JCTVC-A114 Annex A: Decoder Specification

2010/04/13

[image: image256.emf]

a_pos b_pos c_pos

d_pos e_pos f_pos g_pos

h_pos i_pos j_pos k_pos

l_pos m_pos n_pos o_pos

AIF mode 1

a_pos b_pos c_pos

d_pos e_pos f_pos g_pos

h_pos i_pos j_pos k_pos

l_pos m_pos n_pos o_pos

AIF mode 1

[image: image257.emf]

a_pos b_pos c_pos

d_pos e_pos f_pos g_pos

h_pos i_pos j_pos k_pos

l_pos m_pos n_pos o_pos

AIF mode 2

a_pos b_pos c_pos

d_pos e_pos f_pos g_pos

h_pos i_pos j_pos k_pos

l_pos m_pos n_pos o_pos

AIF mode 2

[image: image258.emf]

a_pos b_pos c_pos

d_pos e_pos f_pos g_pos

h_pos i_pos j_pos k_pos

l_pos m_pos n_pos o_pos

AIF mode 3

a_pos b_pos c_pos

d_pos e_pos f_pos g_pos

h_pos i_pos j_pos k_pos

l_pos m_pos n_pos o_pos

AIF mode 3

	Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11

1st Meeting: Dresden, DE, 15-23 April, 2010
	Document: JCTVC-A114-Annex A

Annex A
CDCM Video Codec:

Decoder Specification
Table of Contents

41
Introduction

42
Normative references

43
Conventions

44
Source format

45
Syntax

45.1
coding_unit

45.2
sequence_header

85.3
RPPS (Reference Picture Processing Set)

85.4
Find Substreams

95.5
QScaling Matrix Common Set

95.6
QOffset Matrix Commom Set

95.7
Frame

125.8
QScaling Matrix Overwrite Set

125.9
QOffset Matrix Overwrite Set

135.10
QScaling Matrix Update

135.11
QOffset Matrix Update

145.12
Superblock

165.13
decode_intra_luma_blk16x16

165.14
decode_intra_luma_blk8x8

175.15
decode_intra_chroma_blk

175.16
decode_mvshare_size

185.17
spatial_intra_prediction

185.18
Block

205.19
Coefficient level

205.20
Decode adaptive_denoising_filter

216
Semantics

216.1
coding_unit

216.2
sequence_header

286.3
RPPS (Reference Picture Processing Set)

296.4
Find Substreams

296.5
QScaling Matrix Common Set

306.6
QOffset Matrix Common Set

306.7
Frame

336.8
QScaling Matrix Overwrite Set

336.9
QOffset Matrix Overwrite Set

336.10
QScaling Matrix Update

346.11
QOffset Matrix Update

346.12
Superblock

366.13
Block

366.14
Decode_mvshare_size

366.15
Spatial_intra_prediction

376.16
Coefficient level

376.17
Decode adaptive denoising filter

387
Decoding process

387.1
Coding unit

387.2
Sequence header decoding

387.3
RPPS decoding

397.4
Frame decoding

397.4.1
Frame order

397.4.2
Default Superblock Order

407.4.3
Superblock Synchronisation Points

437.4.4
Substreams

457.4.5
Block Order

467.4.6
Coefficient Order

467.4.7
Mapping of decoded coeff_level into Intra 8x8 Luma Block Partitioning

477.4.8
Inter 8x8 Luma Block Partitioning

477.5
Spatial prediction

477.5.1
Spatial Intra Prediction

477.5.2
Most probable mode derivation

487.5.3
Sample Prediction

487.5.4
Luma H.264/MPEG-4 AVC Sample Prediction Construction

547.5.5
Edge Prediction for Intra Coding and DC mode

617.5.6
Luma TMA

647.5.7
Predictor Low Pass filtering

647.5.8
Chroma H.264/MPEG-4 AVC Sample Prediction Construction

647.5.9
Chroma TMA

647.6
Temporal prediction

647.6.1
Reference buffer management

647.6.2
Decoder Refresh

657.6.3
Reference list construction

657.6.4
Reference index decoding

657.6.5
Motion vector decoding

707.6.6
Decoding of partition size for motion sharing

717.6.7
Luma fractional-pel interpolation process

767.6.8
Luma motion compensation

767.6.9
Luma intensity compensation

777.6.10
Chroma motion compensation

777.6.11
Chroma brightness compensation

787.6.12
Motion sharing for inter prediction

787.7
Texture decoding

787.7.1
Scaling of 16 Transformed Coefficients

807.7.2
Scaling of 64 Transformed Coefficients

817.7.3
Scaling of 256 Transformed Coefficients

817.7.4
4x4 Block Inverse transform specification

827.7.5
2x8 Block Inverse transform specification

837.7.6
8x2 Block Inverse transform specification

847.7.7
8x8 Block Inverse transform specification

847.7.8
16x16 Block Inverse transform specification

847.7.9
Adaptive Transform Selection

857.7.10
Customizable Quantization Matrixes

877.8
Conversion to 8-bit

877.9
Loop filter

877.9.1
Non-linear Denoising Filter (NDF)

957.9.2
Adaptive denoising filter

987.9.3
Deblocking Filter

1017.10
Arithmetic decoder

1017.10.1
Probability estimation

1017.10.2
Core engine

1037.10.3
Superblock Synchronisation Points

1037.10.4
Context definition

1047.10.5
Context generation

Introduction

This document specifies the operation of a decoder compliant with the CDCM Video Codec specification. The codec is developed by NTT DOCOMO, Inc. , Panasonic, Technicolor, and Orange Labs.
1 Normative references

ISO/IEC 14496-10:2004 MPEG-4 Advanced Video Coding

2 Conventions

The following operators are used to describe mathematical operations.

	*
	Integer multiplication

	/
	Integer division with truncation

	<<
	Integer arithmetic shift left

	>>
	Integer arithmetic shift right

	| a |
	Integer absolute value

	(
	Floating-point multiplication

	(
	Floating-point division

	pow(a,b)
	Floating-point a to the power b

	floor(a)
	Floating-point to integer conversion with truncation

	clip(x,a,b)
	Integer clipping of x to the range [a..b]

3 Source format

This specification supports coding of frames in the YCbCr 4:2:0 sampling space.

4 Syntax

Syntax is described below. Elements fall into two categories: fixed-length elements and variable-length elements coded with arithmetic coding. Fixed-length elements are of type uint(x) (unsigned) or sint(x) (signed) where x indicate the size in bits of the element. Variable-length elements are represented either by uint(1)/ac or uint(x-y)/ac or unary/ac. uint(1) is used for binary elements; uint(x-y)/ac and unary/ac for elements that may take 3 or more values. When uint(x-y)/ac is used, x indicates the minimum number of bits read and y indicates the maximum numbers of bits read. For each variable-length element a context or a set of contexts is given. When the context is given as ‘50/50’ it indicates that no probability adaptation is done.

4.1 coding_unit

	Description
	Type
	Context

	coding_unit() {
	
	

	 payload_type
	unsigned short
	

	 payload_size
	unsigned int
	

	 for(i=0; i<payload_size; i++)
	
	

	 payload_byte[i]
	uint(8)
	

	}
	
	

4.2 sequence_header

	Description
	Type
	Context

	sequence_header() {
	
	

	 Qp
	uint(7)
	

	 frame_height
	uint(13)
	

	 frame_width
	uint(13)
	

	 better_color
	uint(3)
	

	 if(better_color = = 7) {
	
	

	 chroma_dc_th
	uint(8)
	

	 chroma_dc_scale
	uint(8)
	

	 }
	
	

	 bc_offset_plus16
	uint(5)
	

	 lumaDC
	uint(3)
	

	 loss_rate_minus2
	uint(4)
	

	 ac_exp_limit
	uint(10)
	

	 luma_mc
	uint(3)
	

	 chroma_mc
	uint(2)
	

	 gen8pel_filter
	uint(2)
	

	 mc_round
	uint(2)
	

	 ndf_mode
	uint(2)
	

	 deblocking_filter
	uint(4)
	

	 if(deblocking_filter) {
	
	

	 dbf_offset_a
	uint(5)
	

	 dbf_offset_b
	uint(5)
	

	 }
	
	

	 adaptive_denoising_filter
	uint(1)
	

	 if(adaptive_denoising_filter) {
	
	

	 adaptive_denoising_filter_inloop
	uint(1)
	

	 }
	
	

	 use_extension
	uint(1)
	

	 reserved = 0
	uint(2)
	

	 reserved = 10
	uint(4)
	

	 reserved = 10
	uint(4)
	

	 reserved = 1
	uint(1)
	

	 candidate_search_region
	uint(8)
	

	 num_candidate_averaged
	uint(4)
	

	 candidate_sad_threshold
	uint(8)
	

	 reserved = 0
	uint(2)
	

	 nref_frames
	uint(3)
	

	 adapt_list_size
	uint(1)
	

	 enable_int_comp
	uint(1)
	

	 DC_mult
	uint(3)
	

	 reserved = 7
	uint(3)
	

	 reserved = 7
	uint(3)
	

	 weight_diff_scale
	uint(3)
	

	 trans8x8_enable
	uint(1)
	

	 motion_sharing_enable
	uint(1)
	

	 if(motion_sharing_enable) {
	
	

	 mvshare_two_enable
	unit(1)
	

	 }
	
	

	 ndf_two_rounds
	uint(1)
	

	 ndf_weighting
	uint(1)
	

	 ndf_signif_cnt
	uint(4)
	

	 if(trans8x8_enable) {
	
	

	 ndf_4x4_mult
	uint(4)
	

	 }
	
	

	 ndf_aggressive
	uint(1)
	

	 ndf_ic_refine
	uint(1)
	

	 ndf_mvd_th
	uint(8)
	

	 ndf_s_pred_quant
	uint(8)
	

	 ndf_s_pred_signif
	uint(8)
	

	 ndf_s_pred_mot
	uint(8)
	

	 ndf_s_intra_quant
	uint(8)
	

	 ndf_s_mot_disc
	uint(8)
	

	 ndf_s_ic_strong
	uint(8)
	

	 ndf_s_ic_intermed
	uint(8)
	

	 ndf_s_ic_weak
	uint(8)
	

	 ndf_x_pred_quant
	uint(8)
	

	 ndf_x_pred_signif
	uint(8)
	

	 ndf_x_pred_mot
	uint(8)
	

	 ndf_x_intra_quant
	uint(8)
	

	 ndf_x_mot_disc
	uint(8)
	

	 ndf_x_ic_strong
	uint(8)
	

	 ndf_x_ic_intermed
	uint(8)
	

	 ndf_x_ic_weak
	uint(8)
	

	 ndf_s_chroma
	uint(4)
	

	 aif
	uint(1)
	

	 reserved = 0
	uint(1)
	

	 mpm_default
	uint(4)
	

	 intra8x8
	uint(2)
	

	 transform_selection
	uint(1)
	

	 ndf_trsf_8x8
	uint(1)
	

	 reserved = 0
	uint(1)
	

	 reserved = 1
	uint(2)
	

	 reserved = 1
	uint(1)
	

	 sb_height
	uint(8)
	

	 sb_width
	uint(8)
	

	 intra16x16
	uint(1)
	

	 if(intra16x16) {
	
	

	 candidate_search_region_intra16x16
	uint(8)
	

	 transform_selection_16x16
	uint(1)
	

	 chroma8x8
	uint(1)
	

	 }
	
	

	 for(i=0; i<7; i++) {
	
	

	 ztree_size[i]
	uint(8)
	

	 for(j=0; j<2*ztree_size[i]-1; j++)
	
	

	 ztree_structure[i][j]
	uint(1)
	

	 for(j=0; j<ztree_size[i]; j++)
	
	

	 ztree_leaf_index[i][j]
	uint(4)
	

	 }
	
	

	 if(trans8x8_enable) {
	
	

	 ztree_size[11]
	uint(8)
	

	 for(j=0; j<2* ztree_size[11]-1; j++)
	
	

	 ztree_structure[11][j]
	uint(1)
	

	 for(j=0; j< ztree_size[11]; j++)
	
	

	 ztree_leaf_index[11][j]
	uint(8)
	

	 }
	
	

	 reserved = 4
	uint(3)
	

	 if(intra16x16) {
	
	

	 for(i=7; i<11; i++) {
	
	

	 ztree_size[i]
	uint(8)
	

	 for(j=0; j<2*ztree_size[i]-1; j++)
	
	

	 ztree_structure[i][j]
	uint(1)
	

	 for(j=0; j<ztree_size[i]; j++)
	
	

	 ztree_leaf_index[i][j]
	uint(5)
	

	 }
	
	

	 }
	
	

	 for(k =0; k < 2; k++) {
	
	

	 mvcomp_config_npred[k]
	uint(4)
	

	 for(p=0; p < mvcomp_config_npred[k]; p++)
	
	

	 mvcomp_config_pred[k][p]
	uint(4)
	

	 if(temporal_pred_used(k)) {
	
	

	 mvcomp_config_temporal_proba[k]
	uint(16)
	

	 mvcomp_config_auto_max_temporal_diff[k]
	uint(1)
	

	 if(!mvcomp_config_auto_max_temporal_diff[k])
	
	

	 mvcomp_config_max_temporal_diff[k]
	int(16)
	

	 }
	
	

	 if(param. decode_inputref) {
	
	

	 superblock_synchro
	int(1)
	

	 if(superblock_synchro) {
	
	

	 has_multiple_substreams
	int(1)
	

	 if(has_multiple_substreams)
	
	

	 superblock_nsubstreams
	int(8)
	

	 }
	
	

	 }
	
	

	 max_quantization_set_num_minus_1
	uint(8)
	

	 qscalingmatrix_enable_flag
	uint(1)
	

	 if(qscalingmatrix_enable_flag) {
	
	

	 qscalingmatrix_common_set()
	
	

	 }
	
	

	 qoffsetmatrix_enable_flag
	uint(1)
	

	 if(qoffsetmatrix_enable_flag) {
	
	

	 qoffsetmatrix_common_set ()
	
	

	 }
	
	

	
	
	

	 for(k=0; k<nbproba; k++) {
	
	

	 initial_prob[k]
	uint(16)
	

	 }
	
	

	if(use_extension) {
	
	

	 read_flag = true
	
	

	 while(read_flag) {
	
	

	 param_code
	uint(8)
	

	 switch {
	
	

	 case tag_end: read_flag = false
	
	

	 case tag_bugfix87: bugfix87
	uint(1)
	

	 case tag_bugfix88: bugfix88
	uint(1)
	

	 case tag_bugfix89: bugfix89
	uint(1)
	

	 case tag_bugfix90: bugfix90
	uint(1)
	

	 case tag_bugfix93: bugfix93
	uint(1)
	

	 // New options may be added here
	
	

	 }
	
	

	 }
	
	

	 }
	
	

	}
	
	

4.3 RPPS (Reference Picture Processing Set)

	Description
	Type
	Context

	RPPS() {
	
	

	 while(rpps_type) {
	uint(1)/ac
	50/50

	 tmp_rpps_id
	uint(8)/ac
	50/50

	 for(i=0; i<2; i++)
	
	

	 for(j=0; j<nref_frames; j++) {
	
	

	 inter_type_set[tmp_rpps_id][i][j]
	uint(2)/ac
	50/50

	 filter_type_set[tmp_rpps_id][i][j]
	uint(4)/ac
	50/50

	 ic_disable_set[tmp_rpps_id][i][j]
	uint(1)/ac
	50/50

	 round_type_set[tmp_rpps_id][i][j]
	uint(1)/ac
	50/50

	 }
	
	

	 }
	
	

	 rpps_id
	uint(8)/ac
	50/50

	 for(i=0; i<2; i++)
	
	

	 for(j=0; j<nref_frames; j++) {
	
	

	 inter_type[i][j]=inter_type_set[rpps_id][i][j]
	
	

	 filter_type[i][j]=filter_type_set[rpps_id][i][j]
	
	

	 ic_disable[i][j]= ic_disable_set[rpps_id][i][j]
	
	

	 round_type[i][j]=round_type[rpps_id][i][j]
	
	

	 }
	
	

	}
	
	

4.4 Find Substreams

	Description
	Type
	Context

	find_all_frame_substreams() {
	
	

	 find_frame_substreams(0, superblock_nsubstreams-1, 0, payload_size*8)
	
	

	}
	
	

	Description
	Type
	Context

	find_frame_substreams(first_ss, n_ss, bits_offset, remaining_bits) {
	
	

	 if(n_ss >= 3) {
	
	

	 n_ss_left = divide_substreams(n_ss)
	
	

	 n_ss_right = n_ss – n_ss_left
	
	

	 size_bits = get_size_bits(remaining_bits)
	
	

	 left_size = read_bits_at(bits_offset, size_bits)
	
	

	 find_frame_substreams(first_ss, n_ss_left, bits_offset+size_bits, left_size)
	
	

	 find_frame_substreams(first_ss+n_ss_left, n_ss_right, bits_offset+size_bits+left_size, remaining_bits-size_bits-left_size)
	
	

	 } else if(n_ss = = 2) {
	
	

	 substream_content[first_ss] = copy_payload_bits(bits_offset, remaining_bits)
	
	

	 substream_content[first_ss+1] = copy_payload_bits_reversed(bits_offset, remaining_bits)
	
	

	 } else {
	
	

	 substream_content[first_ss] = copy_payload_bits(bits_offset,
 remaining_bits)
	
	

	 }
	
	

	}
	
	

4.5 QScaling Matrix Common Set

	Description
	Type
	Context

	qscalingmatrix_common_set() {
	
	

	 for(i=0; i<8; i++) { /*16 coefficients*/
	
	

	 qscalingmatrix_update_flag[i]
	uint(1)/ac
	50/50

	 if(qscalingmatrix_update_flag[i])
	
	

	 qscalingmatrix_update(0, i, 16)
	
	

	 }
	
	

	 for(i=8; i<14; i++) { /*64 coefficients*/
	
	

	 qscalingmatrix_update_flag[i]
	uint(1)/ac
	50/50

	 if(qscalingmatrix_update_flag[i])
	
	

	 qscalingmatrix_update(0, i, 64)
	
	

	 }
	
	

	 for(i=14; i<15; i++) { /*256 coefficients*/
	
	

	 qscalingmatrix_update_flag[i]
	uint(1)/ac
	50/50

	 if(qscalingmatrix_update_flag[i])
	
	

	 qscalingmatrix_update(0, i, 256)
	
	

	 }
	
	

	}
	
	

4.6 QOffset Matrix Commom Set

	Description
	Type
	Context

	qoffsetmatrix_common_set() {
	
	

	 for(i=0; i<8; i++) { /*16 coefficients*/
	
	

	 qoffsetmatrix_update_flag[i]
	uint(1)/ac
	50/50

	 if(qoffsetmatrix_update_flag[i])
	
	

	 qoffsetmatrix_update(0, I, 16);
	
	

	 }
	
	

	 for(i=8; i<14; i++) { /*64 coefficients*/
	
	

	 qoffsetmatrix_update_flag[i]
	uint(1)/ac
	50/50

	 if(qoffsetmatrix_update_flag[i])
	
	

	 qoffsetmatrix_update(0, i, 64);
	
	

	 }
	
	

	 for(i=14; i<15; i++) { /*256 coefficients*/
	
	

	 qoffsetmatrix_update_flag[i]
	uint(1)/ac
	50/50

	 if(qoffsetmatrix_update_flag[i])
	
	

	 qoffsetmatrix_update(0, i, 256);
	
	

	 }
	
	

	}
	
	

4.7 Frame

	Description
	Type
	Context

	frame() {
	
	

	 find_all_frame_substreams()
	
	

	 if(superblock_synchro)
	
	

	 reset_synchro()
	
	

	 decode_from_substream(0)
	
	

	 RPPS()
	
	

	 frame_type
	uint(v)/ac
	50/50

	 if(frame_type = = 0) {
	
	

	 intra_frame_type
	uint(v)/ac
	50/50

	 }
	
	

	 frame_order_counter
	uint(v)/ac
	50/50

	 reference_idc
	uint(1)/ac
	50/50

	 delta_qp
	uint(v)/ac
	50/50

	 for(i=0; i<2; i++) {
	
	

	 q_offset [i]
	uint(v)/ac
	50/50

	 }
	
	

	 for(i=0; i<2; i++) {
	
	

	 q_offset8x8 [i]
	uint(v)/ac
	50/50

	 }
	
	

	 quantization_set_id
	uint(v)/ac
	50/50

	 qscalingmatrix_overwrite_flag
	uint(1)/ac
	50/50

	 if(qscalingmatrix_overwrite_flag) {
	
	

	 qscalingmatrix_set(quantization_set_id)
	
	

	 }
	
	

	 qoffsetmatrix_overwrite_flag
	uint(1)/ac
	50/50

	 if(qoffsetmatrix_overwrite_flag) {
	
	

	 qoffsetmatrix_set(quantization_set_id)
	
	

	 }
	
	

	 reserved=0
	uint(1)/ac
	

	 edge_prediction_ipd
	uint(1)/ac
	50/50

	 if(edge_prediction_ipd = = 1)
	
	

	 threshold_edge_vector
	unary/ac
	50/50

	 if(frame_type != I-frame) {
	
	

	 single_ref_frame
	uint(1)/ac
	50/50

	 mvcomp_cur_config_idx
	uint(1)/ac
	50/50

	 }
	
	

	 if(frame_type != I-frame) {
	
	

	 if(filter_type[0][0] = = 1) { //SAIF_HALF
	
	

	 AIF_mode_flag1
	uint(1)/ac
	variable

	 if(AIF_mode_flag1) {
	
	

	 AIF_mode_flag2
	uint(1)/ac
	variable

	 }
	
	

	 if(AIF_mode_flag1) { // a_pos
	
	

	 for(i=0; i<7; i++)
	
	

	 diff_qfilter_coef [0][i]
	unary/ac
	variable

	 }
	
	

	 // b_pos
	
	

	 for(i=0; i<3; i++)
	
	

	 diff_qfilter_coef [1][i]
	unary/ac
	variable

	 diff_qfilter_coef [1][6]
	unary/ac
	variable

	 if(AIF_mode_flag1) { // c_pos
	
	

	 for(i=0; i<7; i++)
	
	

	 diff_qfilter_coef [2][i]
	unary/ac
	variable

	 for(i=0; i<6; i++)
	
	

	 diff_qfilter_coef [2][i] = diff_qfilter_coef [2][i] + diff_qfilter_coef [0][5 - i]
	
	

	 }
	
	

	 if(AIF_mode_flag1) { // d_pos
	
	

	 for(i=0; i<7; i++)
	
	

	 diff_qfilter_coef [3][i]
	unary/ac
	variable

	 }
	
	

	 if(AIF_mode_flag2) { // e_pos
	
	

	 for(i=0; i<7; i++)
	
	

	 diff_qfilter_coef [4][i]
	unary/ac
	variable

	 for(i=0; i<6; i++)
	
	

	 diff_qfilter_coef [4][i] = diff_qfilter_coef [4][i] + diff_qfilter_coef [3][i]
	
	

	 }
	
	

	 if(AIF_mode_flag2) { // f_pos
	
	

	 for(i=0; i<7; i++)
	
	

	 diff_qfilter_coef [5][i]
	unary/ac
	variable

	 for(i=0; i<6; i++)
	
	

	 diff_qfilter_coef [5][i] = diff_qfilter_coef [5][i] + diff_qfilter_coef [4][i]
	
	

	 }
	
	

	 if(AIF_mode_flag2) { // g_pos
	
	

	 for(i=0; i<7; i++)
	
	

	 diff_qfilter_coef [6][i]
	unary/ac
	variable

	 for(i=0; i<6; i++)
	
	

	 diff_qfilter_coef [6][i] = diff_qfilter_coef [6][i] + diff_qfilter_coef [5][i]
	
	

	 }
	
	

	 // h_pos
	
	

	 for(i=0; i<3; i++)
	
	

	 diff_qfilter_coef [7][i]
	unary/ac
	variable

	 diff_qfilter_coef [7][6]
	unary/ac
	variable

	 if(AIF_mode_flag2) { // i_pos
	
	

	 for(i=0; i<3; i++)
	
	

	 diff_qfilter_coef [8][i]
	unary/ac
	variable

	 diff_qfilter_coef [8][6]
	unary/ac
	variable

	 for(i=0; i<3; i++)
	
	

	 diff_qfilter_coef [8][i] = diff_qfilter_coef [8][i] + diff_qfilter_coef [7][i]
	
	

	 }
	
	

	 // j_pos
	
	

	 for(i=0; i<3; i++)
	
	

	 diff_qfilter_coef [9][i]
	unary/ac
	variable

	 diff_qfilter_coef [9][6]
	unary/ac
	variable

	 for(i=0; i<3; i++)
	
	

	 diff_qfilter_coef [9][i] = diff_qfilter_coef [9][i] + diff_qfilter_coef [8][i]
	
	

	 if(AIF_mode_flag2) { // k_pos
	
	

	 for(i=0; i<3; i++)
	
	

	 diff_qfilter_coef [10][i]
	unary/ac
	variable

	 diff_qfilter_coef [10][6]
	unary/ac
	variable

	 for(i=0; i<3; i++)
	
	

	 diff_qfilter_coef [10][i] = diff_qfilter_coef [10][i] + diff_qfilter_coef [9][i]
	
	

	 }
	
	

	 }
	
	

	 }
	
	

	 for(sb_i=0; sb_i<frame_height/8; sb_i+=sb_height) {
	
	

	 for(sb_j=0; sb_j<frame_width/8; sb_j+=sb_width) {
	
	

	 decode_from_substream((sb_i/sb_height)%superblock_nsubstreams)
	
	

	 superblock(sb_i, sb_j);
	
	

	 }
	
	

	 }
	
	

	 decode_from_substream(0)
	
	

	 if(adaptive_denoising_filter != 0)
	
	

	 for(c=0; c<3; c ++) {
	
	

	 adaptive_denoising_filter_flag[c]
	uint(1)/ac
	50/50

	 if(adaptive_denoising_filter_flag[c] != 0)
	
	

	 decode_adaptive_denoising_filter (c)
	
	

	 }
	
	

	}
	
	

4.8 QScaling Matrix Overwrite Set

	Description
	Type
	Context

	qscalingmatrix_set(quantization_set_id) {
	
	

	 for(i=0; i<8; i++) {
	
	

	 qscalingmatrix_update_flag[i]
	uint(1)/ac
	50/50

	 if(qscalingmatrix_update_flag[i])
	
	

	 qscalingmatrix_update(quantization_set_id, i, 16)
	
	

	 }
	
	

	 for(i=8; i<14; i++) {
	
	

	 qscalingmatrix_update_flag[i]
	uint(1)/ac
	50/50

	 if(qscalingmatrix_update_flag[i])
	
	

	 qscalingmatrix_update(quantization_set_id, i, 64)
	
	

	 }
	
	

	 for(i=14; i<15; i++) {
	
	

	 qscalingmatrix_update_flag[i]
	uint(1)/ac
	50/50

	 if(qscalingmatrix_update_flag[i])
	
	

	 qscalingmatrix_update(quantization_set_id, i, 256)
	
	

	 }
	
	

	}
	
	

4.9 QOffset Matrix Overwrite Set

	Description
	Type
	Context

	qoffsetmatrix_set(quantization_set_id) {
	
	

	 for(i=0; i<8; i++) {
	
	

	 qoffsetmatrix_update_flag[i]
	uint(1)/ac
	50/50

	 if(qoffsetmatrix_update_flag[i])
	
	

	 qoffsetmatrix_update(quantization_set_id, i, 16);
	
	

	 }
	
	

	 for(i=8; i<14; i++) {
	
	

	 qoffsetmatrix_update_flag[i]
	uint(1)/ac
	50/50

	 if(qoffsetmatrix_update_flag[i])
	
	

	 qoffsetmatrix_update(quantization_set_id, i, 64);
	
	

	 }
	
	

	 for(i=14; i<15; i++) {
	
	

	 qoffsetmatrix_update_flag[i]
	uint(1)/ac
	50/50

	 if(qoffsetmatrix_update_flag[i])
	
	

	 qoffsetmatrix_update(quantization_set_id, i, 256);
	
	

	 }
	
	

	}
	
	

4.10 QScaling Matrix Update
	Description
	Type
	Context

	qscalingmatrix_update (SetId, MatrixId, MaxCoeff) {
	
	

	 qscalingmatrix update_type_flag
	uint(1)/ac
	50/50

	 if(qscalingmatrix_update_type_flag) {
	
	

	 lastScale = 8
	
	

	 nextScale = 8
	
	

	 for(j = 0; j < MaxCoeff; j++) {
	
	

	 if(nextScale != 0) {
	
	

	 delta_scale
	uint(v)/ac
	50/50

	 nextScale = (lastScale + delta_scale + 256) % 256
	
	

	 useDefaultScalingMatrixFlag = (j = = 0 && nextScale = = 0)
	
	

	 }
	
	

	 scalingmatrix[j] = (nextScale = = 0) ? lastScale : nextScale
	
	

	 lastScale = scalingmatrix [j]
	
	

	 }
	
	

	 nextScale = (lastScale + delta_scale + 256) % 256
	
	

	 useDefaultScalingMatrixFlag = (j = = 0 && nextScale = = 0)
	
	

	 } else {
	
	

	 matrix_scale
	uint(v)/ac
	50/50

	 matrix_slope
	uint(v)/ac
	50/50

	 num_delta_scale
	uint(v)/ac
	50/50

	 for(j = 0; j < num_delta_scale; j++) {
	
	

	 delta_scale
	uint(v)/ac
	50/50

	 }
	
	

	 }
	
	

	}
	
	

4.11 QOffset Matrix Update

	Description
	Type
	Context

	qoffsetmatrix_update (SetId, MatrixId, MaxCoeff) {
	
	

	 qoffsetmatrix update_type_identifer
	uint(1)/ac
	50/50

	 if(qoffsetmatrix_update_type_identifier = = 1) {
	
	

	 lastOffset = 8
	
	

	 nextOffset = 8
	
	

	 for(j = 0; j < NumOfCoeff; j++) {
	
	

	 if(nextOffset != 0) {
	
	

	 delta_offset
	uint(v)/ac
	50/50

	 nextOffset = (lastOffset + delta_offset + 256) % 256
	
	

	 useDefaultOffsetMatrixFlag = (j = = 0 && nextOffset = = 0)
	
	

	 }
	
	

	 offsetmatrix[j] = (nextOffset = = 0) ? lastOffset : nextOffset
	
	

	 lastOffset = offsetmatrix [j]
	
	

	 }
	
	

	 nextOffset = (lastOffset + delta_offset + 256) % 256
	
	

	 useDefaultOffsetMatrixFlag = (j = = 0 && nextOffset = = 0)
	
	

	 }
	
	

	 else if(qoffsetmatrix_update_type_identifier = = 0) {
	
	

	 matrix_scale
	uint(v)/ac
	50/50

	 matrix_slope
	uint(v)/ac
	50/50

	 num_delta_offset
	uint(v)/ac
	50/50

	 for(j = 0; j < num_delta_offset; j++) {
	
	

	 delta_offset
	uint(v)/ac
	50/50

	 }
	
	

	 } else {
	
	

	 offset_value
	uint(v)/ac
	50/50

	 }
	
	

	}
	
	

4.12 Superblock

	Description
	Type
	Context

	superblock(sb_i, sb_j) {
	
	

	 if(superblock_synchro)
	
	

	 init_synchro(sb_i, sb_j)
	
	

	 if(intra16x16 && frame_type = = I-frame) {
	
	

	 for(i=sb_i; i<sb_i+sb_height && i<frame_height/8; i+=2) {
	
	

	 for(j=sb_j; j<sb_j+sb_width && j<frame_width/8; j+=2) {
	
	

	 sip_type
	uint(1-4)/ac
	variable

	 if(sip_type = = SIP16x16) {
	
	

	 decode_intra_luma_blk16x16(i, j)
	
	

	 } else {
	
	

	 for(k=0; k<2 && (i+k)<frame_height/8; k++) {
	
	

	 for(l=0; l<2 && (j+l)<frame_width/8; l++) {
	
	

	 if(k || l) {
	
	

	 sip_type
	uint(1-4)/ac
	variable

	 }
	
	

	 decode_intra_luma_blk8x8(i+k, j+l, sip_type)
	
	

	 } // for l
	
	

	 } // for k
	
	

	 }
	
	

	 if (sip_type = = SIP16x16) {
	
	

	 decode_intra_chroma_blk(i, j, 0)
	
	

	 } else {
	
	

	 decode_intra_chroma_blk(i, j, 1)
	
	

	 }
	
	

	 } // for j
	
	

	 } // for i
	
	

	 } else if (frame_type = = I-frame) {
	
	

	 for(i=sb_i; i<sb_i+sb_height && i<frame_height/8; i+=1) {
	
	

	 for(j=sb_j; j<sb_j+sb_width && j<frame_width/8; j+=1) {
	
	

	 sip_type
	uint(1-4)/ac
	variable

	 decode_intra_luma_blk8x8(i, j, sip_type)
	
	

	 decode_intra_chroma_blk(i, j, 2)
	
	

	 } // for j
	
	

	 } // for i
	
	

	 } else {
	
	

	 for(i=sb_i; i<isb_i+sb_height && i<frame_height/8; i++) {
	
	

	 for(j=sb_j; j<sb_j+sb_width && j<frame_width/8; j++) {
	
	

	 prediction_mode[i][j]
	uint(1-2)/ac
	variable

	 if(prediction_mode[i][j] != 0) {
	
	

	 if(prediction_mode[i][j] = = 3)
	
	

	 coeff_block(5, mv[i][j])
	
	

	 else
	
	

	 coeff_block(4, mv[i][j])
	
	

	 if(prediction_mode[i][j] != 2)
	
	

	 ref_index[0]
	uint(1-2)/ac
	variable

	 if(prediction_mode[i][j] != 1)
	
	

	 ref_index[1]
	uint(1-2)/ac
	variable

	 if(unresolved_mv_prediction())
	
	

	 mv_pred_dir
	uint(1)/ac
	variable

	 if(motion_sharing_enable && (i != 0 || j != 0) && mvshare_type(i, j)) {
	
	

	 motion_sharing_type_zero
	uint(1)/ac
	variable

	 if(motion_sharing_type_zero) {
	
	

	 if(mvshare_type(i, j) = = 3) {
	
	

	 prediction_dir_flag
	uint(1)/ac
	50/50

	 if(prediction_dir_flag = = 0)
	
	

	 decode_mvshare_size(mvshare_size[i][j][0], mvshare_size[i][j-1][0])
	
	

	 else
	
	

	 decode_mvshare_size(mvshare_size[i][j][1], mvshare_size[i-1][j][1])
	
	

	 } else {
	
	

	 if(j = = 0 || i = = 0) {
	
	

	 decode_mvshare_size (mvshare_size[i][j][mvshare_type(i, j)-1], 0)
	
	

	 }else if(mvshare_type(i, j) = = 1) {
	
	

	 decode_mvshare_size(mvshare_size[i][j][0], mvshare_size[i][j-1][0])
	
	

	 } else {
	
	

	 decode_mvshare_size(mvshare_size[i][j][1], mvshare_size[i-1][j][1])
	
	

	 }
	
	

	 }// if(mvshare_type(i, j) = = 3)
	
	

	 }// if(motion_sharing_type_zero)
	
	

	 }// if(motion_sharing_enable && (i != 0 || j != 0) && mvshare_type(i, j))
	
	

	 }// if(prediction_mode[i][j] != 0)
	
	

	 if(prediction_mode[i][j] = = 0) {
	
	

	 sip_type
	uint(1-4)/ac
	variable

	 decode_intra_luma_blk8x8(i, j, sip_type)
	
	

	 decode_intra_chroma_blk(i, j, 2)
	
	

	 } else {
	
	

	 if (trans8x8_enable && mvshare_size[i][j][0] = = 0 &&

 mvshare_size[i][j][1] = = 0) {
	
	

	 coeff_block(11, luma[i][j])
	
	

	 } else {
	
	

	 for(ii=0; ii <2; ii++) {
	
	

	 for(jj=0; jj < 2; jj++) {
	
	

	 coeff_block(2, luma[i][j][ii][jj])
	
	

	 }
	
	

	 }
	
	

	 }
	
	

	 for(uv=0; uv<2; uv++) {
	
	

	 coeff_block(3, chroma[uv][i][j])
	
	

	 }
	
	

	 }
	
	

	 }
	
	

	 }
	
	

	 }
	
	

	 if(superblock_synchro)
	
	

	 update_synchro(sb_i, sb_j)
	
	

	}
	
	

4.13 decode_intra_luma_blk16x16
	Description
	Type
	Context

	decode_intra_luma_blk16x16(i, j) {
	
	

	 spatial_intra_prediction(0, sip_mode_luma[i][j])
	
	

	 coeff_block_16x16(luma[i][j])
	
	

	}
	
	

4.14 decode_intra_luma_blk8x8
	Description
	Type
	Context

	decode_intra_luma_blk8x8 (i, j, sip_type) {
	
	

	 if(sip_type = = SIP8x8) {
	
	

	 spatial_intra_prediction (0, sip_mode_luma[i+k][j+l])
	
	

	 coeff_block(0, luma[i+k][j+l])
	
	

	 } else {
	
	

	 for(m=0; m<2; m++) {
	
	

	 for(n=0; n<2; n++) {
	
	

	 spatial_intra_prediction (0, sip_mode_luma[i][j][m][n])
	
	

	 coeff_block(0, luma[i][j][m][n])
	
	

	 }
	
	

	 }
	
	

	 }
	
	

	}
	
	

4.15 decode_intra_chroma_blk

	Description
	Type
	Context

	decode_intra_chroma_blk(i, j, type) {
	
	

	 if (type = = 0) {
	
	

	 spatial_intra_prediction(1, sip_mode_chroma[i][j])
	
	

	 for(uv=0; uv<2; uv++) {
	
	

	 coeff_block(2, chroma[uv][i][j])
	
	

	 }
	
	

	 } else if (type = = 1) {
	
	

	 for(m=0; m<2; m++) {
	
	

	 for(n=0; n<2; n++) {
	
	

	 spatial_intra_prediction(1,
 sip_mode_chroma[i+m][j+n])
	
	

	 for(uv=0; uv<2; uv++) {
	
	

	 coeff_block(1, chroma[uv][i+m][j+n])
	
	

	 }
	
	

	 }
	
	

	 }
	
	

	 } else {
	
	

	 spatial_intra_prediction(1, sip_mode_chroma[i][j])
	
	

	 for(uv=0; uv<2; uv++) {
	
	

	 coeff_block(1, chroma[uv][i][j])
	
	

	 }
	
	

	 }
	
	

	}
	
	

4.16 decode_mvshare_size
	Description
	Type
	Context

	decode_mvshare_size(data, ref) {
	
	

	 if(mvshare_two_enable = = 0) {
	
	

	 data = 4
	
	

	 } else {
	
	

	 if(ref = = 0) {
	
	

	 mvshare_four
	uint(1)/ac
	50/50

	 if(mvshare_four)
	
	

	 data = 4
	
	

	 else
	
	

	 data = 2
	
	

	 } else {
	
	

	 mvshare_pred
	uint(1)/ac
	variable

	 if(mvshare_pred = = 0) {
	
	

	 data = ref
	
	

	 } else {
	
	

	 if(ref = = 2)
	
	

	 data = 4
	
	

	 else
	
	

	 data = 2
	
	

	 }
	
	

	 }
	
	

	 }
	
	

	}
	
	

4.17 spatial_intra_prediction

	Description
	Type
	Context

	spatial_intra_prediction(type, data) {
	
	

	 if(type = = 0) { // luma
	
	

	 prev_intra_pred_mode_flag
	unit(1)/ac
	variable

	 if(prev_intra_pred_mode_flag = = 0) {
	
	

	 rem_intra_pred_mode
	uint(3-5)/ac
	variable

	 if(rem_intra_pred_mode < most_probable_mode)
	
	

	 data = rem_intra_pred_mode
	
	

	 else
	
	

	 data = rem_intra_pred_mode + 1
	
	

	 } else {
	
	

	 data = most_probable_mode
	
	

	 }
	
	

	 } else { // chroma
	
	

	 chroma_sip_mode
	uint(1-5)/ac
	variable

	 data = chroma_sip_mode
	
	

	 }
	
	

	}
	
	

4.18 Block

	Description
	Type
	Context

	coeff_block(type, data) {
	
	

	 q = 0
	
	

	 zero_blk
	uint(1)/ac
	variable

	 val = 1 - zero_blk
	
	

	 sp = 0
	
	

	 for(i=0; i<2*ztree_size[type]-1; i++) {
	
	

	 if(ztree_structure[type][i] = = 0) { // leaf node
	
	

	 data[ztree_leaf_index[type][q]] = val
	
	

	 val = stack[--sp]
	
	

	 q++
	
	

	 } else {
	
	

	 if(val) {
	
	

	 ztree_node_both
	uint(1)/ac
	variable

	 if(ztree_node_both)
	
	

	 stack[sp++] = true
	
	

	 else {
	
	

	 ztree_node_left
	uint(1)/ac
	variable

	 if(ztree_node_left)
	
	

	 stack[sp++] = false
	
	

	 else {
	
	

	 stack[sp++] = true
	
	

	 val = false
	
	

	 }
	
	

	 }// if(ztree_node_both)
	
	

	 }
	
	

	 else
	
	

	 stack[sp++] = false
	
	

	 }// if(ztree_structure[type][i] = = 0)
	
	

	 }// for(i=0; i<2*ztree_size[type]-1; i++)
	
	

	 for(i= ztree_size[type]-1; i>=0; i--)
	
	

	 if(data[i] != 0) {
	
	

	 coeff_level(type, i)
	
	

	 data[i] = coeff_val * coeff_sign
	
	

	 }
	
	

	 }
	
	

	}
	
	

	Description
	Type
	Context

	coeff_block_16x16 (data) {
	
	

	 zero_blk
	uint(1)/ac
	variable

	 val = 1 - zero_blk
	
	

	 if(val) {
	
	

	 if(transform_selection_16x16) {
	
	

	 transform16x16_flag
	uint(1)/ac
	50/50

	 }
	
	

	 q = 0
	
	

	 sp = 0
	
	

	 for(j= 0; j<16; j++) {
	
	

	 if(j>3)
	
	

	 tree_type = 10;
	
	

	 else
	
	

	 tree_type = 7 + j;
	
	

	 for(i=0; i<2*ztree_size[tree_type]-1; i++) {
	
	

	 if(ztree_structure[tree_type][i] = = 0) { // leaf node
	
	

	 data[ztree_leaf_index[tree_type][q]] = val
	
	

	 val = stack[--sp]
	
	

	 q++
	
	

	 } else {
	
	

	 if(val) {
	
	

	 ztree_node_both
	uint(1)/ac
	Variable

	 if(ztree_node_both)
	
	

	 stack[sp++] = true
	
	

	 else {
	
	

	 ztree_node_left
	uint(1)/ac
	Variable

	 if(ztree_node_left)
	
	

	 stack[sp++] = false
	
	

	 else {
	
	

	 stack[sp++] = true
	
	

	 val = false
	
	

	 }
	
	

	 }// if(ztree_node_both)
	
	

	 }
	
	

	 else
	
	

	 stack[sp++] = false
	
	

	 }// if(ztree_structure[tree_type][i] = = 0)
	
	

	 }// for(i=0; i<2*ztree_size[tree_type]-1; i++)
	
	

	 }// for(j= 0; j<16; j++)
	
	

	 for(j= 3; j>=0; j--) {
	
	

	 for(i= 63; i>=0; i--) {
	
	

	 if(data[j*64+i] != 0) {
	
	

	 coeff_level(11, j*64+i)
	
	

	 data[j*64+i] = coeff_val * coeff_sign
	
	

	 }
	
	

	 }
	
	

	 }
	
	

	 }
	
	

	}
	
	

The actual context of elements specified as having variable context can be derived according to sections 7.10.4 and 7.10.5.

4.19 Coefficient level

	Description
	Type
	Context

	coeff_level(type, k) {
	
	

	 coeff_val
	unary/ac
	variable

	 coeff_sign
	uint(1)/ac
	50/50

	}
	
	

4.20 Decode adaptive_denoising_filter
	Description
	Type
	Context

	decode_adaptive_denoising_filter (c) {
	
	

	 filter_hint_type[c]
	uint(2)/ac
	50/50

	 filter_hint_size_rec_x[c]
	unary/ac
	variable

	 filter_hint_size_rec_y[c]
	unary/ac
	variable

	 filter_hint_size_pred_x[c]
	unary/ac
	variable

	 filter_hint_size_pred_y[c]
	unary/ac
	variable

	 filter_hint_size_qpe_x[c]
	unary/ac
	variable

	 filter_hint_size_qpe_y[c]
	unary/ac
	variable

	 filter_precision[c]
	unary/ac
	variable

	 if(filter_hint_type[c] = = 0 || filter_hint_type[c] = = 1) { //2D
	
	

	 for(cy=0; cy<filter_hint_size_rec_y[c]; cy++)
	
	

	 for(cx=0; cx<filter_hint_size_rec_x[c]; cx++)
	
	

	 filter_hint_rec[c][cy][cx]
	unary/ac
	variable

	 for(cy=0; cy<filter_hint_size_pred_y[c]; cy++)
	
	

	 for(cx=0; cx<filter_hint_size_pred_x[c]; cx++)
	
	

	 filter_hint_pred[c][cy][cx]
	unary/ac
	variable

	 for(cy=0; cy<filter_hint_size_qpe_y[c]; cy++)
	
	

	 for(cx=0; cx<filter_hint_size_qpe_x[c]; cx++)
	
	

	 filter_hint_qpe[c][cy][cx]
	unary/ac
	variable

	 }
	
	

	 else { //1D
	
	

	 for(cx=0; cx<filter_hint_size_rec_x[c]; cx++)
	
	

	 filter_hint_rec_x[c][cx]
	unary/ac
	variable

	 for(cy=0; cy<filter_hint_size_rec_y[c]; cy++)
	
	

	 filter_hint_rec_y[c][cy]
	unary/ac
	variable

	 for(cx=0; cx<filter_hint_size_pred_x[c]; cx++)
	
	

	 filter_hint_ pred _x[c][cx]
	unary/ac
	variable

	 for(cy=0; cy<filter_hint_size_ pred _y[c]; cy++)
	
	

	 filter_hint_ pred _y[c][cy]
	unary/ac
	variable

	 for(cx=0; cx<filter_hint_size_qpe_x[c]; cx++)
	
	

	 filter_hint_ qpe _x[c][cx]
	unary/ac
	variable

	 for(cy=0; cy<filter_hint_size_ qpe _y[c]; cy++)
	
	

	 filter_hint_ qpe _y[c][cy]
	unary/ac
	variable

	 }
	
	

	 filter_hint_offset[c]
	unary/ac
	variable

	}
	
	

The actual context of elements specified as having variable context can be derived according to sections 7.10.4 and 7.10.5.

5 Semantics

5.1 coding_unit

payload_type: indicates the type of the payload. The type of payload can be a sequence header unit, frame data unit or end of sequence unit.

payload_size: indicates the size of the payload in bytes. The value ‘0’ is reserved.

payload_byte: represents a byte of the payload.

5.2 sequence_header

qp: indicates the initial quantization parameter.

frame_height: indicates the frame height in pixel units. The value of frame_height shall be a multiple of 8.

frame_width: indicates the frame width in pixel units. The value of frame_width shall be a multiple of 8.

better_color: specifies the relationship between the luma quantization parameter (qpluma) and the intermediate chroma quantization parameter (qp’chroma) and chroma quantization parameter for DC (qpDCchroma). Table 1 describes how the relationship changes with the value of better_color.

Table 1 – Specification of qp’chroma based on better_color

	better_color
	qp’chroma

	0
	qpluma

	1
	3 * qpluma / 4

	2
	qpluma - qpluma ^2/512

	3
	qpluma / 2

	4
	32

	5
	qpluma - qpluma ^2/256

	6
	qpluma - qpluma ^3/65536

	7
	qp’chroma = qp-qp*qp*qp/65536

if (qp’chroma > chroma_dc_th)

 qpDCchroma= qp’chroma - (((qp’chroma - chroma_dc_th) * chroma_dc_scale)>> 8);

else

 qpDCchroma = qp’chroma;

chroma_dc_th: specifies the threshold for qp’chroma above which the chroma QP DC, qpDCchroma is set to a smaller value when better_color = 7 as shown in Table 1. Otherwise qpDCchroma = qp’chroma.
chroma_dc_scale:. specifies the slope for the rate at which the qp’chroma.is adjusted to give the qpDCchroma when better_color = 7 and qp’chroma is greater than chroma_dc_th as shown in Table 1.
bc_offset_plus16: specifies the offset added to the qp’chroma value of reference pictures after the qpluma to qp’chroma adaptation specified based on better_color syntax element. bc_offset_plus16 has range between 0 to 31 and is sent as a 5 bit unsigned integer. The chroma quantization parameter (qpchroma) is given by

qpchroma = qp’chroma + bc_offset_plus16 – 16, for reference pictures and

qpchroma = qp’chroma + bc_offset_plus16 – 12, for disposable pictures.

lumaDC: specifies relationship between intra DC quantization parameter (qpDC) and the luma quantization parameter (qpluma). The relationship is defined in the Table 2.
Table 2: Specification of qpDC based on lumaDC

	better_color
	qpDC

	0
	qpluma

	1
	3 * qpluma / 4

	2
	qpluma - qpluma ^2/512

	3
	qpluma / 2

	4
	32

	5
	qpluma - qpluma ^2/256

	6
	qpluma - qpluma ^3/65536

loss_rate_minus2: specifies the adaptation rate for probability adaptation in the arithmetic coder. The actual variable loss_rate is obtained by adding 2 to the value of loss_rate_minus2.

ac_exp_limit: specifies the exponential limit for the probability update function in the arithmetic coder.

luma_mc: specifies the luma motion interpolation process.

Table 3: luma_mc values.

	luma_mc
	

	0 to 3
	reserved

	4
	1/8 pel

chroma_mc: specifies the chroma motion interpolation process.

Table 4: chroma_mc values.

	chroma_mc
	

	0
	reserved

	4
	H.264 direct bi-linear filter up to 1/16 pel

gen8pel_filter: specifies the interpolation filter type for 1/8 pel interpolation. Only the value of 0 is allowed (bilinear filter).
mc_round: controls the rounding process during chroma motion interpolation. When mc_round is equal to 0, the interpolated chroma value is computed using the H.264/MPEG-4 AVC chroma interpolation filter as follows:

[(8-k)*(8-l)*a + (8-k)*l*b + k*(8-l)*c + k*l*d + 32] >> 6

When mc_round is equal to 1, the interpolated chroma value is computed as follows:

[(16-k)*(16-l)*a + (16-k)*l*b + k*(16-l)*c + k*l*d + 128-((k≫1+l≫1)&1)] >> 8
a, b, c, and d represent as shown in Figure 1 chroma samples at full-sample locations inside the two-dimensional array of chroma samples. k and l represent the fractional position of the chroma sample to be interpolated from a,b,c,d.

[image: image1.emf]a b

c d

k 16-k

l

16-l

Figure 1: Fractional sample position dependent variables in chroma interpolation and surrounding integer position samples a, b, c, and d
ndf_mode: specifies the mode of the Non-linear Denoising Filter (NDF). Currently, only mode 3 is supported.
deblocking_filter: 4 bits specifying:

· (deblocking_filter & 3) = = 0 : No deblocking filter used

· (deblocking_filter & 3) = = 1 : Deblocking filter is used

· (deblocking_filter & 3) = = 2 : Reserved

· (deblocking_filter & 3) = = 3 : Reserved

· (deblocking_filter & 4): Flag to switch between two types of filter coefficients
· (deblocking_filter & 8) = = 0: Boundary strength adaptation is not used

· (deblocking_filter & 8) = = 1: Boundary strength adaptation is used

dbf_offset_a: specifies the offset used to determine threshold if the pixel should be filtered or not as specified in section 7.9.3.1.
Note: The valid range is currently [1,…,31].

dbf_offset_b: specifies the offset used to determine threshold if the pixel should be filtered or not as specified in section 7.9.3.1.

Note: The valid range is currently [1,…,31].

adaptive_denoising_filter: indicates if a linear denoising filter is applied on frame level.

adaptive_denoising_filter_inloop: indicates if the linear denoising filter is applied in the prediction loop (Value 1) or outside the prediction loop (Value 0).

use_extension: specifies whether the bitstream uses an extended syntax. In this version of the specification, use_extension shall be equal to 0, which specifies no extended syntax exists in the sequence_header. A value of 1 is reserved for the future extension of this specification.
candidate_search_region: indicates the size of the search region in the TMA method for intra prediction as specified in sections 7.5.6 and 7.5.9.

candidate_search_region_intra16x16: indicates the size of the search region in the TMA method for intra prediction 16x16 as specified in sections 7.5.6 and 7.5.9.
num_candidate_averaged: indicates the maximum number of candidates to be averaged in the TMA process for intra prediction as specified in sections 7.5.6 and 7.5.9.

candidate_sad_threshold: indicates the SAD threshold for the candidates in TMA for intra prediction. If the difference between the candidate SAD and the smallest SAD is greater than candidate_sad_threshold, then the candidate shall not be used in the averaging process.

nref_frames: specifies the maximum size of each reference frame list.

adapt_list_size: specifies a list organization method. When adapt_list_size has value ‘1’, lists are restricted based on the position of reference frames with respect to the current frame.

enable_int_comp: specifies whether block-based intensity compensation should be enabled.
DC_mult: specifies a scaling factor for the DC offset in the intensity (brightness) compensation process.

weight_diff_scale: specifies the shift value used to quantize the weight difference for weighted bi-prediction.
trans8x8_enable: When trans8x8_enable has a value of ‘0’, an8x8 inter block is divided into 4 4x4 blocks and a 4x4 transform is applied to each of the 4x4 blocks. When trans8x8_enable has a value of ‘1’, an 8x8 transform is applied to the 8x8 inter block.

motion_sharing_enable: indicates whether an 8x8 inter block is divided into two partitions wherein one partition is predicted using motion vectors with scale and offset parameters of block above or to left . A value 1 indicates to use motion sharing for inter prediction of an 8x8 block.
mvshare_two_enable: enables motion sharing of 2x8/6x8 and 8x2/6x8 block partitions as well as 4x8 and 8x4 block partitions. When mvshare_two_enable is set to ‘1’, an 8x8 inter block can be partitioned to 2 of 4x8 blocks, 2 of 8x4 blocks, 2x8 and 6x8 blocks, or 8x2 and 8x6 blocks. When mvshare_two_enable is set to ‘0’, partitions are limited to 2 of 4x8 blocks or 2 of 8x4 blocks..

ndf_two_rounds: specifies whether the second round in NDF should be enabled.

ndf_weighting: specifies whether weighting should be used when averaging predictions in the NDF.

ndf_signif_cnt: specifies a threshold, applied on the number of coefficients in a coded block, used for determining a boundary mode in NDF.

ndf_4x4_mult: specifies a multiplier for the number of coefficients in the 4x4 coded luma and chroma blocks. It is used for determining a boundary mode in NDF.

ndf_aggressive: specifies if aggressive thresholds and extents should be used for NDF.
ndf_ic_refine: specifies if NDF modes related to intensity compensation should be used or not.
ndf_mvd_th: specifies a threshold, applied on the motion vector difference between blocks adjoining a boundary, used for determining a boundary mode in the non linear denoising filter process.

ndf_s_X: specifies the luma denoising strength for different modes of NDF. Here X can be one of {pred_quant, pred_signif, pred_mot, intra_quant, mot_disc, ic_strong, ic_intermed, ic_weak}.
ndf_x_X: specifies the luma denoising strength for different modes of NDF. Here X can be one of {pred_quant, pred_signif, pred_mot, intra_quant, mot_disc, ic_strong, ic_intermed, ic_weak}.
ndf_s_chroma: specifies the strength of NDF when applied to the chroma components.

aif: indicates whether the interpolation filter process is invoked with fixed or adaptive interpolation filters. A value of 0 indicates interpolation with fixed interpolation filters, a value of 1 indicates interpolation with adaptive interpolation filters.
mpm_default: specifies the value used for setting the default value of most_probable_mode.
intra8x8: specifies whether 8x8 spatial intra prediction partition is used. A value 0 indicates that 8x8 spatial intra prediction partition is not used; a value 1 indicates that 8x8 spatial intra prediction partition is used and the 8x8 partition is placed first in the sip_type table; a value 2 indicates that 8x8 spatial intra prediction partition is used and the 8x8 partition is placed last in the sip_type table.

transform_selection: specifies whether adaptive transform selection is used for 4x4, 8x2, 2x8, and 8x8 blocks. A value 0 indicates that adaptive transform selection is not used; a value 1 indicates that adaptive transform selection is used.

ndf_trsf_8x8: specifies whether 8x8 transform is used for NDF. A value 0 indicates that 8x8 transform is not used; a value 1 indicates that 8x8 transform is used.
sb_height: specifies the superblock height for the picture in units of block height. Note that each block is 8 pixels high. The sb_height should have a value of 0, 1, 2, 4, 8, 16, 32 or 64 (although intermediate values are currently not prohibited). When both sb_height and sb_width are 0, superblock grouping is disabled.

sb_width: specifies the superblock width for the picture in units of block width. Note that each block is 8 pixels wide. The sb_width should have a value of 0, 1, 2, 4, 8, 16, 32 or 64 (although intermediate values are currently not prohibited). When both sb_height and sb_width are 0, superblock grouping is disabled.

intra16x16: specifies whether intra16x16 coding is used. A value of 1 indicates that intra16x16 is used. A value of 0 indicates not to use intra16x16.
chroma8x8: specifies whether intra chroma 8x8 coding is used or not. A value of 0 indicates it is not used.
transform_selection_16x16: specifies whether adaptive transform selection is used for 16x16 blocks. A value 0 indicates that adaptive transform selection is not used; a value 1 indicates that adaptive transform selection is used.

ztree_size[i]: indicates the number of leaves in a zerotree. The index i represents a tree type. Types are listed in Table 5. The ztree_size of type 12 is not decoded but is copied from the ztree_size of type 11.
Table 5 – Specification of zerotree data types

	Type (i)
	Data

	0
	Intra 16 luma coefficients (when sip_type=SIP4x4, SIP2x8 or SIP8x2)

	1
	Intra 16 chroma coefficients

	2
	Inter 16 luma coefficients

	3
	Inter 16 chroma coefficients

	4
	8x8 Single-list prediction motion data

	5
	8x8 Bi-prediction motion data

	7
	Intra 16x16 luma coefficients – 0-15

	8
	Intra 16x16 luma coefficients – 16-31

	9
	Intra 16x16 luma coefficients – 32-47

	10
	Intra 16x16 luma coefficients – remaining coefficients

	11
	Intra 64 luma/Inter 64 luma coefficients

	12
	Intra 64 chroma coefficients

ztree_structure[i][j]: indicates whether a node in a zerotree is a leaf node. A value 0 indicates a leaf node. The ztree_structure of type 12 is not decoded but is copied from the ztree_structure of type 11.
ztree_leaf_index[i][j]: indicates the index of a leaf node in a zerotree. The ztree_leaf_index of type 12 is not decoded but is copied from the ztree_leaf_index of type 11. When the type i equals to 0 and the sip_type is 2x8 or 8x2, the 16 indexes of leaf nodes are remapped according to the following order, remapped_ztree_leaf_index_2x8[0][ztree_leaf_index[0][j]] = {0, 8, 9, 3, 1, 10, 4, 6, 2, 5, 7, 13, 11, 12, 14, 15} or remapped_ztree_leaf_index_8x2[0][ztree_leaf_index[0][j]] ={0, 1, 4, 5, 2, 6, 8, 9, 3, 10, 12, 14, 7, 11, 13, 15} respectively, where remapped_leaf_index_2x8[] and remapped_leaf_index_8x2[] give the new index of a leaf node for 2x8 and 8x2 block. Figure 2 shows the index of 16 coefficients in 4x4, 2x8 and 8x2 transformed blocks.

[image: image2.emf]0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

4x4

2x8

8x2

Figure 2: Index of 16 coefficients in 4x4, 2x8 and 8x2 transformed blocks.
mvcomp_config_npred[k]: indicates the number of motion vector predictors defined in the mvcomp configuration k.

mvcomp_config_pred[k][p]: indicates a motion vector precictor type. Types are shown in Table 6.

Table 6 – Specification of motion vector predictor types

	Type (i)
	Predictor

	0
	MV_PRED_LEFT

	1
	MV_PRED_TOP

	2
	MV_PRED_TEMPORAL

	3
	MV_PRED_ZERO

	4
	MV_PRED_NONE

temporal_pred_used(k): is a function returning whether or not the predictor MV_PRED_TEMPORAL is present in the set contained in mvcomp_config_pred[k][0..mvcomp_config_npred[k]-1]. Pseudo-code:

{

 for (p = 0; p < mvcomp_config_npred[k]; p++)

 if (mvcomp_config_pred[k][p] = = MV_PRED_TEMPORAL)

 return 1;

 return 0;

}

mvcomp_config_temporal_proba[k]: is the initial probability used to signal the use of the MV_PRED_TEMPORAL predictor when it is in competition with another. The probability is expressed as a 16-bit unsigned integer (valued 1..65534), giving the probability of signalling T. 655 corresponds to a 10% probability. The probability does not change with QP.

mvcomp_config_auto_max_temporal_diff[k]: indicates that the value of mvcomp_config_max_temporal_diff[k] should be automatically generated as required, the value being derived from the probability of signalling T. See section 7.6.5.2(Creation of the set of Motion Vector Predictors for an 8x8 Block) below.

mvcomp_config_max_temporal_diff[k]: indicates a specific threshold value of |T-x|. See section 7.6.5.2.

superblock_synchro: indicates if CABAC synchronisation points are used for each superblock.

has_multiple_substreams: indicates if multiple substreams per frame are used. If 0, only one substream per frame is coded.

superblock_nsubstreams: the number of substreams coded per frame. If a specific value is not coded in the sequence_header, the default value is 1.
max_quantization_set_num_minus_1: indicates the number of quantization parameter sets to be used in a sequence minus the value of one.

qscalingmatrix_enable_flag: indicates if a common quantization scaling matrix set is signalled in the sequence header. A value 1 indicates a common scaling matrix set is included in the sequence header.
qscalingmatrix_common_set (): is a function that reads a common quantization scaling matrix set.

qoffsetmatrix_enable_flag: indicates if a common quantization offset matrix set is signalled in the sequence header. A value 1 indicates a common offset matrix set is included in the sequence header.
qoffsetmatrix_common_set (): is a function that reads a common quantization offset matrix set.

nbproba: indicates the number of adaptive probability contexts that are used, ie 815, as defined in section 7.10.4.
initial_prob[k]: indicates the initial probability for context k. k indicates the index given in section 7.10.4.
bugfix87: indicates if a bugfix is enabled (related to the generation of interpolated luma samples).

bugfix88: indicates if a bugfix is enabled (related to prediction for mode HOR_UP_PRED in 2x8 case).
bugfix89: indicates if a bugfix is enabled (related to chroma planar prediction).

bugfix90: indicates if a bugfix is enabled (related to determining the availability of 8x2 mode for intra prediction).

bugfix93: indicates if a bugfix is enabled (related to an overflow after inverse quantization).

5.3 RPPS (Reference Picture Processing Set)

rpps_type: indicates that the following data are rpps_id and rpps data to be stored, or only rpps_id used for decoding current frame. A value 1 indicates rpps_id and rpps data to be stored, and a value 0 indicates rpps_id used for decoding the current frame.

tmp_rpps_id: indicates an id of RPPS to be stored.

inter_type_set: indicates a set signaling the of interpolation accuracy for each list and reference frame of an rpps_id. The options for interpolation accuracy are listed in Table 7.

inter_type[i][j]: indicates the interpolation accuracy for a list i and reference frame j. The options for interpolation accuracy are listed in Table 7.

Table 7 Specification of inter_type_set
	inter_type_set
	interpolation accuracy

	0
	integer pel

	1
	1/2 pel

	2
	1/4 pel

	3
	1/8 pel

filter_type_set: indicates a set signaling the interpolation filter for each list and reference frame of an rpps_id. The options for interpolation filter are listed in Table 8.

filter_type[i][j]: indicates the interpolation filter for a list i and reference frame j. The options for interpolation filter are listed in Table 8.

Table 8 Specification of filter_type_set
	filter_type_set
	interpolation filter

	0
	H.264/MPEG-4 AVC Interpolation filter (S_FIF)

	1
	SAIF_HALF

ic_disable_set: indicates a set signaling the intensity (brightness) compensation disable paramter for each list and reference frame of an rpps_id. A value 0 indicates enabling intensity (brightness) compensation, and a value 1 indicates disabling intensity (brightness) compensation.

ic_disable[i][j]: indicates the intensity (brightness) compensation disable parameter for a list i and a reference frame j. A value 0 indicates enabling intensity (brightness) compensation, and a value 1 indicates disabling intensity (brightness) compensation.

round_type_set: indicates a set signaling the type of rounding in interpolation process for each list and reference frame of an rpps_id. A value 0 indicates rounding at last step only, and a value 1 indicates intermediate rounding.

round_type[i][j]: indicates the type of rounding in interpolation process for a list i and a reference frame j. A value 0 indicates rounding at last step only, and a value 1 indicates intermediate rounding.

rpps_id: indicates id of RPPS to be used for decoding a frame.

5.4 Find Substreams

substream_content[]: indicates a set of buffers, one element per substream in the frame. Each buffer is a copy of bits originally found within the payload, possibly reversed, to be decoded by the arithmetic decoder for the substream.
divide_substreams(n_ss): is a function that returns how the n_ss substreams are divided into 'left' and 'right' in a binary tree representation. N_ss should be 3 or greater. Divide_substreams returns the number of substreams that are coded to the 'left', the remaining substreams are coded to the 'right'. The function corresponds to the pseudo-code:
n_left = 1;

while (n_left*2 < n_ss)

 n_left = n_left * 2

return n_left

get_size_bits(remaining_bits): is a function that returns the number of bits required to code a length. Its parameter is the maximum possible length that will be coded. It corresponds to the pseudo-code:

bits = 0

while (remaining_bits > 0)

{

 remaining_bits = remaining_bits/2

 bits++

}

return bits

read_bits_at(bits_offset, size_bits): is a function that extracts bits from a position within the payload, and returns the integer value they encode.
copy_payload_bits(bits_offset, bits_to_copy): is a function that extracts bits from a position within the payload and returns a direct copy of the bits. The result is a buffer containing the bits.

copy_payload_bits_reversed(bits_offset, bits_to_copy): is a function that performs a copy_payload_bits(bits_offset, bits_to_copy), and then reverses the order of the copied bits. The result is a buffer containing the bits.

5.5 QScaling Matrix Common Set

qscalingmatrix_update_flag[]:describe a set of flags where each flag is used to indicate whether each of the scaling matrixes is updated. A value 0 means a flat matrix is used and a value 1 means a new matrix is to be updated from the sequence header
qscalingmatrix_update(SetId, MatrixId, MaxCoeff): is a function to update a scaling matrix from a header. SetId indicates the scaling matrix set to be updated. A value 0 for SetId indicates the common set. MatrixId indicates the specific scaling matrix to be updated and MaxCoeff is the number of transform coefficients for each matrix.
	MatrixId
	Matrix Type
	ScalingMatrix
	MaxCoeff

	0
	INTRA4X4_LUMA
	Intra4x4LumaScale
	16

	1
	INTRA4X4_CHROMAU
	Intra4x4ChromaUScale
	16

	2
	INTRA4X4_CHROMAV
	Intra4x4ChromaVScale
	16

	3
	INTER4X4_LUMA
	Inter4x4LumaScale
	16

	4
	INTER4X4_CHROMAU
	Inter4x4ChromaUScale
	16

	5
	INTER4X4_CHROMAV
	Inter4x4ChromaVScale
	16

	6
	INTRA2X8_LUMA
	Intra2x8LumaScale
	16

	7
	INTRA8X2_LUMA
	Intra8x2LumaScale
	16

	8
	INTRA8X8_LUMA
	Intra8x8LumaScale
	64

	9
	INTER8X8_LUMA
	Inter8x8LumaScale
	64

	10
	INTRA8X8_CHROMAU
	Intra8x8ChromaUScale
	64

	11
	INTRA8X8_CHROMAV
	Intra8x8ChromaVScale
	64

	12
	INTER8X8_CHROMAU
	Inter8x8ChromaUScale
	64

	13
	INTER8X8_CHROMAV
	Inter8x8ChromaVScale
	64

	14
	INTRA16X16_LUMA
	Intra16x16LumaScale
	256

5.6 QOffset Matrix Common Set

qoffsetmatrix_update_flag[]:describe a set of flags where each flag is used to indicate whether each of the offset matrixes is updated. A value 0 indicates a flat matrix is used and a value 1 indicates a new matrix is to be updated from the sequence header
qoffsetmatrix_update(SetId, MatrixId, MaxCoeff): is a function to update a offset matrix from a header. SetId indicates the offset matrix set to be updated. A value 0 for SetId indicates the common set. MatrixId indicates the specific offset matrix to be updated and MaxCoeff is the number of transform coefficients for each matrix.

	MatrixId
	Matrix Type
	MappedOffsetMatrix
	MaxCoeff

	0
	INTRA4X4_LUMA
	Intra4x4LumaOffset
	16

	1
	INTRA4X4_CHROMAU
	Intra4x4ChromaUOffset
	16

	2
	INTRA4X4_CHROMAV
	Intra4x4ChromaVOffset
	16

	3
	INTER4X4_LUMA
	Inter4x4LumaOffset
	16

	4
	INTER4X4_CHROMAU
	Inter4x4ChromaUOffset
	16

	5
	INTER4X4_CHROMAV
	Inter4x4ChromaVOffset
	16

	6
	INTRA2X8_LUMA
	Intra2x8LumaOffset
	16

	7
	INTRA8X2_LUMA
	Intra8x2LumaOffset
	16

	8
	INTRA8X8_LUMA
	Intra8x8LumaOffset
	64

	9
	INTER8X8_LUMA
	Inter8x8LumaOffset
	64

	10
	INTRA8X8_CHROMAU
	Intra8x8ChromaUOffset
	64

	11
	INTRA8X8_CHROMAV
	Intra8x8ChromaVOffset
	64

	12
	INTER8X8_CHROMAU
	Inter8x8ChromaUOffset
	64

	13
	INTER8X8_CHROMAV
	Inter8x8ChromaVOffset
	64

	14
	INTRA16X16_LUMA
	Intra16x16LumaOffset
	256

5.7 Frame

reset_synchro(): is a function that resets all superblock synchronization information to an initial state. See the section "Superblock Synchronisation Points".

decode_from_substream(ss_number): is a function that indicates decoding should occur using the arithmetic decoder dedicated to substream ss_number, whose payload content is found in substream_content[ss_number].
frame_type: indicates the frame type. This element uses variable-length encoding.

	frame_type
	Description

	0
	INTRA/IDR/DDR

	10
	INTER

	11
	Bidirectional

intra_frame_type: indicates the decoder refresh frame type when frame_type is INTRA. Can be normal INTRA frame without decoder refresh, instantaneous decoder refresh (IDR) or deferred decoder refresh (DDR).

	intra_frame_type
	Description

	0
	non-refresh INTRA

	10
	Instantaneous decoder refresh (IDR)

	11
	Deferred decoder refresh (DDR)

frame_order_counter: indicates frame number. The frame number is differentially coded relative to the frame number of the last coded frame. In the case of a DDR, the frame number of all frames following the DDR up to and including the first picture with a temporal reference greater than the temporal reference of the DDR (First Refresh Picture) is coded relative to the frame number of the DDR frame.

reference_idc: indicates whether a frame is a reference frame. A value 0 indicates a non-reference frame and a value 1 indicates a reference frame.

delta_qp: indicates the quantization parameter for a frame. This value is the differential value of the current qp with respect to the qp of the previous coded frame or, for the first, IDR or DDR frame, or the first picture with a temporal reference greater than the temporal reference of the DDR (First Refresh Picture), the differential value of the current qp with respect to the sequence level qp.

q_offset[0]: indicates the reconstruction offset value (shift of representation value) for intra in case of 4x4 transform blocks.

q_offset[1]: indicates the reconstruction offset value (shift of representation value) for inter in case of 4x4 transform blocks.

q_offset8x8: indicates the reconstruction offset value (shift of representation value) for inter in case of 8x8 transform blocks.

edge_prediction_ipd: indicates whether the edge prediction direction for intra coding is used for the frame. A value 0 indicates that the edge prediction direction for intra coding is not used, a value 1 indicates that the edge prediction direction for intra coding is used.

threshold_edge_vector: indicates the threshold for the decision between the edge prediction direction and the DC mode.

single_ref_frame: indicates whether a single reference frame is used.

mvcomp_cur_config_idx: indicates the mv competition configuration to use while decoding the frame.

AIF_mode_flag1 and AIF_mode_flag2: indicate the SAIF_HALF mode.

diff_qfilter_coef [0][i]: indicates the amplitude of a filter coefficient (differential) at sub-pel position “a_pos” for SAIF_HALF.

diff_qfilter_coef [0][6]: indicates the amplitude of a filter offset at sub-pel position “a_pos”.

diff_qfilter_coef [1][i]: indicates the amplitude of a filter coefficient (differential) at sub-pel position “b_pos” for SAIF_HALF.

diff_qfilter_coef [1][6]: indicates the amplitude of a filter offset at sub-pel position “b_pos”.

diff_qfilter_coef [2][i]: indicates the amplitude of a filter coefficient (differential) at sub-pel position “c_pos” for SAIF_HALF.

diff_qfilter_coef [2][6]: indicates the amplitude of a filter offset at sub-pel position “c_pos”.

diff_qfilter_coef [3][i]: indicates the amplitude of a filter coefficient (differential) at sub-pel positions “d_pos” and “l_pos” for SAIF_HALF.

diff_qfilter_coef [3][6]: indicates the amplitude of a filter offset at sub-pel positions “d_pos” and “l_pos”.
diff_qfilter_coef [4][i]: indicates the amplitude of a filter coefficient (differential) at sub-pel positions “e_pos” and “m_pos” for SAIF_HALF.

diff_qfilter_coef [4][6]: indicates the amplitude of a filter offset at sub-pel positions “e_pos” and “m_pos”.
diff_qfilter_coef [5][i]: indicates the amplitude of a filter coefficient (differential) at sub-pel positions “f_pos” and “n_pos” for SAIF_HALF.

diff_qfilter_coef [5][6]: indicates the amplitude of a filter offset at sub-pel positions “f_pos” and “n_pos”.
diff_qfilter_coef [6][i]: indicates the amplitude of a filter coefficient (differential) at sub-pel positions “g_pos” and “o_pos” for SAIF_HALF.

diff_qfilter_coef [6][6]: indicates the amplitude of a filter offset at sub-pel position “g_pos” and “o_pos”.

diff_qfilter_coef [7][i]: indicates the amplitude of a filter coefficient (differential) at sub-pel position “h_pos” for SAIF_HALF.

diff_qfilter_coef [7][6]: indicates the amplitude of a filter offset at sub-pel position “h_pos”.

diff_qfilter_coef [8][i]: indicates the amplitude of a filter coefficient (differential) at sub-pel position “i_pos” for SAIF_HALF.

diff_qfilter_coef [8][6]: indicates the amplitude of a filter offset at sub-pel position “i_pos”.

diff_qfilter_coef [9][i]: indicates the amplitude of a filter coefficient (differential) at sub-pel position “j_pos” for SAIF_HALF.

diff_qfilter_coef [9][6]: indicates the amplitude of a filter offset at sub-pel position “j_pos”.

diff_qfilter_coef [10][i]: indicates the amplitude of a filter coefficient (differential) at sub-pel position “k_pos” for SAIF_HALF.

diff_qfilter_coef [10][6]: indicates the amplitude of a filter offset at sub-pel position “k_pos”.

adaptive_denoising_filter_flag[c]: indicates if an adaptive denoising filter is applied for the color component c, where c=0 corresponds to the luma component, c=1 and c=2 correspond to the two chroma components.

quantization_set_id: indicates the quantization parameter set to be used for the quantization process of a frame. The value of quantization_set_id shall not be more than max_quantization_set_num_minus_1

qscalingmatrix_overwrite_flag: indicates if the scaling matrixes of a quantization parameter set will be overwritten by new matrixes from the header. A value 1 indicates the scaling matrixes will be overwritten.
qscalingmatrix_set(quantization_set_id): is a function to overwrite the scaling matrixes of a quantization parameter set.
qoffsetmatrix_overwrite_flag: indicates if the offset matrixes of a quantization parameter set will be overwritten by new matrixes from the header. A value 1 indicates the offset matrixes will be overwritten.

qoffsetmatrix_set(quantization_set_id): is a function to overwrite the offset matrixes of a quantization parameter set.
5.8 QScaling Matrix Overwrite Set

See the section 6.5 "QScaling Matrix Common Set”.

5.9 QOffset Matrix Overwrite Set

See the section 6.6 "QOffset Matrix Common Set”.

5.10 QScaling Matrix Update

qscalingmatrix_update_type_flag: indicates the methods to update the scaling matrixes. A value 0 means a new matrix is adapted from existing matrix and a value 1 means a new matrix is retrieved from a header.
delta_scale: indicates a delta scale value. The delta_scale values are decoded in the zig-zag scanning order. If not present, the default value for delta_scale is equal to zero.
matrix_scale: indicates a parameter to scale all the matrix values.

matrix_slope: indicates a parameter to adjust the gradient of a non-flat matrix.

num_delta_scale: indicates the number of delta_scale values to be decoded when qscalingmatrix_update_type_flag equal to 0.
Depending on qscalingmatrix_update_type_flag, the values of scaling matrix ScaleMatrix is defined as follows:

· If qscalingmatrix_update_type_flag is equal to 0,
ScaleMatrix[i] = (ScaleMatrix[i] * (matrix_scale + 16) + matrix_slope * (ScaleMatrix[i] - 16) + 8)>>4) + delta_scale,

with i = 0..MaxCoeff
· Otherwise (qscalingmatrix_update_type_flag is equal to 1)

ScaleMatrix[i] is derived as shown in Section 5.10
Note – ScaleMatrix[i] is equal to 16 by default.

5.11 QOffset Matrix Update

qoffsetmatrix_update_type_ identifer: indicates the methods to update the offset matrixes. A value 0 means a new matrix is adapted from existing matrix, a value 1 means a new matrix is retrieved from a header and a value 2 indicates a new matrix is a flat matrix with the same value.

delta_offset: indicates a delta offset value. The delta_offset values are decoded in the zig-zag scanning order. If not present, the default value for delta_offset is equal to zero.
matrix_scale: indicates a parameter to scale all the matrix values.

matrix_slope: indicates a parameter to adjust the gradient of a non-flat matrix.

num_delta_offset: indicates the number of delta_offset values to be decoded when qoffsetmatrix_update_type_ identifer equal to 0.

offset_value: indicates the offset value of the new flat matrix when qoffsetmatrix_update_type_ identifier is equal to 2. The offset_value shall be in the range from -127 to 127.

Depending on qoffsetmatrix_update_type_ identifer, the values of offset matrix OffsetMatrix is defined as follows:

· If qoffsetmatrix_update_type_ identifer is equal to 0,

OffsetMatrix[i] = clip ((OffsetMatrix[i] * (matrix_scale + 16) + matrix_slope * (OffsetMatrix[i] - 16) + 8)>>4) + delta_offset, 1, 255),

with i = 0..MaxCoeff

MappedOffsetMatrix[i] = 128- 8 * OffsetMatrix[i],
with i = 0..MaxCoeff

· Else if qoffsetmatrix_update_type_ identifer is equal to 1,

OffsetMatrix[i] is derived as shown in Section 5.11,

MappedOffsetMatrix[i] = 128- 8 * OffsetMatrix[i],
with i = 0..MaxCoeff

· Otherwise (if qoffsetmatrix_update_type_ identifier is equal to 2),

OffsetMatrix [i] = (128-offset_value + 8)>>4,

with i = 0..MaxCoeff

MappedOffsetMatrix[i] = offset_value,

with i = 0..MaxCoeff

Note 1 – MappedOffsetMatrix [i] is used only for the scaling process of the current picture.

Note 2 – OffsetMatrix[i] is equal to 16 by default and MappedOffsetMatrix[i] is equal to 0 by default.

5.12 Superblock

init_synchro(sb_i, sb_j): is a function that initializes arithmetic decoder contexts using neighbouring superblock information. See the section "Superblock Synchronisation Points".
update_synchro(sb_i, sb_j): is a function that stores arithmetic decoder context information for the superblock just decoded. See the section "Superblock Synchronisation Points".

prediction_mode[i][j]: indicates the prediction mode for the current block according to Table 9 and Table 10.

Table 9 - Specification of prediction_mode[i][j] for P-frames

	prediction_mode[i][j]
	Code
	Prediction/Coding method

	0
	0
	Intra

	1
	1
	8x8 Single list Prediction using LIST_0

Table 10 – Specification of prediction_mode[i][j] for B-frames

	prediction_mode[i][j]
	Code
	Prediction/Coding method

	0
	00
	Intra

	1
	10
	8x8 Single list Prediction using LIST_0

	2
	01
	8x8 Single list Prediction using LIST_1

	3
	11
	8x8 BiPrediction

ref_index[i]: indicates the reference frame index for LIST_0 and LIST_1. ref_index[0] is reference number index for LIST_0 and ref_index[1] is reference number index for LIST_1. When the element is not coded, a value 0 is assumed.

mvd_pred_dir: indicates the prediction direction for a motion vector. A value ‘0’ indicates a prediction from the left and a value ‘1’ a prediction from above.

motion_sharing type_zero: indicates whether inter prediction with motion sharing is applied. A value ‘0’ indicates motion sharing is not applied to the current block (mvshare_size[][][0] and mvshare_size[][][1] are zero) and a value ‘1’indicates partition size of current block is decoded.

prediction_dir_flag: indicates the direction for the motion sharing for inter prediction. A value ‘0’ indicates that the motion sharing for inter prediction is conducted from neighbor block above, a value ‘1’ indicates that the motion sharing is conducted from the neighbor left block.

sip_type: indicates the partition type of the 8x8 intra block type according to Table 11 when intra8x8 is ‘0’. A sip_type of ‘0’ is inferred when sip_type_enabled is ‘0’. sip_type indicates the partition type of the 8x8 intra block type according to Table 12 when intra8x8 is ‘1’. sip_type indicates the partition type of the 8x8 intra block type according to Table 13 when intra8x8 is ‘2’.

Table 11 – Specification of sip_type when intra8x8=0

	sip_type
	Code
	Partition type for the 8x8 Intra block

	0
	0
	4x4 partitions

	1
	10
	2x8 partitions

	2
	11
	8x2 partitions

Table 12 – Specification of sip_type when intra8x8=1

	sip_type
	Code
	Partition type for the 8x8 Intra block

	0
	0
	8x8 partitions

	1
	10
	16x16 partitions

	2
	110
	4x4 partitions

	3
	1110
	2x8 partitions

	4
	1111
	8x2 partitions

Table 13 – Specification of sip_type when intra8x8=2

	sip_type
	Code
	Partition type for the 8x8 Intra block

	0
	0
	4x4 partitions

	1
	10
	2x8 partitions

	2
	110
	8x2 partitions

	3
	111
	8x8 partitions

5.13 Block

zero_blk: indicates whether a block contains non-zero coefficients.

ztree_node_both: indicates whether both subtrees of a node contain nonzero coefficients.

ztree_node_left: indicates whether the left subtree of a node contains nonzero coefficients.
transform16x16_flag: specifies the type of the inverse transform to be applied to a 16x16 block. A value ‘0’ indicates that the inverse DCT transform is applied; otherwise the inverse KLT transform is applied.
5.14 Decode_mvshare_size
mvshare_four: indicates whether the partition size is ‘4’. A value ‘1’ indicates that mvshare_size[][][] is ‘4’ and a value ‘0’ indicates that mvshare_size[][][] is ‘2’.

mvshare_pred: indicates whether the partition size of the current block is identical to the prediction of partition size or not. When mvshare_pred has value ’1’ the data is identical to the prediction of it. When mvshare_pred has value ‘0’, the data is the other value from the prediction.

5.15 Spatial_intra_prediction

prev_intra_pred_mode_flag: indicates that the intra prediction mode is the same as the most_probable_mode or not. When prev_intra_pred_mode_flag has value ’1’ the data is the same as the most_probable_mode derived in Section 7.5.2. When prev_intra_pred_mode_flag has value ’0’, the rem_intra_pred_mode is coded.

rem_intra_pred_mode: indicates the remainder intra prediction mode. If rem_intra_pred_mode is less than the most_probable_mode then the data is set to the value of rem_intra_pred_mode otherwise, the data is set to the value of rem_intra_pred_mode + 1.

Table 14: rem_intra_pred_mode code values.

	Code
	rem_intra_pred_mode

	000
	0

	001
	1

	010
	2

	011
	3

	100
	4

	101
	5

	110
	6

	1110
	7

	11110
	8

	11111
	9

chroma_sip_mode: indicates the chroma intra prediction mode.
Table 15: chroma_sip_mode code values.
	Code
	chroma_sip_mode

	0
	0

	10
	1

	110
	2

	1110
	3

	11110
	4

	11111
	5

5.16 Coefficient level

coeff_val: indicates the amplitude of a coefficient when it is non-zero.

coeff_sign: indicates the sign of a coefficient. Value ‘0’ is for positive, and value ‘1’ for negative.
5.17 Decode adaptive denoising filter
filter_hint_type[c]: specifies the type of the transmitted filter hints for the color component c, whereas c=0 corresponds to the luma component, c=1 and c=2 correspond to the two chroma components. Possible values are 0 to 3 inclusive as specified in Table 16.

Table 16 – filter_hint_type values

	Value
	Description

	0
	Coefficients of a 2D FIR filter

	1
	Reserved

	2
	Coefficients of two 1D FIR filters

	3
	Reserved

filter_hint_size_rec_x: Specifies the horizontal size of the filter coefficient array for the decoded signal.

filter_hint_size_rec_y: Specifies the vertical size of the filter coefficient array for the decoded signal.

filter_hint_size_pred_x: Specifies the horizontal size of the filter coefficient array for the prediction signal.

filter_hint_size_pred_y: Specifies the vertical size of the filter coefficient array for the prediction signal.

filter_hint_size_qpe_x: Specifies the horizontal size of the filter coefficient array for the quantized prediction error signal.

filter_hint_size_qpe_y: Specifies the vertical size of the filter coefficient array for the quantized prediction error signal.

filter_precision[c]: Specifies the precision of the adaptive denoising filter information.

filter_hint_rec[c][cy][cx]: specifies an element of the filter coefficient matrix for the decoded signal. c=0 corresponds to the luma component, c=1 and c=2 correspond to the two chroma components. cy represents a counter in vertical direction. cx represents a counter in horizontal direction.
filter_hint_pred[c][cy][cx]: specifies an element of the filter coefficient matrix for the prediction signal. c=0 corresponds to the luma component, c=1 and c=2 correspond to the two chroma components. cy represents a counter in vertical direction. cx represents a counter in horizontal direction.
filter_hint_qpe[c][cy][cx]: specifies an element of the filter coefficient matrix for the quantized prediction error signal. c=0 corresponds to the luma component, c=1 and c=2 correspond to the two chroma components. cy represents a counter in vertical direction. cx represents a counter in horizontal direction.
filter_hint_rec_x[c][cx]: specifies an element of the filter coefficient vector for the horizontal filtering of decoded signal. c=0 corresponds to the luma component, c=1 and c=2 correspond to the two chroma components. cx represents a counter in horizontal direction.
filter_hint_pred_x[c][cx]: specifies an element of the filter coefficient vector for the horizontal filtering of prediction signal. c=0 corresponds to the luma component, c=1 and c=2 correspond to the two chroma components. cx represents a counter in horizontal direction.
filter_hint_qpe_x[c][cx]: specifies an element of the filter coefficient vector for the horizontal filtering of quantized prediction error signal. c=0 corresponds to the luma component, c=1 and c=2 correspond to the two chroma components. cx represents a counter in horizontal direction.
filter_hint_rec_y[c][cy]: specifies an element of the filter coefficient vector for the vertical filtering of decoded signal. c=0 corresponds to the luma component, c=1 and c=2 correspond to the two chroma components. cy represents a counter in vertical direction.
filter_hint_pred_y[c][cy]: specifies an element of the filter coefficient vector for the vertical filtering of prediction signal. c=0 corresponds to the luma component, c=1 and c=2 correspond to the two chroma components. cy represents a counter in vertical direction.
filter_hint_qpe_y[c][cy]: specifies an element of the filter coefficient vector for the vertical filtering of quantized prediction error signal. c=0 corresponds to the luma component, c=1 and c=2 correspond to the two chroma components. cy represents a counter in vertical direction.
filter_hint_offset[c]: Specifies on offset value. c=0 corresponds to the luma component, c=1 and c=2 correspond to the two chroma components.
6 Decoding process

6.1 Coding unit

A coded stream is a set of concatenated coding units. The first coding unit in a stream is the sequence header. All subsequent coding units represent coded frames until an end of sequence unit is decoded.

For each coding unit a payload size is first decoded. The payload is extracted and further decoded as described below.

6.2 Sequence header decoding

The sequence header contains variables that are needed to decode individual frames. The values read from the sequence header should thus be stored for future reference.

6.3 RPPS decoding

Reference Picture Processing Set (RPPS) contains variables that are needed to create reference pictures. First, rpps_type is decoded. If the rpps_type is not zero, rpps_id and values of reference picture processing for each reference lists and reference frames are decoded and stored. While the rpps_type is not zero, rpps_id and values of reference picture processing for each reference lists and reference frames are decoded and stored again. If the rpps_type is zero, then, an rpps_id for decoding the current frame is decoded, and the reference picture processing values stored for the rpps_id are loaded to create each reference frame. Before decoding first RPPS, 8 default RPPS according to Table 17 are stored. These RPPS can be overridden when new RPPS with the same rpps_id is decoded.

Table 17: rpps_id values.
	rpps_id
	Reference Picture Processing Set

	0
	inter_type=2, filter_type=0, ic_disable=0, round_type=0 for every reference list and frame

	1
	inter_type=2, filter_type=1, ic_disable=0, round_type=0 for every reference list and frame

	2
	reserved

	3
	reserved

	4
	reserved

	5
	inter_type=3, filter_type=0, ic_disable=0, round_type=0 for every reference list and frame

	6
	inter_type=3, filter_type=1, ic_disable=0, round_type=0 for every reference list and frame

	7
	reserved

	8
	reserved

	9
	reserved

6.4 Frame decoding

When decoding a frame, the frame type is first determined by the element frame_type. The type of frame is determined from the codeword using Table 18.

Table 18 – Mapping of codewords to frame types

	Code
	Frame type

	0
	I-frame

	10
	P-frame

	11
	B-frame

There are several steps involved in the decoding of a frame. These are further described below. They include spatial prediction, temporal prediction, texture coding, post-processing and arithmetic decoding.

6.4.1 Frame order

Each frame has a frame order associated with it. The frame order of a frame is determined by adding the value of frame_order_counter to the frame order of the previously decoded frame. If no previously decoded frame is available, the frame order is set to 0.

6.4.2 Default Superblock Order

[image: image259.emf]

full-pel sample

sub-pel sample

interpolated with

fixed filter

sub-pel sample

interpolated with

adaptive filter

full-pel sample full-pel sample

sub-pel sample

interpolated with

fixed filter

sub-pel sample

interpolated with

fixed filter

sub-pel sample

interpolated with

adaptive filter

sub-pel sample

interpolated with

adaptive filter

A frame is made up of superblocks. Figure 3 shows an example of a frame containing a single substream that is made up of 12 super blocks (3 blocks high and 4 blocks wide). The superblocks within the frame are decoded one after another in raster scan order.

Figure 3: Example of a frame that is made up of 12 superblocks (3 blocks high and 4 blocks wide).

A superblock is defined as a collection of NxM blocks (N blocks high and M blocks wide). For flexibility, the values of the N and M are indicated in the syntax elements sb_height and sb_width, respectively.

If the frame height and/or width is not an integral number of superblocks, then the bottom row and/or column of superblock will be smaller.

· Last row of superblock would have ((frame_height/8) % sb_height) blocks high.

· Last column of superblock would have ((frame_width/8) % sb_width) blocks wide.

Note: For blocks located at right boundary of the superblock, it is possible that the reconstructed blocks to the above right is not yet decoded as opposed to the normal block raster scan. This is the same as for the blocks located at the right boundary of the frame. The following process that requires the use of reconstructed pixels from the above right should consider such pixels as unavailable.

· Intra Prediction by Template Matching

· Edge Prediction

A more complete and precise description for the range of the search region should be made taking into account of the superblock boundaries for each of the methods above.

6.4.3 Superblock Synchronisation Points

If superblock_synchro is 1, arithmetic decoder contexts are initialized with init_synchro(), using information from left and top superblock neighbours prior to the decoding of each superblock. In addition, at the end of decoding a superblock, context information is stored with update_synchro() for later use by init_synchro().
6.4.3.1 Traditional CABAC – superblock_synchro = 0

CABAC contexts evolve during raster scan processing, and are never reset within a frame.

[image: image3.emf]x x

Figure 4: Traditional local adaptation of statistics in a frame.
In Figure 4, it can be observed which neighbor information is used for estimating probability. Grey shading is related to the associated weight factor. On the right part of this figure it can be observed that local adaptation is biased for blocks located on the left part of an image.

6.4.3.2 Synchronization Point with Mean Computation, superblock_synchro = 1
There is a two-dimensional sliding averaging window.

[image: image4.emf]x x

Figure 5: Local adaptation of statistics in a frame with superblock synchronization points.
Figure 4 illustrates the corresponding weighting pattern. It can be observed that the adaptation has better properties. First, the neighbor information is two dimensional. Second, no artifacts are introduced at image borders.

Note that when using this local adaptation mechanism the super-block scanning method can be modified if desired. Indeed smaller super-blocks might be used with similar level of performance.

Prior to the decoding of a given superblock, the probability information of all arithmetic decoder contexts is initialized with init_synchro() using stored information. For a superblock at i,j, the initialization is of the form indicated by the following pseudo-code, applied to each context of the kind SimpleProbEst.
If j == 0 && i == 0
 PSB,init(i,j) = p

 SUFFSZSB,init(i,j) = suffix_size

 WSB,init(i,j) = 0

Else if j == 0
 // Copy from top.
 PSB,init(i,j) = PSB,post(i-1,j)

 SUFFSZSB,init(i,j) = SUFFSZSB,post(i-j,j)

 WSB,init(i,j) = WSB,post(i-1,j)

Else if i == 0 || WSB,post(i,j-1)+WSB,post(i-1,j) == 0
 // Copy from left.

 PSB,init(i,j) = PSB,post(i,j-1)

 SUFFSZSB,init(i,j) = SUFFSZSB,post(i,j-1)

 WSB,init(i,j) = WSB,post(i,j-1)

Else

 Averaging(i,j)

Averaging(i,j):

If (WSB,post(i, j-1)>0)

then W0 = log2(WSB,post(i, j-1)); // tabulated value

else W0 = Tmin;

If (W0 > Tmax) then W0=Tmax

If (WSB,post(i-1,j)>0)

then W1 = log2(WSB,post(i-1, j)); // tabulated value

else W1 = Tmin;

If (W1 > Tmax) then W1=Tmax;

K = W0-W1;

PSB,init(i,j) = waveraging(PSB,post(i,j-1), PSB,post(i-1,j), K)

WSB,init(i,j) = waveraging(WSB,post(i,j-1), WSB,post(i-1,j), K)

Tmin is used to reflect that when there are no previous observations (WSB,post = 0) a low confidence measure is given. Tmin=-20

Tmax is used to reflect that when a sufficient number of symbols is observed for a super-block, then there is a kind of 'saturation' in confidence. Tmax=14.

The lines in red are relevant for the cases where the context is a UnaryProbEst object. In addition, the routine SAveraging is called rather than Averaging, as shown below:
SAveraging(i,j):

{

 If (WSB,post(i, j-1)>0)

 then W0 = log2(WSB,post(i, j-1)); // tabulated value

 else W0 = Tmin;

 If (W0 > Tmax) then W0=Tmax

 If (WSB,post(i-1,j)>0)

 then W1 = log2(WSB,post(i-1, j)); // tabulated value

 else W1 = Tmin;

 If (W1 > Tmax) then W1=Tmax;

 K = W0-W1;

 // rescale if necessary.

 ss = SUFFSZSB,post(i-1,j)

 pp = PSB,post(i-1,j)

 while ss > SUFFSZSB,post(i,j-1)

 {

 ss--

 pp = DnSuff[pp]

 }

 while ss < SUFFSZSB,post(i,j-1)

 {

 ss++

 pp = UpSuff[pp]

 }

 p2 = waveraging(PSB,post(i,j-1), pp, K)

 s2 = SUFFSZSB,post(i,j-1)

 WSB,init(i,j) = waveraging(WSB,post(i,j-1), WSB,post(i-1,j), K)

 // rescale p2 if necessary to be in correct range.

 while p2 < 0x2000

 {

 s2++

 p2 = UpSuff[p2]

 }

 while p2 > 0x4000 && s2 > 0

 {

 s2--

 p2 = DnSuff[p2]

 }

 PSB,init(i,j) = p2

 SUFFSZSB,init(i,j) = s2

}

waveraging(a,b,diff):

{

 If diff < 0

 return Waveraging(b, a, -diff)

 K = (int)(diff + 1.5)

 If K > 16

 K = 16

 return a + ((b-a)+(1<<(K-1))) >> K

}

After the decoding of a superblock i,j some probability information is stored for each context for that superblock, as indicated by the following pseudo-code:
PSB,post(i, j) = p

WSB,post(i, j) = WSB,init(i, j) + |(NSB << 10)-WSB,init| >> LOSS_RATE_NB

SUFFSZSB,post(i,j) = suffix_size

LOSS_RATE_NB = 5, and NSB represents the number of symbols decoded for the current superblock for the current context.

Note that for UnaryProbEst objects, two global tables of 2prob_bits elements each, UpSuff and DnSuff, should be initialized as per the following pseudocode:

BuildUpDnSuff()

{

 DnSuff[0] = 0

 mni = (1<<PROB_BITS)-1

 lni = 0

 For I = 0; I <= mni; i++)
 {

 ni = 2*i – ((i*i+(1<<(PROB_BITS-1))) >> PROB_BITS)

 if ni > mni

 ni = mni

 UpSuff[i] = ni

 For j = lni+1; j <= ni; j++

 DnSuff[j] = i

 lni = ni

 }

}

6.4.4 Substreams

If superblock_synchro is in effect, it is possible that a frame is constructed using multiple substreams. A substream is a sequence of superblocks to be decoded using a single arithmetic decoder. When multiple substreams are used in a frame, as indicated by superblock_nsubstreams > 1, the current decoder reference model assumes that each substream comprises horizontal lines of superblocks in the frame, equally distributed among the substreams. The decoding order of such superblocks can remain the same as in the case where substreams are not used (ie, raster scan order). Different decoding orders may be implemented in the future.

[image: image5]
Figure 6: Superblocks in a Frame Containing Two Substreams.
6.4.4.1 Substream Payload Data

Each substream is decoded by a single arithmetic decoder, and its coded content is present in a single area in the frame payload. To find the location of each substream in the frame payload some sizes may be coded, and substreams are divided according to an unequal binary tree in order to minimize signaling. The logic is present in the functions find_frame_substreams, divide_substreams, get_size_bits, read_bits_at, copy_payload_bits and copy_payload_bits_reversed above.
When just one substream is present, no additional signaling is required. The frame payload is the substream.
When two substreams are present, the second is bit-reversed and concatenated with the first. Possible padding is present between these two substreams in order to guarantee that the second (bit-reversed) substream is effectively byte-aligned at the end of the payload (the frame payload size is a value in bytes). No additional size-signaling is required, although the second substream needs its own arithmetic decoder termination bits present.

[image: image6]
Figure 7: Two substreams in the frame.
If three or more substreams are present, some additional sizes must be coded. Each coded size is used to indicate the size of a group of concatenated substreams within a known area. The number of bits used to code a size is the known number of bits required to code the size of the complete area. All these coded sizes are sizes in bits, not bytes. An example showing 8 substreams is shown in Figure 8 below.

[image: image7]
Figure 8: Eight substreams in a frame.

6.4.5 Block Order

Blocks of 8x8 pixels (8x8 Y pixels followed by 4x4 U and 4x4 V pixels) are the basic unit of CDCM codec. The blocks within the super block are decoded one after another in raster scan order except for the intra coded frame when intra16x16 is enabled. The example shown in Figure 9 is a super block with 4x8 blocks.

 [image: image8.emf]8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

8x8

block

N = 4

M = 8

8x8

Y

4x4

U

4x4

V

8x8 block

Figure 9: Example of 4x8 blocks group into a Superblock.
When intra16x16 is enabled in an intra coded frame, the blocks within the super block are decoded one after another in the raster scan order but in a 16x16 block unit. Inside a 16x16 block, if the sip_type is not SIP16x16, a raster scan order in an 8x8 block is applied. The example shown in Figure 10 is a super block with 2x4 16x16 blocks.

[image: image9.emf]8x8

block

8x8

block

8x8

block

8x8

block

16x16

block

8x8

block

8x8

block

8x8

block

8x8

block

16x16

block

8x8

block

8x8

block

8x8

block

8x8

block

16x16

block

8x8

block

8x8

block

8x8

block

8x8

block

16x16

block

N

=

2

M=4

16x16

Y

8x8

U

8x8

V

16x16 block

Figure 10: Example of 2x4 16x16 blocks group into a Superblock in an intra coded frame.
6.4.6 Coefficient Order

In each block, the coeff_level is decoded (in reverse order) starting with the largest indexed coefficient down to the smallest indexed coefficient. The decoding order of coefficients in 4x4, 2x8 and 8x2 transformed blocks is shown in Table 19, where k is defined in Clause 7.10.5.2 and index in table is shown in Figure 2.

Table 19 Decoding order of coefficients when sip_type = 4x4, 2x8 and 8x2

	k
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	SIP4x4
	15
	14
	11
	7
	10
	13
	12
	9
	6
	3
	2
	5
	8
	4
	1
	0

	SIP2x8
	15
	14
	13
	6
	7
	12
	11
	5
	4
	3
	9
	10
	2
	1
	8
	0

	SIP8x2
	15
	13
	14
	9
	12
	11
	7
	10
	8
	5
	4
	6
	3
	2
	1
	0

Only the non-zero coeff_level and indicated by the zero_blk are decoded. The context used for the decoding of the coeff_level also starts from the largest indexed context of the appropriate range as identified in Clause 7.10.5.2.
6.4.7 Mapping of decoded coeff_level into Intra 8x8 Luma Block Partitioning

If the 8x8 luma block has a 4x4, 2x8 and 8x2 spatial intra prediction partitions, four groups of coeff_level are mapped into four (4) partitions of the Intra 8x8 blocks, which is signaled by the sip_type as defined in Table 11. The order is given by the index number as shown in the Figure 11. Otherwise it is decoded as a single 8x8 block.

[image: image260.bmp]
Figure 11: Intra 8x8 Block partitions.

6.4.8 Inter 8x8 Luma Block Partitioning

If the 8x8 luma block has a 4x4 prediction mode, then groups of coeff_level are mapped into four (4) 4x4 partitions of the Inter 8x8 blocks. Otherwise it is decoded as a single 8x8 block.

[image: image261.png]

Figure 12: Inter 8x8 Block partitions.

6.5 Spatial prediction

Spatial prediction refers to the prediction of frame data within a frame. Spatial prediction is used for all intra blocks.

6.5.1 Spatial Intra Prediction

The modes of the prediction are as shown in Table 20.

Table 20 – Intra prediction mode

	sip_

mode
	16x16 Intra Prediction
	4x4/8x8 Intra Prediction
	2x8/8x2 Intra Prediction

	0
	VERT_PRED
	VERT_PRED
	VERT_PRED

	1
	HOR_PRED
	HOR_PRED
	HOR_PRED

	2
	TMA_L9_PRED
	TMA_L5_PRED
	TMA_L5_PRED

	3
	DC_PRED
	DC_PRED
	DC_PRED

	4
	DIAG_DOWN_RIGHT_PRED
	DIAG_DOWN_RIGHT_PRED
	DIAG_DOWN_RIGHT_PRED

	5
	VERT_RIGHT_PRED
	VERT_RIGHT_PRED
	VERT_RIGHT_PRED

	6
	HOR_DOWN_PRED
	HOR_DOWN_PRED
	HOR_DOWN_PRED

	7
	VERT_LEFT_PRED
	VERT_LEFT_PRED
	VERT_LEFT_PRED

	8
	HOR_UP_PRED
	HOR_UP_PRED
	HOR_UP_PRED

	9
	DIAG_DOWN_LEFT_PRED
	DIAG_DOWN_LEFT_PRED
	DIAG_DOWN_LEFT_PRED

	10
	TMA_L17_PRED
	TMA_L9_PRED
	undefined

6.5.2 Most probable mode derivation

The value of most_probable_mode is fixed for the whole sequence and equal to the syntax element mpm_default.

The value of the prediction mode is derived from the syntax elements as follows:

· If the syntax element prev_intra_pred_mode_flag is equal to 1, the prediction mode is equal to most_probable_mode.

· If the syntax element prev_intra_pred_mode_flag is equal to 0, the syntax element rem_intra_pred_mode should be present in the bitstream. If the value of the syntax element rem_intra_pred_mode is strictly smaller than most_probable_mode, the prediction mode is equal to rem_intra_pred_mode.

· Otherwise, if the syntax element prev_intra_pred_mode_flag is equal to 0 and the syntax element rem_intra_pred_mode is superior or equal to most_probable_mode, the prediction mode is equal to rem_intra_pred_mode+1.

The correspondence between the value of the prediction mode and its name is given in Table 20.
6.5.3 Sample Prediction

The creation of the sample prediction comprises of two categories of methods. The extrapolation method along a given prediction direction and the texture synthesis method referred to as Template Matching Averaging (TMA). The modes are as follows.

Table 21 – Mapping of mode to luma sample prediction

	mode
	Description
	Category

	0
	VERT_PRED
	extrapolation

	1
	HOR_PRED
	extrapolation

	2
	TMA_L5_PRED
	texture synthesis

	3
	DC_PRED
	extrapolation

	4
	DIAG_DOWN_RIGHT_PRED
	extrapolation

	5
	VERT_RIGHT_PRED
	extrapolation

	6
	HOR_DOWN_PRED
	extrapolation

	7
	VERT_LEFT_PRED
	extrapolation

	8
	HOR_UP_PRED
	extrapolation

	9
	DIAG_DOWN_LEFT_PRED
	extrapolation

	10
	TMA_L9_PRED
	texture synthesis

	11
	TMA_L17_PRED
	texture synthesis

Table 22 – Mapping of mode to chroma sample prediction

	mode
	Description
	Category

	0
	DC_PRED_C
	extrapolation

	1
	HOR_PRED_C
	extrapolation

	2
	TMA_L5_PRED_C
	texture synthesis

	3
	VERT_PRED_C
	extrapolation

	4
	PLANE_PRED_C
	extrapolation

	5
	TMA_L9_PRED_C
	texture synthesis

6.5.4 Luma H.264/MPEG-4 AVC Sample Prediction Construction

If the value of the prediction mode for the current block is one of VERT_PRED, HOR_PRED, DIAG_DOWN_RIGHT_PRED, VERT_RIGHT_PRED, HOR_DOWN_PRED, VERT_LEFT_PRED, HOR_UP_PRED, DIAG_DOWN_LEFT_PRED, the following process for sample prediction construction is invoked.

The same method for sample prediction construction as the Intra_4x4/Intra_8x8/intra16x16 H.264/MPEG-4 AVC specification is used. The only difference in the way the availability of the block up right is determined.

The block up right is available if the current block is

· not in the first row

· not at the last column

· not block 3 in the group of four 4x4 zig-zag scanned blocks

· not in the last column of a superblock

If the value of the syntax element sip_type is equal to SIP16x16 for the current 16x16 block, the prediction process for Intra_16x16 is invoked. Otherwise, each 8x8 block of the 16x16 block is decoded in raster scan order. For each 8x8 block, if the value of the syntax element sip_type is equal to SIP4x4, the prediction process for Intra_4x4 is invoked; if the value of sip_type is equal to SIP8x8, the prediction process for Intra_8x8 is invoked; if the value of sip_type is equal to SIP2x8, the prediction process for Intra2x8 is invoked; if the value of sip_type is equal to SIP8x2, the prediction process for Intra_8x2 is invoked.

6.5.4.1 Prediction process for Intra_4x4, Intra_8x8 and Intra_16x16

The prediction process for Intra_16x16, Intra_8x8 and Intra_4x4 is the following.

The value bsize is derived as follows:

· If the prediction process for Intra_16x16 is invoked, bsize=16

· If the prediction process for Intra_8x8 is invoked, bsize=8

· If the prediction process for Intra_4x4 is invoked, bsize=4

Let p(x,y) represent the value of the decoded pixel at the position (x,y), x being the position of the pixel along the horizontal axis, and y along the vertical axis. The position (0,0) represents the position of the first pixel of the current block, i.e. the pixel up left.

If the value of the prediction mode for the current block is VERT_PRED, the following process is invoked. This mode shall only be used if the block up is available. The prediction for the current block with x,y=0..bsize-1 is derived by

[image: image10.wmf])

1

,

(

)

,

(

-

=

x

p

y

x

pred

If the value of the prediction mode for the current block is HOR_PRED, the following process is invoked. This mode shall only be used if the block left is available. The prediction for the current block with x,y=0..bsize-1 is derived by

[image: image11.wmf])

,

1

(

)

,

(

y

p

y

x

pred

-

=

If the value of the prediction mode for the current block is DIAG_DOWN_RIGHT_PRED, the following process is invoked. This mode shall only be used if the blocks up, left and up left are available. The prediction for the current block with x,y=0..bsize-1 is derived by

[image: image12.wmf]2

)

2

)

1

,

(

)

1

,

1

(

2

)

1

,

2

(

(

)

,

(

>>

+

-

-

+

-

-

-

´

+

-

-

-

=

y

x

p

y

x

p

y

x

p

y

x

pred

 for x > y

[image: image13.wmf]2

)

2

)

0

,

1

(

)

1

,

1

(

2

)

1

,

0

(

(

)

,

(

>>

+

-

+

-

-

´

+

-

=

p

p

p

y

x

pred

 for x = y

[image: image14.wmf]2

)

2

)

,

1

(

)

1

,

1

(

2

)

2

,

1

(

(

)

,

(

>>

+

-

-

+

-

-

-

´

+

-

-

-

=

x

y

p

x

y

p

x

y

p

y

x

pred

 for x < y

If the value of the prediction mode for the current block is VERT_RIGHT_PRED, the following process is invoked. This mode shall only be used if the blocks up, left and up left are available.

Let the variable zVR be equal to 2*x-y. The prediction for the current block with x,y=0..bsize-1 is derived by

[image: image15.wmf]1

)

1

)

1

),

1

((

)

1

,

1

)

1

((

(

)

,

(

>>

+

-

>>

+

-

-

>>

=

zVR

p

zVR

p

y

x

pred

 for
[image: image16.wmf]0

³

zVR

 and
[image: image17.wmf]0

1

&

=

zVR

[image: image18.wmf]2

)

2

)

1

,

1

)

1

((

)

1

),

1

((

2

)

1

,

1

)

1

((

(

)

,

(

>>

+

-

+

>>

+

-

>>

´

+

-

-

>>

=

zVR

p

zVR

p

zVR

p

y

x

pred

 for
[image: image19.wmf]0

³

zVR

 and
[image: image20.wmf]1

1

&

=

zVR

[image: image21.wmf]2

)

2

)

0

,

1

(

)

1

,

1

(

2

)

1

,

0

(

(

)

,

(

>>

+

-

+

-

-

´

+

-

=

p

p

p

y

x

pred

 for zVR = -1

[image: image22.wmf]2

)

2

)

3

,

1

(

)

2

,

1

(

2

)

1

,

1

(

(

)

,

(

>>

+

-

-

-

+

-

-

-

´

+

-

-

-

=

zVR

p

zVR

p

zVR

p

y

x

pred

 for zVR < -1

If the value of the prediction mode for the current block is HOR_DOWN_PRED, the following process is invoked. This mode shall only be used if the blocks up, left and up left are available.

Let the variable zHD be equal to 2*y-x. The prediction for the current block with x,y=0..bsize-1 is derived by

[image: image23.wmf]1

)

1

))

1

(

,

1

(

)

1

)

1

(

,

1

(

(

)

,

(

>>

+

>>

-

+

-

>>

-

=

zHD

p

zHD

p

y

x

pred

 for
[image: image24.wmf]0

³

zHD

 and
[image: image25.wmf]0

1

&

=

zHD

[image: image26.wmf]2

)

2

)

1

)

1

(

,

1

(

))

1

(

,

1

(

2

)

1

)

1

(

,

1

(

(

)

,

(

>>

+

+

>>

-

+

>>

-

´

+

-

>>

-

=

zHD

p

zHD

p

zHD

p

y

x

pred

 for
[image: image27.wmf]0

³

zHD

 and
[image: image28.wmf]1

1

&

=

zHD

[image: image29.wmf]2

)

2

)

0

,

1

(

)

1

,

1

(

2

)

1

,

0

(

(

)

,

(

>>

+

-

+

-

-

´

+

-

=

p

p

p

y

x

pred

 for zHD = -1

[image: image30.wmf]2

)

2

)

1

,

3

(

)

1

,

2

(

2

)

1

,

1

(

(

)

,

(

>>

+

-

-

-

+

-

-

-

´

+

-

-

-

=

zHD

p

zHD

p

zHD

p

y

x

pred

 for zHD < -1

If the value of the prediction mode for the current block is VERT_LEFT_PRED, the following process is invoked. This mode shall only be used if the blocks up and up right are available.

Let the variable zVL be equal to 2*x+y. The prediction for the current block with x,y=0..bsize-1 is derived by

[image: image31.wmf]1

)

1

)

1

,

1

)

1

((

)

1

),

1

((

(

)

,

(

>>

+

-

+

>>

+

-

>>

=

zVL

p

zVL

p

y

x

pred

 for
[image: image32.wmf]0

1

&

=

y

[image: image33.wmf]2

)

2

)

1

,

2

)

1

((

)

1

,

1

)

1

((

2

)

1

),

1

((

(

)

,

(

>>

+

-

+

>>

+

-

+

>>

´

+

-

>>

=

zVL

p

zVL

p

zVL

p

y

x

pred

 for
[image: image34.wmf]1

1

&

=

y

If the value of the prediction mode for the current block is HOR_UP_PRED, the following process is invoked. This mode shall only be used if the block left is available.

Let the variable zHU be equal to x+2*y. The prediction for the current block with x,y=0..bsize-1 is derived by

[image: image35.wmf]1

)

1

)

1

)

1

(

,

1

(

))

1

(

,

1

(

(

)

,

(

>>

+

+

>>

-

+

>>

-

=

zHU

p

zHU

p

y

x

pred

 for
[image: image36.wmf]3

2

-

´

<

bsize

zHU

 and
[image: image37.wmf]0

1

&

=

zHU

[image: image38.wmf]2

)

2

)

2

)

1

(

,

1

(

)

1

)

1

(

,

1

(

2

))

1

(

,

1

(

(

)

,

(

>>

+

+

>>

-

+

+

>>

-

´

+

>>

-

=

zHU

p

zHU

p

zHU

p

y

x

pred

 for
[image: image39.wmf]3

2

-

´

<

bsize

zHU

 and
[image: image40.wmf]1

1

&

=

zHU

[image: image41.wmf]2

)

2

)

1

,

1

(

3

)

2

,

1

(

(

)

,

(

>>

+

-

-

´

+

-

-

=

bsize

p

bsize

p

y

x

pred

for
[image: image42.wmf]3

2

-

´

=

bsize

zHU

[image: image43.wmf])

1

,

1

(

)

,

(

-

-

=

bsize

p

y

x

pred

for
[image: image44.wmf]3

2

-

´

>

bsize

zHU

If the value of the prediction mode for the current block is DIAG_DOWN_LEFT_PRED, the following process is invoked. This mode shall only be used if the blocks up and up right are available.

The prediction for the current block with x,y=0..bsize-1 is derived by

[image: image45.wmf]2

)

2

)

1

,

2

(

)

1

,

1

(

2

)

1

,

(

(

)

,

(

>>

+

-

+

+

+

-

+

+

´

+

-

+

=

y

x

p

y

x

p

y

x

p

y

x

pred

 for
[image: image46.wmf]2

2

-

´

<

+

bsize

y

x

[image: image47.wmf]2

)

2

)

1

,

1

2

(

3

)

1

,

2

2

(

(

)

,

(

>>

+

-

-

´

´

+

-

-

´

=

bsize

p

bsize

p

y

x

pred

for
[image: image48.wmf]2

2

-

´

=

+

bsize

y

x

6.5.4.2 Prediction process for Intra2x8

For the sample prediction of 2x8 and 8x2, a modified method of the H.264/MPEG-4 AVC specification is used. The definition of the pixels used for the extrapolation process and the extrapolation process is shown in Figure 13 and Figure 14, below.
[image: image49.emf]VERT_RIGHT_PRED (5)

HOR_DOWN_PRED (6) VERT_LEFT_PRED (7)

HOR_UP_PRED (8)

DIAG_DOWN_LEFT_PRED (9)

DIAG_DOWN_RIGHT_PRED (4)

A B C D E F G H

I

J

X

L

M

K

O

P

N

A B C D E F G H A B C D E F G H

I

J

X

L

M

K

O

P

N

I

J

X

L

M

K

O

P

N

A B C D E F G H

I

J

X

L

M

K

O

P

N

A B C D E F G H A B C D E F G H

I

J

X

L

M

K

O

P

N

I

J

X

L

M

K

O

P

N

A B C D E F G H

I

J

X

L

M

K

O

P

N

A B C D E F G H A B C D E F G H

I

J

X

L

M

K

O

P

N

I

J

X

L

M

K

O

P

N

A B C D E F G H

I

J

X

L

M

K

O

P

N

A B C D E F G H A B C D E F G H

I

J

X

L

M

K

O

P

N

I

J

X

L

M

K

O

P

N

A B C D E F G H

I

J

X

L

M

K

O

P

N

A B C D E F G H A B C D E F G H

I

J

X

L

M

K

O

P

N

I

J

X

L

M

K

O

P

N

A B C D E F G H

I

J

X

L

M

K

O

P

N

A B C D E F G H A B C D E F G H

I

J

X

L

M

K

O

P

N

I

J

X

L

M

K

O

P

N

A B C D E F G H

I

J

X

L

M

K

O

P

N

A B C D E F G H A B C D E F G H

I

J

X

L

M

K

O

P

N

I

J

X

L

M

K

O

P

N

A B C D E F G H

I

J

X

L

M

K

O

P

N

A B C D E F G H A B C D E F G H

I

J

X

L

M

K

O

P

N

I

J

X

L

M

K

O

P

N

VERT_PRED (0)

HOR_PRED (1)

Figure 13: Extrapolation Process for 2x8 Intra Predictions.
If the value of the prediction mode for the current block is VERT_PRED, the following process is invoked. This mode shall only be used if the block up is available.

The prediction for the current block with x=0..7 and y=0,1 is derived by

[image: image50.wmf])

1

,

(

)

,

(

-

=

x

p

y

x

pred

If the value of the prediction mode for the current block is HOR_PRED, the following process is invoked. This mode shall only be used if the block left is available.

The prediction for the current block with x=0..7 and y=0,1 is derived by

[image: image51.wmf])

,

1

(

)

,

(

y

p

y

x

pred

-

=

If the value of the prediction mode for the current block is DIAG_DOWN_RIGHT_PRED, the following process is invoked. This mode shall only be used if the blocks up, left and up left are available. The prediction for the current block x=0..7 and y=0,1 with is derived by

[image: image52.wmf]2

)

2

)

1

,

(

)

1

,

1

(

2

)

1

,

2

(

(

)

,

(

>>

+

-

-

+

-

-

-

´

+

-

-

-

=

y

x

p

y

x

p

y

x

p

y

x

pred

 for x > y

[image: image53.wmf]2

)

2

)

0

,

1

(

)

1

,

1

(

2

)

1

,

0

(

(

)

,

(

>>

+

-

+

-

-

´

+

-

=

p

p

p

y

x

pred

 for x = y

[image: image54.wmf]2

)

2

)

1

,

1

(

)

0

,

1

(

2

)

1

,

1

(

(

)

,

(

>>

+

-

+

-

´

+

-

-

=

p

p

p

y

x

pred

 for x = 0 and y = 1

If the value of the prediction mode for the current block is VERT_RIGHT_PRED, the following process is invoked. This mode shall only be used if the blocks up, left and up left are available.

The prediction for the current block with x=0..7 and y=0,1 is derived by

[image: image55.wmf]1

)

1

)

1

,

(

)

1

,

1

(

(

)

,

(

>>

+

-

+

-

-

=

x

p

x

p

y

x

pred

 for y = 0

[image: image56.wmf]2

)

2

)

1

,

(

)

1

,

1

(

2

)

1

,

2

(

(

)

,

(

>>

+

-

+

-

-

´

+

-

-

=

x

p

x

p

x

p

y

x

pred

 for x > 0 and y = 1

[image: image57.wmf]2

)

2

)

0

,

1

(

)

1

,

1

(

2

)

1

,

0

(

(

)

,

(

>>

+

-

+

-

-

´

+

-

=

p

p

p

y

x

pred

 for x = 0 and y = 1

If the value of the prediction mode for the current block is HOR_DOWN_PRED, the following process is invoked. This mode shall only be used if the blocks up, left and up left are available.

Let the variable zHD be equal to 2*y-x. The prediction for the current block with x=0..7 and y=0,1 is derived by

[image: image58.wmf]1

)

1

))

1

(

,

1

(

)

1

)

1

(

,

1

(

(

)

,

(

>>

+

>>

-

+

-

>>

-

=

zHD

p

zHD

p

y

x

pred

 for zHD = 0,2

[image: image59.wmf]2

)

2

)

1

,

1

(

)

0

,

1

(

2

)

1

,

1

(

(

)

,

(

>>

+

-

+

-

´

+

-

-

=

p

p

p

y

x

pred

 for zHD = 1

[image: image60.wmf]2

)

2

)

0

,

1

(

)

1

,

1

(

2

)

1

,

0

(

(

)

,

(

>>

+

-

+

-

-

´

+

-

=

p

p

p

y

x

pred

 for zHD = -1

[image: image61.wmf]2

)

2

)

1

,

3

(

)

1

,

2

(

2

)

1

,

1

(

(

)

,

(

>>

+

-

-

-

+

-

-

-

´

+

-

-

-

=

zHD

p

zHD

p

zHD

p

y

x

pred

 for zHD < -1

If the value of the prediction mode for the current block is VERT_LEFT_PRED, the following process is invoked. This mode shall only be used if the block up is available.

The prediction for the current block with x=0..7 and y=0,1 is derived by

[image: image62.wmf]1

)

1

)

1

,

1

(

)

1

,

(

(

)

,

(

>>

+

-

+

+

-

=

x

p

x

p

y

x

pred

 for x < 7 and y = 0

[image: image63.wmf]2

)

2

)

1

,

2

(

)

1

,

1

(

2

)

1

,

(

(

)

,

(

>>

+

-

+

+

-

+

´

+

-

=

x

p

x

p

x

p

y

x

pred

 for x < 6 and y = 1

[image: image64.wmf]2

)

2

)

1

,

7

(

3

)

1

,

6

(

(

)

,

(

>>

+

-

´

+

-

=

p

p

y

x

pred

 for x = 6 and y = 1

[image: image65.wmf])

1

,

7

(

)

,

(

-

=

p

y

x

pred

 for x = 7

If the value of the prediction mode for the current block is HOR_UP_PRED, the following process is invoked. This mode shall only be used if the block up is available.

Let the variable zHU be equal to x+2*y. The prediction for the current block with x=0..7 and y=0,1 is derived by

[image: image66.wmf]2

)

2

)

1

,

3

(

)

1

,

2

(

2

)

1

,

1

(

(

)

,

(

>>

+

-

+

+

-

+

´

+

-

+

=

zHU

p

zHU

p

zHU

p

y

x

pred

for zHU < 5

[image: image67.wmf]2

)

2

)

1

,

7

(

*

3

)

1

,

6

(

(

)

,

(

>>

+

-

+

-

=

p

p

y

x

pred

 for zHU = 5

[image: image68.wmf])

1

,

7

(

)

,

(

-

=

p

y

x

pred

 for zHU > 5

If the value of the prediction mode for the current block is DIAG_DOWN_LEFT_PRED, the following process is invoked. This mode shall only be used if the block up is available.

The prediction for the current block with x=0..7 and y=0,1 is derived by

[image: image69.wmf]2

)

2

)

1

,

2

(

)

1

,

1

(

2

)

1

,

(

(

)

,

(

>>

+

-

+

+

+

-

+

+

´

+

-

+

=

y

x

p

y

x

p

y

x

p

y

x

pred

 for x + y < 6

[image: image70.wmf]2

)

2

)

1

,

7

(

3

)

1

,

6

(

(

)

,

(

>>

+

-

´

+

-

=

p

p

y

x

pred

 for x + y = 6

[image: image71.wmf])

1

,

7

(

)

,

(

-

=

p

y

x

pred

 for x + y > 6

6.5.4.3 Prediction process for Intra_8x2

[image: image72.emf]A B C D E F G H

I

J

X

L

M

K

O

P

N

A B C D E F G H A B C D E F G H

I

J

X

L

M

K

O

P

N

I

J

X

L

M

K

O

P

N

VERT_RIGHT_PRED (5)

A B C D E F G H

I

J

X

L

M

K

O

P

N

A B C D E F G H A B C D E F G H

I

J

X

L

M

K

O

P

N

I

J

X

L

M

K

O

P

N

HOR_DOWN_PRED (6)

A B C D E F G H

I

J

X

L

M

K

O

P

N

A B C D E F G H A B C D E F G H

I

J

X

L

M

K

O

P

N

I

J

X

L

M

K

O

P

N

VERT_LEFT_PRED (7)

HOR_UP_PRED (8)

A B C D E F G H

I

J

X

L

M

K

O

P

N

A B C D E F G H A B C D E F G H

I

J

X

L

M

K

O

P

N

I

J

X

L

M

K

O

P

N

DIAG_DOWN_LEFT_PRED (9)

A B C D E F G H

I

J

X

L

M

K

O

P

N

A B C D E F G H A B C D E F G H

I

J

X

L

M

K

O

P

N

I

J

X

L

M

K

O

P

N

DIAG_DOWN_RIGHT_PRED (4)

A B C D E F G H

I

J

X

L

M

K

O

P

N

A B C D E F G H A B C D E F G H

I

J

X

L

M

K

O

P

N

I

J

X

L

M

K

O

P

N

VERT_PRED (0)

A B C D E F G H

I

J

X

L

M

K

O

P

N

A B C D E F G H A B C D E F G H

I

J

X

L

M

K

O

P

N

I

J

X

L

M

K

O

P

N

HOR_PRED (1)

A B C D E F G H

I

J

X

L

M

K

O

P

N

A B C D E F G H A B C D E F G H

I

J

X

L

M

K

O

P

N

I

J

X

L

M

K

O

P

N

Figure 14: Extrapolation Process for 8x2 Intra Predictions.
If the value of the prediction mode for the current block is VERT_PRED, the following process is invoked. This mode shall only be used if the block up is available. The prediction for the current block with x=0,1 and y=0..7 is derived by

[image: image73.wmf])

1

,

(

)

,

(

-

=

x

p

y

x

pred

If the value of the prediction mode for the current block is HOR_PRED, the following process is invoked. This mode shall only be used if the block left is available. The prediction for the current block with x=0,1 and y=0..7 is derived by

[image: image74.wmf])

,

1

(

)

,

(

y

p

y

x

pred

-

=

If the value of the prediction mode for the current block is DIAG_DOWN_RIGHT_PRED, the following process is invoked. This mode shall only be used if the blocks up, left and up left are available. The prediction for the current block with x=0,1 and y=0..7 is derived by

[image: image75.wmf]2

)

2

)

1

,

1

(

)

1

,

0

(

2

)

1

,

1

(

(

)

,

(

>>

+

-

+

-

´

+

-

-

=

p

p

p

y

x

pred

 for x = 1 and y = 0

[image: image76.wmf]2

)

2

)

0

,

1

(

)

1

,

1

(

2

)

1

,

0

(

(

)

,

(

>>

+

-

+

-

-

´

+

-

=

p

p

p

y

x

pred

 for x = y

[image: image77.wmf]2

)

2

)

,

1

(

)

1

,

1

(

2

)

2

,

1

(

(

)

,

(

>>

+

-

-

+

-

-

-

´

+

-

-

-

=

x

y

p

x

y

p

x

y

p

y

x

pred

 for x < y

If the value of the prediction mode for the current block is VERT_RIGHT_PRED, the following process is invoked. This mode shall only be used if the blocks up, left and up left are available.

Let the variable zVR be equal to 2*x-y. The prediction for the current block with x=0,1 and y=0..7 is derived by

[image: image78.wmf]1

)

1

)

1

),

1

((

)

1

,

1

)

1

((

(

)

,

(

>>

+

-

>>

+

-

-

>>

=

zVR

p

zVR

p

y

x

pred

 for zVR=0,2

[image: image79.wmf]2

)

2

)

1

,

1

(

)

1

,

0

(

2

)

1

,

1

((

(

)

,

(

>>

+

-

+

-

´

+

-

-

=

p

p

p

y

x

pred

 for zVR = 1

[image: image80.wmf]2

)

2

)

0

,

1

(

)

1

,

1

(

2

)

1

,

0

(

(

)

,

(

>>

+

-

+

-

-

´

+

-

=

p

p

p

y

x

pred

 for zVR = -1

[image: image81.wmf]2

)

2

)

3

,

1

(

)

2

,

1

(

2

)

1

,

1

(

(

)

,

(

>>

+

-

-

-

+

-

-

-

´

+

-

-

-

=

zVR

p

zVR

p

zVR

p

y

x

pred

 for zVR < -1

If the value of the prediction mode for the current block is HOR_DOWN_PRED, the following process is invoked. This mode shall only be used if the blocks up, left and up left are available.

The prediction for the current block with x=0,1 and y=0..7 is derived by

[image: image82.wmf]1

)

1

)

,

1

(

)

1

,

1

(

(

)

,

(

>>

+

-

+

-

-

=

y

p

y

p

y

x

pred

 for x = 0

[image: image83.wmf]2

)

2

)

,

1

(

)

1

,

1

(

2

)

2

,

1

(

(

)

,

(

>>

+

-

+

-

-

´

+

-

-

=

y

p

y

p

y

p

y

x

pred

 for x = 1 and y > 0

[image: image84.wmf]2

)

2

)

0

,

1

(

)

1

,

1

(

2

)

1

,

0

(

(

)

,

(

>>

+

-

+

-

-

´

+

-

=

p

p

p

y

x

pred

 for x = 1 and y = 0

If the value of the prediction mode for the current block is VERT_LEFT_PRED, the following process is invoked. This mode shall only be used if the block left is available.

Let the variable zVL be equal to 2*x+y. The prediction for the current block with x=0,1 and y=0..7 is derived by

[image: image85.wmf]2

)

2

)

3

,

1

(

)

2

,

1

(

2

)

1

,

1

(

(

)

,

(

>>

+

+

-

+

+

-

´

+

+

-

=

zVL

p

zVL

p

zVL

p

y

x

pred

 for zVL < 5

[image: image86.wmf]2

)

2

)

7

,

1

(

3

)

6

,

1

(

(

)

,

(

>>

+

-

´

+

-

=

p

p

y

x

pred

 for zVL = 5

[image: image87.wmf])

7

,

1

(

)

,

(

-

=

pred

y

x

pred

 for zVL > 5

If the value of the prediction mode for the current block is HOR_UP_PRED, the following process is invoked. This mode shall only be used if the block left is available.

The prediction for the current block with x=0,1 and y=0..7 is derived by

[image: image88.wmf]1

)

1

)

1

,

1

(

)

,

1

(

(

)

,

(

>>

+

+

-

+

-

=

y

p

y

p

y

x

pred

 for x = 0 and y < 7

[image: image89.wmf]2

)

2

)

2

,

1

(

)

1

,

1

(

2

)

,

1

(

(

)

,

(

>>

+

+

-

+

+

-

´

+

-

=

y

p

y

p

y

p

y

x

pred

 for x = 1 and y < 6

[image: image90.wmf]2

)

2

)

7

,

1

(

3

)

6

,

1

(

(

)

,

(

>>

+

-

´

+

-

=

p

p

y

x

pred

for x = 1 and y = 6

[image: image91.wmf])

7

,

1

(

)

,

(

-

=

p

y

x

pred

for y = 7

If the value of the prediction mode for the current block is DIAG_DOWN_LEFT_PRED, the following process is invoked. This mode shall only be used if the block left is available.

The prediction for the current block with x=0,1 and y=0..7 is derived by

[image: image92.wmf]2

)

2

)

2

,

1

(

)

1

,

1

(

2

)

,

1

(

(

)

,

(

>>

+

+

+

-

+

+

+

-

´

+

+

-

=

y

x

p

y

x

p

y

x

p

y

x

pred

 for x + y < 6

[image: image93.wmf]2

)

2

)

7

,

1

(

3

)

6

,

1

(

(

)

,

(

>>

+

-

´

+

-

=

p

p

y

x

pred

for x + y = 6

[image: image94.wmf])

7

,

1

(

)

,

(

-

=

p

y

x

pred

 for x + y > 6

6.5.5 Edge Prediction for Intra Coding and DC mode
If the value of the prediction mode for the current block is DC_PRED, the prediction process for the current block is either the DC prediction process or the edge prediction process depending on the content of the spatially surrounding decoded signal and the value of the syntax element edge_prediction_ipd.

· If the value of edge_prediction_ipd is equal to 0, the DC prediction process is invoked.

· If the value of edge_prediction_ipd is equal to 1, the edge detection process is invoked.

· If the output of the edge detection process is 0 (no edge detected), the DC prediction process is invoked.

· If the output of the edge detection process is 1 (an edge is detected), the edge prediction process is invoked.

6.5.5.1 Edge detection process

An edge detection process using the Sobel operators is performed on the pixels of the blocks spatially surrounding the current block. Eleven segments of already decoded pixels are defined. Please refer to Figure 15 for the definition of the segments.

[image: image95.wmf]
Figure 15: Segments of decoded pixels for edge detection.
The segments are marked as “available_for_edge_detection” or “not_available_for_edge_detection” as follows:

· If the value of sip_type is equal to SIP4x4:

· Segment 0 is marked as “available_for_edge_detection” if the block up left is available and four rows and four columns of pixels are available

· Segment 1 is marked as “available_for_edge_detection” if the block up is available and four rows of pixels are available

· Segment 2 is marked as “available_for_edge_detection” if the block up is available and four rows of pixels are available

· Segment 3 is marked as “available_for_edge_detection” if the block up right is available and four rows of pixels are available

· Segment 4 is marked as “available_for_edge_detection” if the block up right is available and four rows of pixels are available

· Segment 5 is marked as “not_available_for_edge_detection”

· Segment 6 is marked as “available_for_edge_detection” if the block left is available and four columns of pixels are available

· Segment 7 is marked as “available_for_edge_detection” if the block left is available and four columns of pixels are available

· Segment 8 is marked as “available_for_edge_detection” if the block down left is available and four columns of pixels are available

· Segment 9 is marked as “available_for_edge_detection” if the block down left is available and four columns of pixels are available

· Segment 10 is marked as “not_available_for_edge_detection”

· If the value of sip_type is equal to SIP8x8:

· Segment 0 is marked as “available_for_edge_detection” if the block up left is available and four rows and four columns of pixels are available

· Segment 1 is marked as “available_for_edge_detection” if the block up is available and four rows of pixels are available

· Segment
2 is marked as “available_for_edge_detection” if the block up is available and four rows of pixels are available

· Segment 3 is marked as “available_for_edge_detection” if the block up is available and four rows of pixels are available

· Segment 4 is marked as “available_for_edge_detection” if the block up is available and four rows of pixels are available

· Segment 5 is marked as “available_for_edge_detection” if the block up right is available and four rows of pixels are available

· Segment 6 is marked as “available_for_edge_detection” if the block left is available and four columns of pixels are available

· Segment 7 is marked as “available_for_edge_detection” if the block left is available and four columns of pixels are available

· Segment 8 is marked as “available_for_edge_detection” if the block left is available and four columns of pixels are available

· Segment 9 is marked as “available_for_edge_detection” if the block left is available and four columns of pixels are available

· Segment 10 is marked as “not_available_for_edge_detection”

· If the value of sip_type is equal to SIP16x16:

· Segment 0 is marked as “available_for_edge_detection” if the block up left is available and if four rows and four columns of pixels are available

· Segment 1 is marked as “available_for_edge_detection” if the block up is available and four rows of pixels are available

· Segment
2 is marked as “available_for_edge_detection” if the block up is available and four rows of pixels are available

· Segment 3 is marked as “available_for_edge_detection” if the block up is available and four rows of pixels are available

· Segment 4 is marked as “available_for_edge_detection” if the block up is available and four rows of pixels are available

· Segment 5 is marked as “available_for_edge_detection” if the block up is available and four rows of pixels are available

· Segment 6 is marked as “available_for_edge_detection” if the block left is available and four columns of pixels are available

· Segment 7 is marked as “available_for_edge_detection” if the block left is available and four columns of pixels are available

· Segment 8 is marked as “available_for_edge_detection” if the block left is available and four columns of pixels are available

· Segment 9 is marked as “available_for_edge_detection” if the block left is available and four columns of pixels are available

· Segment 10 is marked as “available_for_edge_detection” if the block left is available and four columns of pixels are available

· If the value of sip_type is equal to SIP2x8:

· Segment 0 is marked as “available_for_edge_detection” if the block up left is available and four rows and four columns of pixels are available

· Segment 1 is marked as “available_for_edge_detection” if the block up is available and four rows of pixels are available

· Segment
2 is marked as “available_for_edge_detection” if the block up is available and four rows of pixels are available

· Segment 3 is marked as “available_for_edge_detection” if the block up is available and four rows of pixels are available

· Segment 4 is marked as “available_for_edge_detection” if the block up is available and four rows of pixels are available

· Segment 5 is marked as “not_available_for_edge_detection”

· Segment 6 is marked as “available_for_edge_detection” if the block left is available and four columns of blocks are available

· Segment 7 is marked as “available_for_edge_detection” if the block is in position 0, 1 or 2 in Figure 16b) and four columns of blocks are available

· Segment 8 is marked as “available_for_edge_detection” if the block is in position 0 or 1 in Figure 16b) and four columns of blocks are available

· Segment 9 is marked as “available_for_edge_detection” if the block is in position 0 in Figure 16b) and four columns of pixels are available

· Segment 10 is marked as “not_available_for_edge_detection”

· If the value of sip_type is equal to SIP8x2:

· Segment 0 is marked as “available_for_edge_detection” if the block up left is available and four rows and four columns of pixels are available

· Segment 1 is marked as “available_for_edge_detection” if the block up is available and four rows of pixels are available

· Segment
2 is marked as “available_for_edge_detection” if the block is in position 0,1 or 2 in Figure 16c) and four rows of pixels are available

· Segment 3 is marked as “available_for_edge_detection” if the block is in position 0 or 1 in Figure 16c) and four rows of pixels are available

· Segment 4 is marked as “available_for_edge_detection” if the block is in position 0 in Figure 16c) and four rows of pixels are available

· Segment 5 is marked as “not_available_for_edge_detection”

· Segment 6 is marked as “available_for_edge_detection” if the block left is available and four columns of pixels are available

· Segment 7 is marked as “available_for_edge_detection” if the block left is available and four columns of pixels are available

· Segment 8 is marked as “available_for_edge_detection” if the block left is available and four columns of pixels are available

· Segment 9 is marked as “available_for_edge_detection” if the block left is available and four columns of pixels are available

· Segment 10 is marked as “not_available_for_edge_detection”

All segments that are not marked as “available_for_edge_detection” are marked as “not_available_for_edge_detection”.

[image: image96.wmf]
Figure 16: Position of the subpartitions in 8x8 intra blocks.
Let p(x,y) represent the truncated values to 6 bits per pixel of the decoded pixel at the position (x,y), x being the position of the pixel along the horizontal axis, and y along the vertical axis. The position (0,0) represents the position of the first pixel of the current block, i.e. the pixel up left.

The value norm_max is set to 0.

For x = -3..14 and y = -3, -2, and for x = -2, -3 and y = -3..14, the availability of the pixels p(x,y), p(x-1,y-1), p(x-1,y), p(x-1,y+1), p(x,y-1), p(x,y+1), p(x+1,y-1), p(x+1,y) and p(x+1,y+1) is checked. A pixel is marked as “available” if the segment that contains the pixel is marked as “available_for_edge_detection”. If the nine pixels are marked as “available”, the following gradient values are calculated by applying the Sobel operators:

[image: image97.wmf])

1

,

1

(

)

,

1

(

2

)

1

,

1

(

)

1

,

1

(

)

,

1

(

2

)

1

,

1

(

+

+

+

+

´

+

-

+

+

+

-

-

-

´

-

-

-

-

=

y

x

p

y

x

p

y

x

p

y

x

p

y

x

p

y

x

p

grad

x

[image: image98.wmf])

1

,

1

(

)

1

,

(

2

)

1

,

1

(

)

1

,

1

(

)

1

,

(

2

)

1

,

1

(

+

+

+

+

´

+

+

-

+

-

+

-

-

´

-

-

-

-

=

y

x

p

y

x

p

y

x

p

y

x

p

y

x

p

y

x

p

grad

y

The value
[image: image99.wmf]2

2

y

x

grad

grad

+

is calculated and compared to norm_max.

· If
[image: image100.wmf]max

_

2

2

norm

grad

grad

y

x

>

+

, the process for checking the direction of the edge vector is invoked

· Otherwise, the calculated gradient values are not further considered.

The process for checking the direction of the edge vector takes the calculated gradient values and the position (x,y) as input.

Let the value cross_block be set to 0. Let the values blk_height and blk_width be defined as follows:

· If the value of sip_type is equal to SIP4x4: blk_height = 4 and blk_width = 4

· If the value of sip_type is equal to SIP8x8: blk_height = 8 and blk_width = 8

· If the value of sip_type is equal to SIP16x16: blk_height = 16 and blk_width = 16

· If the value of sip_type is equal to SIP2x8: blk_height = 2 and blk_width = 8

· If the value of sip_type is equal to SIP8x2: blk_height = 8 and blk_width = 2

If y is equal to -3 or -2, the value
[image: image101.wmf]x

d

 is calculated for dist = -y..-y+blk_height as follows:

[image: image102.wmf]6

)

32

)

/

))

1

(

)

6

)

((

(((

>>

+

>>

+

<<

-

´

=

x

x

y

grad

grad

grad

dist

x

d

If
[image: image103.wmf]0

³

+

x

x

d

and
[image: image104.wmf]width

blk

x

x

_

<

+

d

, the value cross_block is set to 1.

If y is not equal to -3 or -2, the value
[image: image105.wmf]y

d

 is calculated for dist = -x..-x+blk_width as follows:

[image: image106.wmf]6

)

32

))

/(

))

1

)

((

)

6

(

(((

>>

+

-

>>

-

+

<<

´

=

y

y

x

grad

grad

grad

dist

y

d

If
[image: image107.wmf]0

³

+

y

y

d

 and
[image: image108.wmf]height

blk

y

y

_

<

+

d

, the value cross_block is set to 1.

If the value of cross_block is 0, the output of the process for checking the direction of the edge vector is 0. If the value of cross_block is 1, the output of the process for checking the direction of the edge vectors is 1.

If the process for checking the direction of the edge vector is invoked and the output is 1:

[image: image109.wmf]2

2

max

_

y

x

x

y

y

x

grad

grad

norm

grad

edge

grad

edge

+

=

=

-

=

If the value of norm_max is superior or equal to the value of the syntax element threshold_edge_vector, the output of the edge detection process is 1 and the values of
[image: image110.wmf]x

edge

and
[image: image111.wmf]y

edge

. Otherwise, the output of the edge detection process is 0.

6.5.5.2 DC prediction process

The DC prediction process is invoked if the value of edge_prediction_ipd is equal to 0 or if the output of the edge detection process is 0.

Let the values blk_height, blk_width and blk_log be defined as follows:

· If the value of sip_type is equal to SIP4x4: blk_height = 4, blk_width = 4 and blk_log = 2

· If the value of sip_type is equal to SIP8x8: blk_height = 8, blk_width = 8 and blk_log = 3

· If the value of sip_type is equal to SIP16x16: blk_height = 16, blk_width = 16 and blk_log = 4

· If the value of sip_type is equal to SIP2x8: blk_height = 2, blk_width = 8 and blk_log = 3

· If the value of sip_type is equal to SIP8x2: blk_height = 8, blk_width = 2 and blk_log = 3

Let p(x,y) represent the value of the decoded pixel at the position (x,y), x being the position of the pixel along the horizontal axis, and y along the vertical axis. The position (0,0) represents the position of the first pixel of the current block, i.e. the pixel up left.

If blk_height = blk_width and if the blocks up and left are available, the prediction for x = 0..blk_width-1 and y = 0..blk_height-1 is derived by

[image: image112.wmf])

1

log

_

(

)

log)

_

1

(

)

,

1

(

)

1

,

(

(

)

,

(

1

_

0

1

_

0

+

>>

<<

+

-

+

-

=

å

å

-

=

-

=

blk

blk

y

p

x

p

y

x

pred

width

blk

x

height

blk

y

If blk_height > blk_width and if the block left is available, the prediction for x = 0..blk_width-1 and y = 0..blk_height-1 is derived by

[image: image113.wmf]log

_

)

))

1

log

_

(

1

(

)

,

1

(

(

)

,

(

1

_

0

blk

blk

y

p

y

x

pred

height

blk

y

>>

-

<<

+

-

=

å

-

=

If blk_height < blk_width and if the block up is available, the prediction for x = 0..blk_width-1 and y = 0..blk_height-1 is derived by

[image: image114.wmf]log

_

)

))

1

log

_

(

1

(

)

1

,

(

(

)

,

(

1

_

0

blk

blk

x

p

y

x

pred

width

blk

x

>>

-

<<

+

-

=

å

-

=

In all other cases, the prediction for x = 0..blk_width-1 and y = 0..blk_height-1 is derived by

[image: image115.wmf]0

)

,

(

=

y

x

pred

6.5.5.3 Edge based prediction process

The edge based prediction process is invoked if the value of edge_prediction_ipd is equal to 1 and if the output of the edge detection process is 1.

Eleven segments of available pixels are defined and marked as “available_for_edge_detection” or “non_available_for_edge_detection” as described in section 7.5.5.1.

Let the values blk_height and blk_width be defined as follows:

· If the value of sip_type is equal to SIP4x4: blk_height = 4 and blk_width = 4

· If the value of sip_type is equal to SIP8x8: blk_height = 8 and blk_width = 8

· If the value of sip_type is equal to SIP16x16: blk_height = 16 and blk_width = 16

· If the value of sip_type is equal to SIP2x8: blk_height = 2 and blk_width = 8

· If the value of sip_type is equal to SIP8x2: blk_height = 8 and blk_width = 2

The egde based prediction process takes as input the values
[image: image116.wmf]x

edge

 and
[image: image117.wmf]y

edge

 as calculated by the edge detection process.

The prediction for x = 0..blk_width-1 and y = 0..blk_height-1 is calculated by linear interpolation of the directly adjacent surrounding pixels, using the values
[image: image118.wmf]x

edge

 and
[image: image119.wmf]y

edge

 to define the prediction direction.

If the value of
[image: image120.wmf]y

edge

 is not equal to 0 and if the block up is available, the value
[image: image121.wmf]x

d

 is derived by

[image: image122.wmf]y

y

x

edge

edge

edge

y

x

/

))

1

(

)

6

(

)

1

((

>>

+

<<

´

+

=

d

The following four values are calculated:

[image: image123.wmf]6

_

2

)

1

2

(

&

6

6

>>

=

-

=

-

=

x

x

floor

w

w

x

w

a

b

a

d

d

d

[image: image124.wmf]x

floor

x

ceil

d

d

_

_

=

 if
[image: image125.wmf]a

w

 is equal to 0

[image: image126.wmf]1

_

_

+

=

x

floor

x

ceil

d

d

 if
[image: image127.wmf]a

w

 is not equal to 0

The pixel
[image: image128.wmf])

1

,

_

(

-

-

x

ceil

x

p

d

 is marked as “available” if it belongs to one of the defined eleven segments and if the segment that contains it is marked as “available_for_edge_detection”.

The pixel
[image: image129.wmf])

1

,

_

(

-

-

x

floor

x

p

d

 is marked as “available” if it belongs to one of the defined eleven segments and if the segment that contains it is marked as “available_for_edge_detection”.

If both pixels are marked as “available”, the value predup(x,y) is marked as “calculated” and is derived by

[image: image130.wmf]6

)

32

)

1

,

_

(

)

1

,

_

(

(

)

,

(

>>

+

-

-

´

+

-

-

´

=

x

floor

x

p

w

x

ceil

x

p

w

y

x

predup

b

a

d

d

 (see Figure 17 for illustration).
Otherwise, the value predup(x,y) is marked as “non_calculated”.

[image: image131.wmf]
Figure 17: edge based prediction for intra coding.
If the value of
[image: image132.wmf]x

edge

 is not equal to 0 and if the block left is available, the value
[image: image133.wmf]y

d

 is derived by

[image: image134.wmf]x

x

y

edge

edge

edge

x

y

/

))

1

(

)

6

(

)

1

((

>>

+

<<

´

+

=

d

The following four values are calculated:

[image: image135.wmf]6

_

2

)

1

2

(

&

6

6

>>

=

-

=

-

=

y

y

floor

w

w

y

w

c

d

c

d

d

d

[image: image136.wmf]y

floor

y

ceil

d

d

_

_

=

 if
[image: image137.wmf]c

w

 is equal to 0

[image: image138.wmf]1

_

_

+

=

y

floor

y

ceil

d

d

 if
[image: image139.wmf]c

w

 is not equal to 0

The pixel
[image: image140.wmf])

_

,

1

(

y

ceil

y

p

d

-

-

 is marked as “available” if it belongs to one of the defined eleven segments and if the segment that contains it is marked as “available_for_edge_detection”.

The pixel
[image: image141.wmf])

_

,

1

(

y

floor

y

p

d

-

-

 is marked as “available” if it belongs to one of the defined eleven segments and if the segment that contains it is marked as “available_for_edge_detection”.

If both pixels are marked as “available”, the value predleft(x,y) is marked as “calculated” and is derived by

[image: image142.wmf]6

)

32

)

_

,

1

(

)

_

,

1

(

(

)

,

(

>>

+

-

-

´

+

-

-

´

=

y

floor

y

p

w

y

ceil

y

p

w

y

x

predleft

d

c

d

d

Otherwise, the value predleft(x,y) is marked as “non_calculated”.

If both values predup(x,y) and predleft(x,y) are marked as “calculated”, the prediction is derived by

[image: image143.wmf]1

))

,

(

)

,

(

(

)

,

(

>>

+

=

y

x

predleft

y

x

predup

y

x

pred

If only predup(x,y) is marked as “calculated”, the prediction is derived by

[image: image144.wmf])

,

(

)

,

(

y

x

predup

y

x

pred

=

If only predleft(x,y) is marked as “calculated”, the prediction is derived by

[image: image145.wmf])

,

(

)

,

(

y

x

predleft

y

x

pred

=

If both predup(x,y) and predleft(x,y) are marked as “non_calculated”, the prediction is derived by

[image: image146.wmf])

1

,

1

(

)

,

(

-

-

=

p

y

x

pred

 if x = 0, y = 0 and the blocks up and left are available

[image: image147.wmf])

1

,

0

(

)

,

(

-

=

p

y

x

pred

 if x = 0, y = 0 and only the block up is available

[image: image148.wmf])

0

,

1

(

)

,

(

-

=

p

y

x

pred

 if x = 0, y = 0 and only the block left is available

[image: image149.wmf])

1

,

(

)

,

(

-

=

y

x

pred

y

x

pred

 if x = 0

[image: image150.wmf])

,

1

(

)

,

(

y

x

pred

y

x

pred

-

=

 if y = 0

[image: image151.wmf]3

/

))

,

1

(

)

1

,

(

)

1

,

1

(

(

)

,

(

x

y

pred

y

x

pred

y

x

pred

y

x

pred

-

+

-

+

-

-

=

 for all other cases

6.5.6 Luma TMA

If the value of the prediction mode for the current block is one of TMA_L5_PRED, TMA_L9_PRED or TMA_L17_PRED, the following process for sample prediction construction is invoked.

The flow chart for the TMA sample creation is shown in Figure 18:

 SHAPE * MERGEFORMAT

Figure 18: Flow Chart for Template Matching Process.
A search region adjacent to the 4x4 (for TMA_L5_PRED and TMA_L9_PRED) target block to be predicted is defined as shown in Figure 19. The search region comprises reconstructed pixels of dimension y pixels high and x pixels wide, but excluding pixels in the lower right that have not been reconstructed yet. Similarly, for TMA_L17_PRED a search region adjacent to the 8x8 target block to be predicted is defined. In the current x = y = candidate_search_region for intra4x4, intra8x2, intra2x8, and intra8x8 modes, x = y = candidate_search_region_intra16x16 for the intra16x16 mode.
The search order corresponds to starting from the top left of region A in raster order, followed by the top left of region B, also in raster scan.There are three modes of Luma TMA, referred to as TMA_L5_PRED, TMA_L9_PRED, and TMA_L17_PRED. TMA_L5_PRED uses an L shaped template with 5 pixels, TMA_L9_PRED uses an L-shaped template with 9 pixels, and TMA_L17_PRED uses an L-shaped template with 17 pixels. These templates are shown in Figure 21 a, b, and c, respectively. A sum of absolute difference (SAD) between corresponding pixels in the neighbourhood and the template is used as the measure of best match.

In the case of TMA_L5_PRED the 4x4 target block is further divided into 2x2 target sub blocks and the template matching is performed for each of the sub block. The best 2x2 candidate sub block is the one where the candidate neighbourhood most closely resembles the template for the 2x2 target sub block. The four best match 2x2 candidate sub blocks together form the sample predictor block for the 4x4 target block.
The second prediction mode is referred to as the TMA with L9 Template. The L9 template is shown in Figure 21b) For the L9 template, there are 16 candidate pixels to be predicted. Therefore to form a 4x4 block of sample predictor, the L9 template has to be applied only once.
The third prediction mode is referred to as the TMA with L17 Template. The L17 template is shown in Figure 21c), there are 64 candidate pixels to be predicted. Therefore to form an 8x8 block of sample predictor, the L17 template has to be applied only once.

[image: image153.emf]2x2 2x2

2x2 2x2

Target Sub Block

4x4 Target Block

Search Region of

Reconstructed Pixels

y

x

2x2

Candidate Sub Block

Template

Candidate Neighbourhood

Figure 19: TMA_L9_PRED Sample Predictor Construction.

[image: image154.emf]

B

A

Figure 20: TMA Search Order.

[image: image155.emf]

L5 -Template

2x2 predictor

[image: image156.emf]

L9 -Template

4x4 predictor

a)

b)

[image: image157.emf]L17 -Template

8x8 predictor

c)

Figure 21: Templates used in the Intra Prediction by Template Matching: a) L5 Template, b) L9 Template, c) L17 Template.
In the search process multiple candidates are created, each with a SAD value. The candidates are sorted by their SAD values in increasing order. In the event two candidates have the same SAD value, then the candidate appearing first in the raster order is selected first.

The final sample predictor is form by averaging the first N candidates of the sorted candidates.

[image: image158.wmf]m

N

2

=

, where m is an integer >= 0 and N <= num_candidate_averaged.
When the SAD value is greater than the minimum SAD value (SAD value of the first sorted candidate) by a value greater than the threshold, candidate_sad_threshold, then the candidate shall not be included in the candidate averaging.

The averaging is done on a pixel by pixel basis and is rounded.

6.5.7 Predictor Low Pass filtering

In the prediction modes which are in extrapolation category in Table 21 and Table 22 except the edge based prediction, the neighboring pixels which are used to predict the current block will be applied a low pass filter {1, 2, 1} before using for prediction. The low pass filtering process is similar that in H.264/MPEG-4 AVC intra8x8 prediction and is only applied to luma16x16 and luma8x8 intra prediction.
For the chroma8x8 intra prediction, an adaptive version of the low pass filter {1, 2, 1} is applied. The absolute value of the difference between the pixel and the left (top) and right (bottom) pixels is computed. If both differences are below a threshold, then the filter is applied to that pixel. Otherwise, the filter is not applied. If only one neighbor pixel exists, then only the absolute value of the difference with that neighbor is computed.

The threshold depends on the qp value applied to the chroma components and it is computed in the following way: threshold=10*(iqpC-32).

6.5.8 Chroma H.264/MPEG-4 AVC Sample Prediction Construction

Both 4x4 and 8x8 partition types are supporting for chroma coding. Chroma partition type is decided by luma partition type. If luma partition type is 8x8 or smaller than 8x8, chroma 4x4 is used. Otherwise, chroma 8x8 is used.

The same method for chroma sample prediction construction as the Intra block H.264/MPEG-4 AVC specification is used depending on the chroma partition type.

6.5.9 Chroma TMA

The same method for sample prediction construction as the Luma TMA specification is used.

6.6 Temporal prediction

6.6.1 Reference buffer management

The reference buffer may contain up to 4 frames. Initially the buffer is empty. After a frame is decoded, it is inserted into the reference buffer if reference_idc is equal to 1. Otherwise it is not inserted into the buffer. When the buffer already contains 4 frames when a decoded frame is inserted, the frame in the buffer with the lowest frame order is removed from the buffer.

6.6.2 Decoder Refresh

When an IDR frame is encountered, the reference buffer is purged before the decoding process of the IDR frame begins. Similarly the Reference lists are emptied and the size is set to zero.

When a DDR frame is encountered, all reference frames in the reference buffer with the exception of the DDR frame is purged before the decoding process of the next frame with a temporal reference later than the DDR frame begins. The Reference lists are then reconstructed according to section 7.6.3.
6.6.3 Reference list construction

Reference lists are constructed using pre-determined rules for each 8x8 block. In general, there are two lists: LIST_0 and LIST_1.

In a P-frame, only LIST_0 is used. The reference list LIST_0 is constructed by ordering frames in the reference buffer by increasing distance to the current frame. The distance is based upon the frame order. If two frames are at the same distance, the frame with the lowest frame order is considered to have a smaller distance.

In a B-frame, both LIST_0 and LIST_1 are used. The reference list LIST_0 is constructed by ordering frames in the reference buffer by increasing distance to the current frame. Frames with a frame order smaller than the current frame are selected first before proceeding to frames with a frame order larger than the current frame.

The reference list LIST_1 is constructed by ordering frames in the reference buffer by increasing distance to the current frame. Frames with a frame order larger than the current frame are selected first before proceeding to frames with a frame order smaller than the current frame.

Furthermore if the first two entries in LIST_0 match the first two entries in LIST_1, the first two entries in LIST_1 are swapped.

If adapt_list_size is set to 1, the size of the two lists for B frames are further clipped as to only contain references from one direction, i.e. past references for LIST_0, and forward references for LIST_1. If no references exist for a given direction, then only the first reference in the affected list is used and the size of that list is set to 1.

Finally, if either list contains more than nref_frames entries, it is limited to the first nref_frames entries.

6.6.4 Reference index decoding

For blocks using single prediction, one reference index for each 8x8 block is decoded when prediction_mode < 4 and prediction_mode > 5. For blocks using bi-prediction, two reference indices for each 8x8 block are decoded.

6.6.5 Motion vector decoding

6.6.5.1 Motion vector decoding for 8x8 block

General scheme

A set of motion vector candidates is formed with three motion vector predictors (left and top neighbors, and colocated vector). From this set, a sub-set of two predictors is derived and the best predictor is selected among this two predictors. The index of the selected predictor is received in the stream. The selection of the sub-set of two predictors is based on the comparison of the two first candidates from the full set. Based on their equality (or proximity – threshold), the third predictor of the full set replaces the second in the sub-set, or not.

Motion prediction

One motion vector is decoded for each 8x8 block that is not an intra block. For blocks using single prediction, a motion vector consists of four elements:

· a vertical displacement mv[][][1],

· a horizontal displacement mv[][][0]

· a scaling factor mv[][][2], and

· an offset mv[][][3].

For blocks using bi-prediction, a motion vector consists of seven elements:

· a first vertical displacement mv[][][1] corresponding to LIST_0,

· a first horizontal displacement mv[][][0] corresponding to LIST_0,

· a second vertical displacement mv[][][3] corresponding to LIST_1,

· a second horizontal displacement mv[][][2] corresponding to LIST_1,

· a scaling factor mv[][][4],

· a difference scaling factor mv[][][5], and

· an offset mv[][][6].

Motion vectors including scaling and offset parameters are predictively coded by considering the motion parameters of a set of motion vector predictors. The construction of the set of predictors is discussed below.
For blocks using bi-prediction, the predictive coding may involve differential motion vector prediction. This means that the differential motion vector (
[image: image159.wmf]c

MVD

) of one list (LIST_c) is used to compute the differential motion vector (
[image: image160.wmf]d

MVD

) of the other list (LIST_d) as follows:

[image: image161.wmf]c

d

c

d

d

d

c

c

c

T

T

MVD

MVP

MV

MVD

MVP

MV

MVD

´

-

-

=

-

=

Here
[image: image162.wmf]c

MV

 and
[image: image163.wmf]d

MV

 represent the motion vectors of the block being coded for LIST_c and LIST_d respectively.
[image: image164.wmf]c

T

 and
[image: image165.wmf]d

T

 represent the signed temporal distance from the current frame to reference frames used in LIST_c and LIST_d respectively.
[image: image166.wmf]c

MVP

 and
[image: image167.wmf]d

MVP

 represent the motion vectors of the predictor for LIST_c and LIST_d respectively.
If the reference frame used in list 0 is temporally closer to the current frame than the reference frame used in list 1, then c=0, d=1; else d=0, c=1.

Differential motion vector prediction is only used when the sign of each component of
[image: image168.wmf](

)

c

c

T

sign

MVP

´

 matches the sign of the corresponding component of
[image: image169.wmf](

)

d

d

T

sign

MVP

´

.

If there are two possible predictors, a flag (mv_pred_dir) is decoded to indicate which one to use as a predictor. If mv_pred_dir is equal to 0, the first predictor is used, otherwise the second is used.

Note:

After prediction, the resulting differential motion vectors need to be further entropy coded. However, considering that in most cases the differential motion vectors may be equal to zero, to further enhance coding performance a zero-tree approach is employed for signaling which motion parameters are available and should be further signaled within the bitstream. This can be seen within the frame level syntax where for single list prediction motion information is encoded using coeff_block(4, mv[i][j]), while for bi-prediction motion information is coded using coeff_block(5, mv[i][j]). The actual structure of the zero-tree can be specified at the sequence level using the ztree_size[i], ztree_structure[i][j], ztree_leaf_index[i][j], and ztree_initial_prob[i][j] elements (i=4 for single list, 5 for bi-prediction).

As an example, let us consider the single list case. For this case ztree_size[4]=4 since there are only 4 elements. Logically, the tree would be best partitioned if motion vectors are separated from scaling parameters. That is, a tree is generated, of a form as in Figure 22. This corresponds to ztree_structure[4]={1,1,0,0,1,0,0}, with ztree_leaf_index[4] = {0,1,2,3}.

[image: image170.emf]MVx MVy Scale Offset

0 0 0 0

1 1

1

Figure 22: Example tree structure organization for 8x8 Single List Motion Vectors.
Similarly, for bi-prediction a tree is generated as shown in Figure 23, which corresponds to parameters ztree_size[5]=7, ztree_structure[5]={1,1,1,0,0,1,0,0,1,0,1,0,0}, with ztree_leaf_index[5] = {0,2,1,3,4,5,6}. Note that in this example displacement motion vectors have been grouped based on dimension component and not list.

[image: image171.emf]MV

0,x

MV

1,x

ScaleOff Offset MV

0,y

MV

1,y

Scale

1

1

1

1

1

1 0

0 0

0 0

0

0

Figure 23: Example tree structure organization for Bi-Prediction Motion Vectors.
The idea behind the zero tree organization is that one may signal certain information at every given level, in such a manner which would allow you to decipher whether information at a given node (left or right) is available or not, and therefore efficiently coding such information (i.e. this can be seen as some kind of “variable length assignment” of the motion vector mode information).

6.6.5.2 Creation of the set of Motion Vector Predictors for an 8x8 Block

The types of predictors to examine are defined by the current mv competition configuration. Only two predictors are competing, yet these two predictors are selected among three one, according to some conditions. The three possible predictors:

· The type MV_PRED_LEFT indicates a prediction from the spatial neighbour to the left.

· The type MV_PRED_TOP indicates a prediction from the spatial neighbour directly above.

· The type MV_PRED_TEMPORAL indicates a prediction derived from a co-located macroblock.

Derivation of spatial predictors

A spatial neighbour (MV_PRED_LEFT, MV_PRED_TOP) is considered available if it has a motion vector and its reference frame index is the same as the one of the current block for either LIST_0 or LIST_1. A spatial neighbour coded as an INTRA block is considered unavailable since INTRA coded blocks do not have motion vectors associated with them.When a spatial neigbour block is located at out of boundary, predictior’s motion vector is consided as 0 motion.
If the current block is BIPRED and the reference frame index of the neighbour matches only for one list (LIST_a) and not the other list (LIST_b), the predictor’s motion vector for LIST_a (
[image: image172.wmf]a

MVP

) will be the motion vector of the neighbour. The predictor’s motion vector for LIST_b (
[image: image173.wmf]b

MVP

) is calculated as
[image: image174.wmf]a

b

a

b

T

T

MVP

MVP

´

=

, where
[image: image175.wmf]a

T

 and
[image: image176.wmf]b

T

 represent the signed temporal distance from the current frame to reference frames used in LIST_a and LIST_b respectively. The division operation is approximated using a multiplication and shift operation.
Derivation of the temporal predictor (MV_PRED_TEMPORAL)

A co-located block is examined. A co-located block is one at the same spatial coordinates as the current block, but present in the previously coded image stored as the first reference of LIST_0. If no such image exists, or the block is INTRA, the co-located predictor is considered unavailable.

If this motion vector does not exist, the co-located predictor is considered unavailable.

If either the current or co-located frame is B-coded, the co-located predictor is also considered unavailable.

The co-located motion vector is suitably scaled to become the MV_PRED_TEMPORAL predictor. This scaling takes into account the possibly different (temporal) distances between the reference image being examined by the current block and the current block, and the (temporal) distance between the co-located block and its reference image. This scaling also takes into account the possible difference in pelness of the reference images used.

The illumination compensation of the MV_PRED_TEMPORAL predictor is always set to zero.

[image: image177]
Figure 24: Motion vector Scaling principle.
Figure 24 illustrates some of the scaling principles. The current block, mbcur, is using rcur as its reference image. The co-located block, mbcol, is using rcol as its reference image. Assuming a P-coded example, the distances shown, dcur and dcol, represent the temporal distances between the blocks and their references. (In this example the co-located block's reference is closer to mbcol than the reference of the current block is to mbcur.)

In order to account for the (possible) difference in temporal distance, a distance scaling factor must be applied to mbcol's motion vector components:

dcur/dcol
Additional scaling is introduced to account for the fact that mbcol may be using a reference image at a different pelness than the reference used by mbcur. The pelness available for reference images is ¼ or 1/8. If the pelness of rcur as used by mbcur is pelcur, and that of rcol as used by mbcol is pelcol, the complete scaling applied to the motion vector components of mbcol is:

(pelcurdcur)/(pelcoldcol)

Note: in order to perform temporal predictor construction, the motion field of each frame must be saved. In addition, frame numbers for all references in effect must be saved (in order to be able to calculate temporal distances for no-longer-existing reference frames) and the pelness of each reference in effect. This work is carried out by both the encoder and decoder.

Construction of the set of predictors

Once the set of motion vector predictors as defined by mvcomp_config_pred[mvcomp_cur_config_idx] has been initially constructed, it is further processed.

The available predictors are scanned in the order defined in mvcomp_config_pred[]. If a predictor has the same motion vector value and illumination compensation values as a preceding member of the set, it is removed from the set. This removes non-unique predictors, preferring to keep early predictors.

If the remaining set contains more than 2 predictors, only the first two predictors are kept for further analysis.

If there are exactly two predictors and the second predictor is MV_PRED_TEMPORAL, it is possible that MV_PRED_TEMPORAL is removed from the set. This removal is conditional on mvcomp_config_auto_max_temporal_diff[mvcomp_cur_config_idx] and mvcomp_config_max_temporal_diff[mvcomp_cur_config_idx].

If both are zero, no removal occurs.

If mvcomp_config_auto_max_temporal_diff[mvcomp_cur_config_idx] is non-zero, the value of mvcomp_config_max_temporal_diff[mvcomp_cur_config_idx] is automatically generated. It is set to a value based on the probability of signaling this second predictor using context xx. The value is:

-(int)sqrt((1.0-P(T))/P(T))-1

P(T) is the probability of signalling T using a dedicated context. Note that during Motion Estimation this probability is the same for all macroblocks in a frame. In block_mode_decision this probability changes per macroblock.

This value, being negative, rejects the second predictor 'T' in the cases where |T-x| < sqrt((1.0-P(T)/P(T)), ie, where it is 'close' to the first predictor in the set, 'x'.

If mvcomp_config_max_temporal_diff[mvcomp_cur_config_idx] is non-zero, or has been calculated to be non-zero via mvcomp_config_auto_max_temporal_diff[mvcomp_cur_config_idx], the distance between the second predictor in the set, 'T', and the first predictor, 'x', is calculated to give |T-x|. The calculation is simply the sum of absolute differences of the motion vector components x and y.

If mvcomp_config_max_temporal_diff[mvcomp_cur_config_idx] > 0, T is rejected (removed from the set) if |T-x| > mvcomp_config_max_temporal_diff[mvcomp_cur_config_idx]. Ie, T is rejected when it is 'too far' from 'x'.

If mvcomp_config_max_temporal_diff[mvcomp_cur_config_idx] < 0, T is rejected (removed from the set) if |T-x| < -mvcomp_config_max_temporal_diff[mvcomp_cur_config_idx]. Ie, T is rejected when it is 'too close' to 'x'.

6.6.6 Decoding of partition size for motion sharing
The partition size for inter block prediction is decoded when prediction_mode is 1 or 2 of P- and B-picures or 3 of B-pictures and mvshare_type() is not 0 described below.

For blocks, a partition size for motion sharing consists of two elements:

height of vertical block partition mvshare_size[][][0] and

width of horizontal block partition mvshare_size[][][1].

The mvshare_type(y, x), where y and x indicates vertical and horizontal block position in 8x8 block array, outputs a motion sharing type of current block according to the following rule:

mvshare_type() outputs ‘0’
if motion parameters (MP) of the blocks above and to the left are identical to MP of current block, where MP includes motion vectors, scaling and offset parameters for brighness compensation, prediction_mode, and reference indices of LIST_0 and LIST_1,

mvshare_type() outputs ‘1’
if MP of block to the left is identical to MP of current block, but MP of block above differ from MP of current block,

mvshare_type() outputs ‘2’
if MP of block above is identical to MP of current block, but MP of block to the left differ from MP of current block,

mvshare_type() outputs ‘3’
if neighter MP of the blocks above nor to the left is identical to MP of current block,

If mvshare_type() is ‘0’, mvshare_size[][][0] and mvshare_size[][][1] shifts shall be set to ‘0’.

If mvshare_type() is ‘1’, mvshare_size[][][0] is decoded and mvshare_size[][][1] shall be set to ‘0’.

If mvshare_type() is ‘2’, mvshare_size[][][1] is decoded and mvshare_size[][][0] shall be set to ‘0’.

If mvshare_type() is ‘3’, both mvshare_size[][][0] and mvshare_size[][][1] are decoded. One of them shall be ‘0’.

If motion_sharing_enable is ‘0’ or prediction_mode > 3 or prediction_mode is 0, both mvshare_size[][][0] and mvshare_size[][][1] are set to ‘0’.

6.6.7 Luma fractional-pel interpolation process

Luminance and chrominance at fractional-pel positions in the reference frames are created by applying an interpolation filter before motion compensation process. A different interpolation process is invoked for luma and for chroma samples. The fractional-pel luma samples shall be derived by applying a interpolation filter with fixed coefficients (H.264/MPEG-4 AVC interpolation filter) or a interpolation filter with adaptive coefficients (SAIF_HALF) which is signaled in RPPS header by filter_type.. The fractional-pel chroma samples shall be derived by applying an interpolation filter with fixed coefficients according to MPEG-4 AVC / H.264/MPEG-4 AVC interpolation.

6.6.7.1 Interpolation process with ¼-pel resolution with MPEG-4 AVC / H.264/MPEG-4 AVC interpolation filter

If applying an interpolation filter with fixed coefficients is signalled, the luma interpolation is done according to H.264/MPEG-4 AVC. Figure 25 shows the integer sample and fractional sample positions in a reference frame.

[image: image262.png]

[image: image263.emf]8x8 block with 4

4x4 subblock

8x8 block with 4

4x4 subblock

1

3

0

2

1

3

0

2

8x8 block with 4

subblock

8x8 block with 4

2x8

subblock

0 0

0

1

3

2

3 2

1

8x8 block with 4

subblock

8x8 block with 4

8x2

subblock

[image: image264.emf]8x8 block with 4

4x4 subblock

8x8 block with 4

4x4 subblock

1

3

0

2

1

3

0

2

[image: image265.emf]superblock superblock superblock

superblock superblock superblock

superblock superblock superblock

superblock

superblock

superblock

[image: image178.wmf]bb

a

c

E

F

I

J

G

h

d

n

H

m

A

C

B

D

R

T

S

U

M

s

N

K

L

P

Q

f

e

g

j

i

k

q

p

r

aa

b

cc

dd

ee

ff

hh

gg

Figure 25: Notation of full-pel positions (shaded blocks with upper-case letters) and fractional-pel positions (un-shaded blocks with lower-case letters) for quarter-pel sample interpolation with fixed interpolation filters.

The luma samples at half sample positions are derived by applying a 6-tap filter (1, -5, 20, 20, -5, 1). The luma samples at quarter sample positions shall be derived by averaging samples at full and half sample positions. The process for each fractional position is described below.

–
The samples at half-pel positions labelled b in Figure 25 shall be derived by first calculating intermediate values denoted as b1 by applying the 6-tap filter to the nearest integer position samples in the horizontal direction. The samples at half-pel positions labelled h in Figure 25 shall be derived by first calculating intermediate values denoted as h1 by applying the 6-tap filter to the nearest integer position samples in the vertical direction:

b1 = (E – 5 * F + 20 * G + 20 * H – 5 * I + J)
h1 = (A – 5 * C + 20 * G + 20 * M – 5 * R + T)

The final prediction values b and h shall be derived using:

b = clip ((b1 + 16) >> 5 , 0, 255)
h = clip ((h1 + 16) >> 5 ,0, 255)

–
The samples at half-pel position labelled as j shall be derived by first calculating intermediate value denoted as j1 by applying a 6-tap filter (1, -5, 20, 20, -5, 1) to the intermediate values of the closest half-pel positions in either the horizontal or vertical direction because these yield an equal result.

j1 = cc – 5 * dd + 20 * h1 + 20 * m1 – 5 * ee + ff, or
j1 = aa – 5 * bb + 20 * b1 + 20 * s1 – 5 * gg + hh

where intermediate values denoted as aa, bb, gg, s1 and hh shall be derived by applying the 6-tap filter horizontally in the same manner as the derivation of b1 and intermediate values denoted as cc, dd, ee, m1 and ff shall be derived by applying the 6-tap filter vertically in the same manner as the derivation of h1. The final prediction value j shall be derived using:

j = clip ((j1 + 512) >> 10, 0, 255)

–
The samples at half sample positions labelled s in Figure 25 shall be derived by first calculating intermediate values denoted as s1 by applying the 6-tap filter to the nearest full-pel samples in the horizontal direction. The samples at half-epl positions labelled m in Figure 25 shall be derived by first calculating intermediate values denoted as m1 by applying the 6-tap filter to the nearest full-pel samples in the vertical direction:

s1 = (K – 5 * L + 20 * M + 20 * N – 5 * P + Q)
m1 = (B – 5 * D + 20 * H + 20 * N – 5 * S + U)

The final prediction values s and m shall be derived from s1 and m1 in the same manner as the derivation of b and h, as given by:

s = clip((s1 + 16) >> 5, 0, 255)
m = clip ((m1 + 16) >> 5, 0, 255)

–
The samples at quarter-epl positions labelled as a, c, d, n, f, i, k, and q shall be derived by averaging with upward rounding of the two nearest samples at full- and half-pel positions using:

a = (G + b + 1) >> 1
c = (H + b + 1) >> 1
d = (G + h + 1) >> 1
n = (M + h + 1) >> 1
f = (b + j + 1) >> 1
i = (h + j + 1) >> 1
k = (j + m + 1) >> 1
q = (j + s + 1) >> 1
–
The samples at quarter-pel positions labelled as e, g, p, and r shall be derived by averaging with upward rounding of the two nearest samples at half-pel positions in the diagonal direction using

e = (b + h + 1) >> 1
g = (b + m + 1) >> 1
p = (h + s + 1) >> 1
r = (m + s + 1) >> 1
6.6.7.2 Interpolation process with ¼-pel resolution with separable adaptive interpolation filter (SAIF_HALF)

If applying an interpolation filter with adaptive coefficients is signalled, the interpolation is invoked according to the separable adaptive interpolation filter scheme (SAIF_HALF). Three different adaptive interpolation filter modes (AIF modes) are supported in order to adaptively scale the precision of the prediction and the amount of overhead bitrate for the transmission of filter coefficients. The different modes are depicted in Figure 26.

[image: image179]
Figure 26: Three supported AIF modes.
The syntax elements AIF_mode_flag1 and AIF_mode_flag2 are transmitted in the frame header and indicate the AIF mode (Figure 27). By indicating the AIF mode it is signalled if a sub-pel sample is interpolated by using a filter with fixed coefficients or a filter with adaptive coefficients, according to the specified scheme.

[image: image180.emf]AIF_mode_flag2

AIF_mode_flag1

0 1

0 1

AIF

mode 1

AIF

mode 3

AIF

mode 2

AIF_mode_flag2

AIF_mode_flag1

0 1

0 1

AIF

mode 1

AIF

mode 3

AIF

mode 2

Figure 27: Tree-based signalling of AIF mode.
The detailed filtering process for luma samples is specified in the following with reference to Figure 28.
[image: image181.emf]A1 A2 A3

Aa Ab Ac

A4 A5 A6

B1 B2 B3

Ba Bb Bc

B4 B5 B6

C1 C2 C3

Ca Cb Cc

Cd Ce Cf Cg

Ch Ci Cj Ck

Cl Cm Cn Co

C4

Ch‘

C5 C6

D1 D2 D3

Da Db Dc

D4 D5 D6

E1 E2 E3

Ea Eb Ec

E4 E5 E6

F1 F2 F3 F4 F5 F6

Fa Fb Fc

a_pos b_pos c_pos

d_pos e_pos f_pos g_pos

h_pos i_pos j_pos k_pos

l_pos m_pos n_pos o_pos

full-pel sample

sub-pel sample

A1 A2 A3

Aa Ab Ac

A4 A5 A6

B1 B2 B3

Ba Bb Bc

B4 B5 B6

C1 C2 C3

Ca Cb Cc

Cd Ce Cf Cg

Ch Ci Cj Ck

Cl Cm Cn Co

C4

Ch‘

C5 C6

D1 D2 D3

Da Db Dc

D4 D5 D6

E1 E2 E3

Ea Eb Ec

E4 E5 E6

F1 F2 F3 F4 F5 F6

Fa Fb Fc

a_pos b_pos c_pos

d_pos e_pos f_pos g_pos

h_pos i_pos j_pos k_pos

l_pos m_pos n_pos o_pos

a_pos b_pos c_pos

d_pos e_pos f_pos g_pos

h_pos i_pos j_pos k_pos

l_pos m_pos n_pos o_pos

full-pel sample

sub-pel sample

Figure 28: Notation of full-pel and sub-pel positions for quarter-pel luma interpolation with SAIF_HALF.
The samples at half-pel positions b_pos, h_pos, and j_pos shall be derived according to following equations:

b_pos = clip(((b0 * (C1 + C6) + b1 * (C2 + C5) + b2 * (C3 + C4))/6 + b6+256) >> 9, 0, 255)

h_pos = clip(((h0 * (A3 + F3) + h1 * (B3 + E3) + h2 * (C3 + D3))/6 + h6 +256) >> 9, 0, 255)

j_pos = clip(((j0 * (Ab + Fb) + j1 * (Bb + Eb) + j2 * (Cb + Db))/6 + j6 +256) >> 9, 0, 255)

If AIF_mode_flag1 is equal to 1, the samples at quarter-pel positions a_pos, c_pos, d_pos, and l_pos shall be derived according to following equations:

a_pos = clip(((a0 * C1 + a1 * C2 + a2 * C3 + a3 * C4 + a4 * C5 + a5 * C6)/6 + a6+256) >> 9, 0, 255)

c_pos = clip(((c0 * C1 + c1 * C2 + c2 * C3 + c3 * C4 + c4 * C5 + c5 * C6)/6 + c6 +256) >> 9, 0, 255)

d_pos = clip(((d0 * A3 + d1 * B3 + d2 * C3 + d3 * D3 + d4 * E3 + d5 * F3)/6 + d6 +256) >> 9, 0, 255)

l_pos = clip(((d5 * A3 + d4 * B3 + d3 * C3 + d2 * D3 + d1 * E3 + d0 * F3)/6 + d6 +256) >> 9, 0, 255)

If AIF_mode_flag1 is equal to 0, the samples at quarter-pel positions a_pos, c_pos, d_pos, and l_pos shall be derived according to following equations:

a_pos = (C3 + Cb + 1) >> 1

c_pos = (Cb + C4 + 1) >> 1

d_pos = (C3 + Ch + 1) >> 1

l_pos = (Ch + D3 + 1) >> 1

If AIF_mode_flag2 is equal to 1, the samples at quarter-pel positions f_pos, i_pos, k_pos, and n_pos shall be derived according to following equations:

f_pos = clip(((f0 * Ab + f1 * Bb + f2 * Cb + f3 * Db + f4 * Eb + f5 * Fb)/6 + f6 + 256) >> 9, 0, 255)

i_pos = clip(((i0 * (Aa + Fa) + i1 * (Ba + Ea) + i2 * (Ca + Da))/6 + i6 + 256) >> 9, 0, 255)

k_pos = clip(((k0 * (Ac + Fc) + k1 * (Bc + Ec) + k2 * (Cc + Dc))/6 + k6 + 256) >> 9, 0, 255)

n_pos = clip(((f5 * Ab + f4 * Bb + f3 * Cb + f2 * Db + f1 * Eb + f0 * Fb)/6 + f6 + 256) >> 9, 0, 255)

If AIF_mode_flag2 is equal to 0, the samples at quarter-pel positions f_pos, i_pos, k_pos, and n_pos shall be derived according to following equations:

f_pos = (Cb + Cj + 1) >> 1

i_pos = (Ch + Cj + 1) >> 1

k_pos = (Cj + Ch’ + 1) >> 1

n_pos = (Cj + Db + 1) >> 1

If AIF_mode_flag2 is equal to 1, the samples at quarter-pel positions e_pos, g_pos, m_pos, and o_pos shall be derived according to following equations:

e_pos = clip(((e0 * Aa + e1 * Ba + e2 * Ca + e3 * Da + e4 * Ea + e5 * Fa)/6 + e6 +256) >> 9, 0, 255)

g_pos = clip(((g0 * Ac + g1 * Bc + g2 * Cc + g3 * Dc + g4 * Ec + g5 * Fc)/6 + g6 + 256) >> 9, 0, 255)

m_pos = clip(((e5 * Aa + e4 * Ba + e3 * Ca + e2 * Da + e1 * Ea + e0 * Fa)/6 + e6 + 256) >> 9, 0, 255)

o_pos = clip(((g5 * Ac + g4 * Bc + g3 * Cc + g2 * Dc + g1 * Ec + g0 * Fc)/6 + g6 + 256) >> 9, 0, 255)

If AIF_mode_flag2 is equal to 0, the samples at quarter-pel positions e_pos, g_pos, m_pos, and o_pos shall be derived according to following equations:

e_pos = (C3 + Cb + Ch + Cj + 2) >> 2

g_pos = (Cb + C4 + Cj + Ch’ + 2) >> 2

m_pos = (Ch + Cj + D3 + Db + 2) >> 2

o_pos = (Cj + Ch’ + Db + D4 + 2) >> 2

For the filter coefficients that are applied in the above equations, the following applies:

· ai (0<=i<6) are filter coefficients derived from diff_qfilter_coef [0][i] and a6 is a filter offset derived from diff_qfilter_coef [0][6],

· bi (0<=i<3) are filter coefficients derived from diff_qfilter_coef [1][i] and b6 is a filter offset derived from diff_qfilter_coef [1][3],

· ci (0<=i<6) are filter coefficients derived from diff_qfilter_coef [2][i] and c6 is a filter offset derived from diff_qfilter_coef [2][6],

· di (0<=i<6) are filter coefficients derived from diff_qfilter_coef [3][i] and d6 is a filter offset derived from diff_qfilter_coef [3][6],

· ei (0<=i<6) are filter coefficients derived from diff_qfilter_coef [4][i] and e6 is a filter offset derived from diff_qfilter_coef [4][6],

· fi (0<=i<6) are filter coefficients derived from diff_qfilter_coef [5][i] and f6 is a filter offset derived from diff_qfilter_coef [5][6],

· gi (0<=i<6) are filter coefficients derived from diff_qfilter_coef [6][i] and g6 is a filter offset derived from diff_qfilter_coef [6][6],

· hi (0<=i<3) are filter coefficients derived from diff_qfilter_coef [7][i] and h6 is a filter offset derived from diff_qfilter_coef [7][3],

· ii (0<=i<3) are filter coefficients derived from diff_qfilter_coef [8][i] and i6 is a filter offset derived from diff_qfilter_coef [8][3],

· ji (0<=i<3) are filter coefficients derived from diff_qfilter_coef [9][i] and j6 is a filter offset derived from diff_qfilter_coef [9][3], and

· ki (0<=i<3) are filter coefficients derived from diff_qfilter_coef [10][i] and k6 is a filter offset derived from diff_qfilter_coef [10][3].

6.6.7.3 Interpolation process with 1/8 pel resolution

The samples with 1/8-pel resolution shall be derived from the 1/4-pel resolution samples by applying bilinear filtering. The concept is depicted in Figure 29.

[image: image182.emf]C3 C4

D4 D3

Ca Cb Cc

Cf

Ci Cj Ck

Cn

Cd

Ch

Cl

Ca‘ Cb‘ Cc‘

Cd‘

Ch‘

Cl‘

Ce Cg

Cm Co

Full-pel sample

Quarter-pel sample

Eighth-pel sample

Ea

C3 C4

D4 D3

Ca Cb Cc

Cf

Ci Cj Ck

Cn

Cd

Ch

Cl

Ca‘ Cb‘ Cc‘

Cd‘

Ch‘

Cl‘

Ce Cg

Cm Co

Full-pel sample

Quarter-pel sample

Eighth-pel sample

C3 C4

D4 D3

Ca Cb Cc

Cf

Ci Cj Ck

Cn

Cd

Ch

Cl

Ca‘ Cb‘ Cc‘

Cd‘

Ch‘

Cl‘

Ce Cg

Cm Co

Full-pel sample

Quarter-pel sample

Eighth-pel sample

Full-pel sample

Quarter-pel sample

Eighth-pel sample

Ea

Figure 29: Bilinear filtering of 1/8-pel positions.
The bilinear interpolation with rounding for each sample with 1/8-pel resolution shall be done according to the following example (Figure 29):

Ea = (C3 + Ca + 1) >> 1

The necessary samples with ¼ resolution shall be derived with fixed or adaptive interpolation filters as specified in sections 7.6.7.1 and 7.6.7.2.
6.6.8 Luma motion compensation

The luma motion compensation process is similar to the one described in ISO/IEC 14496-10:2004.

The prediction of a luminance block for a given reference list L applies as follows:

· the reference frame is identified from the decoded value of ref_index[L];

· the luma motion vector of the block is derived as specified in clause 7.6.5;

· the displaced position in the luma reference frame is identified from the luma motion vector of the block;

· based on the fractionel-pel accuracy of the luma motion vector of the block, clause 7.6.7 is invoked to compute the interpolated luminance reference block, that corresponds to the motion compensated luminance block.

6.6.9 Luma intensity compensation

Brightness compensation applies to 8x8 blocks and operates on motion-compensated blocks when prediction_mode is 1, 2 for P_frame and B_frame, or 3 for B_frame. In the following pred_luma[0] is the prediction obtained through motion compensation, as defined in section 7.6.7, for LIST_0, and pred_luma[1] is the one for LIST_1.

i is a vertical position of a pixel in 8x8 luma blocks

j is a horizontal position of a pixel in 8x8 luma blocks

 mode = prediction_mode[i>>3][j>>3];

 if (mode != 3) {

 scale = mv[i>>3][j>>3][2] + 64;
 pred = pred_luma[mode-1][i][j] * scale;
 pred = pred + mv[i>>3][j>>3][3]*DC_mult*64; // offset = mv[i>>3][j>>3][3]

 pred_luma2[i][j] = pred – 128*64;

 }

 else {

 scale = (mv[i>>3][j>>3][4] + 64 >> 1) + (mv[i>>3][j>>3][5] << weight_diff_scale);

 pred = pred_luma[0][i][j] * scale;

 scale = (mv[i>>3][j>>3][4] + 64) – scale;

 pred = pred + pred_luma[1][i][j] * scale;

 pred = pred + mv[i>>3][j>>3][6]*DC_mult*64; // offset = mv[i>>3][j>>3][6]

 pred_luma2[i][j] = pred – 128*64;

 }
6.6.10 Chroma motion compensation

The chroma motion compensation process is similar to the one described in ISO/IEC 14496-10:2004.

The prediction of a chrominance block for a given reference list L applies as follows for each one of the chrominance component:

· the reference frame is identified from the decoded value of ref_index[L];

· the luma motion vector of the block is derived as specified in clause 7.6.5 and downscaled according to the luma/chroma sample ratio (e.g. ½ for 4:2:0 format) to generate the chroma motion vector of the block, with up to 1/16-pel accuracy;

· the displaced position in the chroma reference frame is identified from the chroma motion vector of the block;

· based on the fractionel-pel accuracy of the chroma motion vector of the block, the interpolated chrominance reference block, that corresponds to the motion compensated chrominance block is derived by applying the following process:

· When mc_round is equal to 0, the interpolated chroma value is computed using the H.264/MPEG-4 AVC chroma interpolation filter as follows:

[(8-k)*(8-l)*a + (8-k)*l*b + k*(8-l)*c + k*l*d + 32] >> 6
· When mc_round is equal to 1, the interpolated chroma value is computed as follows:

[(16-k)*(16-l)*a + (16-k)*l*b + k*(16-l)*c + k*l*d + 128-((k≫1+l≫1)&1)] >> 8
with a,b,c,d,k and l specified as described in Figure 1.

 Chroma brightness compensation

Brightness compensation for chroma applies to 4x4 blocks and operates on motion-compensated blocks when prediction_mode is 1, 2 for P-frame and B-frame, or 3 for B-frame. Only scaling is applied.

i is a vertical position of a pixel in 4x4 chroma blocks

j is a horizontal position of a pixel in 4x4 chroma blocks

 mode = prediction_mode[i>>2][j>>2];

if (mode != 3) {

 // Single List Prediction

 for (c=0; c<2; c++) {
 pred = pred_chroma[mode – 1][i][j][c];

 pred = (pred – 128) * (mv[i>>2][j>>2][2] + 64);

 pred_chroma[i][j][c] = pred;

 }

 }

 else {

 // Bi-Prediction

 for (c=0; c<2; c++) {

 scale = (mv[i>>2][j>>2][4] + 64 >> 1) + (mv[i>>2][j>>2][5] << weight_diff_scale);

 pred_l0 = pred_chroma[0][i][j][c] ;

 pred_l0 = (pred_l0 – 128) * scale;

 scale = (mv[i>>2][j>>2][4] + 64 >> 1) - scale;

 pred_l1 = pred_chroma[1][i][j][c];

 pred_l1 = (pred_l1 – 128) * scale;

 pred_chroma[i][j][c] = pred_l0 + pred_l1 + 128 * 64;

 }

 }

6.6.11 Motion sharing for inter prediction

When mvshare_size[][][0] or mvshare_size[][][1] is not zero, an 8x8 luma block for luma and a 4x4 chroma block are divided into two partitions, respectively. The singal in one partition is predicted using motion parameters, which include motion vectors, scale and offset for brightness compensation, in a block above or to left. The 4 types of inter block prediction with motion sharing are shown in Figure 30. The singal in other partition is predicted using motion parameters to be decoded for the current block. The two partitions can be predicted with the different prediction modes, but prediction_mode[][] of two partitions shall be 1 (8x8 Single list Prediction using LIST_0), 2 (8x8 Single list Prediction using LIST_1) or 3 (8x8 BiPrediction).
[image: image183.emf]; reconstructed block

; current block

8

8

(a) mvshare_size[][][0] = 2

C

A

B

D

Predict using

MP in block B

(a-1) luma

2

4

4

C

A

B

D

(a-2) chroma

1

Predict using

MP in block C

[image: image184.emf]8

8

(b) mvshare_size[][][0] = 4

C

A

B

D

Predict using

MP in block B

(b-1) luma

4

4

4

C

A

B

D

(b-2) chroma

2

Predict using

MP in block C

[image: image185.emf]8

8

(c) mvshare_size[][][1] = 2

C

A

B

D

Predict using

MP in block A

(c-1) luma

2

4

4

C

A

B

D

(c-2) chroma

Predict using

MP in block C

1

 [image: image186.emf]8

8

(d) mvshare_size[][][1] = 4

C

A

B

D

Predict using

MP in block A

(d-1) luma

4

4

4

C

A

B

D

(d-2) chroma

Predict using

MP in block C

2

Figure 30: Motion sharing for inter prediction.
6.7 Texture decoding

6.7.1 Scaling of 16 Transformed Coefficients

This section defines the inverse quantization process for 4x4 (including 2x8 and 8x2) tranformed blocks. The quantized coefficients in a linear array of 16 elements are scaled according to:

INTER coded blocks:

if (qscalingmatrix_enable_flag || qoffsetmatrix_enable_flag) {

 if (qcoeff[k])

 coeff[k] = ((((| qcoeff[k] | << 7) – MappedOffsetMatrix[k]) * iquant_scale[qp[mode][k]][k] * ScaleMatrix[k]+ 1024) >> 11) * (qcoeff[k] / | qcoeff[k] |)

 else

 coeff[k] = 0

}

else {

 if (qcoeff[k] && q_offset[1])

 coeff[k] = ((((| qcoeff[k] | << 7) – q_offset[1]) * iquant_scale[qp[mode][k]][k] + 64) >> 7) * (qcoeff[k] / | qcoeff[k] |)

 else

 coeff[k] = qcoeff[k] * iquant_scale[qp[mode][k]][k]

}

where ScaleMatrix[k] is equal to Inter4x4LumaScale[k], Inter4x4ChromaUScale[k] or Inter4x4ChromaVScale[k] depending on the mode (luma or chroma) and the chroma components (U or V).
MappedOffsetMatrix[k] is equal to Inter4x4LumaOffset[k], Inter4x4ChromaUOffset[k] or Inter4x4ChromaVOffset[k] depending on the mode (luma or chroma) and the chroma components (U or V).
INTRA coded blocks:

if (qscalingmatrix_enable_flag || qoffsetmatrix_enable_flag) {

 if (qcoeff[k])

 coeff[k] = ((((| qcoeff[k] | << 7) – MappedOffsetMatrix[k]) * iquant_scale[qp[mode][k]][k] * ScaleMatrix[k]+ 1024) >> 11) * (qcoeff[k] / | qcoeff[k] |)

 else

 coeff[k] = 0

}

else {

 if (qcoeff[k] && q_offset[0])

 coeff[k] = ((((| qcoeff[k] | << 7) – q_offset[0]) * iquant_scale[qp[mode][k]][k] + 64) >> 7) * (qcoeff[k] / | qcoeff[k] |)

 else

 coeff[k] = qcoeff[k] * iquant_scale[qp[mode][k]][k]

}
where qp[mode][k] is equal to :

the value of qp_DCintra if the mode is intra (luma or chroma) and k=0,

the value of qp if the mode is luma (intra or inter),

the value of qpchroma if the mode is chroma (intra or inter).

Note : if several conditions are met, the value is determined based upon the first condition that is met. The value of qp_DCintra is based on qp and DCintra, and the value of qpchroma is based on qp, better_color and bc_offset_plus16.

iquant_scale[qp][k] corresponds to the tables provided in QuantTables.cpp of the reference software implementation. If the block size is 4x4, iquant_scale corresponds to the table qtab4x4. Similarly, if the block size is 2x8 or 8x2, iquant_scale corresponds to the table qtab2x8 or qtab8x2 respectively. qp corresponds to the row dimension while k corresponds to the column dimension.

ScaleMatrix[k] is equal to Intra4x4LumaScale[k], Intra2x8LumaScale[k], Intra8x2LumaScale[k], Intra4x4ChromaUScale[k] or Intra4x4ChromaVScale[k] depending on the mode (luma or chroma), the chroma components (U or V) and the sip_type.
MappedOffsetMatrix[k] is equal to Intra4x4LumaOffset[k], Intra2x8LumaOffset[k], Intra8x2LumaOffset[k], Intra4x4ChromaUOffset[k] or Intra4x4ChromaVOffset[k] depending on the mode (luma or chroma), the chroma components (U or V) and the sip_type

6.7.2 Scaling of 64 Transformed Coefficients

When 8x8 blocks are used in INTER coding or 8x8 spatial intra prediction partition is used in INTRA coding, the quantized coefficients in a linear array of 64 elements are scaled according to:

INTER coded blocks:

if (qscalingmatrix_enable_flag || qoffsetmatrix_enable_flag) {

if (qcoeff[k])

coeff[k] = ((((| qcoeff[k] | << 7) –MappedOffsetMatrix[k]) * iquant_scale[qp][k] * ScaleMatrix[k] + 1024) >> 11) * (qcoeff[k] / | qcoeff[k] |)

else

coeff[k] = 0

}

else {

if (qcoeff[k] && q_offset8x8[1])

 coeff[k] = ((((| qcoeff[k] | << 7) – q_offset8x8[1]) * iquant_scale[qp][k] + 64) >> 7) * (qcoeff[k] / | qcoeff[k] |)

else

 coeff[k] = qcoeff[k] * iquant_scale[qp][k]

}
where ScaleMatrix[k] is equal to Inter8x8LumaScale[k]

MappedOffsetMatrix[k] is equal to Inter8x8LumaOffset[k]

INTRA coded blocks:

if (qscalingmatrix_enable_flag || qoffsetmatrix_enable_flag) {

if (qcoeff[k])

coeff[k] = ((((| qcoeff[k] | << 7) –MappedOffsetMatrix[k]) * iquant_scale[qp][k] * ScaleMatrix[k] + 1024) >> 11) * (qcoeff[k] / | qcoeff[k] |)

else

coeff[k] = 0

}

else {

if (qcoeff[k] && q_offset8x8[0])

 coeff[k] = ((((| qcoeff[k] | << 7) – q_offset8x8[0]) * iquant_scale[qp][k] + 64) >> 7) * (qcoeff[k] / | qcoeff[k] |)

else

 coeff[k] = qcoeff[k] * iquant_scale[qp][k]

}
where iquant_scale[qp][k] corresponds to the table qtab8x8 provided in QuantTables.cpp of the reference software implementation.

ScaleMatrix[k] is equal to Intra8x8LumaScale[k], Intra8x8ChromaUScale[k] or Intra8x8ChromaVScale[k] depending on the mode (intra or inter) and chroma components (U or V).
MappedOffsetMatrix[k] is equal to Intra8x8LumaOffset[k], Intra8x8ChromaUOffset[k] or Intra8x8ChromaVOffset[k] depending on the mode (intra or inter) and chroma components (U or V).

6.7.3 Scaling of 256 Transformed Coefficients

When 16x16 spatial intra prediction partition is used in INTRA coding, the quantized coefficients in a linear array of 256 elements are scaled according to:

 iqstep[16] = {64, 67, 70, 73, 76, 79, 83, 87, 91, 95, 99, 103, 108, 112, 117, 123};

 qp_per = qp[k] / 16;

 qp_rem = qp[k] % 16;

if (qscalingmatrix_enable_flag || qoffsetmatrix_enable_flag) {

if (qcoeff[k]){

coeff[k] = ((((| qcoeff[k] | << 7) –MappedOffsetMatrix[k]) * (iqstep[qp_rem] << qp_per) * ScaleMatrix[k] + (1 << (10 - qp_per))) >> (11 – qp_per)) * (qcoeff[k] / | qcoeff[k] |)

}

else

coeff[k] = 0

}

else {
vq = qcoeff[k] * iqstep[qp_rem];

coeff[k] = vq << qp_per;

}
where ScaleMatrix[k] is equal to Intra16x16LumaScale[k] and MappedOffsetMatrix[k] is equal to Intra16x16LumaOffset[k].

6.7.4 4x4 Block Inverse transform specification

A vertical transform on 4x4 blocks is applied as follows:

for (i=0; i<4; i++) {

 a0 = coeff[4*i+0];

 a1 = coeff[4*i+1];

 a2 = coeff[4*i+2];

 a3 = coeff[4*i+3];

 b0 = a0+a2;

 b1 = a0-a2;

 b2 = a1+(a1+2>>2)+(a3>>1);

 b3 = (a1>>1)-a3-(a3+2>>2);

 tmp[i+0] = b0+b2;

 tmp[i+4] = b1+b3;

 tmp[i+8] = b1-b3;

 tmp[i+12] = b0-b2;

}

It is followed by a horizontal transform as follows:

for (i=0; i<4; i++) {

 a0 = tmp[4*i+0];

 a1 = tmp[4*i+1];

 a2 = tmp[4*i+2];

 a3 = tmp[4*i+3];

 b0 = a0+a2;

 b1 = a0-a2;

 b2 = a1+(a1+2>>2)+(a3>>1);

 b3 = (a1>>1)-a3-(a3+2>>2);

 data[i+0] = b0+b2;

 data[i+4] = b1+b3;

 data[i+8] = b1-b3;

 data[i+12] = b0-b2;

}

The reconstructed samples are the array data[0..15]. They are added to the prediction obtained after brightness compensation in the inter case and to the 4x4 intra sample predictor in the intra case.

When mvshare_size[][][0] or mvshare_size[][][1] is not ‘0’, 4x4 block invese transform is applied.

6.7.5 2x8 Block Inverse transform specification

A vertical transform on 2x8 blocks is applied as follows:

for (i=0; i<8; i++)

{

 a0 = coeff[i+8*0];

 a1 = coeff[i+8*1];

 tmp[i+8*0] = a0+a1;

 tmp[i+8*1] = a0-a1;

}

It is followed by a horizontal transform as follows:

for (i=0; i<2; i++)

{

 p0 = tmp[8*i+0];

 p1 = tmp[8*i+1];

 p2 = tmp[8*i+2];

 p3 = tmp[8*i+3];

 p4 = tmp[8*i+4];

 p5 = tmp[8*i+5];

 p6 = tmp[8*i+6];

 p7 = tmp[8*i+7];

 a0 = p0 + p4;

 a1 = p0 - p4;

 a2 = -p6 + (p2 >> 1);

 a3 = p2 + (p6 >> 1);

 b0 = a0 + a3;

 b2 = a1 + a2;

 b4 = a1 - a2;

 b6 = a0 - a3;

 a0 = -p3 + p5 - p7 - (p7 >> 1);

 a1 = p1 + p7 - p3 - (p3 >> 1);

 a2 = -p1 + p7 + p5 + (p5 >> 1);

 a3 = p3 + p5 + p1 + (p1 >> 1);

 b1 = a0 + (a3>>2);

 b3 = a1 + (a2>>2);

 b5 = -a2 + (a1>>2);

 b7 = a3 - (a0>>2);

 data[8*i+0] = b0 + b7;

 data[8*i+1] = b2 + b5;

 data[8*i+2] = b4 + b3;

 data[8*i+3] = b6 + b1;

 data[8*i+4] = b6 - b1;

 data[8*i+5] = b4 - b3;

 data[8*i+6] = b2 - b5;

 data[8*i+7] = b0 - b7;

}

The reconstructed samples are the array data[0..15]. They are added to 2x8 intra sample predictor.

6.7.6 8x2 Block Inverse transform specification

A horizontal transform on 2x8 blocks is applied as follows:

for (i=0; i<8; i++)

{

 a0 = coeff[2*i];

 a1 = coeff[2*i+1];

 tmp[2*i] = a0+a1;

 tmp[2*i+1] = a0-a1;

}

It is followed by a vertical transform as follows:

for (i=0; i<2; i++)

{

 p0 = tmp[i+0];

 p1 = tmp[i+2];

 p2 = tmp[i+4];

 p3 = tmp[i+6];

 p4 = tmp[i+8];

 p5 = tmp[i+10];

 p6 = tmp[i+12];

 p7 = tmp[i+14];

 a0 = p0 + p4;

 a1 = p0 - p4;

 a2 = -p6 + (p2 >> 1);

 a3 = p2 + (p6 >> 1);

 b0 = a0 + a3;

 b2 = a1 + a2;

 b4 = a1 - a2;

 b6 = a0 - a3;

 a0 = -p3 + p5 - p7 - (p7 >> 1);

 a1 = p1 + p7 - p3 - (p3 >> 1);

 a2 = -p1 + p7 + p5 + (p5 >> 1);

 a3 = p3 + p5 + p1 + (p1 >> 1);

 b1 = a0 + (a3>>2);

 b3 = a1 + (a2>>2);

 b5 = -a2 + (a1>>2);

 b7 = a3 - (a0>>2);

 data[i+0] = b0 + b7;

 data[i+2] = b2 + b5;

 data[i+4] = b4 + b3;

 data[i+6] = b6 + b1;

 data[i+8] = b6 - b1;

 data[i+10] = b4 - b3;

 data[i+12] = b2 - b5;

 data[i+14] = b0 - b7;

}

The reconstructed samples are the array data[0..15]. They are added to 8x2 intra sample predictor.

6.7.7 8x8 Block Inverse transform specification

The 8x8 transform used is the same as the 8x8 transform specified in H.264/MPEG-4 AVC.
6.7.8 16x16 Block Inverse transform specification

The 16x16 block inverse transform is implemented in the function inverse_transform() in FastDCT.cpp of the reference software implementation. T is the scaled and rounded DCT basis: T = round(DCT16 *128), where DCT16 is the 16x16 DCT basis. The reconstructed samples are the array blk->val[0..15][0..15]. They are added to the 16x16 intra predicted data.

6.7.9 Adaptive Transform Selection

When transform_selection is enabled, a second transform 2-D separable KLT is added for 4x4, 8x2, 2x8, and 8x8 blocks. The codec can select between the DCT and a KLT transform. The KLT is implemented in integer arithmetic and the quantization step and tables are set to be exactly the same as those of the DCT. At the decoder, the transform coefficients are first recovered and the parity of their sum is computed. If the parity is even, the inverse DCT transform is applied. If the parity is odd, the inverse KLT transform is applied.

When transform_selection_16x16 is enabled, a second transform 2-D separable KLT is added for 16x16 blocks. The codec can select between the DCT and a KLT transform. The KLT is implemented in integer arithmetic and the quantization step is set to be exactly the same as those of the DCT. At the decoder, transform16x16_flag is first decoded. If transform16x16_flag is 0, the inverse DCT transform is applied; otherwise the inverse KLT transform is applied.

The KLT are the following ones. For intra blocks, there is one KLT for 4x4 blocks, one KLT for sizes 2x8 and 8x2, and another KLT of size 8x8 and 16x16. For inter blocks, there is a 4x4 and an 8x8 KLT.

The inverse transform is implemented via a matrix multiplication. The KLTs values are the following ones. The scale parameters are modified for each size in order to re-use the quantization tables of the DCT of that size.
Intra KLT 4x4:

 26 81 156 184

 105 181 32 -122

 175 -3 -153 106

 141 -144 123 -60

Inter KLT 4x4:

 62 134 169 123

 157 124 -68 -121

 149 -88 -101 160

 105 -144 140 -89

Intra KLT 8x8 for 8x2 and 2x8 blocks:
 10 31 77 142 207 248 265 247

 164 266 303 238 87 -50 -134 -149

 132 162 61 -123 -199 -103 80 211

 244 180 -159 -245 70 260 46 -211

 234 -19 -250 82 223 -166 -166 181

 266 -199 -80 249 -212 -26 226 -144

 136 -200 152 -59 -58 171 -194 91

 108 -180 216 -232 237 -230 188 -86

Intra KLT 2x2 for 8x2 and 2x8 blocks:
 106 233

 233 -106

Intra KLT 8x8:

 50 95 155 224 289 332 354 346

 226 349 389 309 135 -70 -236 -306

 243 256 82 -171 -269 -152 82 255

 394 147 -300 -288 122 355 86 -306

 344 -135 -319 205 260 -246 -230 251

 297 -349 31 331 -335 -37 339 -206

 145 -252 228 -102 -92 267 -290 130

 127 -251 320 -359 360 -311 219 -87

Inter KLT 8x8:

 126 217 293 356 356 280 186 91

 234 340 296 110 -130 -328 -367 -251

 238 238 30 -222 -229 17 233 239

 351 123 -331 -243 223 305 -107 -361

 314 -84 -326 206 219 -320 -96 331

 316 -318 -19 337 -334 20 288 -286

 182 -264 205 -78 -67 226 -293 188

 147 -265 316 -340 337 -306 245 -132

Intra KLT 16x16:

 6 9 12 15 19 22 27 30 33 36 39 41 43 44 45 44

 24 31 37 40 42 42 39 33 24 13 1 -12 -23 -32 -39 -41

 37 43 41 36 24 7 -13 -30 -40 -43 -36 -22 -2 18 35 43

 40 41 29 8 -19 -37 -43 -33 -9 20 39 43 31 6 -25 -45

 54 42 0 -37 -49 -32 3 34 40 22 -6 -31 -35 -17 12 34

 35 14 -22 -40 -20 19 41 27 -12 -42 -34 3 42 48 0 -51

 45 6 -45 -36 16 44 20 -27 -40 -8 38 35 -13 -42 -17 35

 41 -15 -48 2 41 16 -31 -30 15 41 8 -44 -24 41 31 -36

 43 -31 -39 35 29 -29 -28 22 31 -14 -39 12 45 -17 -42 30

 31 -39 -10 49 -13 -42 24 34 -25 -35 36 25 -45 -1 38 -22

 25 -41 14 32 -47 0 52 -31 -32 49 -1 -40 25 13 -31 17

 24 -38 26 2 -34 40 -4 -41 44 1 -43 41 -2 -37 45 -19

 19 -39 37 -12 -20 41 -39 9 26 -44 38 -10 -25 47 -45 20

 20 -39 43 -38 22 6 -33 49 -43 17 11 -29 38 -39 29 -11

 12 -27 39 -46 48 -40 24 -9 -10 27 -38 42 -41 33 -21 8

 5 -12 18 -25 33 -39 43 -47 47 -44 41 -37 30 -20 11 -4
6.7.10 Customizable Quantization Matrixes

The inverse quantization process can be customized or designed to provide the best subjective quality by the use of quantization matrixes. The customizable quantization matrixes include two types of matrixes:

· Scaling Matrixes

· Offset Matrixes

[image: image187.emf]Level = 3

Level = 2

Level = 1

Level = -1

Level = -2

0

1 x QStep

2 x QStep

3 x QStep

-1 x QStep

-2 x QStep

Quantization Offset

Matrix Value controls

the shift in

representation values

for each frequency

component.

Quantization Scale

Matrix Value controls

the quantization step

size for each frequency

component.

Inverse quantized values

Figure 31: illustration of quantization scaling and offset.

The scaling matrix contains a set of values that controls the quantization step size for each frequency components of a transform block. The usual practice to design a scaling matrix is to assign smaller values for lower frequency components and higher values for higher frequency component which results in smaller quantization step sizes for lower frequency components as compared to the quantization step sizes for higher frequency components.

The offset matrix, on the other hand, contains a set of values that controls the shift in the inverse quantized representation values for each frequency components of a transform block. The smaller the offset matrix value, the closer the first representation values are shifted towards the value of zero. By adjusting the first representation values (level = 1 or -1) closer to the value of zero when the quantization step size is large, the smallest values of the transform block can be more accurately represented. Similar to the design of the scaling matrix, the offset matrix is usually designed to assign smaller values for lower frequency components and higher values for higher frequency components.

Both quantization scaling matrixes and offset matrixes allow the flexibility to design and customize the inverse quantization process to produce the best subjective quality.

6.8 Conversion to 8-bit

The decoded frame formed as a result of combining the prediction and texture signals has pixel values in a signed representation with the last 6 bits representing the fractional value. At this stage, the bits representing the fractional value are removed using a rounding operation (addition of 32 followed by a right-shift of 6 bits). Furthermore, the decoded frame is converted to an unsigned 8-bit representation by adding 128 to each pixel value followed by clipping it to the range [0, 255].
6.9 Loop filter
After conversion to unsigned 8-bit, the decoded frame goes through the loop filter operations described in this section.

6.9.1 Non-linear Denoising Filter (NDF)
The Non-linear Denoising Filter (NDF) is applied to the decoded frame first. Luminance and chrominance frames are filtered separately.

NDF uses a NxN block transform during its operation. This transform is applied to all shifts of a NxN block across the decoded video frame. The NDF transform blocks are denoted as d-blocks to distinguish them from the blocks of the compression process which are termed c-blocks. d-blocks are formed by all shifts of a NxN block across the decoded video frame whereas c-blocks are formed by 4x4 blocks located at pixel positions that are integral multiples of 4.

The luma frames are denoised using an 8x8 block transform (N=8) if ndf_trsf_8x8 is equal to 1. Else, a 4x4 block transform (N=4) is used for denoising the luma frames. The chroma frames are denoised using a 4x4 block transform (N=4) irrespective of the value of ndf_trsf_8x8.
6.9.1.1 NDF modes

The coding mode of two neighboring (side by side or one on top of another) 4x4 c-blocks are used to derive filter strengths/modes which modulate the filtering operation around the boundary between the two c-blocks. The filter modes are as follows:

Table 23 – NDF modes

	Mode
	Label
	Description

	0
	DCM_SKIP
	Not filtered

	1
	DCM_INTRA_QUANT
	Either c-block is INTRA coded

	2
	DCM_PRED_SIGNIF
	INTER coded c-blocks with combined number of coded DCT coefficients greater than ndf_signif_cnt

	3
	DCM_PRED_QUANT
	INTER coded c-blocks with the same motion vector and with combined number of coded DCT coefficients greater than or equal to one

	4
	DCM_PRED_MOT
	INTER coded c-blocks with different motion vectors, and with combined number of coded DCT coefficients greater than or equal to one

	5
	DCM_MOT_DISC
	INTER coded c-blocks with different motion vectors

	6
	DCM_IC_STRONG
	INTER coded c-blocks with different motion vectors and both IC parameters different

	7
	DCM_IC_INTERMED
	INTER coded c-blocks with the same motion vector and both IC parameters different

	8
	DCM_IC_WEAK
	INTER coded c-blocks with different motion vectors and at least one IC different parameter

	32
	DCM_BS_QUARTER
	Special mode to signal a DCM_MOT_DISC boundary inside the right/bottom c-block caused by a motion share of 1 pixel (in addition to signaling the regular mode for the boundary between the two 4x4 c-blocks)

	64
	DCM_BS_HALF
	Special mode to signal a DCM_MOT_DISC boundary inside the right/bottom c-block caused by a motion share of 2 pixels (in addition to signaling the regular mode for the boundary between the two 4x4 c-blocks)

	128
	DCM_DENOISE_THIS_BLOCK
	Special mode to signal that all pixels in a 4x4 c-block should be denoised

When the c-block is part of an 8x8 transform coded block, the number of coefficients count for the c-block is equivalent to the number of coefficients of the 8x8 block. When the c-block is a 4x4 transform coded block, the number of coefficients in the c-block is equivalent to the number of coefficients of the 4x4 block multiplied by the factor ndf_4x4_mult.
The filter modes are decided as follows:

int LoopFilterOvercomplete3::mode_decision_4x4(PredBlk *mvA, PredBlk *mvB, int ncoeffA, int ncoeffB, int mth, int i, int mvshare_type, int chroma)

{

 int mode = DCM_SKIP;

 int bs_inside=0;

 int ic_scale_diff,ic_dc_diff,mot_diff; // to help refine for IC modes

 ic_dc_diff=!(mvA->equal_ic_DC(mvB)); // IC offset difference across the block boundary

 ic_scale_diff=!(mvA->equal_ic_scale(mvB)); // IC scale difference across the block boundary

 mot_diff=!(mvA->equal_mot(mvB)); // Motion difference across the block boundary

 if (mvA->intra != NULL || mvB->intra != NULL)

 {

 mode = DCM_INTRA_QUANT; // due to intra

 }

 else if (ncoeffA + ncoeffB != ZERO)

 {

 if (ncoeffA + ncoeffB >= ndf_signif_cnt)

 {

 mode = DCM_PRED_SIGNIF;

 }

 else if (mvA->soft_equal(mvB, mth) == FALSE)

 {

 mode = DCM_PRED_MOT;

 }

 else

 {

 mode = DCM_PRED_QUANT; // due to pred. quantization

 }

 }

 else if((param.ndf_ic_refine==TRUE)&&(ic_dc_diff&&ic_scale_diff))

 {

 if(mot_diff)

 mode = DCM_IC_STRONG;

 else

 mode = DCM_IC_INTERMED;

 }

 else if ((param.ndf_ic_refine==TRUE)&&((ic_dc_diff||ic_scale_diff)&&mot_diff))

 {

 mode = DCM_IC_WEAK;

 }

 else if (mvA->soft_equal(mvB, mth) == FALSE)

 mode = DCM_MOT_DISC;

 else

 mode = DCM_SKIP;

 if(mvshare_type==2 && chroma==0 && (i&1)==0)

 {

 bs_inside = 2;

 }

 else if(mvshare_type>2 && chroma==1)

 {

 bs_inside = 2;

 }

 else if(mvshare_type>0 && chroma==1)

 {

 bs_inside = 1;

 }

 if (bs_inside == 1)

 mode |= DCM_BS_QUARTER;

 else if (bs_inside == 2)

 mode |= DCM_BS_HALF;

 return mode;

}

Note that ‘i’ means the horizontal or vertical block position of a c-block

In addition, if a c-block is INTRA coded or if the number of coefficients in a c-block is greater than ndf_signif_cnt, then all the pixels in the c-block are selected for denoising. This is signaled using the special mode DCM_DENOISE_THIS_BLOCK.

Luma:

 if (ncoeffA > ndf_signif_cnt || mf->get_pblk(i >> ONE, j >> ONE)->intra != NULL)

 {

 lumaH[width * i + j] |= DCM_DENOISE_THIS_BLOCK;

 lumaV[width * i + j] |= DCM_DENOISE_THIS_BLOCK;

 }

Chroma:

 if (ncoeffA > ndf_signif_cnt || mf->get_pblk(i, j)->intra != NULL)

 {

 chromaH[c][width2 * i + j] |= DCM_DENOISE_THIS_BLOCK;

 chromaV[c][width2 * i + j] |= DCM_DENOISE_THIS_BLOCK;

 }

Note that ‘i’ and ‘j’ represent the horizontal and vertical block position of the c-block respectively.

6.9.1.2 NDF operation

NDF transforms the decoded frame y M times with M different transforms in order to obtain M sets of transform coefficients. This is shown in Figure 32(a) for the case of M=16. The expansive set of transform coefficients resulting from this operation are termed overcomplete transform coefficients.

The coefficients are thresholded (denoised) using a set of thresholds derived from NDF modes. The thresholded coefficients are then inverse-transformed to obtain M estimates, which are then combined and masked to obtain an overall denoised estimate. If ndf_two_rounds is set, the operation is repeated where the overcomplete transform coefficients of the denoised estimate is used to derive a refined denoising rule for the overcomplete transform coefficients of y (Figure 32(b)).

For luma, when ndf_trsf_8x8 equals to 1, M is equal to 64. Else, M is equal to 16. For chroma, M is always equal to 16.

[image: image188.emf]Coefficient

denoising

Weighted inverse

Masking

1 16 1 1

ˆ

,...,

ˆ

 

k k

x H x H

 

, , ,

1

i

T T

k k

c c

, 16 , 1

ˆ

,...,

ˆ

k

u

ˆ

k

x

ˆ

Transform

16 1

,..., H H

y

y H y H

16 1

,...,

y x



0

ˆ

Transform

) 1 (

 

k

(a)

Executed for k=0.

(b)

Executed for k=1,2.

y H y H

16 1

,...,

16 1

,..., H H

Figure 32: NDF data flow with 4x4 block transform.
6.9.1.3 NDF transforms

Each transform operation is computed with a 4x4 or 8x8 denoising transform kernel applied to the decoded frame by starting at a particular shift. The one dimensional transform kernel is:

[image: image189.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

=

7

17

17

7

13

13

13

13

17

7

7

17

13

13

13

13

k

unless ndf_trsf_8x8 equals to 1 and the component is luma in which case

[image: image190.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

=

3

9

15

19

19

15

9

3

7

17

17

7

7

17

17

7

15

19

3

9

9

3

19

15

13

13

13

13

13

13

13

13

9

3

19

15

15

19

3

9

17

7

7

17

17

7

7

17

19

15

9

3

3

9

15

19

13

13

13

13

13

13

13

13

k

The two dimensional transform kernel is obtained by applying this 1-D kernel over columns and then over rows.

In order to generate the expansive set of coefficients, the two dimensional transform resulting from this kernel is applied at all shifts to the decoded frame. As illustrated in Figure 33 for 4x4 block transform, one can think of the expansive transform operation as applying M frame-wide (except for boundaries) transforms to the decoded frame.

 SHAPE * MERGEFORMAT

Figure 33: Tiling of the decoded frame (pixels represented as a dense grid) using a 4x4 block transform kernel in order to generate 16 transforms. The first transform is obtained by applying the transform kernel to the frame at shift (0,0). The second transform is obtained by applying the transform kernel at shift (0,1). The
[image: image192.wmf]th

i

transform (
[image: image193.wmf]16

1

£

£

i

) is obtained by applying the transform kernel at shift
[image: image194.wmf])

4

%

,

4

/

(

i

i

, resulting in 16 different frame-wide orthonormal transforms

The 4x4 transform kernel is an integer and invertible transform, i.e.,
[image: image195.wmf]I

´

=

676

k

k

T

, where
[image: image196.wmf]I

 is the 4x4 identity matrix. NDF computations are done to 32 bit integer precision. It can be seen that after a forward/inverse 2-D transform, using the given kernel, values are scaled by

DCT_BASIS_ENERGY=676.
The renormalization required for the scaling due to a forward followed by an inverse transform is done during the normalization step discussed in 7.9.1.5 by the amount

DCT_NORM=676*676.

The 8x8 transform kernel (used for luma when ndf_trsf_8x8 equals to 1) is an integer and invertible transform, i.e.,
[image: image197.wmf]I

´

=

1352

k

k

T

, where
[image: image198.wmf]I

 is the 8x8 identity matrix. For 32 bit integer implementation, values are incremented by 1 and right shifted by 1 bit after each forward/inverse 1-D transform to avoid overflow. So with the 8x8 transform kernel, a similar normalization step is performed but with

DCT_BASIS_ENERGY=1352/4, and

DCT_NORM=1352*1352/16.

The renormalization is carried out in conjunction with weighting. In order to ensure that the transform and weighting computations fit to the allocated bit depth, truncation is utilized during the computation of the inverse transform. The forward 2D transform is carried out at full integer precision. Truncation (right-shifting) is carried out before the last 1-D transform step during the inverse transform.

	Step
	Output truncation

	Forward column
	No truncation

	Forward row
	No truncation

	Weighting (Numerator)
	No truncation

	Inverse row
	Truncation by 6 bits

	Inverse column
	No truncation

	Weighting (Denominator) & Re-normalization
	No truncation

6.9.1.4 NDF thresholding

In the first iteration (k=1) the
[image: image199.wmf]th

i

 d-block of transform coefficients are thresholded using a threshold value
[image: image200.wmf]i

T

 that is specific for that d-block. Let
[image: image201.wmf])

(

j

d

i

,
[image: image202.wmf]16

,

,

1

K

=

j

(for 4x4 block transform), denote the transform coefficients of the
[image: image203.wmf]th

i

 d-block. The thresholded coefficients
[image: image204.wmf],

1

)),

(

(

=

k

j

d

i

k

t

 are determined as

[image: image205.wmf]î

í

ì

>

=

otherwise

T

j

d

j

d

j

d

i

i

i

i

,

0

|

)

(

|

),

(

))

(

(

1

t

.

The DC coefficient is not thresholded and is left intact.

If ndf_two_rounds is set then the second iteration takes place (k=2) and new thresholded coefficients are computed. In this case the results of the first iteration can be thought of as generating better thresholds to be used in the second iteration. Let
[image: image206.wmf])

(

j

e

i

,
[image: image207.wmf],

16

,

,

1

K

=

j

 denote the transform coefficients of the
[image: image208.wmf]th

i

 d-block of the denoised estimate after the first iteration. The thresholded coefficients
[image: image209.wmf],

2

)),

(

(

=

k

j

d

i

k

t

 are determined as

[image: image210.wmf]î

í

ì

>

=

otherwise

T

j

e

j

d

j

d

i

i

i

i

,

0

2

/

|

)

(

|

),

(

))

(

(

2

t

.
The DC coefficient is not thresholded and is left intact.

The threshold
[image: image211.wmf]i

T

 that is used in thresholding the coefficients of d-block i is determined using the filter modes. The block boundary between two c-blocks determines the filter mode for that c-block boundary. This filter mode in turn determines a threshold for all the d-blocks that overlap this boundary. The threshold is obtained via

*thres=lum_threshold_values[mode];

for luma, and

*thres=chr_threshold_values[mode];

for chroma.

If d-block i overlap multiple c-block boundaries the threshold
[image: image212.wmf]i

T

 is determined by the maximum of the corresponding mode based thresholds. The thresholds for each mode are programmable and are derived from the tables lum_threshold_table, chr_threshold_table, and a master threshold value, which are set before a call into the denoising filter:

void LoopFilterOvercomplete3::calc_thres_values(int threshold, bool is_luma)

{

 int i;

 int (* threshold_table)[2] = (is_luma) ? lum_threshold_table : chr_threshold_table;

 int *threshold_values = (is_luma) ? lum_threshold_values : chr_threshold_values;

 for (i = 0; i < NUM_LOOP_MODES3; i++)

 {

 int val = threshold_table[i][0];

 int den = threshold_table[i][1];

 assert(val != INVALID_THRES);

 assert(den >= 1);

 threshold_values[i] = (val * threshold + den / 2) / den;

 }

}
If d-block i does not overlap any c-block boundaries it may still get thresholded. Such a d-block completely overlaps a c-block and if that c-block was signaled using the special mode DCM_DENOISE_THIS_BLOCK, then the d-block will get thresholded. The threshold value is determined as the maximum of the two thresholds induced by the filter-modes of the c-block boundaries to the left and top of d-block i.

6.9.1.5 NDF combination and masking

After coefficients of all transform blocks at all shifts are thresholded, 16 (or 64) sets of transform coefficients are generated. These transform coefficients are then inverse transformed to generate 16 (or 64) interim estimates. The interim estimates are combined to form an overall estimate. The combination is accomplished by a linear weighted combination of the interim estimates.

The combination is accomplished as follows. First a weight is computed based on the number of nonzero coefficients for each thresholded block and the thresholded coefficients are multiplied by this weight. The weights are inversely proportional to the number of nonzero coefficients. Since the DC coefficient is never thresholded, DC coefficient is always counted as a nonzero coefficient (even if its actual value is 0) and the number of nonzero coefficients is never equal to zero. If ndf_weighting is equal to 0, the weight computation is disabled and weight is always equal to 1.
The weighted coefficients are inverse transformed (without normalization) and multiple estimates for a pixel are combined. The weights from each estimate are also combined and a normalization step is carried out. This normalization step also includes the normalization for the transform basis functions.

During this step, masking is also applied and depending on the value of the mask at a given pixel, input pixel values are changed to the denoised values or retained as is. The masking step avoids overfiltering of denoised pixels that are motion compensated into the current frame.

The mask values are determined using filter modes determined at c-block boundaries. Each c-block boundary induced filter mode results in a mask extent of 0 (DCM_SKIP only), 1, or 2 pixels. The extent value determines the pixels around the c-block boundary for which the mask value is one. The extent is obtained via

*extent=lum_extent_values[mode];

for luma, and

*extent=chr_extent_values[mode];

for chroma.

 Figure 34 illustrates the pixels to be masked around a vertical c-block boundary for extent=1 and extent=2.

[image: image213.emf]Vertical c-block

boundary

Mask of pixels for the

vertical c-block boundary,

with

extent=1

.

Vertical c-block

boundary

Mask of pixels for the

vertical c-block boundary,

with

extent=2

.

Figure 34: Mask determination for a vertical c-block boundary.

Horizontal c-block boundaries determine mask values in a similar fashion.

The extent values for each mode are programmable and are derived from the tables lum_extent_table, and chr_extent_table, which are set before a call into the denoising filter:

void LoopFilterOvercomplete3::calc_extent_values(bool is_luma)

{

 int i;

 int *table = (is_luma) ? lum_extent_table : chr_extent_table;

 int *values = (is_luma) ? lum_extent_values : chr_extent_values;

 for (i = 0; i < NUM_LOOP_MODES3; i++)

 {

 int val = table[i];

 assert(val != INVALID_EXTENT);

 values[i] = val;

 }

}
If a special mode is present on top of a regular mode (0 to 8), the denoising mask is set for some pixels in addition to the regular mode. If the special mode DCM_BS_QUARTER is set, another 4x4 boundary is recognized to have occurred at a 1-pixel shift to the right/bottom of the current c-block boundary and this boundary is treated as a boundary with the mode DCM_MOT_DISC. If the special mode DCM_BS_HALF is set, another 4x4 boundary is recognized to have occurred at a 2-pixel shift to the right/bottom of the current c-block boundary and this boundary is treated as a boundary with the mode DCM_MOT_DISC. If the special mode DCM_DENOISE_THIS_BLOCK is set, the mask is set for all pixels in the c-block to the right/bottom of the current c-block boundary.

6.9.1.6 NDF default values for threshold and extent parameters

The default values for the threshold and extent parameters are stored in the tables

lum_thres_adpround[NUM_LOOP_MODES],

lum_extent[NUM_LOOP_MODES],

for luminance

chr_thres_adpround[NUM_LOOP_MODES],

chr_extent[NUM_LOOP_MODES],

for chrominance. These values are determined as integers indicating percentages (with hundred percent corresponding to the integer 100). The default values for luminance are determined as

int lum_thres_adpround[NUM_LOOP_MODES] = {0, 36, 32, 18, 32, 16, 22, 18, 6};
const int BSIZE=4;

const int LG_EXT=BSIZE/2;

const int SM_EXT=BSIZE/4;

int lum_extent[NUM_LOOP_MODES] = {0, LG_EXT, LG_EXT, SM_EXT, LG_EXT, SM_EXT, LG_EXT, SM_EXT, SM_EXT};
and for chrominance as

int chr_thres_adpround[NUM_LOOP_MODES] = {0, 30, 16, 14, 16, 8, 16, 14, 4};
const int CLG_EXT=BSIZE/2;

const int CSM_EXT=BSIZE/4;

int chr_extent[NUM_LOOP_MODES] = {0, CLG_EXT, CLG_EXT, CSM_EXT, CLG_EXT, CSM_EXT, CLG_EXT, CSM_EXT, CSM_EXT};
6.9.2 Adaptive denoising filter
When coefficients and offsets are transmitted and decoded, they are used to filter each color component of the image signal resulting from the non-linear denoising, see section 7.9.1. .

6.9.2.1 Precision of the filter coefficients
For each color component c, the syntax element filter_precision[c] specifies the precision LDF_Precision[c] according to the Table 24:
Table 24 – LDF_Precison[c] versus filter_precision[c]

	filter_precision[c]
	LDF_Precison[c]

	0
	8

	1
	16

	2
	32

	3
	64

	4
	128

	5
	256

	6
	512

	7
	1024

	8
	2048

	9
	4096

	10
	8192

	11
	16384

6.9.2.2 Adaptive denoising process in the case that coefficients of a 2D FIR filter are transmitted

6.9.2.2.1 Coefficient derivation

The coefficients of the adaptive denoising filter are derived as follows:

[image: image214.wmf]ï

î

ï

í

ì

=

Ù

=

+

=

else

2

1)

-

_y

t_size_rec

filter_hin

(

cy

2

1)

-

_x

t_size_rec

filter_hin

(

cx

;

y][cx]

t_rec[c][c

filter_hin

;

[c]

_Precision

L

y][cx]

t_rec[c][c

filter_hin

c][cy][cx]

coeff_rec[

DF

[image: image215.wmf]ï

î

ï

í

ì

=

Ù

=

=

else

2

1)

-

d_y

t_size_pre

filter_hin

(

cy

2

1)

-

d_x

t_size_pre

filter_hin

(

cx

;

cy][cx]

t_pred[c][

filter_hin

;

rec]

y_rec][ox_

t_rec[c][o

filter_hin

-

cy][cx]

t_pred[c][

filter_hin

]

[c][cy][cx

coeff_pred

[image: image216.wmf]2

1)

-

_y

t_size_rec

filter_hin

(

oy_rec

2

1)

-

_x

t_size_rec

filter_hin

(

ox_rec

with

=

Ù

=

[image: image217.wmf]ï

î

ï

í

ì

=

Ù

=

+

+

=

else

2

1)

-

_y

t_size_qpe

filter_hin

(

cy

2

1)

-

_x

t_size_qpe

filter_hin

(

cx

;

y][cx]

t_qpe[c][c

filter_hin

;

]

d][cx_pred

[c][cy_pre

coeff_pred

y][cx]

t_qpe[c][c

filter_hin

c][cy][cx]

coeff_qpe[

[image: image218.wmf]2

1)

-

d_y

t_size_pre

filter_hin

(

oy_pred

2

1)

-

d_x

t_size_pre

filter_hin

(

ox_pred

with

=

Ù

=

6.9.2.2.2 Filtering

In a first step, the filtering is performed as follows:

[image: image219.wmf]ú

û

ù

ê

ë

é

-

+

ú

û

ù

ê

ë

é

-

+

×

=

å

å

=

=

2

1

-

_x

t_size_rec

filter_hin

i

x

2

1

-

_y

t_size_rec

filter_hin

j

y

[c]

age

decoded_im

c][j][i]

coeff_rec[

[x]

mage[c][y]

filtered_i

1

-

_y

t_size_rec

filter_hin

0

j

1

-

_x

t_size_rec

filter_hin

0

i

[image: image220.wmf]ú

û

ù

ê

ë

é

-

+

ú

û

ù

ê

ë

é

-

+

×

+

å

å

=

=

2

1

-

d_x

t_size_pre

filter_hin

i

x

2

1

-

d_y

t_size_pre

filter_hin

j

y

[c]

pred_image

[c][j][i]

coeff_pred

1

-

d_y

t_size_pre

filter_hin

0

j

1

-

d_x

t_size_pre

filter_hin

0

i

[image: image221.wmf]ú

û

ù

ê

ë

é

-

+

ú

û

ù

ê

ë

é

-

+

×

+

å

å

=

=

2

1

-

_x

t_size_qpe

filter_hin

i

x

2

1

-

_y

t_size_qpe

filter_hin

j

y

[c]

qpe_image

c][j][i]

coeff_qpe[

1

-

_y

t_size_qpe

filter_hin

0

j

1

-

_x

t_size_qpe

filter_hin

0

i

[image: image222.wmf]]

t_offset[c

filter_hin

+

In a second step, the filtered signal is normalized and clipped as follows:

[image: image223.wmf]ï

ï

ï

î

ï

ï

ï

í

ì

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+

>

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+

<

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+

=

else

;

sion[c]

/LDF_Preci

2

ion[c]

LDF_Precis

[x]

mage[c][y]

filtered_i

floor

255

sion[c]

/LDF_Preci

2

ion[c]

LDF_Precis

[x]

mage[c][y]

filtered_i

floor

255;

0

sion[c]

/LDF_Preci

2

ion[c]

LDF_Precis

[x]

mage[c][y]

filtered_i

floor

0;

]

ed[c][y][x

mage_clipp

filtered_i

In the formula above, filtered_image[c] is the color component c after the adaptive denoising filtering process, decoded_image[c] is the color component c of the decode image, pred_image is the color component c of the prediction image, and qpe_image the color component c of the quantized prediction error image.

c=0 corresponds to the luma component, c=1 and c=2 correspond to the two chroma components.

6.9.2.3 Adaptive denoising process in the case that coefficients of two 1D FIR filters are transmitted

6.9.2.3.1 Coefficient derivation

The coefficients of the adaptive denoising filter are derived as follows:

[image: image224.wmf]ï

î

ï

í

ì

=

+

=

else

2

1)

-

_x

t_size_rec

filter_hin

(

cx

;

[cx]

t_rec_x[c]

filter_hin

;

ion[c]

LDF_Precis

[cx]

t_rec_x[c]

filter_hin

x[c][cx]

coeff_rec_

[image: image225.wmf]ï

î

ï

í

ì

=

+

=

else

2

1)

-

_y

t_size_rec

filter_hin

(

cy

;

[cy]

t_rec_y[c]

filter_hin

;

[c]

_Precision

L

[cy]

t_rec_y[c]

filter_hin

y[c][cy]

coeff_rec_

DF

[image: image226.wmf]ï

î

ï

í

ì

=

-

=

else

2

1)

-

d_x

t_size_pre

filter_hin

(

cx

;

][cx]

t_pred_x[c

filter_hin

;

[ox_rec]

t_rec_x[c]

filter_hin

][cx]

t_pred_x[c

filter_hin

_x[c][cx]

coeff_pred

[image: image227.wmf]2

1)

-

_x

t_size_rec

filter_hin

(

ox_rec

with

=

[image: image228.wmf]ï

î

ï

í

ì

=

-

=

else

2

1)

-

d_y

t_size_pre

filter_hin

(

cy

;

][cy]

t_pred_y[c

filter_hin

;

[oy_rec]

t_rec_y[c]

filter_hin

][cy]

t_pred_y[c

filter_hin

_y[c][cy]

coeff_pred

[image: image229.wmf]2

1)

-

_y

t_size_rec

filter_hin

(

oy_rec

with

=

[image: image230.wmf]ï

î

ï

í

ì

=

+

=

else

2

1)

-

_x

t_size_qpe

filter_hin

(

cx

;

[cx]

t_qpe_x[c]

filter_hin

;

red]

_x[c][ox_p

coeff_pred

][cx]

t_pred_x[c

filter_hin

x[c][cx]

coeff_qpe_

[image: image231.wmf]2

1)

-

d_x

t_size_pre

filter_hin

(

ox_pred

with

=

[image: image232.wmf]ï

î

ï

í

ì

=

+

=

else

2

1)

-

_y

t_size_qpe

filter_hin

(

cy

;

[cy]

t_qpe_y[c]

filter_hin

;

red]

_y[c][oy_p

coeff_pred

][cy]

t_pred_y[c

filter_hin

y[c][cy]

coeff_qpe_

[image: image233.wmf]2

1)

-

d_y

t_size_pre

filter_hin

(

oy_pred

with

=

6.9.2.3.2 Filtering

In a first step, the horizontal filtering is performed as follows:

[image: image234.wmf][

]

[

]

ú

û

ù

ê

ë

é

-

+

×

=

å

=

2

1

-

_x

t_size_rec

filter_hin

i

x

y

c

age

decoded_im

x[c][i]

coeff_rec_

y][x]

mage_x[c][

filtered_i

_

_

int_

_

0

x

rec

size

h

filter

i

[image: image235.wmf][

]

[

]

ú

û

ù

ê

ë

é

-

+

×

+

å

2

1

-

d_x

t_size_pre

filter_hin

i

x

y

c

pred_image

_x[c][i]

coeff_pred

_

_

int_

_

x

pred

size

h

filter

i

[image: image236.wmf][

]

[

]

ú

û

ù

ê

ë

é

-

+

×

=

+

å

=

2

1

-

_x

t_size_qpe

filter_hin

i

x

y

c

qpe_image

x[c][i]

coeff_qpe_

_

_

int_

_

0

x

qpe

size

h

filter

i

In a second step, the horizontally filtered signal is normalized and clipped as follows:

[image: image237.wmf]ï

ï

ï

î

ï

ï

ï

í

ì

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+

>

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+

<

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+

=

else

;

sion[c]

/LDF_Preci

2

ion[c]

LDF_Precis

y][x]

mage_x[c][

filtered_i

floor

255

sion[c]

/LDF_Preci

2

ion[c]

LDF_Precis

y][x]

mage_x[c][

filtered_i

floor

255;

0

sion[c]

/LDF_Preci

2

ion[c]

LDF_Precis

y][x]

mage_x[c][

filtered_i

floor

0;

[x]

ed_x[c][y]

mage_clipp

filtered_i

In a third step, the vertical filtering is performed as follows:

[image: image238.wmf][

]

x

2

1

-

_y

t_size_rec

filter_hin

j

y

[c]

ed_x

mage_clipp

filtered_i

y[c][j]

coeff_rec_

[y][x]

mage_xy[c]

filtered_i

_

_

int_

_

0

ú

û

ù

ê

ë

é

-

+

×

=

å

=

y

rec

size

h

filter

j

[image: image239.wmf][

]

x

2

1

-

d_y

t_size_pre

filter_hin

j

y

[c]

_image

prediction

_y[c][j]

coeff_pred

_

_

int_

_

0

ú

û

ù

ê

ë

é

-

+

×

+

å

=

y

pred

size

h

filter

j

[image: image240.wmf][

]

x

2

1

-

_y

t_size_qpe

filter_hin

j

y

[c]

qpe_image

y[c][j]

coeff_qpe_

_

_

int_

_

0

ú

û

ù

ê

ë

é

-

+

×

=

+

å

=

y

qpe

size

h

filter

j

[image: image241.wmf]]

t_offset[c

filter_hin

+

In a fourth step, the horizontally and vertically filtered signal is normalized and clipped as follows:

[image: image242.wmf]ï

ï

ï

î

ï

ï

ï

í

ì

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+

>

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+

<

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+

=

else

;

sion[c]

/LDF_Preci

2

ion[c]

LDF_Precis

[y][x]

mage_xy[c]

filtered_i

floor

255

sion[c]

/LDF_Preci

2

ion[c]

LDF_Precis

[y][x]

mage_xy[c]

filtered_i

floor

255;

0

sion[c]

/LDF_Preci

2

ion[c]

LDF_Precis

[y][x]

mage_xy[c]

filtered_i

floor

0;

]

ed[c][y][x

mage_clipp

filtered_i

In the formula above, filtered_image[c] is the color component c after the non-linear denoising filter process, decoded_image[c] is the color component c of the decode image, pred_image is the color component c of the prediction image, and qpe_image the color component c of the quantized prediction error image.

c=0 corresponds to the luma component, c=1 and c=2 correspond to the two chroma components.

6.9.2.4 Position of the adaptive denoising filter
In the case that the flag adaptive_denoising_filter_inloop equals 0, the position of the adaptive denoising filter is out of the prediction loop. In this case, the signal resulting from the adaptive denoising is not used for further predictions.
In the case that the flag adaptive_denoising_filter_inloop equals 1, the position of the adaptive denoising filter is in the prediction loop. In this case, the signal resulting from the adaptive denoising is used for further predictions
6.9.3 Deblocking Filter

6.9.3.1 Determination of samples to be filtered

The filtering process is applied to all boundaries of 4x4 blocks except for inter luma 8x8 transform blocks. The filtering process is applied to a set of eight samples across the boundary denoted as pi and qi with i = 0..3 as shown in Figure 35.

[image: image243.emf]p

0

p

1

p

2

p

3

q

0

q

1

q

2

q

3

p

0

p

1

p

2

p

3

q

0

q

1

q

2

q

3

Figure 35: Denotation of samples across a block boundary.

(a) The samples p0, p1, q0 and q1 are NOT filtered if the NDF mode equal to DCM_SKIP, as specified in section 7.9.1.1.

(b) The samples p0 and q0 are filtered if

| p0 - q0 | <
[image: image244.wmf]a

(index_a)

| p1 - p0 | <
[image: image245.wmf]b

 (index_b)

| q1 - q0 | <
[image: image246.wmf]b

 (index_b)

(c) The sample p1 , q1 is filtered if additionally to (a),

 | p2 - p0 | <
[image: image247.wmf]b

 (index_b)

 | q2 - q0 | <
[image: image248.wmf]b

 (index_b)
The variables index_a and index_b are derived as follows.

index_a = clip (qp + dbf_offset_a - 16, 0, 127)

index_b = clip(qp + dbf_offset_b - 16, 0, 127)

qp is a quantization parameter. For luma and chroma samples, qp = qpluma and qp = qpchroma are used, respectively. The values of dbf_offset_a and dbf_offset_b are syntax elements as specified in section 6.2.

The threshold values are derived from the Table 25.

Table 25 – Derivation of offset dependnt threshold variables
[image: image249.wmf]a

and
[image: image250.wmf]b

 from index_a and index_b.

[image: image251.emf]0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 3 3 3 3 3 3 4 4 4

0 1 1

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

4 5 5 5 5 6 6 6 6 7 7 7 8 8 9 9 9 10 10 11 11 12 12 13 14 14 15 16 16 17 18 19

1 1 1 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 7 7

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

20 20 21 22 23 24 26 27 28 29 31 32 33 35 36 38 40 42 44 45 48 50 52 54 57 59 62 65 68 71 74 77

7 7 7 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 12 13 13

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

80 84 88 92 96 100 105 109 114 119 125 130 136 142 148 155 162 169 176 184 193 201 210 219 229 239 250 255 255 255 255 255

13 13 13 14 14 14 14 14 15 15 15 15 15 15 16 16 16 16 16 17 17 17 17 17 18 18 18 18 18 18 19 19

index_a (for), index_b (for)

index_a (for), index_b (for)

index_a (for), index_b (for)

index_a (for), index_b (for)

















  











6.9.3.2 Deblocking filter using fixed filter coefficients

The deblocking filter process is invoked for the luma and chroma components separately. For each block and each component, horizontal edges are filtered first and vertical edges are filtered sequentially. The filtered samples are not used for the filtering operation of same direction.

The filtered result samples p’0, q’0 are derived by

delta = clip (((p1 + ((p0 + q0) << 2) - q1) + 4) >> 3) - p0, -thd , thd)

p’0 = p0 + delta

delta = clip (((q1 + ((q0 + p0) << 2) - p1) + 4) >> 3) - q0, -thd , thd)

q’0 = q0 + delta

where the threshold thd is depending on the values of index_a and bS as specified in the Table 26.

Table 26 – Derivation of the threshold value thd as a function of index_a and bS.

[image: image252.emf]0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bS=1

0 0

bS=2

0 0

bS=3

0 0

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

bS=1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

bS=2

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

bS=3

0 0 0 1 2 2 2

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

bS=1

1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3

bS=2

1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 5

bS=3

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

bS=1

4 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 8 8 8 9 9 9 10 10 11 11 12 12 12 13 13 13

bS=2

5 5 5 6 6 6 6 7 7 7 8 8 8 9 9 9 10 10 11 11 12 12 12 13 13 13 14 14 14 15 16 17

bS=3

8 8 8 9 9 9 10 10 11 11 12 12 12 13 13 13 14 14 15 15 16 16 17 17 18 19 20 20 21 22 23 25

index_a

index_a

index_a

index_a

If bS = 0, the threshold thd is equal to 0 for all of index_a values.

The bS value is determined as follows.

If (deblocking_filter&8) is equal to 1,

bS value is determined as mode_to_bs[NDF modes] = { 0, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0 }.

Othrewise,

bS = 2 is used for all of the NDF modes except for DCM_SKIP.

where the deblocking filter mode is specified in section 7.9.1.1.
The filtered result samples p1, q1 are derived by

If (deblocking_filter&4) is equal to 1,

delta = clip (p2*7 + p1*3 + p0*5 + q0 + 8) >> 4) - p1, -thd , thd)

Otherwise,

delta = clip ((p2 << 1) + p0 + q0 + 2) >> 2) - p1, -thd , thd)

p’1 = p1 + delta

If (deblocking_filter&4) is equal to 1,

delta = clip (q2*7 + q1*3 + q0*5 + p0 + 8) >> 4) - q1, -thd , thd)

Otherwise,

delta = clip ((q2 << 1) + p0 + q0 + 2) >> 2) - q1, -thd , thd)

q’1 = q1 + delta

6.10 Arithmetic decoder

6.10.1 Probability estimation

Probabilities are represented by 16-bit unsigned integers. They represent the probability of a ‘0’ symbol. The value 0x8000 represents an estimate of 50%. For syntax elements that use a fixed 50/50 probability distribution, the initial probability is set to 0x8000. For all syntax elements, the initial probability for the k-th context is given by the element initial_prob in the sequence header.

For the elements coded using a unary representation the initial probability may be adapted as a suffix size is computed according to:

init_suffix(context) {

 suffix_size[context] = 0;

 while (p[context] < 0x2000) {

 suffix_size[context]++;

 p[context] = 2*p[context] – ((p[context]*p[context] + 0x8000) >> 16);

 }

}

The probability update process is as follows:

update(context, symbol) {

 if (val == 0)

 p[context] -= (p[context] – 0x10000 + ac_exp_limit +
 (1<<(loss_rate-1))) >> loss_rate;

 else

 p[context] -= (p[context] – ac_exp_limit + (1<<(loss_rate-1))) >> loss_rate;

}

The suffix size is adapted during coding as follows:

update_suffix(context) {

 if (p[context] < 0x2000) {

 p[context] = 2*p[context] – 0x400;

 suffix_size[context]++;

 }

 else if (p[context] > 0x3c00 && suffix_size[context] != 0) {

 p[context] = (p[context] + 0x400) >> 1;

 suffix_size[context]--;

 }

}

6.10.2 Core engine

There is a core engine dedicated to each substream in the frame. For each substream ss in the payload, a core engine ss is initialized to decode bits from substream_content[ss]. Substream_content[] is initialized using final_all_frame_substreams(), called at the start of frame processing.

At the beginning of each frame, each core engine is initialized as follows:

ac_init() {

 R = 0xfffe;

 V = getbits(17);

}

To decode a symbol, the following procedure is applied:

decode_symbol(context) {

 R0 = (R * p[context] + 0x8000) >> 16;

 R0 = R0 << 15;

 if (V < R0) {

 symbol = 0;

 R = R0;

 }

 else {

 symbol = 1;

 R = R – R0;

 V = V – R0;

 }

 while (R < 0x8000) {

 R = 2*R;

 V = 2*V + getbits(1);

 }

 update(context,symbol);

 return symbol;

}

For a symbol with fixed 50/50 probability the following process is used:

decode_symbol_fixed() {

 R0 = (R * 0x8000 + 0x8000) >> 16;

 if (V < R0) {

 symbol = 0;

 R = R0;

 }

 else {

 symbol = 1;

 R = R – R0;

 V = V – R0;

 }

 R = 2*R;

 V = 2*V + getbits(1);

 return symbol;

}

Note: the above process is equivalent to the more general case of decode_symbol where p[context] is equal to 0x8000 and no probability update is made.

For variables that use a unary encoding, the following process is used:

decode_symbol_unary(context) {

 symbol = 1;

 while (decode_symbol(context) == 1) {

 symbol += 1 << suffix_size[context];

 update_suffix(context);

 }

 for (i=suffix_size[context]-1; i>=0; i--)
 symbol += decode_symbol_fixed() << i;

 update_suffix(context);

 return symbol;

}

6.10.3 Superblock Synchronisation Points

When superblock_synchro is in effect, contexts are reset to values derived from superblock neighbours (left, top) at the start of each superblock. Context values are also saved at the end of each superblock. These operations are discussed in section 7.4.3.

6.10.4 Context definition

The codec includes in total 815 non "unused" contexts. Each context is labled with an index. To each of these contexts, a probability is assigned which is used and also updated in the arithmetic coding step. For each context, an initial probability is coded and transmitted in the sequence header.

Table 27 shows the indices of the contexts and the associated syntax elements, which are coded by the contexts.
Table 27– Context indices and associated syntax elements
	Index
	Description

	0-2
	zero_blk (luma intra)

	3-5
	zero_blk (chroma intra)

	6-8
	zero_blk (luma inter)

	9-11
	zero_blk (chroma inter)

	12-27
	coeff_val (type = 0)

	28-43
	coeff_val (type = 1)

	44-59
	coeff_val (type = 2)

	60-75
	coeff_val (type = 3)

	76
	zero_blk (motion data)

	77-78
	coeff_val (type = 4,5,6)

	79-81
	mv_pred_dir

	82
	unused

	83
	unused

	84-101
	ref_index

	102-106
	coeff_val (type = 4,5)

	107-109
	prediction_mode

	110-112
	prediction_mode_P1

	113-115
	prediction_mode_P2

	116-145
	ztree_node_both and ztree_node_left (type = 0)

	146-175
	ztree_node_both and ztree_node_left (type = 1)

	176-205
	ztree_node_both and ztree_node_left (type = 2)

	206-235
	ztree_node_both and ztree_node_left (type = 3)

	236-241
	ztree_node_both and ztree_node_left (type = 4)

	242-253
	ztree_node_both and ztree_node_left (type = 5)

	254-255
	ztree_node_both and ztree_node_left (type = 6)

	256
	prev_intra_pred_mode_flag

	257-261
	rem_intra_pred_mode_flag

	262-264
	intra_chroma_pred_mode

	265
	intra_chroma_pred_mode_1

	266
	intra_chroma_pred_mode_2

	267
	use_all_subpel_positions

	268
	subpel_positions_pattern_zero

	269
	subpel_positions_pattern

	270
	filter_pattern

	271
	diff_qfilter_coef_zero

	272
	diff_qfilter_coef

	273-275
	unused

	276-278
	prediction_mode_TP1

	279-281
	prediction_mode_TP2

	282-284
	prediction_mode_TB1

	285-287
	prediction_mode_TB2

	288-290
	motion_sharing_type_zero

	291
	prediction_dir_flag

	292
	filter_hint_size_rec_x, filter_hint_size_rec_y, filter_hint_size_pred_x, filter_hint_size_pred_y, filter_hint_size_qpe_x, filter_hint_size_qpe_y

	293
	filter_precision_zero, filter_hint_rec_zero, filter_hint_pred_zero, filter_hint_qpe_zero

	294
	filter_precision, filter_hint_rec, filter_hint_pred, filter_hint_qpe

	295
	unused

	296
	unused

	297
	unused

	298-309
	sip_type[3][4]

	310-311
	unused

	312-343
	ztree_node_both and ztree_node_left (type = 7)

	344-375
	ztree_node_both and ztree_node_left (type = 8)

	376-407
	ztree_node_both and ztree_node_left (type = 9)

	408-439
	ztree_node_both and ztree_node_left (type = 10)

	440
	AIF_mode_flag1

	441
	AIF_mode_flag2

	442-505
	coeff_val (type = 11)

	506-631
	ztree_node_both and ztree_node_left (type = 11)

	632-695
	coeff_val (type = 12)

	696-821
	ztree_node_both and ztree_node_left (type = 12)

6.10.5 Context generation

Some syntax elements have several contexts associated with them. The following subsections describe how the context is derived in those cases.

6.10.5.1 zero_blk

The zero_blk for coefficient values is calculated for each 4x4 block. The type of zero_blk is determined based on whether it is for luma or chroma, and whether it is an intra or inter block. The size of transform is not considered for determining the context of zero_blk to use. Four types of zero_blk are used for coefficients: luma intra, chroma intra, luma inter, and chroma inter. For each type of the zero_blk, one of three contexts may be selected based upon the value of the same element in neighboring blocks. Both the blocks to the top and to the left are considered. Let A be the value of the element in the block to the left, and B the value of the element in the block above. If both blocks lie outside the frame boundary, the context index is set to 1. If either block lies outside the frame boundary, the context is set to 2*(1-A) or 2*(1-B) depending on which block is available. If both blocks are available, the context index is set to 2-A-B.

[image: image253.emf]A

B

Current

block

Figure 36: Blocks used for context computation for zero_blk (coefficient values).
For the zero_blk of motion data, a single context is used.

6.10.5.2 coeff_val

For coeff_val, a context is derived for a k-th coefficient according to Table 28. For type 0 to 3 and 11, 12, the value j is initialized to 0 and incremented by N, after each non-zero coefficient is decoded in the decoding order as specified in Clause 5.19. N is equal to the absolute value of the non-zero coefficient decoded for type 0, 1 and 11, 12, and equal to 1 for type 2 and 3. For coefficients of the 16x16 blocks (type 7 to 10), the same contexts as the 8x8 case (type 11) are used. They are used four times separately, starting from the coefficient in the last quarter (type 10) with coefficient position 255.
Table 28 – Context generation for coeff_val

	Type
	k
	context

	0 to 3
	0 to 15
	27 + 16*type - j

	4, 5, 6
	0, 1
	77+k

	5
	2, 3
	77+ (k-2)

	4
	2
	102

	4
	3
	105

	5
	4, 5
	103 + (k-4)

	5
	6
	106

	11(and 7 to 10)
	0 to 63
	505 - j

	12
	0 to 63
	695 - j

6.10.5.3 mv_pred_dir

For mv_pred_dir one of three contexts is chosen based on the predictors available and, if only spatial predictors are available, the local gradient of the motion vector field.

If one of the predictors available is MV_PRED_TEMPORAL, context (81) is used. Otherwise, context choice is as follows:

Let A, B and C be the motion vectors in the neighborhood of the current block, as depicted in Figure 37. If |C-A| is smaller or equal to |C-B| then the second context (80) is used. Otherwise the first context (79) is used. The absolute difference between two motion vectors is defined as the horizontal absolute difference plus the vertical absolute difference plus the DC offset absolute difference plus the scale factor absolute difference. For bipredicted frames, the difference takes into account the motion vectors in both lists.

[image: image254.emf]C

A

B

Current

block

Figure 37: Motion vectors used for context determination.

6.10.5.4 prediction_mode

In a B-frame, the first and second bin is decoded using the context 107+(A&1)+(B&1), where A and B are the codes of first or second bin of prediction_mode in neighboring blocks according to Table 10. If a neighboring block falls outside picture boundaries, it is assumed to have a code 3.

In a P-frame, the first bin is decoded using the context 110+(A&1)+(B&1), where A and B are the code values of first bin of prediction_mode in neighboring blocks according to Table 9. If a neighboring block falls outside picture boundaries, it is assumed to have a code 1.

Note that in an I-frame the prediction_mode element is not decoded and is always assumed to have value ‘0’.

6.10.5.5 ref_index

If there are less than 2 entries in the reference frame list, no decoding is required and ref_index takes value ‘0’. Otherwise variables xA and xB are first derived as follows:

If block A is inside picture boundaries and not coded as intra, xA is the reference index used in block A. Otherwise, and if block B is inside picture boundaries and not coded as intra, xA is the reference index used in block B. If none of the above conditions are met, xA has a default value of ‘0’.

xB is derived in a similar fashion where A and B are exchanged.

If there are 2 entries in the reference frame list, the following applies. The least significant bit of the reference index is decoded using context 84+3*list+xA+xB.

If there are 3 entries in the reference frame list, the following appl ies. The most significant bit of the reference index is decoded using context 90+3*list+(xA>>1)+(xB>>1). If the value of the most significant bit is ‘0’, the least significant bit is decoded using context 84+3*list+(xA&1)+(xB&1). Otherwise the least significant bit is assigned a value ‘0’.

If there are 4 entries in the reference frame list, the following applies. The most significant bit of the reference index is decoded using context 90+3*list+(xA>>1)+(xB>>1). If the value of the most significant bit is ‘0’, the least significant bit is decoded using context 84+3*list+(xA&1)+(xB&1). Otherwise the least significant bit is decoded using context 87+3*list+(xA&1)+(xB&1).

6.10.5.6 motion_sharing_type_zero

If motion_sharing_enable is ‘0’ or mvshare_type(y, x) is 0, no decoding is required and mvshare_size[y][x][0] and mvshare_size[y][x][1] take value ‘0’, where x and y is horizontal and vertical block position of a current block shown in Figure 36. Otherwise the context 288 + (xA&1) + (xB&1) is used. The variables xA and xB are derived as follows:

 xA is set to ‘1’
if mvshare_size[y][x-1][0] is not ‘0’ and mvshare_type(y, x) is ‘1’ or

if mvshare_size[y][x-1][1] is not ‘0’ and mvshare_type(y, x) is ‘2’ or

if mvshare_size[y][x-1][0] or mvshare_size[y][x-1][1] is not ‘0’ and mvshare_type(y, x) is ‘3’ or

if prediction_mode[y][x-1] is ‘0(intra)’.

 xA is set to ‘0’
otherwise or if block A is outside the frame boundary.

 xB is set to ‘1’
if mvshare_size[y-1][x][0] is not ‘0’ and mvshare_type(y, x) is ‘1’ or

if mvshare_size[y-1][x][1] is not ‘0’ and mvshare_type(y, x) is ‘2’ or

if mvshare_size[y-1][x][0] or mvshare_size[y-1][x][1] is not ‘0’ and mvshare_type(y, x) is ‘3’ or

if prediction_mode[y-1][x] is ‘0(intra)’.

 xB is set to ‘0’
otherwise or if block B is outside the frame boundary.

6.10.5.7 zerotree_node_both

Each zerotree_node_both flag is decoded using a context determined by the zerotree type and the variable p used in the coeff_block syntax: base[type]+p where base[] = {116, 146, 176, 206, 236, 242, 254, 312, 344, 376, 408, 506, 696}.

6.10.5.8 zerotree_node_left

Each zerotree_node_left flag is decoded using a context determined by the zerotree type and the variable p used in the coeff_block syntax: base[type]+p where base[] = {117, 147, 177, 207, 237, 243, 255, 313, 345, 377, 409, 507, 697}.

6.10.5.9 sip_type

Each bit of the code of the sip type in Table 11, Table 12 and Table 13 is decoded using one of 3 context determined by the sip_type[i][ctx] of the neighbouring block above and to the left as shown in Figure 38. Note that i correspond to the first, second and 3rd bit of the code.

[image: image255.emf]

above

current

8x8

block

left

Figure 38: Neighbouring sip_type used for context determination.

The context is derived as in the following pseudo code
If block above and block left are intra blocks (and have sip_type) then

If both sip_type are SIP4x4, ctx=0

Else if both sip_type are SIP8x8 or both sip_type are SIP16x16, ctx=2

Else ctx=1

Else if only one block above or left is intra blocks (and have sip_type), then

If sip_type is SIP4x4, ctx=0

Else if sip_type is SIP8x8, ctx=2

Else ctx=1

Else ctx=1

mbcol

mbcur

Set up the search region populating it with reconstructed pixels where available and padding with the value of the DC_PRED mode when not available.

For the entire search region generate the list of SAD values with the appropriate template L5 , L9, or L17

Sort the list of SAD values

Average (with rounding) the N candidates corresponding to the N smallest SAD values and such that

SAD <= min_SAD + candidate_sad_threshold

For L5 repeat with the next 2x2 position until all 4x4 candidates are created.

For L9 repeat with the next 4x4 position until all 16x16 candidates are created.

For L17 repeat with the next 8x8 position until all 16x16 candidates are created

begin

end

2

1

Transform 1

Transform 2

Transform 4

Transform 3

Transform 5

Transform 13

S1

S2

T1

T2

U1

U2

� � � �

A1

A2

B1

B2

C2

D1

D2

R1

R2

12

16

Possible unused bits to guarantee byte-alignment of final yellow substream. (All other substreams not necessarily byte aligned.)

Size, in bits, of subsequent two (green and red, hatched) substreams. (Indicates where red and blue hatched substreams start).

bits to code this size: determined by size of subsequent 4 (hatched) substreams, including possible unused bits and this coded size.

Size, in bits, of 1st two (green and red) substreams. (Indicates where red and blue substreams start).

bits to code this size: determined by size of 1st 4 (solid) substreams and this coded size.

Size, in bits, of first four (solid) substreams. (Indicates where size of last four (hatched) substreams starts.)

bits to code this size: determined by size of complete frame payload,�including all sizes.

16

15

13

12

11

14

9

6

5

Superblocks in substream 0

Superblocks in substream 1

2

1

3

4

5

6

7

8

Possible unused bits to guarantee that end of red substream is byte aligned with end of frame payload.

Decoded 'backwards'

Decoded 'forwards'

10

C1

dcol

dcur

rcol

rcur

fcol

fcur

Prepared by NTT DOCOMO, Inc., NTT Corp, Panasonic, Technicolor, and Orange Labs
Page 1 of 107

Prepared by NTT DOCOMO, Inc., NTT Corp, Panasonic, Technicolor, and Orange Labs
Page 69 of 107

_1315132462.vsd
8x8
block

8x8
block

8x8
block

8x8
block

16x16
block

8x8
block

8x8
block

8x8
block

8x8
block

16x16
block

8x8
block

8x8
block

8x8
block

8x8
block

16x16
block

8x8
block

8x8
block

8x8
block

8x8
block

16x16
block

N=2

M=4

16x16
Y

8x8
U

8x8
V

16x16 block

_1329649895.unknown

_1329651854.unknown

_1329665512.unknown

_1329744396.unknown

_1329750309.unknown

_1329750542.unknown

_1329752567.unknown

_1330507176.unknown

_1330507525.unknown

_1330507632.unknown

_1331644217.vsd
a

b

c

d

k

16-k

l

16-l

_1330507538.unknown

_1330507563.unknown

_1330507379.unknown

_1330507395.unknown

_1330507322.unknown

_1330507309.unknown

_1330506966.unknown

_1330507054.unknown

_1330507079.unknown

_1329752613.unknown

_1329752122.unknown

_1329752238.unknown

_1329752529.unknown

_1329752182.unknown

_1329751995.unknown

_1329752027.unknown

_1329751899.unknown

_1329750412.unknown

_1329750439.unknown

_1329750462.unknown

_1329750422.unknown

_1329750390.unknown

_1329750402.unknown

_1329750356.unknown

_1329749492.unknown

_1329749793.unknown

_1329750275.unknown

_1329750301.unknown

_1329750059.unknown

_1329749563.unknown

_1329749731.unknown

_1329749527.unknown

_1329749557.unknown

_1329747215.unknown

_1329748977.unknown

_1329749470.unknown

_1329747282.unknown

_1329746936.unknown

_1329747076.unknown

_1329745156.unknown

_1329745172.unknown

_1329744857.unknown

_1329723492.unknown

_1329741952.unknown

_1329743987.unknown

_1329744146.unknown

_1329744380.unknown

_1329744093.unknown

_1329743548.unknown

_1329743953.unknown

_1329743309.unknown

_1329723595.unknown

_1329729509.vsd
Drag the side handles to change the width of the text block.

Level = 3

Level = 2

Level = 1

Level = -1

Level = -2

0

1 x QStep

2 x QStep

3 x QStep

-1 x QStep

-2 x QStep

Quantization Offset Matrix Value controls the shift in representation values for each frequency component.

Quantization Scale Matrix Value controls the quantization step size for each frequency component.

Inverse quantized values

_1329741752.unknown

_1329741904.unknown

_1329741625.unknown

_1329724325.unknown

_1329724559.unknown

_1329724624.unknown

_1329724668.unknown

_1329724573.unknown

_1329724394.unknown

_1329723646.unknown

_1329723533.unknown

_1329723568.unknown

_1329723520.unknown

_1329667190.unknown

_1329722048.unknown

_1329723149.unknown

_1329723226.unknown

_1329723270.unknown

_1329723192.unknown

_1329722083.unknown

_1329667429.unknown

_1329667847.unknown

_1329665882.unknown

_1329666558.unknown

_1329665575.unknown

_1329656570.unknown

_1329660787.unknown

_1329664444.unknown

_1329664563.unknown

_1329665120.unknown

_1329664512.unknown

_1329663927.unknown

_1329664383.unknown

_1329660857.unknown

_1329657219.unknown

_1329657357.unknown

_1329659861.unknown

_1329657270.unknown

_1329656629.unknown

_1329657117.unknown

_1329656593.unknown

_1329653783.unknown

_1329656321.unknown

_1329656448.unknown

_1329656506.unknown

_1329656399.unknown

_1329654622.unknown

_1329655832.unknown

_1329656153.unknown

_1329656270.unknown

_1329654669.unknown

_1329654540.unknown

_1329653791.unknown

_1329653878.unknown

_1329653196.unknown

_1329653363.unknown

_1329653374.unknown

_1329651886.unknown

_1329652274.unknown

_1329652714.unknown

_1329650745.unknown

_1316944316.unknown

_1329649692.unknown

_1329649821.unknown

_1316944486.unknown

_1329646547.unknown

_1329646889.unknown

_1316944724.unknown

_1328966832.unknown

_1328966981.unknown

_1316944825.unknown

_1316944494.unknown

_1316944429.unknown

_1316944436.unknown

_1316944336.unknown

_1315148466.vsd

_1316943906.unknown

_1316943923.unknown

_1316259075.unknown

_1316940596.unknown

_1316259171.unknown

_1316256645.unknown

_1316256659.unknown

_1316256452.unknown

_1315148396.vsd

_1315148436.vsd

_1315132497.vsd
L17 -Template

8x8 predictor

_1234567915.unknown

_1234567923.unknown

_1296371693.unknown

_1296371951.unknown

_1305022815.unknown

_1305023562.unknown

_1305533367.unknown

_1296371993.unknown

_1296372006.unknown

_1296371898.unknown

_1296371911.unknown

_1296371874.unknown

_1296371577.unknown

_1296371679.unknown

_1293276303.unknown

_1293279126.unknown

_1234567926.vsd
text�

A�

B�

Current
block�

_1234567927.vsd
text�

C�

A�

B�

Current
block�

_1234567925.ppt

Vertical c-block boundary

Mask of pixels for the vertical c-block boundary, with extent=1.

Vertical c-block boundary

Mask of pixels for the vertical c-block boundary, with extent=2.

_1234567919.unknown

_1234567921.unknown

_1234567922.unknown

_1234567920.unknown

_1234567917.unknown

_1234567918.unknown

_1234567916.unknown

_1234567906.unknown

_1234567910.unknown

_1234567912.unknown

_1234567914.unknown

_1234567911.unknown

_1234567908.unknown

_1234567909.unknown

_1234567907.unknown

_1234567894.vsd

_1234567904.unknown

_1234567905.unknown

_1234567903.ppt

Coefficient denoising

Weighted inverse

Masking

Transform

Transform

(a) Executed for k=0.

(b) Executed for k=1,2.

1

16

1

1

ˆ

,...,

ˆ

-

-

k

k

x

H

x

H

K

K

,

,

,

1

i

T

T

k

k

c

c

,

16

,

1

ˆ

,...,

ˆ

k

u

ˆ

k

x

ˆ

16

1

,...,

H

H

y

y

H

y

H

16

1

,...,

y

x

=

0

ˆ

)

1

(

=

+

k

_1234567892.vsd
Scale

MVx

MVy

Offset

0

0

0

0

1

1

1

_1234567893.vsd
ScaleOff

MV0,x

MV1,x

Offset

MV0,y

MV1,y

Scale

1

1

1

1

1

1

0

0

0

0

0

0

0

_1234567891.unknown

