QP values determined based on the parameters qp, qp_off_intref, qp_off_intdisp and qp_frame_mod, except for the first frame.

Example 1:

Encode a video sequence using the coding order I0-P8-Bs4-Bs2-B1-B3-Bs6-B5-B7-P16… and also assign QP values of 64 to referenced intermediate frames, and 72 to non reference frames.

intermed_frame=7

pyramid_coding=3

expPrmdFrmt=”B4r64B2r64B1e72B3e72B6r64B5e72B7e72”

Example 2:

Encode a video sequence using a relatively similar coding structure as found in example 1, with the difference that all non reference frames are coded last, i.e. I0-P8-Bs4-Bs2-Bs6-B1-B3 -B5-B7-P16… In this case we may use PyramidCoding=2 also which would create this structure automatically (see also example in section 4.1.2.3).

intermed_frame=7

pyramid_coding=3

expPrmdFrmt=”B4r64B2r64B6r64B1e72B3e72B5e72B7e72”

4.1.2.6 expPrmdFrmtIdr

Class: Text

Description: This parameter is used when pyramid_coding==3. It specifies the coding method (i.e., type, quantizer, coding order, etc.) of an intermediate frame following an IDR or DDR frame. expPrmdFrmtIdr is similar to the expPrmdFrmt parameter. The former is used to specify how intermediate frames following an IDR/DDR are to be coded; the latter is used for intermediate frames occurring elsewhere. For example, with intermed_frames=7 and a decoder refresh rate of 20 frames, the first 2 sets of intermediate frames will be coded according to expPrmdFrmt (2x7 + 2 key frames) while the next 3 intermediate frames following the IDR/DDR frame will be coded according to expPrmdFrmtIdr (which must have 3 entries). Note that the number of entries needs to be the same as the number of intermediate frames after an IDR in decoding order. One exception is that it is possible for the last intermediate group of the coded sequence to be smaller than the originally specified number of intermediate frames. In this case, the coding order of the last group is automatically adjusted using a pyramid_coding type 2. Refer to “expPrmdFrmt” description for syntax.
4.1.2.7 onlyI

Class: Numeric (Integer)

Description: Specifies the periodicity of pre-determined intra frames. For example, a value of 8 implies that frames 0, 8, 16, … and so on are pre-determined to be coded as intra. When set to 0, only the first frame is pre-determined to be coded as intra. For all the frames that are not pre-determined to be intra, the encoder performs a frame level RD decision to determine whether a frame is to be coded as intra (I) or as inter (P or B).

4.1.2.8 enableB

Class: Numeric (Integer)

Description: Enables the consideration of Bi-predictive Inter frames.
Note: The encoder performs a frame level RD decision to determine whether a frame is to be coded as intra (I) or as inter (P or B). This implies that when this flag is enabled, the same frame will be coded multiple times using all possible intra and inter frame coding modes.
4.1.3 Decoder Refresh Parameters

A decoder refresh operation refreshes the reference frame buffer in order to prevent error propagation and/or to facilitate random access playback.

Decoding refresh operations are triggered at the frame level. It is signaled by the INTRA frame type information. There are 2 types of decoder refresh:

· Instantaneous Decoder Refresh (IDR) – an IDR frame is an Intra coded frame with the signal to purge the reference frame buffer immediately.

· Deferred Decoder Refresh (DDR) – a DDR frame is an Intra coded frame with the signal to purge the reference frame buffer when a frame later in time than the DDR frame is received. However, the DDR frame itself is retained in the reference frame buffer.

The parameters related to IDR and DDR are listed below.

	Parameter
	Short description
	Default value

	idr_interval
	Periodicity of pre-determined idr/ddr frames in terms of number of I frames (triggered by onlyI value).
	0

	deferred_decoder_refresh
	Whether IDR or DDR is to be used.
	0

4.1.3.1 idr_interval

Class: Numeric (Integer)

Description: Specifies the periodicity of IDR/DDR frames in terms of the number of pre-determined intra frames indicated by onlyI. For example, a value of 4 with onlyI=3 implies that frames 0, 12, 24, … and so on are pre-determined to be coded as IDR or DDR. When set to 0, only the first frame is pre-determined to be coded as IDR. For all the I frames that are not pre-determined to be IDR/DDR, the encoder encodes them as normal intra (I).

4.1.3.2 deferred_decoder_refresh
Class: Numeric (Integer)

Description: Determines whether a decode refresh frame is to be coded as an IDR or DDR. A value of 0 indicates an IDR frame and a value of 1 indicates a DDR. However, the first decoder refresh frame shall be an IDR regardless of this value.
4.1.4 Superblock parameters

The parameters related to grouping of blocks are described in this section.

	Parameter
	Short description
	Default value

	sb_height
	Sets the superblock height in blocks (each block is 8 pixels high).
	8

	sb_width
	Sets the superblock width in blocks (each block is 8 pixels wide).
	8

4.1.4.1 sb_height

Class: Numeric (Integer)

Description: Sets the superblock height for the picture in blocks. Note that each block is 8 pixels high. sb_height should have a value of 0, 1, 2, 4, 8, 16, 32 or 64 (although intermediate values are currently not prohibited). When both sb_height and sb_width are set to 0, superblock grouping is disabled.
4.1.4.2 sb_width

Class: Numeric (Integer)

Description: Sets the superblock width for the picture in blocks. Note that each block is 8 pixels wide. sb_width should have a value of 0, 1, 2, 4, 8, 16, 32 or 64 (Although intermediate values are currently not prohibited). When both sb_height and sb_width are 0, superblock grouping is disabled.

4.1.5 Quantization parameters

The parameters related to quantization behavior are described in this section.

	Parameter
	Short description
	Default value

	qp
	Quantization parameter value.
	64

	qp_frame_mod
	Enables modulation of QP value on a frame-basis based on frame energy
	1

	qp_off_intra
	QP offset when testing INTRA coding mode in designated P or B reference frames.
	0

	qp_off_intra_disposable_pic
	QP offset when testing INTRA coding mode in designated P or B disposable frames.
	0

	qp_off_onlyI
	QP offset in designated I frames.
	-8

	qp_off_intra_scene_cut
	QP offset when testing INTRA16x16 coding mode at scene cut
	-8

	qp_off_intref
	QP offset for one level of hierarchy for intermediate reference frames.
	10

	qp_off_intdisp
	QP offset for intermediate non-reference frames.
	18

	better_color
	Defines relationship between luma and intermediate chroma QP values.
	7

	chroma_dc_th
	Defines the threshold for qp’chroma above which the chroma QP DC, qpDCchroma is set to a smaller value.
	60

	chroma_dc_scale
	Defines the slope for the rate at which the qp’chroma.is adjusted to give the qpDCchroma.
	32

	bc_offset
	Defines the offset between the chroma QP value and the intermediate chroma QP values.
	4

	lumaDC
	Defines relationship between luma DC and luma AC QP values.
	6

	q_rdoffset
	Enables rate distortion optimized quantization for a block with intra prediction or 4x4 inter block prediction
	1

	q_rdoffset8x8
	Enables rate distortion optimized quantization for a block with 8x8 inter block prediction
	0

	q_adaptoffset
	Offset adaptation mode
	4

	q_offsetLI
	Quantization offset for luma I-blocks in I-frame
	30720

	q_offsetCI
	Quantization offset for chroma I-blocks in I-frame
	30720

	q_offsetLIinP
	Quantization offset for luma I-blocks in P or B-frame
	21845

	q_offsetCIinP
	Quantization offset for chroma I-blocks in P or B-frame
	21845

	q_offsetLP
	Quantization offset for luma P-blocks
	10923

	q_offsetCP
	Quantization offset for chroma P-blocks
	10923

	theta_intra
	Reconstruction offset for 4x4 I-blocks
	0

	theta_inter
	Reconstruction offset for 4x4 non-I-blocks
	0

	theta8x8_intra
	Reconstruction offset for 8x8 I-blocks
	0

	theta8x8_inter
	Reconstruction offset for 8x8 non-I-blocks
	0

	qtabfile_4x4
	Name of the file containing 4x4 quantization tables.
	"tab/quant_4x4.tab"

	qtabfile_8x8
	Name of the file containing 8x8 quantization tables.
	"tab/quant_8x8.tab"

	qtabfile_2x8
	Name of the file containing 2x8 quantization tables.
	"tab/quant_2x8.tab"

	qtabfile_8x2
	Name of the file containing 8x2 quantization tables.
	"tab/quant_8x2.tab"

4.1.5.1 qp

Class: Numeric (Integer)

Description: Quantization parameter value. The step size is equal to 2^(qp/16). This is the base value. QP values for individual frames may be altered by the frame type and its content (e.g., by using qp_frame_mod).
4.1.5.2 qp_frame_mod

Class: Numeric (Integer)

Description: Enables modulation of the QP value on a frame-basis based on frame energy.

4.1.5.3 qp_off_intra

Class: Numeric (Integer)

Description: QP offset when testing INTRA coding mode for frames designated as P or B reference frames by the GOP structure. This offset is added to the base QP value of all the intra blocks in the intra frame. However for the intra blocks in the P of B picture, the QP of the P or B frame is used.

4.1.5.4 qp_off_intra_disposable_pic
Class: Numeric (Integer)

Description: QP offset when testing INTRA coding mode for frames designated as p or b disposable frames by the GOP structure. This offset is added to the base QP value of all the intra blocks in the intra frame. However for the intra blocks in the P of B picture, the QP of the P or B frame is used.
4.1.5.5 qp_off_onlyI

Class: Numeric (Integer)

Description: QP offset for onlyI frames. This offset is added to the base QP value of all the intra frames in the sequence that is designated as only intra coded (including IDR and DDR).
4.1.5.6 qp_off_intra_scene_cut

Class: Numeric (Integer)

Description: QP offset when testing INTRA 16x16 block coding at a scene cut. This offset is added to the base QP value of frames determined to be at a scene cut and is added only for the INTRA 16x16 coding mode.
4.1.5.7 qp_off_intref

Class: Numeric (Integer)

Description: QP offset for one level of hierarchy for intermediate reference frames. This offset is added to the base QP value of the level below.
4.1.5.8 qp_off_intdisp

Class: Numeric (Integer)

Description: QP offset for intermediate non-reference frames. This offset is added to the base QP value of non-reference frames.

4.1.5.9 better_color

Class: Numeric (Integer)

Description: Defines relationship between luma and intermediate chroma QP values. The intermediate QP value for chroma (qp’chroma) is determined as follows as a function of the value of this field

	Options:

	0
	qp’chroma = qp

	1
	qp’chroma = 3*qp/4

	2
	qp’chroma = qp-qp*qp/512

	3
	qp’chroma = qp/2

	4
	qp’chroma = 32

	5
	qp’chroma = qp-qp*qp/256

	6
	qp’chroma = qp-qp*qp*qp/65536

	7
	qp’chroma = qp-qp*qp*qp/65536

if (qp’chroma > chroma_dc_th)

 qpDCchroma= qp’chroma - (((qp’chroma - chroma_dc_th) * chroma_dc_scale)>> 8);

else

 qpDCchroma = qp’chroma;

4.1.5.10 chroma_dc_th

Class: Numeric (Integer)

Description: Defines the threshold for qp’chroma above which the chroma QP DC, qpDCchroma is set to a smaller value when better_color = 7 as shown in the table above and Figure 5. Otherwise qpDCchroma = qp’chroma.
4.1.5.11 chroma_dc_scale

Class: Numeric (Integer)

Description: Defines the slope for the rate at which the qp’chroma.is adjusted to give the qpDCchroma when better_color = 7 and qp’chroma is greater than chroma_dc_th as shown in the table above and Figure 5.

[image: image13.png]

Figure 5: Mapping of qpDCchroma
4.1.5.12 bc_offset

Class: Numeric (Integer)

Description: Defines relationship between luma and chroma QP values. The QP value for chroma (qpchroma) is determined by adding the value of this field to the qp’chroma and adding -2 or 0 or 4 depending on the picture type.

qpchroma = qp’chroma + bc_offset - 2, for intra pictures,

qpchroma = qp’chroma + bc_offset, for reference pictures and

qpchroma = qp’chroma + bc_offset + 4, for disposable pictures.

4.1.5.13 lumaDC

Class: Numeric (Integer)

Description: Determines the QP value used for luma DC coefficients. The QP value for luma DC (qpDC) is determined as follows as a function of the value of this field

	Options:

	0
	qpDC = qp

	1
	qpDC = 3*qp/4

	2
	qpDC = qp-qp*qp/512

	3
	qpDC = qp/2

	4
	qpDC = 32

	5
	qpDC = qp-qp*qp/256

	6
	qpDC = qp-qp*qp*qp/65536.

4.1.5.14 q_rdoffset
Class: Numeric (Integer)

Description: Enables rate distortion optimized quantization for a block with intra prediction or 4x4 inter prediction.
4.1.5.15 q_rdoffset8x8
Class: Numeric (Integer)

Description: Enables rate distortion optimized quantization for a block with 8x8 inter prediction.
4.1.5.16 q_adaptoffset

Class: Numeric (Integer)

Description: Offset adaptation mode. This value is recommended to be set to four when q_rdoffset is one; otherwise, the encoder will terminate without encoding.
	Options:

	0
	Fixed quantization offsets

	1
	Adaptive quantization offsets for all values; adapts when scaled value is larger than ½

	2
	Adaptive quantization offsets for scaled values larger than 1 (fixed quantization is used for values below); adapts when scaled value is larger than 1+½

	3
	Adaptive quantization offsets for all values; adapts when quantized value is 1 or larger

	4
	Adaptation of mode 2 and 3 based on the fraction of zero-motion vectors in the coded frame

4.1.5.17 q_offsetXX parameters

Quantization offsets (q_offsetXX fields) are expressed as 16-bit fixed-point numbers. During quantization, a quantized value y may be obtained from a value x as follows:

|y| = floor(|x|/q + q_offsetXX/65536)

Values q_offsetXX=32768 would thus define a mid-point quantizer. The default values emulate the default quantizer of the H.264 reference software.

4.1.5.17.1 q_offsetLI

Class: Numeric (Integer)

Description: Initial/Default quantization offset for luma I-blocks in I-frames. The dynamic range of this value is from 0 to 2^16 (65536), which maps to the range of [0, 1.0]. For example, if we would like to use an offset value of 1/2 then we need to set this value equal to 32768 (32768 / 65536 = 1/2).

Note: Typically, values smaller than 32768 will result in the best rate-distortion performance. The dynamic range of this value is from 0 to 2^8 (32768) when q_adaptoffset is set to 4.

4.1.5.17.2 q_offsetCI

Class: Numeric (Integer)

Description: Initial/Default quantization offset for chroma I-blocks in I-frames. See q_offsetLI for further explanation on the dynamic range of this parameter.
4.1.5.17.3 q_offsetLIinP
Class: Numeric (Integer)

Description: Initial/Default quantization offset for luma I-blocks in P or B-frame. See q_offsetLI for further explanation on the dynamic range of this parameter.

4.1.5.17.4 q_offsetCIinP
Class: Numeric (Integer)

Description: Initial/Default quantization offset for chroma I-blocks in P or B-frame. See q_offsetLI for further explanation on the dynamic range of this parameter.
4.1.5.17.5 q_offsetLP

Class: Numeric (Integer)

Description: Initial/Default quantization offset for luma P and B-blocks. See q_offsetLI for further explanation on the dynamic range of this parameter.

4.1.5.17.6 q_offsetCP

Class: Numeric (Integer)

Description: Initial/Default quantization offset for chroma P and B-blocks. See q_offsetLI for further explanation on the dynamic range of this parameter.

4.1.5.18 theta_intra

Class: Numeric (Integer)

Description: Reconstruction offset for 4x4 I-blocks. The dynamic range of this value is from -127 to 128.

4.1.5.19 theta_inter

Class: Numeric (Integer)

Description: Reconstruction offset for 4x4 non-I-blocks. The dynamic range of this value is from -127 to 128.

4.1.5.20 theta8x8_intra
Class: Numeric (Integer)

Description: Reconstruction offset for 8x8 I-blocks. The dynamic range of this value is from -127 to 128.

4.1.5.21 theta8x8_inter

Class: Numeric (Integer)

Description: Reconstruction offset for 8x8 non inter blocks. The dynamic range of this value is from -127 to 128.

4.1.5.22 qtabfile_4x4

Class: Text

Description: Name of the file containing the quantization tables for 4x4 (encoder only).

4.1.5.23 qtabfile_8x8

Class: Text

Description: Name of the file containing the quantization tables for 8x8 (encoder only).

4.1.5.24 qtabfile_2x8

Class: Text

Description: Name of the file containing the quantization tables for 2x8 (encoder only).

4.1.5.25 qtabfile_8x2

Class: Text

Description: Name of the file containing the quantization tables for 8x2 (encoder only).

4.1.6 Customizable quantization parameters

In this section, the parameters related to customizable quantization scaling matrices are described.
	Parameter
	Short description
	Default value

	qmatrixfile
	File containing customizable values of quantization scaling matrices
	“”

	qmatrix_enable_flag
	Enables customizable quantization scaling matrices
	0

4.1.6.1 qmatrixfile

Class: Text

Description: Filename of customizable quantization scaling matrices. Name could include file path.

4.1.6.2 qmatrix_enable_flag

Class: Numeric (Integer)

Description: Enables customizable quantization scaling matrices. A value 0 indicates that the customizable quantization scaling matrices are not used; a value 1 indicates that the customizable quantization scaling matrices are used.
4.1.7 Customizable quantization offset parameters

In this section, the parameters related to customizable quantization rounding offset matrices are described.
	Parameter
	Short description
	Default value

	Qoffsetmatrixfile
	File containing customizable values of quantization offset matrices
	“”

	qoffsetmatrix_enable_flag
	Enables customizable quantization offset matrices
	0

4.1.7.1 qoffsetmatrixfile

Class: Text

Description: Filename of customizable quantization offset matrices. The filename could include a file path.

4.1.7.2 qoffsetmatrix_enable_flag

Class: Numeric (Integer)

Description: Enables customizable quantization offset matrices. A value 0 indicates that the customizable quantization offset matrices are not used; a value 1 indicates that the customizable quantization offset matrices are used.
4.1.8 Spatial prediction parameters

These parameters affect the behavior of intra prediction.
	Parameter
	Short description
	Default value

	mpm_default
	Default value for most_probable_mode
	2

	edge_prediction_ipd
	Enables edge prediction for intra coding
	1

	threshold_edge_vector
	Threshold for DC mode replacement decision
	250

	intra8x8
	Enables 8x8 spatial intra prediction partitions
	1

	transform_selection
	Enables adaptive transform selection
	1

	intra16x16
	Enables 16x16 spatial intra prediction partitions
	1

	chroma8x8
	Enables chroma 8x8 spatial intra prediction partitions
	1

	transform_selection_16x16
	Enables adaptive transform selection for 16x16 spatial intra prediction partitions
	1

	candidate_search_region
	Size of the search region in the template matching method for intra 16x16 TMA to predict a signal in a 8x8, 4x4 8x2, 2x8 orblock
	8

	candidate_search_region_intra16x16
	Size of the search region in the template matching method for intra 16x16 TMA to predict a signal in a 16x16 block
	12

	num_candidate_averaged
	Maximum number of candidates to be averaged in the Intra TMA process
	4

	candidate_sad_threshold
	SAD threshold for the candidate selection for Intra TMA process
	32

4.1.8.1 mpm_default

Class: Numeric (Integer)

Description: Specifies the value used for setting the default value of most_probable_mode.

4.1.8.2 edge_prediction_ipd

Class: Numeric (Integer)

Description: Enables edge prediction for intra coding. A value 0 indicates that the edge prediction direction for intra coding is not used; a value 1 indicates that the edge prediction direction for intra coding is used.

Note: If the edge prediction direction for intra coding is used, the DC mode can be replaced by the edge prediction direction.

4.1.8.3 threshold_edge_vector

Class: Numeric (Integer)

Description: Threshold for DC mode replacement decision.
4.1.8.4 intra8x8

Class: Numeric (Integer)

Description: Enables 8x8 spatial intra prediction partitions. A value 0 indicates that the 8x8 spatial intra prediction partition is not used; a value 1 indicates that 8x8 spatial intra prediction partition is used and 8x8 partition is placed first in the sip_type table; a value 2 indicates that 8x8 spatial intra prediction partition is used and 8x8 partition is placed last in the sip_type table.
Note: value 1 is generally used for high resolution sequences, while value 2 is generally used for low resolution sequences.
4.1.8.5 transform_selection

Class: Numeric (Integer)
Description: Enables adaptive transform selection. A value 0 indicates that adaptive transform selection is not used; a value 1 indicates that adaptive transform selection is used. When adaptive transform selection is used, it is applied to intra and inter frames.
4.1.8.6 intra16x16

Class: Numeric (Integer)

Description: Enables 16x16 spatial intra prediction partitions. A value 0 indicates that the 16x16 spatial intra prediction partition is not used; a value 1 indicates that 16x16 spatial intra prediction partition is used and 16x16 partition is placed second in the sip_type table.
4.1.8.7 chroma8x8

Class: Numeric (Integer)

Description: Enables 8x8 spatial intra prediction partitions in chroma. A value 0 indicates that the 8x8 spatial intra prediction partition is not used in chroma; a value 1 indicates that 8x8 spatial intra prediction partition is used in chroma.
4.1.8.8 transform_selection_16x16

Class: Numeric (Integer)
Description: Enables adaptive transform selection when intra16x16 equals to 1. A value 0 indicates that adaptive transform selection is not used in intra16x16; a value 1 indicates that adaptive transform selection is used in intra16x16. If intra16x16 equals to 0, this parameter is not used.
4.1.8.9 candidate_search_region

Class: Class: Numeric (Integer)
Description: Size of the search region in the template matching method for intra TMA to predict a signal in a 8x8, 4x4, 8x2 or 2x8 block.. The distance sr in Figure 6 is defined by this parameter.

Figure 6: Search area for TMA

4.1.8.10 candidate_search_region_intra16x16

Class: Numeric (Integer)

Description: Size of the search region in the template matching method for intra 16x16 TMA to predict a signal in a 16x16 block. The distance sr in Figure 6 is defined by this parameter.
4.1.8.11 num_candidate_averaged

Class: numeric (Integer)

Description: Indicates the maximum number of candidates to be averaged in the Intra TMA process.

4.1.8.12 candidate_sad_threshold

Class: numeric (Integer)

Description: Indicates the SAD threshold for the candidate selection for Intra TMA process. A new candidate is selected if its SAD less this value is less than the lowest SAD of the selected candidates.
4.1.9 Temporal prediction parameters

These parameters affect the behavior of inter/motion compensated partitions.

	Parameter
	Short description
	Default value

	nref_frames
	Maximum number of reference frames in any list
	4

	adapt_frame_type
	Enables adaptation of frame type (P/B)
	1

	adapt_list_size
	Restricts frames in list_1 to be future references
	1

	chroma_mc
	Chroma interpolation filter
	1

	luma_mc
	Luma interpolation filter
	4

	me_subpel
	Indicates which subpel position is searched in the ME process
	7

	gen8pel_filter
	Type of 1/8 pel filter to use.
	0

	P_subpel
	Subpel precision(s) to use for P pictures
	3

	B_subpel
	Subpel precision(s) to use for B pictures
	1

	mc_round
	Rounding for interpolation filter
	1

	enable_intcomp
	Enables intensity compensation
	1

	enable_motion_sharing
	Enables motion sharing
	1

	mvshare_two_enable
	Enables motion sharing of 2x8/6x8 and 8x2/8x6 block partitions as well as 4x8 and 8x4 block partitions
	1

	motion sharing_log
	Enables printing information on usage of motion sharing
	1

	weight_diff_scale
	Shift value applied for weight difference (bipred ic)
	0

	weight_diff_max
	Maximum absolute value of weight difference (bipred ic)
	16

	DC_mult
	Multiplier for offset values in intensity compensation
	1

	chroma_on_fly
	Enables ‘on the fly’ interpolation of the chroma
	0

4.1.9.1 nref_frames

Class: Numeric (Integer)

Description: Limits the size of each reference list to the given value. The codec supports up to 4 reference frames per list.

Note: Changing this parameter does not affect the number of reference frames that are kept in the reference buffer.

Note: Explicit reordering is supported. However a default order is provided based on frame type, frame distances, and directions.

4.1.9.2 adapt_frame_type

Class: Numeric (Integer)

Description: Enables adaptation of frame type (P/B) for frames that are marked B according to the GOP. When this parameter is set to ‘1’, a frame marked as B can be coded as either a P frame or B frame. Otherwise, a frame marked as B is always coded as a B frame.
4.1.9.3 adapt_list_size

Class: Numeric (Integer)

Description: Restricts the number of frames used for reference in list_0 and list_1 of B frames according to direction (future ones for list_1, past ones for list_0). For example, if for the current B frame there are 2 frames in the past and 2 in the future, and a maximum number of N references could be used for a list (i.e., N=nref_frames), then the encoder will only consider and signal that only the two past frames for list_0 and the two future frames for list_1 during the encoding are used as references. Note that if a certain direction does not have any references available, then the closest past one is used instead. If the parameter is disabled, the maximum possible number of references is used regardless of direction. More details on reference list construction may be found in [1].

Example:

Assume that we currently have frames I0, B2, B4, and P5 stored in the reference buffer. We would like to code frames B1, B3, and B6. If a maximum of 4 references is allowed, then reference lists are set as follows:

	adapt_list_size == 0
	adapt_list_size == 1

	B1list0: I0, B2, B4, P5

B1list1: B2, B4, P5, I0

B3list0: B2, I0, B4, P5

B3list1: B4, P5, B2, I0

B6list0: P5, B4, B2, I0

B6list1: B4, P5, B2, I0
	B1list0: I0

B1list1: B2, B4, P5

B3list0: B2, I0

B3list1: B4, P5

B6list0: P5, B4, B2, I0

B6list1: B4

4.1.9.4 chroma_mc

Class: Numeric (Integer)

Description: Chroma interpolation filter
	Options:

	0
	(null)

	1
	H.264 direct bi-linear filter up to 1/16 pel

4.1.9.5 luma_mc
Class: Numeric (Integer)

Description: Luma interpolation filter for motion compensation.
	Options:

	0
	(null)

	1
	(null)

	2
	(null)

	3
	(null)

	4
	1/8 pel

4.1.9.6 me_subpel

Class: Numeric (Integer)

Description: Indicates which subpel position is searched in the motion estimation process.
	Options:

	0
	do nothing (no subpel search)

	1 (001)
	Half Pixel search only

	2 (010)
	1/4 pel only

	3 (011)
	1/2,1/4 pel

	4 (100)
	1/8 pel only

	5 (101)
	1/2, 1/8

	6 (110)
	1/4, 1/8

	7 (111)
	1/2,1/4,1/8 All positions

4.1.9.7 gen8pel_filter

Class: Numeric (Integer)

Description: Selects the type of interpolation filter used for the 1/8 pel.
	Options:

	
	Filter length
	Impulse response
	Description

	0
	2-tap
	(16,16)/32
	Bilinear Filter

	1
	6-tap
	(1,-5,20,20,-5,1)/32
	Telenor Filter (COM-16 D.361)

	2
	8-tap
	(-1,3,-6,20,20,-6,3,-1)/32
	Wiener Filter (Q15i35)

4.1.9.8 P_subpel

Class: Numeric (Integer)

Description: Selects the interpolation filter precision(s) to use for P pictures.

	Options:

	1
	Up to 1/4 pel interpolation only

	2
	Up to 1/8 pel interpolation only

	3
	Frame level switching between 1/4 or 1/8 pel interpolation. (Try 1/4 pel first)

	4
	Frame level switching between 1/4 or 1/8 pel interpolation. (Try 1/8 pel first)

4.1.9.9 B_subpel

Class: Numeric (Integer)

Description: Selects the interpolation filter precision(s) to use for B pictures.

	Options:

	1
	Up to 1/4 pel interpolation only

	2
	Up to 1/8 pel interpolation only

	3
	Frame level switching between 1/4 or 1/8 pel interpolation. (Try 1/4 pel first)

	4
	Frame level switching between 1/4 or 1/8 pel interpolation. (Try 1/8 pel first)

4.1.9.10 mc_round

Class: Numeric (Integer)

Description: Rounding for interpolation filter.
In the H.264 chroma interpolation filter, an interpolated value is computed in the form:
[(8-k)*(8-l)*a + (8-k)*l*b + k*(8-l)*c + k*l*d + 32] >> 6.

When mc_round is enabled this form is modified to:
[(8-k)*(8-l)*a + (8-k)*l*b + k*(8-l)*c + k*l*d + 32-((k+l)&1)] >> 6;

This has the effect of reducing the average bias introduced by the chroma interpolation process.

4.1.9.11 enable_intcomp

Class: Numeric (Integer)

Description: Enables intensity compensation (i.e. Weighted Prediction).

Note: When enable_intcomp is set to ‘0’, intensity compensation parameters are still encoded into the bit stream. However all search routines for finding intensity compensation parameters are disabled. The values coded in the bit stream are thus all ‘0’, which is their default.
4.1.9.12 enable_motion_sharing
Class: Numeric (Integer)

Description: Enables motion sharing for an 8x8 inter prediction.

Note: When enable_motion_sharing is set to ‘1’, the current 8x8 block is divided into two partitions and a signal in one partition is predicted using motion vectors with scale and offset parameters of block above or left. When enable_motion_sharing is set to ‘0’, the current 8x8 block is not divided for inter prediction.

4.1.9.13 mvshare_two_enable
Class: Numeric (Integer)

Description: Enables motion sharing of 2x8/6x8 and 8x2/6x8 block partitions as well as 4x8 and 8x4 block partitions. When mvshare_two_enable is set to ‘1’, an 8x8 inter block can be partitioned to 2 of 4x8 blocks, 2 of 8x4 blocks, 2x8 and 6x8 blocks, or 8x2 and 8x6 blocks. When mvshare_two_enable is set to ‘0’, partitions are limited to 2 of 4x8 blocks or 2 of 8x4 blocks.
4.1.9.14 motion_sharing_log
Class: Numeric (Integer)

Description: Enables printing information on usage of motion sharing as part of the encoder output. The output for each frame includes number of blocks that do not use motion sharing, that use an mvshare_size of 0 (8x8), that use an mvshare_size of 2 (2x8/6x8 or 8x2/8x6) and that use an mvshare_size of 4 (4x8 or 8x4).
4.1.9.15 weight_diff_scale

Class: Numeric (Integer)

Description: This parameter controls the quantization of the weight difference for weighted bi-prediction. The weight difference is shifted by the amount given by the parameter.
4.1.9.16 weight_diff_max
Class: Numeric (Integer)

Description: This parameter controls the maximum absolute value of the weight difference for weighted bi-prediction.
4.1.9.17 DC_mult

Class: Numeric (Integer)

Description: Multiplier for offset values in intensity compensation

4.1.9.18 chroma_on_fly

Class: numeric (Integer)

Description: When this flag is set to 0 interpolated reference pictures are pre-computed for chroma in the encoder. Otherwise, when set to 1, chroma interpolation is computed “on-the-fly” in the encoder. While setting this flag to 1 increases the running time of the encoder, it results in a significant reduction of the memory usage.

4.1.10 Loop filter parameters

4.1.10.1 Parameters of the non-linear denoising filter

The following parameters affect the behavior of the Non-linear Denoising Filter (NDF). Strength and extent parameters affect luminance deblocking only. Chrominance parameters are currently fixed.

	Parameter
	Usage
	Default value

	ndf_mode
	Defines the mode of NDF
	3

	ndf_two_rounds
	Enables two rounds of NDF
	0

	ndf_weighting
	Enables weighting in NDF
	1

	ndf_signif_cnt
	Threshold of significant number of coefficients
	8

	ndf_4x4_mult
	Multiplier for the number of significant 4x4 coefficients
	3

	ndf_mvd_th
	Threshold of motion vector difference
	1

	ndf_aggressive
	Sets all filter mask extent values to 2 (when ndf_mode is equal to 3)
	False

	ndf_ic_refine
	Enables ic specific modes (when ndf_mode is equal to 3)
	True.

	ndf_s_intra_quant
	Strength of filter for intra_quant mode (when ndf_mode is equal to 3) (0 = 0%, 100 = 100%)
	Default value depends on QP.

	ndf_s_pred_signif
	Strength of filter for pred_signif mode (when ndf_mode is equal to 3) (0 = 0%, 100 = 100%)
	Default value depends on QP.

	ndf_s_pred_quant
	Strength of filter for pred_quant mode (when ndf_mode is equal to 3) (0 = 0%, 100 = 100%)
	Default value depends on QP.

	ndf_s_pred_mot
	Strength of filter for pred_mot mode (when ndf_mode is equal to 3) (0 = 0%, 100 = 100%)
	Default value depends on QP.

	ndf_s_mot_disc
	Strength of filter for mot_disc mode (when ndf_mode is equal to 3) (0 = 0%, 100 = 100%)
	Default value depends on QP.

	ndf_s_ic_strong
	Strength of filter for ic_strong mode (when ndf_mode is equal to 3) (0 = 0%, 100 = 100%)
	Default value depends on QP.

	ndf_s_ic_intermed
	Strength of filter for ic_intermed mode (when ndf_mode is equal to 3) (0 = 0%, 100 = 100%)
	Default value depends on QP.

	ndf_s_ic_weak
	Strength of filter for ic_weak mode (when ndf_mode is equal to 3) (0 = 0%, 100 = 100%)
	Default value depends on QP.

	ndf_x_intra_quant
	Extent of filter mask for intra_quant mode (when ndf_mode is equal to 3) (0 = 0%, 4 = 100%)
	Default value depends on QP.

	ndf_x_pred_signif
	Extent of filter mask for pred_signif mode (when ndf_mode is equal to 3) (0 = 0%, 4 = 100%)
	Default value depends on QP.

	ndf_x_pred_quant
	Extent of filter mask for pred_quant mode (when ndf_mode is equal to 3) (0 = 0%, 4 = 100%)
	Default value depends on QP.

	ndf_x_pred_mot
	Extent of filter mask for pred_mot mode (when ndf_mode is equal to 3) (0 = 0%, 4 = 100%)
	Default value depends on QP.

	ndf_x_mot_disc
	Extent of filter mask for mot_disc mode (when ndf_mode is equal to 3) (0 = 0%, 4 = 100%)
	Default value depends on QP.

	ndf_x_ic_strong
	Extent of filter mask for ic_strong mode (when ndf_mode is equal to 3) (0 = 0%, 4 = 100%)
	Default value depends on QP.

	ndf_x_ic_intermed
	Extent of filter mask for ic_intermed mode (when ndf_mode is equal to 3) (0 = 0%, 4 = 100%)
	Default value depends on QP.

	ndf_x_ic_weak
	Extent of filter mask for ic_weak mode (when ndf_mode is equal to 3) (0 = 0%, 4 = 100%)
	Default value depends on QP.

	ndf_s_chroma
	Relative strength of chroma deblocking (x/8)
	8

	ndf_trsf_8x8
	Enable 8x8 block transform in NDF (when ndf_mode is equal to 3)
	1

4.1.10.1.1 ndf_mode
Class: Numeric (Integer)

Description: Defines the mode for NDF.
	Options:

	0
	(null)

	1
	(null)

	2
	(null)

	3
	Overcomplete loop filter (integer arithmetic)

4.1.10.1.2 ndf_two_rounds

Class: Numeric (Integer)

Description: Enables two rounds of NDF (when ndf_mode is equal to 3).
4.1.10.1.3 ndf_weighting

Class: Numeric (Integer)

Description: Enables weighting in NDF (when ndf_mode is equal to 3). In the NDF process, several estimates are averaged. When this parameter is enabled a weighted average is computed. Otherwise a simple average is computed.
4.1.10.1.4 ndf_signif_cnt

Class: Numeric (Integer)

Description: Threshold of significant number of coefficients (when ndf_mode is equal to 3).
4.1.10.1.5 ndf_4x4_mult

Class: Numeric (Integer)

Description: Multiplier for the number of significant coefficients if the block is coded as a 4x4 block as opposed to an 8x8 block (when ndf_mode is equal to 3).
4.1.10.1.6 ndf_mvd_th

Class: Numeric (Integer)

Description: Threshold of motion vector difference (when ndf_mode is equal to 3).
4.1.10.1.7 ndf_aggressive

Class: Numeric (Integer)

Description: Sets all filter mask extent values to 2 (when ndf_mode is equal to 3).
4.1.10.1.8 ndf_ic_refine

Class: Numeric (Integer)

Description: Enables ic specific modes – ic_strong, ic_intermed and ic_weak (when ndf_mode is equal to 3)
4.1.10.1.9 ndf_s_X

Class: Numeric (Integer)

Description: Strength of filter for mode X (when ndf_mode is equal to 3). Here X represents one of the elements of {intra_quant, pred_signif, pred_quant, pred_mot, mot_disc, ic_strong, ic_intermed, ic_weak}.
4.1.10.1.10 ndf_x_X

Class: Numeric (Integer)

Description: Extent of filter for mode X (when ndf_mode is equal to 3). Here X represents one of the elements of {intra_quant, pred_signif, pred_quant, pred_mot, mot_disc, ic_strong, ic_intermed, ic_weak}.
4.1.10.1.11 ndf_s_chroma

Class: Numeric (Integer)

Description: Relative strength of chroma deblocking compared to luma (when ndf_mode is equal to 3). A value of 8 implies that the strength of chroma deblocking is the same as that of luma.
4.1.10.1.12 ndf_trsf_8x8

Class: Numeric (Integer)

Description: Indicates whether an 8x8 transform is used for the luma component inside NDF when ndf_mode equals to 3. A value 1 indicates to use 8x8 transform. A value 0 indicates to use a 4x4 transform. The chroma component is always denoised using a 4x4 transform.
4.1.10.2 Parameters of the adaptive de-noising filter
	Parameter
	Usage
	Default value

	wienerfilter
	Enables the use of the adaptive denoising filter
	1

	wienerfilter_inloop
	Apply out of the prediction loop (value 0) or inside the prediction loop (value 1)
	1

	fs_max_rec
	Maximum of filter size for decoded image
	7

	fs_max_pred
	Maximum of filter size for prediction image
	3

	fs_max_qpe
	Maximum of filter size for quantized prediction error image
	3

	wlf_enable_Y
	Enables the use for the Y component
	1

	wlf_enable_U
	Enables the use for the U component
	0

	wlf_enable_V
	Enables the use for the V component
	0

4.1.10.2.1 wienerfilter

Class: Numeric (Integer)

Description: Enables the use of the adaptive de-noising filter. Coefficients are estimated as Wiener filter coefficients.

4.1.10.2.2 wienerfilter_inloop

Class: Numeric (Integer)

Description: Flag to either use the adaptive de-noising filter out of the prediction loop (value 0) or inside the prediction loop (value 1).
4.1.10.2.3 fs_max_rec

Class: Numeric (Integer)

Description: Maximum filter length that is used in the RD-optimized filter length estimation process for the decoded image.
4.1.10.2.4 fs_max_pred

Class: Numeric (Integer)

Description: Maximum filter length that is used in the RD-optimized filter length estimation process for the prediction image.
4.1.10.2.5 fs_max_qpe

Class: Numeric (Integer)

Description: Maximum filter length that is used in the RD-optimized filter length estimation process for the quantized prediction error image.
4.1.10.2.6 wlf_enable_Y

Class: Numeric (Integer)

Description: Enables the use of the adaptive de-noising filter for the Y component.
4.1.10.2.7 wlf_enable_U

Class: Numeric (Integer)

Description: Enables the use of the adaptive de-noising filter for the U component.
4.1.10.2.8 wlf_enable_Y

Class: Numeric (Integer)

Description: Enables the use of the adaptive de-noising filter for the V component.
4.1.10.3 Parameters of the deblocking filter

	Parameter
	Usage
	Default value

	deblockingfilter
	Enables the use of a deblocking filter
	5

	dbf_offset_a
	Offset used in the determination process if the sample is filtered or not
	16

	dbf_offset_b
	Offset used in the determination process if the sample is filtered or not
	16

4.1.10.3.1 deblockingfilter

Class: Numeric (Integer)

Description: The two least significant bits (deblocking_filter&3) define the mode of the deblocking filter

	Options:

	0
	No deblocking filter used

	1
	Deblocking filter is used

	2
	Reserved

	3
	Reserved

The second most significant bit (deblocking_filter&4) specifies, which filter coefficients are used in the case of fixed filter coefficients.

The most significant bit (deblocking_filter&8) specifies whether a boundary strength adaptation is used (deblocking_filter&8==1) or not (deblocking_filter&8==0)

Note: The valid range is currently [0,…,15].

4.1.10.3.2 dbf_offset_a

Class: Numeric (Integer)

Description: Offset used in the determination process if the sample is filtered or not.

Note: The valid range is currently [1,…,31].

4.1.10.3.3 dbf_offset_b

Class: Numeric (Integer)

Description: Offset used in the determination process if the sample is filtered or not.

Note: The valid range is currently [1,…,31].

4.1.11 Motion estimation parameters

The following parameters affect the motion estimation process.

	Parameter
	Short description
	Default value

	chroma_me
	Enables use of chroma information in motion estimation loops
	2

	lime_size
	Controls the size of the largest block considered in the initial motion estimation step
	8

	me_range
	Motion estimation search range in pixel units
	256

	me_loops1
	Number of iterations in refinement motion estimation
	0

	me_loops2
	Number of iterations in trellis motion estimation
	2

	me_loops3
	Number of iterations in region motion estimation
	2

	me_repeat_edge
	Number of repeats for trellis and region motion estimation steps at a primary reference frame
	0

	me_repeat_intref_p
	Number of repeats for trellis and region motion estimation steps at an intermediate reference frame with single list (P-picture)
	0

	me_repeat_intref_b
	Number of repeats for trellis and region motion estimation steps at an intermediate reference frame with double lists (B-picture)
	1

	me_repeat_disposable_p
	Number of repeats for trellis and region motion estimation steps at a disposable frame with single list (P-picture)
	1

	me_repeat_disposable_b
	Number of repeats for trellis and region motion estimation steps at a disposable frame with double lists (B-picture)
	1

	me_loops2_edge
	Number of iterations in trellis motion estimation for the repeat of trellis and region ME at a primary reference frame
	2

	me_loops3_edge
	Number of iterations in region motion estimation for the repeat of trellis and region ME at a primary reference frame
	2

	me_loops2_intref
	Number of iterations in trellis motion estimation for the repeat of trellis and region ME at an intermediate reference frame
	2

	me_loops3_intref
	Number of iterations in region motion estimation for the repeat of trellis and region ME at an intermediate reference frame
	2

	me_loops2_disposable
	Number of iterations in trellis motion estimation for the repeat of trellis and region ME at a disposable reference frame
	2

	me_loops3_disposable
	Number of iterations in region motion estimation for the repeat of trellis and region ME at a disposable reference frame
	2

	me_refine_s0
	Search range for scaling factor refinement in refine ME (P-blocks)
	2

	me_refine_s1
	Search range for first scaling factor refinement in refine ME (B-blocks)
	2

	me_refine_s2
	Search range for second scaling factor refinement in refine ME (B-blocks)
	2

	me_trellis_s0
	Search range for scaling factor refinement in trellis ME (P-blocks)
	2

	me_trellis_s1
	Search range for first scaling factor refinement in trellis ME (B-blocks)
	2

	me_trellis_s2
	Search range for second scaling factor refinement in trellis ME (B-blocks)
	2

	me_trellis_o0
	Search range for offset refinement in trellis ME (P-blocks)
	2

	me_trellis_o1
	Search range for offset refinement in trellis ME (B-blocks)
	2

	me_region_s0
	Search range for scaling factor refinement in region ME (P-blocks)
	2

	me_region_s1
	Search range for first scaling factor refinement in region ME (B-blocks)
	2

	me_region_s2
	Search range for second scaling factor refinement in region ME (B-blocks)
	2

	me_region_o0
	Search range for offset refinement in region ME (P-blocks)
	2

	me_region_o1
	Search range for offset refinement in region ME (B-blocks)
	2

	treillis_ncand
	Maximum number of candidates in trellis ME
	128

	region_ncand
	Maximum number of candidates in region ME
	256

	trellis_mode
	Trellis mode
	2

	fastME
	Determines search pattern for fast ME
	5

	fastMEdual
	Determines search pattern for dual fast ME
	5

	fastMEfixed
	Enables fixed search pattern in fast ME
	1

	hadamard
	Selects the method for computing SAD/SATD during motion estimation.
	3

	h0_mult
	SAD value is first multiplied by h0_mult and then divided by 16.
	48

	ssd_qp_P
	QP value where the SAD for P pictures switches to using SSD.
	127

	ssd_qp_B
	QP value where the SAD for B pictures switches to using SSD.
	100

	ssd_disp_only
	Switching of SAD to using SSD for P and B pictures is only done for disposable pictures if this parameter is set to TRUE
	FALSE

	ssd_mult
	SSD is first multiplied by ssd_mult and then divided by 256.
	8

	enable_motion_sharing_me_init_offset
	Enables the search of partition size for motion sharing in initial ME for IC parameters
	0

	enable_motion_sharing_me_refine
	Enables the basic search of partition size for motion sharing in refine ME
	1

	enable_motion_sharing_me_refine_full
	Enables the full search of partition size for motion sharing in refine ME
	1

	enable_motion_sharing_me_trellis
	Enables the basic search of partition size for motion sharing in trellis ME
	1

	enable_motion_sharing_me_trellis_full
	Enables the full search of partition size for motion sharing in trellis ME
	1

	enable_motion_sharing_me_region
	Enables the basic search of partition size for motion sharing in region ME
	1

	mvshare_two_enable_me
	Enables the search of partition size for motion sharing from 2x8/6x8, 8x2/6x8, 4x8, 8x4 block partitions in ME step
	1

4.1.11.1 chroma_me

Class: numeric (Integer)

Description: This flag controls the use of chroma information (distortion) in the motion estimation loops. When set to 0, chroma distortion is not considered. When set to 1 or 2, chroma distortion is considered. Additionally, when set to 2, chroma distortion is weighted according to difference in quantization parameters between luma and chroma.
4.1.11.2 lime_size

Class: numeric (integer)

Description: this parameter controls the size of the largest block considered in the initial motion estimation step. The width and height (in luma samples) of the largest block is given by 8 times the value of the parameter.
4.1.11.3 me_range

Class: Numeric (Integer)

Description: Motion estimation search range in pixel units.

4.1.11.4 me_loopsX

Class: Numeric (Integer)

Description: Number of loops performed at each motion estimation level.

Note: With a larger number of loops, coding efficiency may increase, as well as encoding time.

4.1.11.5 me_repeat_X
Class: Numeric (Integer)

Description: Number of repeats performed for trellis and region ME steps.
4.1.11.6 me_refine_sX

Class: Numeric (Integer)

Description: search range for scaling refinements of bipredictive or uni-predictive partitions during the refinement Motion Estimation level. The unit of the range is the same as the unit of the scaling factor used for intensity compensation.

4.1.11.7 me_trellis_sX

Class: Numeric (Integer)

Description: Identical to me_refine_sX but for the trellis ME level.

4.1.11.8 me_region_sX

Class: Numeric (Integer)

Description: Identical to me_refine_sX but for the region ME level.

4.1.11.9 me_trellis_oX

Class: Numeric (Integer)

Description: search range for offset refinements of bipredictive or uni-predictive partitions during the trellis Motion Estimation level. The unit of the range is the same as the unit of the offset factor used for intensity compensation.

4.1.11.10 me_region_oX

Class: Numeric (Integer)

Description: Identical to me_trellis_oX but for the region ME level.

4.1.11.11 treillis_ncand

Class: Numeric (Integer)

Description: Maximum number of candidates in trellis ME. Essentially for every block a large set of predictors is generated by considering variations of the current block motion parameters and information from surrounding blocks. This parameter essentially behaves as a hard limit in terms of how many such predictors could be considered when evaluating a block, and therefore limits complexity. Further information on generating candidates may be found in [2].

4.1.11.12 region_ncand

Class: Numeric (Integer)

Description: Maximum number of candidates in region ME. The behavior is similar to treillis_ncand. Further information on generating candidates may be found in [2].

4.1.11.13 trellis_mode

Class: Numeric (Integer)

Description: Defines the order of optimization of rows and columns in Trellis ME.
	Options:

	0
	all rows, all columns

	1
	all even rows, all even columns, all odd rows, all odd columns

	2
	all even rows, all odd rows, all even columns, all odd columns

4.1.11.14 fastME

Class: Numeric (Integer)

Description: Fast Motion Estimation Refinement pattern

	Options:

	0
	Disabled (Full Search)

	1
	small diamond

	2
	square

	3
	extended diamond

	4
	large diamond

	5
	large diamond with half-pel accuracy (pattern performs refinement at subpixel level)

4.1.11.15 fastMEDual

Class: Numeric (Integer)

Description: Fast Motion Estimation Refinement pattern for second refinement around second best predictor (see fastME for valid parameters)

4.1.11.16 fastMEFixed

Class: Numeric (Integer)

Description: Consideration of initial “global” predictor field for fast Motion estimation (See JVT-E023 for further details)

4.1.11.17 hadamard

Class: Numeric (Integer)

Description: Options to compute SAD/SATD during motion estimation

	Options:

	0
	Luma SAD is computed

	1
	Luma SATD is computed from four 4x4 hadamard transform

	2
	Luma SATD is computed from one 8x8 hadamard transform

	3
	Auto SATD, for picture with width greater than 832 and height greater than 480, the SATD is computed from one 8x8 hadamard transform, else the SATD is computed from four 4x4 hadamard transform

4.1.11.18 h0_mult

Class: Numeric (Integer)

Description: This value is used to scale the SAD calculation so that it is in the same range as the SATD calculations. The SAD value is first multiplied by h0_mult which can be in the range of 0 to 64, before it is divided by 16. This allows fractional scale between 0 and 4 in steps of 1/16 to be used.
4.1.11.19 ssd_qp_P

Class: Numeric (Integer)

Description: Options to compute SSD during motion estimation for P pictures. This option is only applied when the effective qp of the picture is greater than the ssd_qp_P value. Otherwise, the option selected in the hadamard parameter is applied.
4.1.11.20 ssd_qp_B

Class: Numeric (Integer)

Description: Options to compute SSD during motion estimation for B pictures. This option is only applied when the effective qp of the picture is greater than the ssd_qp_B value. Otherwise, the option selected in the hadamard parameter is applied.
4.1.11.21 ssd_disp_only

Class: Numeric (Integer)

Description: Options to compute SSD during motion estimation for P or B pictures. When the value is “1”, the option is only applied when the picture is a disposable picture. Otherwise, the option selected in the hadamard parameter is applied.
4.1.11.22 ssd_mult

Class: Numeric (Integer)

Description: This value is used to scale the SSD calculation so that it is in the same range as the SATD calculations. The SSD value is first multiplied by ssd_mult which can be in the range of 0 to 64, before it is divided by 128. This allows fractional scale between 0 and 0.5 in steps of 1/128 to be used.
4.1.11.23 enable_motion_sharing_me_init_offset

Class: Numeric (Integer)

Description: Enables the search of best mvshare_size (partition size for motion sharing) in initial ME when the new candidate of scale and offset parameters is tested.
4.1.11.24 enable_motion_sharing_me_refine

Class: Numeric (Integer)

Description: Enables the search of best mvshare_size (partition size for motion sharing) in refine ME for the first candidate.

4.1.11.25 enable_motion_sharing_me_ refine_full

Class: Numeric (Integer)

Description: Enables the search of best mvshare_size (partition size for motion sharing) in refine ME for all other candidates.

4.1.11.26 enable_motion_sharing_me_trellis
Class: Numeric (Integer)

Description: Enables the search of best mvshare_size (partition size for motion sharing) in trellis ME for the first 10 candidates.
4.1.11.27 enable_motion_sharing_me_trellis_full

Class: Numeric (Integer)

Description: Enables the search of best mvshare_size (partition size for motion sharing) in trellis ME for all other candidates.

4.1.11.28 enable_motion_sharing_me_region
Class: Numeric (Integer)

Description: Enables the search of best mvshare_size (partition size for motion sharing) in region ME.
4.1.11.29 mvshare_two_enable_me
Class: Numeric (Integer)

Description: This flag selects the partition size to be tested in the ME step. When this flag is set to ‘0’, only the 4x8, 8x4 partitions are tested in ME steps. When this flag is set to ‘1’, the block partitions 2x8/6x8, 8x2/6x8, 4x8 and 8x4 are tested to find the best one.
4.1.12 8x8 Transform

The following parameters affect the transform used.

	Parameter
	Short description
	Default value

	trans8x8_enable
	Enables use of 8x8 transform for the 8x8 MC blocks
	1

4.1.12.1 trans8x8_enable
Class: Numeric (Integer)

Description: Indicates whether the 8x8 luma MC block should be transformed using an 8x8 transform or partitioned into four 4x4 blocks and then transformed using a 4x4 transform. If trans8x8_enable is true, then the 8x8 transform is used.

4.1.13 Entropy coding parameters

	Parameter
	Short description
	Default value

	loss_rate
	Adaptation rate of arithmetic coder
	5

	ac_exp_limit
	Exponential limit of the arithmetic coder probability
	128

	prob_file
	Filename of probability data. Should use probY0.dat file in bin/dat/ folder.
	“”

	ztreefile
	Filename of zerotree data. Should use ztree.dat file in bin/dat/ folder.
	“”

	ztreefile_8x8
	Filename of zerotree data. Should use ztree_8x8.dat file in bin/dat/ folder.
	“”

4.1.13.1 loss_rate

Class: Numeric (Integer)
Description: Specifies the adaptation rate of probabilities in the arithmetic coder. A large value implies a slow adaptation and a small value implies a fast adaptation.
4.1.13.2 ac_exp_limit

Class: Numeric (Integer)
Description: Specifies the exponential limit of the arithmetic coder probability.
4.1.13.3 prob_file

Class: Text
Description: Name of the file containing the probability data.
4.1.13.4 ztreefile

Class: Text
Description: Name of the file containing the zero tree data.
4.1.13.5 ztreefile_8x8

Class: Text
Description: Name of the file containing the zero tree data for 8x8 blocks.
4.1.14 Adaptive interpolation filter parameter

	Parameter
	Short description
	Default value

	AIF
	Adaptive interpolation filter
	1

4.1.14.1 AIF
Class: Numeric (Integer)

Description: Enables adaptive interpolation filter.

4.1.15 Output file parameters

	Parameter
	Short description
	Default value

	dstfile
	Filename of compressed stream
	“”

	recfile
	Filename of reconstructed sequence
	“”

	sadfile
	Filename of text file containing motion bit usage and SAD information
	“”

	logfile
	Filename of log data
	“log.txt”

	sadlogfile
	Filename of log data (SAD)
	“”

4.1.15.1 dstfile
Class: Text
Description: Filename of the compressed bitstream.
4.1.15.2 recfile

Class: Text
Description: Filename of the reconstructed YUV sequence.
4.1.15.3 sadfile

Class: Text
Description: Filename of a text file containing motion bit usage and SAD information.
4.1.15.4 logfile

Class: Text
Description: Filename of the log data.
4.1.15.5 sadlogfile

Class: Text
Description: Filename of the SAD log data.
4.1.16 RD optimization parameters

The following parameters control and alter the behavior of Rate Distortion optimization.

	Parameter
	Short description
	Default value

	melq_base
	Lagrange multiplier value for motion estimation
	-8

	mel_offset
	Offset added to ME Lagrange multiplier during initial motion estimation.
	-8

	learn_offset
	Additional cost added to each binary symbol when computing rate in motion estimation.
	0.0

	lambdaq_base
	Lagrange multiplier value for texture coding
	-49

	lambdaq_offset
	Offset added to texture Lagrange multiplier for disposable frames during frame coding mode decision.
	16

	lambda_mode_chroma
	Enables use of chroma information in block mode decision
	1

4.1.16.1 melq_base

Class: Numeric (Integer)
Description: Lagrange multiplier value for motion estimation (base value). The variable lambda for motion estimation is determined based on this base value.
4.1.16.2 mel_offset

Class: Numeric (Integer)

Description: Offset added to the Lagrange parameter for motion estimation during initial motion estimation. The smaller the value, the less the importance of the rate during the initial motion estimation.

4.1.16.3 learn_offset

Class: Numeric (Integer)
Description: Additional cost added to each binary symbol as the penalty when computing rate.
4.1.16.4 lambdaq_base

Class: Numeric (Integer)
Description: Lagrange multiplier value for texture coding. The variable lambda for frame coding mode decision is determined based on this base value.
4.1.16.5 lambdaq_offset

Class: Numeric (Integer)
Description: Offset added to texture Lagrange multiplier for disposable frames. The lambda_offset is not applied to reference frames and the encoder treats this value as 0 for reference frames. The smaller the value, the less the importance of the rate during the frame coding mode decision when a coding frame is disposable frame.
4.1.16.6 lambda_mode_chroma

Class: Numeric (Integer)
Description: Enables use of chroma information in block mode decision. When this flag is set to 1, chroma distortion is weighted according to difference in quantization parameters between luma and chroma. When this flag is set to 0, chroma distortion is not weighted.
4.1.17 Motion Vector Competition Parameters

	Parameter
	Short description
	Default value

	mvcomp_default_config
	Which of two possible MV competition contexts to use by default.
	0

	mvcomp0_zero_residue
	Examine the forcing of residue to zero with motion inherited from each available predictor in block_mode_decision.
	1

	mvcomp0_predictor_0
	The first predictor for MV competition context 0.
	"A"

	mvcomp0_predictor_1
	The second predictor for MV competition context 0.
	"B"

	mvcomp0_predictor_2
	The third predictor for MV competition context 0.
	"temporal"

	mvcomp0_temporal_proba
	The initial probability of signaling the temporal predictor when it's in competition, expressed as val/65536.
	655

	mvcomp0_max_temporal_diff
	If non-zero, reject a T predictor when in competition with another predictor 'x', according to the value |T-x|.
	0

	mvcomp0_auto_max_temporal_diff
	Automatically generate the value of mvcomp0_max_temporal_diff from the probability of signaling 'T'.
	0

	mvcomp0_keep_learned_movement
	Avoid any reset of mv_pred_dir context statistics prior to motion estimation.
	0

	mvcomp1_zero_residue
	For MV competition context 1.
	0

	mvcomp1_predictor_0
	For MV competition context 1.
	"A"

	mvcomp1_predictor_1
	For MV competition context 1.
	"B"

	mvcomp1_predictor_2
	For MV competition context 1.
	"none"

	mvcomp1_max_temporal_diff
	For MV competition context 1.
	0

	mvcomp1_auto_max_temporal_diff
	For MV competition context 1.
	0

	mvcomp1_keep_learned_movement
	For MV competition context 1.
	0

4.1.17.1 mvcomp_default_config
Class: Numeric (Integer)

Description: Select which of two possible MV competition configurations to use by default. The context used can change at the frame level and is signaled per frame.
Note: The current version of the encoder makes no choice. It will always use the context nominated here.

4.1.17.2 mvcomp0_zero_residue, mvcomp1_zero_residue

Class: Numeric (Integer)

Description: Examine the forcing of residue to zero with motion inherited from each available predictor for each macrobloc. For each available predictor, an 8x8 macroblock is constructed using that predictor's motion information, zero motion residue and zero residue.

Note: This is an encoder-side only modification. No information is transmitted to the decoder.
4.1.17.3 mvcomp0_predictor_0, mvcomp0_predictor_1, mvcomp0_predictor_2

Class: Text

Description: Specify up to three motion vector predictors for each MV competition context.

	Options:

	"A"
	Use left spatial neighbour.

	"B"
	Use top spatial neighbour.

	"temporal"
	Use (suitably scaled) co-located macroblock.

	"zero"
	Use a zero predictor.

	"none"
	Use no predictor.

Note: Reading predictors for a given MV competition context stops at the first (if any) "none" predictor. The set of available predictors for any particular macroblock will be reduced to at most two, as described in the Decoder Specification.

4.1.17.4 mvcomp0_max_temporal_diff, mvcomp1_max_temporal_diff
Class: Numeric (Integer)

Description: If non-zero, reject a T predictor when in competition with another predictor 'x', according to the value |T-x|. If the value 'val' of mvcomp0_max_temporal_diff is +ve, T will be rejected if |T-x| > val. Ie, "close" values of T will be preserved. If the value is –ve, T will be rejected if |T-x| < -val. Ie, "far" values of T will be preserved.

4.1.17.5 mvcomp0_auto_max_temporal_diff, mvcomp1_auto_max_temporal_diff

Class: Numeric (Integer)

Description: Automatically generate the value of mvcomp0_max_temporal_diff from the probability of signaling 'T'. The value of mvcomp0_max_temporal_diff is effectively set to –(int)sqrt((1-P(T))/P(T))-1 for each macroblock, where P(T) is the probability of signaling the temporal predictor. This effectively removes 'close' values of T from competition, where signaling T is not useful.

4.1.17.6 mvcomp0_keep_learned_movement, mvcomp1_keep_learned_movement

Class: Numeric (Integer)

Description: Avoid any reset of mv_pred_dir context statistics prior to motion estimation. The initial signaling probability is taken from symbol counts of the previous image used for 'learning' when encoding the current image.

Note: This requires the define LEARNING_PROB to be in effect when compiling the encoder. This define is currently set by default. This is a purely encoder-side modification; nothing is transmitted to the decoder.

4.1.18 CABAC synchronization points

	Parameter
	Short description
	Default value

	superblock_synchro
	Introduce CABAC synchronization points for each superblock.
	0

	superblock_nsubstreams
	Maximum number of substreams to be encoded per frame
	0

4.1.18.1 superblock_synchro

Class: Numeric (Integer)

Description: If set to 1, CABAC contexts are reinitialized prior to the coding of each superblock. The values taken for the reinitialization are taken from superblock neighbors (the superblock to the left and directly above the superblock to be coded).

4.1.18.2 superblock_nsubstreams

Class: numeric (Integer)
Description: The maximum number of substreams to be encoded per frame. This value must be zero with current versions of the encoder, which will encode a bitstream having a single substream per frame. The decoder can be used to re-code an existing bitstream to have multiple substreams per frame using the transcode "-tt" parameter.

4.1.19 Bugfix parameters

Some bugfixes or improvements have been made since the bitstream has been sent for the CfP. The following parameters enable them. For each of them, a value 0 should be used to regenerate bitstreams submitted to the Call for Proposals.
	Parameter
	Short description
	Default value

	bugfix80
	Corrects bugs related to the creation of candidate MVs
	0

	bugfix87
	Corrects a bug related to the generation of interpolated luma samples
	0

	bugfix88
	Corrects a bug related to prediction for mode HOR_UP_PRED in 2x8 case
	0

	bugfix89
	Corrects a bug related to chroma planar prediction
	0

	bugfix90
	Corrects a bug related to determining the availability of 8x2 mode for intra prediction
	0

	bugfix92
	Corrects a bug to consider sip_type when choosing between 4x4, 8x2, 2x8 and 8x8 modes for intra coding
	0

	bugfix93
	Corrects a bug that causes an overflow after inverse quantization
	0

	bugfix94
	Corrects a bug related to bit-cost computation of block coding mode
	0

4.1.19.1 bugfix80

Class: numeric (Integer)

Description: When this flag is set to 1, a few bugs related to creating candidate MVs in the motion estimation process of the encoder are corrected. This is an encoder-only parameter and is not signaled in the bitstream.
4.1.19.2 bugfix87

Class: numeric (Integer)

Description: When this flag is set to 1, a bug related to the generation of interpolated luma samples at position (x+7/8, y+7/8) is fixed.
4.1.19.3 bugfix88

Class: numeric (Integer)

Description: When this flag is set to 1, a bug related to prediction for mode HOR_UP_PRED in 2x8 case is fixed.
4.1.19.4 bugfix89

Class: numeric (Integer)

Description: When this flag is set to 1, a bug related to chroma planar prediction is fixed.
4.1.19.5 bugfix90

Class: numeric (Integer)

Description: When this flag is set to 1, a bug related to determining the availability of 8x2 mode for intra prediction is corrected.
4.1.19.6 bugfix92

Class: numeric (Integer)

Description: When this flag is set to 1, a bug is corrected. The cost of sip_type will be considered by the encoder when choosing between 4x4, 8x2, 2x8 and 8x8 modes for intra coding. This is an encoder-only parameter and is not signaled in the bitstream.
4.1.19.7 bugfix93

Class: numeric (Integer)

Description: When this flag is set to 1, a bug that causes an overflow after inverse quantization is corrected.
4.1.19.8 bugfix94

Class: numeric (Integer)

Description: When this flag is set to 1, a bug related to bit-cost computation of block coding mode is corrected. This is an encoder-only parameter and is not signaled in the bitstream.
4.1.20 Other parameters

	Parameter
	Short description
	Default value

	open_loop
	Uses non-coded images as references
	0

	mvs_realcost
	Enables computation of real cost when encoding the direction of motion vector prediction
	1

	reffile
	Reference frames filename
	“”

	parfile
	Filename of file containing qp values for each frame
	“”

	
	
	

4.1.20.1 mvs_realcost

Class: Numeric (Integer)

Description: When this parameter is set to 1, the decision to encode a motion vector using either horizontal or vertical prediction is based upon a cost estimate based on actual probabilities of entropy coding engine (as opposed to initial probabilities).

4.1.20.2 reffile

Class: Text

Description: Provides the filename of a sequence of frames that are used as reference frames. Frames from the provided file are inserted into the frame reference buffer instead of reconstructed frames. This option may be useful to compare algorithms as this avoids any drift and dependency in the encoder. Bitstreams will not be properly decoded when using this option.

4.1.20.3 parfile

Class: Text

Description: Provides the filename of a text file containing encoding parameters for each frame. For each encoded frame, three parameters are read from the file: qp, lambdaq_base, and melq_base. The values read from the file supersede the values otherwise defined in the configuration file.

Note: parameters should be listed according to the frame coding order, not the frame display order.
4.1.20.4 open_loop

Class: Numeric (Integer)
Description: When this parameter is set to 1, non coded images are used as references.
4.2 Customizable quantization scaling matrix file
As mentioned in section 2.2.6, 5 matrix sets (COMMON, 1, 2, 3, 4) are defined in the scaling matrix file according to picture type (I/P/B). In each matrix set, 16 matrixes are defined according to block type (INTRA/INTER), block size (4x4, 2x8, 8x2, 8x8, 16x16), luma or chroma component (LUMA/CHROMAU/CHROMAV). Currently, in each matrix set, 3 out of 16 matrixes are not used. They are matrixes for inter8x8 chromaU, inter8x8 chromaV and inter16x16 luma blocks.
By changing the values of each matrix in corresponding matrix set, user can change the quantization step size on each transformed coefficients. Each value in each quantization scaling matrix represents a weighting factor which is defined as equal to matrix_value/16. In other words, the weighting factor is equal to 1 when matrix_value is equal to 16. If matrix_value is larger than 16, the weighing factor will be larger than 1 and the quantization step size is scaled by the weighting factor.

The quantization scaling matrix file allows the flexibility to specifically change the quantization step size of a transformed coefficient in a specific block size, prediction type and color component.
A sample matrix file:

INTRA4X4_LUMA_MOD_TYPE_COMMON = 1
INTRA4X4_LUMA_SCALE_COMMON = 0
INTRA4X4_LUMA_SLOPE_COMMON = 0
INTRA4X4_LUMA _VALUES_COMMON =
20,13,22,25,
13,22,25,31,
16,22,30,38,
22,25,37,58,

INTRA8X8_LUMA_MOD_TYPE_COMMON = 1
INTRA8X8_LUMA_SCALE_COMMON = 0
INTRA8X8_LUMA_SLOPE_COMMON = 0
INTRA8X8_LUMA_N_VALUES_COMMON = 0
INTRA8X8_LUMA_VALUES_COMMON =
30,18,19,20,21,22,23,24,
18,18,19,20,21,22,23,24,
19,19,20,21,21,22,23,25,
20,20,21,21,22,23,24,25,
21,21,21,22,23,23,24,25,
22,22,22,23,23,24,25,26,
23,23,23,24,24,25,26,27,
24,24,24,25,26,26,27,27
INTRA16X16_LUMA_MOD_TYPE_COMMON = 1
INTRA16X16_LUMA_SCALE_COMMON = 0
INTRA16X16_LUMA_SLOPE_COMMON = 0
INTRA16X16_LUMA_N_VALUES_COMMON = 0
INTRA16X16_LUMA_VALUES_COMMON =
53,40,41,42,43,44,44,46,47,49,51,54,56,59,62,65,
40,41,41,42,43,44,44,46,48,49,51,54,56,59,62,66,
41,41,42,42,43,44,45,47,48,50,52,54,57,60,63,66,
42,42,42,43,44,44,45,47,48,50,52,55,57,60,63,67,
43,43,43,44,44,45,46,48,49,51,53,55,58,61,64,68,
44,44,44,44,45,46,47,48,50,52,54,56,59,62,65,69,
44,44,45,45,46,47,48,50,51,53,55,58,61,63,66,70,
46,46,46,47,48,48,50,51,53,55,57,59,62,65,68,72,
47,48,48,48,49,50,51,53,54,56,59,61,64,66,70,74,
49,49,50,50,51,52,53,55,56,58,61,63,65,69,72,76,
51,51,52,52,53,54,55,57,59,61,63,65,68,71,75,78,
54,54,54,55,55,56,58,59,61,63,65,68,71,74,77,81,
56,56,57,57,58,59,61,62,64,65,68,71,74,77,80,84,
59,59,60,60,61,62,63,65,66,69,71,74,77,80,84,87,
62,62,63,63,64,65,66,68,70,72,75,77,80,84,87,90,
65,66,66,67,68,69,70,72,74,76,78,81,84,87,90,93
4.2.1 Parameters of quantization scaling matrix for a transform block
	Parameter
	Short description
	Default value

	“MATRIX”_MOD_TYPE_“X”
	Matrix update type (0/1)
	1

	“MATRIX”_SCALE_“X”
	Scaling ratio for updating scaling matrices. Only used when matrix mode type is 0.
	0

	“MATRIX”_SLOPE_“X”
	Sloping ratio for updating scaling matrices. Only used when matrix mode type is 0.
	0

	“MATRIX”_N_VALUES_“X”
	Number of delta values for updating scaling matrices. Only used when matrix mode type is 0.
	0

	“MATRIX”_VALUES_“X”
	Delta values for updating scaling matrices.
	16

Note: “X” represents the matrix set whose value can be “COMMON”, “1”, “2”, “3” and “4”. And “Matrix” represents the matrix type whose values are as follows:

	“Matrix”
	Description

	INTRA4X4_LUMA
	Intra 4x4 Luminance component

	INTRA4X4_CHROMAU
	Intra 4x4 Chroma U component

	INTRA4X4_CHROMAV
	Intra 4x4 Chroma V component

	INTER4X4_LUMA
	Inter 4x4 Luminance component

	INTER4X4_CHROMAU
	Inter 4x4 Chroma U component

	INTER4X4_CHROMAV
	Inter 4x4 Chroma V component

	INTRA2X8_LUMA
	Intra 2x8 Luminance component

	INTRA8X2_LUMA
	Intra 8x2 Luminance component

	INTRA8X8_LUMA
	Intra 8x8 Luminance component

	INTER8X8_LUMA
	Inter 8x8 Luminance component

	INTRA8X8_CHROMAU
	Intra 8x8 Chroma U component

	INTRA8X8_CHROMAV
	Intra 8x8 Chroma V component

	INTER8X8_CHROMAU
	Inter 8x8 Chroma U component

	INTER8X8_CHROMAV
	Inter 8x8 Chroma V component

	INTRA16X16_LUMA
	Intra 16x16 Luminance component

Eg. INTRA4X4_LUMA_MOD_TYPE_COMMON or INTRA4X4_LUMA_MOD_TYPE_1, or INTRA4X4_LUMA_MOD_TYPE_2.

For example, to modify the quantization step size for the transformed coefficients of the 8x8 Intra coded Luma block in an Intra Picture, the user can specify the intended matrix by the name “INTRA8x8_LUMA_VALUES_1”.
4.2.2 Modes of generating matrixes.

There are two modes to generate quantization matrix as described below.

4.2.2.1 Update mode (_MOD_TYPE_= 0).

This mode of updating new quantization matrixes is to create new matrixes by modifying from previous available matrixes. The previous matrix values can be adjusted by performing 3 types of operation to adjust the shape of the matrix:
· Scaling the matrix values.

· Changing the gradient/slope of matrix.

· Adding delta values to the previous matrix values.

The new matrix value can be computed by the equation below:

[image: image5.wmf](

)

(

)

(

)

i

i

i

i

D

M

Slope

Scale

M

V

+

>>

+

-

´

+

+

´

=

4

8

)

16

(

16

Where
[image: image6.wmf]i

M

 is the previous matrix value for the i-th coefficient,
[image: image7.wmf]i

V

 is the new matrix value for the i-th coefficient, Scale is the scale adjustment factor, Slope is the slope adjustment factor and
[image: image8.wmf]i

D

is the delta value for the i-th coefficient. Scale, Slope and
[image: image9.wmf]i

D

are values that can be specified in the quantization scaling matrix file. The scale value of a particular matrix type is equal to the value of “MATRIX”_SCALE_“X” in the configuration file. The slope value of a particular matrix type is equal to the value of “MATRIX”_SLOPE_“X” in the configuration file. The matrix delta values of a particular matrix type are set equal to the values of “MATRIX”_VALUES_“X” in the configuration file. The number of delta values that to be coded in the headers are specified in the value of “MATRIX”_N_VALUES_“X” in the configuration file. The default delta values that are not coded in the header are set to zero values.
4.2.2.2 Refresh mode (_MOD_TYPE_= 1).

This mode of updating new quantization matrixes is to replace the previous matrix values with new matrix values coded in the headers. When this mode is used, the following parameters in the configuration file are not used: “MATRIX”_SCALE_“X”, “MATRIX”_SLOPE_“X”, “MATRIX”_N_VALUES_“X”. The new matrix values are set equal to the values of “MATRIX”_VALUES_“X” in the configuration file.
4.3 Customizable quantization offset matrix file
As mentioned in section 2.2.6, 5 matrix sets (COMMON, 1, 2, 3, 4) are defined in the offset matrix file according to picture type(I/P/B). In each matrix set, 16 matrixes are defined according to block type (INTRA/INTER), block size(4x4, 2x8, 8x2, 8x8, 16x16), luma or chroma component(LUMA/CHROMAU/CHROMAV). Currently, in each matrix set, 3 out of 16 matrixes are not used. They are matrixes for inter8x8 chromaU, inter8x8 chromaV and inter16x16 luma blocks.
By changing the values of each matrix in the corresponding matrix set, the user can change the shift in the representation values of each transformed coefficients. Each value in each quantization scaling matrix represents a weighting factor which is defined as equal to matrix_value/16. In another words, the weighting factor is equal to 1 when matrix_value is equal to 16. If matrix_value is smaller than 16, the weighing factor will be less than 1 and thus the first representation value is shifted closer to the value zero.
The format for quantization offset matrix files is exactly the same as the quantization scaling matrix file in 4.2. The only difference is the update mode supported. In the quantization offset matrix file, one additional mode (_MOD_TYPE_ =2) to update matrix values is supported.
4.3.1 Parameters of quantization offset matrix for luminance block

	Parameter
	Short description
	Default value

	“MATRIX”_MOD_TYPE_“X”
	Matrix update type (0/1/2)
	1

	“MATRIX”_SCALE_“X”
	Scaling ratio for updating offset matrices. Only used when matrix mode type is 0.
	0

	“MATRIX”_SLOPE_“X”
	Sloping ratio for updating offset matrices. Only used when matrix mode type is 0.
	0

	“MATRIX”_N_VALUES_“X”
	Number of delta values for updating offset matrices. Only used when matrix mode type is 0.
	0

	“MATRIX”_VALUES_“X”
	Delta values for updating offset matrices.
	16

Note: “X” represents the matrix set whose value can be “COMMON”, “1”, “2”, “3” and “4”. And “Matrix” represents the matrix type whose values are as follows:

	“Matrix”
	Description

	INTRA4X4_LUMA
	Intra 4x4 Luminance component

	INTRA4X4_CHROMAU
	Intra 4x4 Chroma U component

	INTRA4X4_CHROMAV
	Intra 4x4 Chroma V component

	INTER4X4_LUMA
	Inter 4x4 Luminance component

	INTER4X4_CHROMAU
	Inter 4x4 Chroma U component

	INTER4X4_CHROMAV
	Inter 4x4 Chroma V component

	INTRA2X8_LUMA
	Intra 2x8 Luminance component

	INTRA8X2_LUMA
	Intra 8x2 Luminance component

	INTRA8X8_LUMA
	Intra 8x8 Luminance component

	INTER8X8_LUMA
	Inter 8x8 Luminance component

	INTRA8X8_CHROMAU
	Intra 8x8 Chroma U component

	INTRA8X8_CHROMAV
	Intra 8x8 Chroma V component

	INTER8X8_CHROMAU
	Inter 8x8 Chroma U component

	INTER8X8_CHROMAV
	Inter 8x8 Chroma V component

	INTRA16X16_LUMA
	Intra 16x16 Luminance component

4.3.2 Additional mode of generating matrixes.

Besides the two modes of generating matrixes as specified in 4.2.2.1 and 4.2.2.2, the quantization offset matrix configuration file allows one additional mode to generate matrixes.

4.3.2.1 Flat Matrix Mode (_MOD_TYPE_=2)

This mode of updating new quantization matrixes is to create a flat matrix by sending only one value in the headers. When this mode is used, the following parameters in the configuration file are not used: “MATRIX”_SCALE_“X”, “MATRIX”_SLOPE_“X”, “MATRIX”_N_VALUES_“X”, and only the first value of “MATRIX”_VALUES_“X” in the configuration file will be used to create the flat matrix. All matrix values will be set this value.
5 Decoder usage

5.1 Decoder syntax

The decoder is invoked by:

./decoder [options] <bitstream file>.bit [<output file>.yuv]
where bitstream_file.bit is the bitrstream and output_file.yuv (optional) is the YUV output file. In the case that output_file.yuv is not given, the default output name is dec.yuv.
	Options:

	-h
	Help mode

	-s
	Silent mode

	-v
	Verbose mode

	-f
	Disable output of the stat files

	-F
	Enable output of the stat files

	-N
	Disable output of the YUV file

	-tt n
	Transcode to a new stream containing n substreams per frame (see Section 5.3.1)

	-dnt n
	Denoise stream with n threads

	-wft n
	Wiener filter with n threads

	-dbt n
	Deblock with n threads

	-dt n
	Decode stream with at most n threads (see Section 5.3.2)

	-inputref
	When the input is a stream created with no synchro signalling (ie, created using an encoder without CABAC_SYNC_POINTS enabled)

5.2 Decoder output

When running the decoder, it prints on the standard output. An example of generated output is given below (when decoding the stream as generated in Section 3.1).
	CDCM video decoder

--

Frame QP

00000(R) 061

00008(P) 065

00004(B) 073

00002(B) 081

00001(b) 085

00003(b) 085

00006(B) 081

00005(b) 085

00007(b) 085
Number of I-frames: 1 (11.11%)

Number of P-frames: 1 (11.11%)

Number of B-frames: 7 (77.78%)

Ref index 0 (LIST_0): 10850 (89.58%)

Ref index 1 (LIST_0): 776 (6.41%)

Ref index 2 (LIST_0): 486 (4.01%)

Ref index 3 (LIST_0): 0 (0.00%)

Ref index 0 (LIST_1): 9471 (89.37%)

Ref index 1 (LIST_1): 1059 (9.99%)

Ref index 2 (LIST_1): 67 (0.63%)

Ref index 3 (LIST_1): 0 (0.00%)

List_0: 1897 (13.31%)

List_1: 382 (2.68%)

BiPred: 10215 (71.65%)

For each decoded frame, the output consists of:
· 5-digit frame number

· Frame type

R:
I frame with instant decoder refresh

D:
I frame with deferred decoder refresh until the next picture

i:
I frame (non reference)

I:
I frame

p:
predictive frame (non reference – disposable)

P:
predictive frame

b:
bi-predictive frame (non reference – disposable)

B:
bi-predictive frame
· Sselected QP

Additionally, at the end of decoding, the following information is provided:
· Number of I, P and B frames (and percentage for the sequence)
· Statistics regarding reference indices (and percentage for the sequence)
· Statistics regarding prediction modes (and percentage for the sequence)
When –v (verbose mode), the output of the decoder provides a more detailed bit allocation of the different parts of the bitream, for each frame. A extract of this data is given below:

	CDCM video decoder

--

Frame QP

00000(R) 061

--

header bits 13.00 (0.01%)|

zblk intra luma 2263.96 (1.34%)|*

zblk intra chroma 2738.34 (1.63%)|**

zblk inter luma 0.00 (0.00%)|

zblk inter chroma 0.00 (0.00%)|

ztree intra luma 34648.90 (20.57%)|*********************

ztree intra chroma 7819.91 (4.64%)|*****

ztree inter luma 0.00 (0.00%)|

ztree inter chroma 0.00 (0.00%)|

ztree inter luma 64 15514.55 (9.21%)|*********

ztree intra chroma 64 94.39 (0.06%)|

ztree intra luma 16x16 209.62 (0.12%)|

coeff intra luma 61427.37 (36.47%)|************************************

coeff intra chroma 6040.22 (3.59%)|****

coeff inter luma 0.00 (0.00%)|

coeff inter chroma 0.00 (0.00%)|

coeff inter luma 64 17444.42 (10.36%)|**********

coeff intra chroma 64 40.00 (0.02%)|

zmv 0.00 (0.00%)|

ztree mv pred 0.00 (0.00%)|

ztree mv bi-pred 0.00 (0.00%)|

ztree mv 4x4 0.00 (0.00%)|

mv value 0.00 (0.00%)|

mv pred bits 0.00 (0.00%)|

mvshare_type_zero 0.00 (0.00%)|

reference index 0.00 (0.00%)|

prediction mode 0.00 (0.00%)|

ic (offset & scale) 0.00 (0.00%)|

sip type 2991.58 (1.78%)|**

sip mode luma 13934.90 (8.27%)|********

sip mode chroma 3219.22 (1.91%)|**

AIF info 0.00 (0.00%)|

RPPS info 9.00 (0.01%)|

Wiener Filter 3.00 (0.00%)|

q matrix 4.00 (0.00%)|

uncounted bits 24.00 (0.01%)|

--

Total bits 168450.39

Buffer bits (read) 168480

Buffer bits (orig) 168456

BiPred: 10215 (71.65%)
5.3 Decoder features

5.3.1 Transcoding

The decoder also contains a 'transcode' function. This mode is introduced by using the '-tt n' parameter, eg:

 ./decoder -tt 2 test.dcm

In this mode, an input stream is decoded as normal and also re-encoded at the arithmetic coder level. This re-encoding produces an output stream, 'transcoded.dcm', that is the input stream recoded to have the following properties:

Superblock synchronization points are added, if they were not already present.

The number of substreams per frame is 'n'.

If the input stream was coded with synchronization points, and "-tt 1" is used, transcoded.dcm will simply be a copy of the original input.

A limitation of the current decoder is that transcoding can only occur from a mono-substream input stream, and 'n' should not be greater than the number of lines of superblocks per frame.

An output 'transcoded.dcm' stream can be decoded by any decoder that supports synchronization points, ie, a multi-threading decoder is not necessary to decode it.

5.3.2 Multi-threading

When presented with an input file containing multiple substreams per frame, it is possible that individual substreams can be decoded in parallel. By default, a multi-threading decoder will use the same number of threads as there are substreams. This default behavior can be overridden using the '-dt t' parameter to specify the maximum number of threads to use, eg:

./decoder –dt 1 test.dcm

Note that any input file can be decoded with any number of threads t that is not greater than the number of substreams found per frame ns. This implies that any input file can be decoded using just a single thread, for example. One can decode a 4-substream 720p sequence using only 2 threads, as another example.

If t is greater than ns for a particular input file, only ns threads will be created.
A limitation of the current decoder is that when decoding multiple substreams with multiple threads, the output information files "mode_stats.md" and "mv_stats.mv" will be zero-length. In order to have content in these files, '-dt 1' must be used to force decoding with a single thread if there are multiple substreams per frame.

6 Trace file

6.1 Trace file
A trace file tool is implemented both at the encoder and at the decoder. When the macro TRACE_DEBUG is activated, a trace file is generated by the encoder and the decoder. The trace file contains the syntax of the coded or decoded blocks of each frame of the stream.

A typical line of the trace file is as follows:

[elementName [ctx c]] R range p prob val v

The element in [] are optional.
· "elementName" indicates the name of the syntax element that is coded or decoded.
· "ctx c" indicates the context c which is used to code or decode the syntax element.
· "R range" indicates the range of the cabac used to code or decode the syntax element.
· "p prob" indicates the value of the probability used to code or decode the value v.
· "val v" indicates the value coded or decoded.

The following elementName that may be found are:
· blockmode: indicating the mode of the block to be coded or decoded (this value is not coded, this is just for information and an easier understanding when looking at the trace file).
· MPM: the most probable mode
· rem_intra_pred: the intra prediction mode
· sip_type: the sip type zblk: the zerotree for luma or chroma block coding
· chroma_intra_pred: the prediction for intra chroma
· chroma_intra_zblk: the zerotree for intra chroma block coding
· p_mode_Px, p_mode_Bx: elements of the block mode coding for P and B frames
· motion vector: indicates motion vector information coding or decoding follows.
· mvp: the motion vector predictorref index: reference index
· luma_inter, luma_inter8x8: indicates if the following syntax elements correspond to luma inter 4x4 transform or luma inter 8x8 transform
· chroma_inter: indicates that the following syntax elements correspond to chroma inter.
· shift_value: the information for boundary shift.

When multiple substreams are present per frame, there is a trace-file created per substream.

7 References

[1] “CDCM Video Codec: Quick Start Guide”.

[2] “CDCM Video Codec: Overall Technical Document Proposal”.

[3] “CDCM Video Codec: Decoder Specification”.

[4] “CDCM Video Codec: Reference Encoder Manual”

Prepared by NTT DOCOMO, Inc. , NTT Corp, Panasonic, Technicolor, and Orange Labs

Page 53 of 53

_1177853177.vsd
I0

Bs4

Bs6

P8

B5

B7

B3

Bs2

B1

_1330510721.unknown

_1330510773.unknown

_1330510837.unknown

_1330510728.unknown

_1321193216.vsd
I0

Bs4

P8

Bs6

B5

B7

B3

Bs2

B1

Use set1

Use set2

Use set3

Use set4

_1177851356.vsd
text

IC

PC

BI

PC

BI

BI

BI

BI

BI

Intermediate Frames

Primary Frames

_1177849689.vsd
P

B

B

P

B

B

B

B

B

