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Abstract
The response video codec to the call for proposal in this document is based on a traditional block-based hybrid coding architecture with spatial-temporal prediction and spatial transform. As general features, the size of a macroblock (MB) in H.264/AVC is extended to 32x32 extended macroblock (EMB) instead of 16x16 and multiple reference frame buffer are used for motion compensation. The H.264/AVC CABAC is used as the entropy coding basis for header and coefficient information.
For intra prediction, an EMB is divided into four 16x16 blocks. For each 16x16 block, non-square prediction sizes such as 16x8, 8x16, 8x4 and 4x8 each with three modes of horizontal, vertical and DC predictions are used in addition to H.264/AVC based 16x16, 8x8, and 4x4 spatial prediction partitions and their prediction modes. For coding intra prediction residual signals, mode-dependent directional transform (MDDT) is used as transform.
For inter prediction, a whole 32x32 partition is added to the existing partition types of H.264/AVC. This 32x32 partition mode supports skip, direct, and motion with residual coding. Larger transform sizes than 8x8 such as 16x8, 8x16, and 16x16 integer DCT are used. Groups of possible transform sizes are dependent on partition sizes. For example, a group of 16x16, 8x8 and 4x4 transforms is used for 32x32 or 16x16 partition block. The selected transform size for actual coding is signaled in 16x16 block or EMB level. For motion estimation, motion vector precision is adaptively selected on EMB or 16x16 block level among 1/2 pel, 1/4 pel, and 1/8 pel precisions (AMVP: Adaptive Motion Vector Precision).
For filtering processes, the H.264/AVC deblocking and quad-tree based adaptive loop filter (QALF) processes are applied to the reconstructed frame after de-quantization and inverse transform on the way to be stored in frame buffer.
The proposed technology is implemented modifying JM15.2 by inserting new tools and changing necessary parts accordingly. In its evaluation of coding performance, encoding is carried out with options: trellis based rate-distortion optimized quantization (RDO-Q), EPZS motion estimation, and RDO process. 
All the data including decoded YUV files, compressed bitstreams produced by the proposed software are submitted to the test site, conforming both to the constraint set 1 and constraint set 2 test conditions for subjective testing.
For coding efficiency compared with the anchor, the proposed codec always outperforms the anchor codec in terms of coding efficiency. The average bit rate reduction of 17.8% for constraint set 1 is achieved with the best result of 29.3% bit reduction for BQsquare and the worst case of 15.2% reduction for Cactus. For the constraint set 2, the average gain is 13.9 % bit reduction, with the best result of 20.7 % for Kimono and the worst 3.4% with BlowingBubbles.
For complexity analysis, the JM16.2 encoder and the JM17.0 decoder and the encoder and the decoder of proposed method are executed on Intel Xeon two Quadcore CPUs 64 bit Windows 7 with 16G bytes memory and hard disk of SATA2(NTFS file formatted). _ftime() function is used for measuring the computational complexity. 
Compared to JM16.2 encoder, the encoding time of the proposed method is longer on the average by 136.39% for the constraint set 1 and by 199.73% for the constraint set 2. The decoding time of the JM17.0 decoder and the proposed decoder are checked with YUV output enabled and reference disabled. The decoding time of the proposed method is longer on the average by 199.01% for constraint set 1 and by 275.55% for constraint set 2. 
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1 Introduction

A new video coding standard activity started by the Joint Call for Proposal (N11113) by MPEG and VCEG issued at Kyoto meeting in January 2010[1]. The new video coding standard basically targets much better compression performance than existing standards such as H.264/AVC with respect to computing complexity. This new video coding technology is required for soon coming wide variety of video applications demanding high spatial and temporal resolutions and video conference applications (Vision document, N11096). 
This proposal was pre-registered and registered to the call and all the data for subjective testing were submitted to the test site. The submitted data includes decoded YUV files and compressed bitstreams produced by the proposed codec exactly conforming both to the constraint set 1 and constraint set 2 test conditions for subjective testing. 
The proposed codec is based on a traditional block-based hybrid coding architecture with spatial and temporal predictions, and spatial transform. An input picture is divided into EMB. For each EMB, residual blocks are generated by temporal prediction by using motion estimation in case of inter prediction or by spatial prediction by using neighboring already decoded pixels in case of intra prediction. Residual blocks are then transformed, quantized, and entropy coded. The coded bits are formed into bitstreams with header information such as motion vector. The quantized coefficients are de-quantized and inverse transformed resulting in reconstructed residual block. Reconstructed residual block is added to its predictor, producing reconstructed block. This reconstructed block is put into multiple reference frame buffer through filtering process to be used for motion estimation.   
Figure 1-1 shows the overall block diagram of the proposed encoder system with the tools designed for or adopted to the system. 
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Figure 1‑1. Block diagram of the proposed video encoder
Color format of YCbCr 4:2:0 is used. I, P and B pictures are supported as picture types. Multiple reference frame buffer is used for motion prediction. The H.264/AVC CABAC engine is used as the entropy coding basis for header and coefficient information. The syntax element of the 16x16 block partition_type is binarized with a tree-based method. 
It was demonstrated that extended macroblock size larger than 16x16 does provide substantial coding gain compared to H.264/AVC, especially when applied to high resolution video sequences. Figure 1-2 shows partition types used in this response. The number in each rectangle specifies the coding order of partitions.
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Figure 1‑2. EMB, partitions and coding order for luma 32x32 block
For intra prediction, an EMB is divided into four 16x16 blocks. For each 16x16 block, non-square prediction sizes such as 16x8, 8x16, 8x4 and 4x8 with three modes of horizontal, vertical and DC predictions are used in addition to H.264/AVC based 16x16, 8x8 and 4x4 prediction partition size and their prediction modes. For coding intra prediction residual signals, mode-dependent directional transform (MDDT) is used as transform.
For inter prediction, a whole 32x32 partition is added to the existing partition types of H.264/AVC. This 32x32 partition mode supports skip, direct, and motion with residual coding. Larger than 8x8 transform block sizes such as 16x8, 8x16 and 16x16 integer DCT block sizes are used in addition to the H.264/AVC based 4x4 and 8x8 integer DCT. Groups of possible transform sizes are dependent on the partition sizes. For example, a group of 16x16, 8x8 and 4x4 transforms is used for 32x32 or 16x16 partition block. The selected transform size for actual coding is signaled in the EMB header bitstream. For motion estimation, motion vector precision is adaptively selected on an EMB level among 1/2 pel, 1/4 pel and 1/8 pel precisions (AMVP: Adaptive Motion Vector Precision).
For filtering processes, the H.264/AVC deblocking and quad-tree based adaptive loop filter (QALF) processes are applied to the reconstructed frame after de-quantization and inverse transform on the way to be stored in frame buffer.
The detailed explanation about the response to the CfP follows this section. Section 2 describes the algorithm of each major tool in the proposed codec including encoding technology. Section 3 and Section 4 respectively discuss coding efficiency results and complexity analysis. Section 5 explains characteristics of the codec including delay and random access. Section 6 gives details on implementation of the encoder and the decoder. Section 7 highlights the tools required to be focused on in this response. The response concludes in section 8 with the patent declaration in section 9.
2 Algorithm description

2.1 Motion representation
The motion-compensated partition type of 32x32 block is signaled by the extended_mb_flag – its value of ‘1’ specifies that 32x32 motion-compensated prediction is used, and its value of ‘0’ specifies that the 32x32 block is further partitioned into smaller size of 16x16 block which can be further partitioned into 16x8, 8x16 and 8x8 blocks. The 8x8 block can be further partitioned into 8x4, 4x8 and 4x4 partitions as depicted in Figure 1-2. The prediction signal for each partition block is obtained by referring to corresponding area in the reference picture, which is specified by a prediction direction (L0, L1 or bi-prediction), AMVP flag, motion vector difference, and picture reference index.
In this proposed technique, the representation accuracy of motion vector is adaptively selected among 1/2-pel, 1/4-pel, and 1/8-pel in the rate-distortion optimization manner. The choice of the motion vector accuracy for each partition type is determined in the unit of 16x16 block or 32x32 block as well as partition type, motion vector difference, prediction direction and so on under the following rate-distortion criterion:
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, where Distmode is the calculated distortion by SSD (Sum of Squared Differences); λmode is a weighting factor that depends on the quantization step; Rmode is the rate of the partition type information; Rmvd is the rate of the motion vector difference; Ramvp is the rate of motion vector precision’ Rtext is the rate of block residue; Retc is the rate of the other components such as CBP (Coded Block Pattern), delta quantization parameter, transform size and so on. The estimation of the motion vector for each partition block is also made as follows:
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, where Distmotion is the calculated SATD (Sum of Absolute Transformed Differences) using 4x4 Hadamard transform; λmotion is a weighting factor depending on the quantization step for motion estimation process; Rmvd is the rate of the motion vector difference. Motion vector difference is calculated by the difference between the motion vector of the current block and its predictive motion vector (PMV) as follows: 
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,where amvp is the motion vector precision of the current partition block; MVD(amvp), MV(amvp) and PMV(amvp) respectively indicate motion vector difference, motion vector, and precision scaled predictive motion vector. The scaled PMV is calculated as the median vector of scaled neighboring motion vectors as indicated in Figure 2-1. 
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Figure 2‑1. PMV candidates of current MV
The scaled neighboring motion vector MVX(amvp) for neighboring motion vector MVX (X = a, b, c)  is obtained as the following formula:
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, where the scaled factor is obtained as shown in Table 2-1.
Table 2‑1. Scaling factor for PMV candidates

	AMVP

Indicators
	Neighboring PMV candidates

	
	1/2
	1/4
	1/8

	1/2
	1
	2
	4

	1/4
	1/2
	1
	2

	1/8
	1/4
	1/2
	1


The representation precision of motion vector is signaled per each 32x32 block or per each 16x16 block. Partitions smaller than 16x16 share the same motion vector precision. In case of SKIP mode, no motion vector precision information is signaled; instead, it is assumed to have 1/8-pel accuracy. The bin string of the motion vector precision for CABAC is shown in Table 2-2.
Table 2‑2. Table for MV Precision Indicator

	AMVP indicator
	bin string

	1/4 pel
	1

	1/8 pel
	00

	1/2 pel
	01


For motion vector estimation and compensation, the pixel values at the sub pel positions are obtained by a fixed interpolation filter with filter coefficients shown in Table 2-3. Firstly, 1/2 pel position is interpolated by the 6-tap filter (step1). 1/4 pel position is interpolated on the 1/2 pel interpolated frame by bi-linear filter (step 2). Finally, the 1/8 pel position is interpolated on the 1/4 pel interpolated frame by bi-linear filter (step 3). HPF(High Precision Filter) [3] is applied for each step.
Table 2‑3. Interpolation Filter Coefficients

	Step
	Filter length
	Impulse response
	Interpolated
position

	1
	6-tap
	{1,-5,20,20,-5,1}/32
	1/2 pel

	2
	2-tap
	{16,16}/32
	1/4 pel

	3
	2-tap
	{16,16}/32
	1/8 pel


2.2 Intra-frame prediction

Intra predictions based on 16x16, 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4 blocks are applied to predict the intra blocks
An EMB is divided into four 16x16 blocks. Each 16x16 block may take one of four intra prediction partition types: one 16x16 block, two 8x16 blocks, two 16x8 blocks and four 8x8 blocks. In case of 8x8 prediction partition type, each 8x8 block can be one of four partition types: one 8x8 block, two 4x8 blocks, two 8x4 blocks and four 4x4 blocks.
For NxN blocks of luma, the intra prediction methods are the same as those in H.264/AVC (nine directional prediction modes for the 4x4 luma and 8x8 luma blocks; four directional prediction modes for the 16x16 luma block).
For MxN block size (M(N, 16x8, 8x16, 8x4, 4x8), for luma component, three directional prediction modes are used as shown in Table 2-4. Table 2-4 specifies the values for IntraMxNPredMode and the associated mnemonic names.

Table 2‑4. Specification of IntraMxNPredMode (M≠N, 16x8, 8x16, 8x4, 4x8) and associated names
	IntraMxNPredMode
	Name of IntraMxNPredMode

	0
	Intra_MxN_Vertical (vertical mode)

	1
	Intra_MxN_Horizontal (horizontal mode)

	2
	Intra_MxN_DC (DC mode)


For chroma component, only 8x8 intra prediction with 4 modes is used as H.264/AVC.

For the NxN block, the prediction mode is coded as the same way as the H.264/AVC. For the MxN luma block, firstly MPM (most probable mode) flag is coded. If the flag is “1”, then MPM is used. If the flag is “0”, then remaining_mode_selector is coded. Value “0” of remaining_mode_selector represents the lower IntraMxNPredMode except MPM and value of “1” means the higher IntraMxNPredMode except MPM .
2.3 Spatial transforms

For intra coded blocks, one of the 4x4, 8x8, and 16x16 MDDTs are used for luma component. The 4x4 MDDT is performed for Intra4x4, Intra8x4 and Intra4x8 blocks, the 8x8 MDDT is performed for Intra8x8, Intra16x8 and Intra 8x16 blocks, and 16x16 MDDT is performed for Intra16x16 block. The 4x4 integer DCT is used in chroma components.
For inter coded blocks, 16x8, 8x16 and 16x16 integer transforms in addition to the 4x4 and 8x8 integer transforms are applied. The transform types according to the number of available transforms are signaled by the transform_size, as shown in Table 2-5 and 2-6, respectively. Specifically, for each motion partitions of 32x32, 16x16, 16x8, and 8x16 blocks, the 16x16, 16x8 and 8x16 transforms can be used in addition to the existing 4x4 and 8x8 transforms. For these motion partitions, if the existing syntax element CBP is not zero, then the transform_size is signaled. The available transform types according to the sub-blocks of a16x16 block and those of a 32x32 block are described as follows:
1. If there are 4x4, 4x8, or 8x4 sub-block in 16x16 block, only the 4x4 transform is available. In this case, transform_size is not needed.
2. If there are four sub-8x8 blocks in 16x16 block, the 4x4 or 8x8 transform in each 8x8 block is signaled by the transform_size in Table 2-5.
3. If there are two sub-16x8 blocks in 16x16 block, the 4x4, 8x8 or 16x8 transform in each 16x8 block is signaled by the transform_size in Table 2-6.
4. If there are two sub-8x16 blocks in 16x16 block, the 4x4, 8x8 or 8x16 transform in each 8x16 block is signaled by the transform_size in Table 2-6.
5. If the block size is larger than 16x16 block, the 4x4, 8x8 or 16x16 transform is signaled by the transform_size in Table 2-5.
Table 2‑5. Specification of transform_size when two transforms are available
	transform_size
	bin string

	4x4 transform
	0

	8x8 transform
	1


Table 2‑6. Specification of transform_size when three transforms are available
	transform_size
	bin string

	4x4 transform
	0

	8x8 transform
	10

	8x16, 16x8 or 16x16 transform
	11


In this proposal, the MDDT [4] is used for intra block coding of all slices. For Intra 8x4 and Intra 4x8 blocks, 4x4 MDDT is used twice. For Intra 16x8 and 8x16 blocks, 8x8 MDDT is used twice. 
Figure 2-2 shows a usage example of two 4x4 MDDT in Intra8x4 block. And an adaptive coefficient scanning is used to capture the distinct coefficient statistics between the different prediction modes. The scanning orders of each prediction mode of 4x4 MDDT and 8x8 MDDT are updated in an EMB level, but on the other hand, the scanning orders of each prediction mode of 16x16 MDDT are not updated. The scanning orders of each MDDT are initialized for every slice. 
            



      Intra8x4
	4x4 MDDT
	4x4 MDDT


Figure 2‑2. A usage example of two 4x4 MDDT in Intra8x4
2.4 Quantization

In this proposal, quantization scheme follows that of H.264/AVC standard [2]. The coefficients produced by the transformation are quantized using a quantization control parameter that can be changed for every EMB. The parameter takes one of the 52 possible values when video format supports 8 bits per decoded sample. Importantly, the quantization step-sizes are not linearly related to the quantization parameter (as in all prior standards), but vary in such a way that the quantization step size exactly doubles for every 6 increments of the quantization parameter. The detail description for quantization can be provided from [2].
2.5 In-loop filtering

The adaptive deblocking filtering used in H.264/AVC is applied to reduce the blocking artifacts on the block boundary. Block boundary detection and strength decision for deblocking filtering are the same as that of the H.264/AVC deblocking filtering. Even though the proposed method uses the EMB size, 32x32 block boundary is considered as 16x16 block boundary in H.264/AVC. However, the transform boundaries are deblock-filtered because the proposed method takes into account the various block-size transforms. The α and β thresholds and BS (Boundary Strength) decision for strong or weak filtering are the same process as the deblocking filtering in H.264/AVC[5].
2.6 Entropy coding

The syntax elements at the EMB level are described. Figure 2-3 shows the syntax structure for intra case. Syntax elements of partition_type, intra_pred_mode, CBP, Dquant and coefficient are written in sequence into the bitstream. The syntax element of partition_type conveys information in quad-tree manner how the four 16x16 blocks are partitioned for intra prediction. The syntax element of intra_pred_mode conveys all prediction mode information for corresponding intra prediction partitions indicated in the partition_type syntax element. The syntax elements of CBP and coefficient information for the four 16x16 blocks are written in the same way as H.264/AVC. Only one delta QP information is sent for each EMB. 
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Figure 2‑3. Syntax for Intra EMB in I frame
Figure 2-5 shows EMB syntax structure for P-frame. An EMB in P frame can be coded in intra prediction or inter prediction with one motion vector information. 
The syntax element skip32_flag indicates if the EMB is not coded. If skip32_flag equals to 1, then motion vector is derived from already decoded candidate motion vectors of the neighboring blocks and residual blocks are filled with all zeros. No further syntax elements are coded for this EMB. If skip32_flag is 0, then inter32_flag is coded and followed with other syntax elements. 
The syntax element inter32_flag can take three values of 0, 1 and 2. If the value is 0, the EMB is coded with intra prediction. The EMB is coded in the same way as the intra EMB shown in Figure 2-3. If the value is 1, the EMB is coded with inter prediction. If the value is 2, then each of the four 16x16 blocks of the EMB can be coded in intra prediction or inter prediction indicated by one inter16_flag for each 16x16 block. 
The syntax element extended_mb_flag follows after inter32_flag for the case the EMB is inter prediction coded (inter32_flag = 1). If the value of extended_mb_flag equals to 1, one AMVP_flag, one motion vector and one reference index for the EMB and its residual are coded. If the value of extended_mb_flag equals to 0, the EMB is further partitioned into four 16x16 blocks. Four syntax elements of skip16_flag are followed, each indicating skip mode for the corresponding 16x16 blocks.  
The syntax element skip16_flag is used for indicating skip mode for 16x16 block for the case a EMB is partitioned into four 16x16 blocks for inter prediction. The syntax element skip16_flag indicates if the 16x16 block is not coded. If skip16_flag equals to 1, then motion vector is derived from already decoded candidate motion vectors of the neighboring blocks and residual blocks are filled with all zeros. No further syntax elements are coded for this 16x16 block. If skip16_flag is 0, then the syntax element of partition_type is followed indicating one of partition mode for the 16x16 block. 
Syntax elements of MVD (Motion vector differences) and ref_idx (reference indices) are in the same way as H.264/AVC for inter prediction in 16x16 block unit. In addition to these motion information, motion vector difference accuracy informaton is coded in each EMB except skipped blocks.
Syntax elements of intra_pred_mode (intra prediction modes) is coded in the same way as H.264/AVC for intra prediction in 16x16 block unit.
Syntax element of cbp32_flag is coded when the EMB is coded with one partition size of 32x32 inter prediction (extended_mb_flag equals to 1). If cbp32_flag equals to 0, no further residual texture information is coded and the 32x32 residual block is reconstructed with all zero values. If is cbp32_flag equals to 1, four cbp16_flag, one transform_size and at least one nonzero coefficient are coded for each 16x16 block. 
The syntax element of transform_size is coded in an EMB unit or 16x16 block unit with inter predicted partitions of which size is larger than or equal to 8x8. For a 32x32 or 16x16 partition size, the value of transform_size syntax element indicates one of three transform sizes of 16x16, 8x8 and 4x4. For a 8x16 (resp. 16x8) partition size, the value of transform_size syntax element indicates one of three transform sizes of 8x16 (resp. 16x8), 8x8 and 4x4. For a 8x8 partition size, the value of transform_size syntax element indicates one of two transform sizes 8x8 and 4x4. For partition blocks of 8x4, 4x8 and 4x4 sizes, syntax element of transform_size is not coded because only 4x4 transform is used. 
The syntax element of cbp16_flag is coded for each 16x16 block when the 16x16 block is inter prediction coded (cbp32_flag set 0 or 1 using by cbp16_flag. In other words, if all cbp16_flag in EMB are 0, cbp32_flag set 0 and other case cbp32_flag set equal to 1.). If cbp16_flag equals to 0, no further residual texture information is coded and the 16x16 residual block is reconstructed with all zero values. If cbp16_flag equals to 1, transform_size(s) and at least one nonzero coefficient are coded and quantized coefficients information is followed. 
The syntax element of CBP is coded for each 16x16 block when cbp16_flag equals to 1 depending on the transform size indicated by the transform_size syntax element. If the transform type is 4x4 or 8x8 transform, CBP for the 16x16 block are encoded in the same way as H.264/AVC. If the transform type is 16x16 transform, only one syntax element of chromaCBP is encoded. If the transform type is 16x8 or 8x16 transform, one lumaCBP and one chromaCBP are coded. 
The lumaCBP specifies that the two 8x16 (resp. 16x8) blocks may contain non-zero transform coefficient levels. A lumaCBP consists of 2 bits bY1bY0 (shown in Figure 2-4), where bY1bY0 individually specifies the two luma blocks.
The chromaCBP is a syntax element, which specifies which of the two chroma 8×8 blocks may contain non-zero transform coefficient levels. A chromaCBP consists of 2 bits bC1bC0, where bC1bC0 jointly specifies the two chroma blocks. 
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Figure 2‑4. lumaCBP and chromaCBP when 16x8 or 8x16 transform is used.
The syntax element of Dquant indicating delta QP value is coded once for the EMB when there is at least one non zero coded coefficient indicated by the syntax element of CBP and prediction mode.
The syntax elements of quantized residual coefficients are coded in a similar way to the H.264/AVC CABAC with significance, last significance and magnitude values.
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Figure 2‑5. EMB syntax for P frame
Figure 2-6 shows the EMB syntax structure for B-frame. An EMB in B frame can be coded in intra prediction, inter prediction with one motion vector or inter prediction with two motion vectors. The syntax structure for EMB in B frame is very similar to EMB in P frame, only the differences are the direct_flag and B_pdir which represents each inter predicted partitions indicating whether they are using one motion with L1, one motion with L2 or Bi-prediction predicted. 
The syntax element direct32_flag is coded when the EMB is coded as one partition using motion compensation and at least one non zero coefficient is coded for this EMB. If the syntax element direct32_flag equals to 1, the motion information is not coded but derived from already decoded spatial or temporally neighboring blocks. If the syntax element direct32_flag equals to 0, the motion information is coded. 
The syntax element direct16_flag is coded when the 16x16 block is coded as one partition using motion compensation and at least one non zero coefficient is coded for this 16x16 block. If the syntax element direct16_flag equals to 1, the motion information is not coded but derived from already decoded spatial or temporally neighboring blocks. If the syntax element direct16_flag equals to 0, the motion information is coded. 
The syntax element direct8_flag is coded when the 8x8 block is coded as one partition using motion compensation and at least one non zero coefficient is coded for this 8x8 block. If the syntax element direct8_flag equals to 1, the motion information is not coded but derived from already decoded spatial or temporally neighboring blocks. If the syntax element direct8_flag equals to 0, the motion information is coded. 
The syntax element B_pdir is coded for each partition higher than 8x8 or equal to 8x8 in B-frame. If the syntax element of B_pdir equals to 0, it indicates one motion is compensated from L0. If the syntax element of B_pdir equals to 1, it indicates one motion is compensated from L1. If the syntax element of B_pdir equals to 2, it indicates motion is compensated from L0 and L1. 
. 
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Figure 2‑6. EMB syntax for B frame
All the syntax elements in this proposal are coded using the H.264/AVC CABAC engine. A syntax element is binarized into bins where a bin can take binary value of 0 or 1. Each bin has its context based probability table for its values initialized at the start of a slice. The context based initial probability is updated after each bin is coded until the end of slice. 
The syntax elements of interX_flag, extended_mb_flag, direct_X_flag, B_pdir, partition_type, and AMVP_flag have included with the H.264/AVC syntax elements and the syntax elements of skipX_flag, cpbX_flag, transform_size are modified for the proposed encoder. The context models for these syntax are dependent on the slice type. At the beginning of each coded slice, the context models are initialised depending on the initial value of the QP.
Binarisation, context models and initialization of context probability tables are explained for the following syntax elements: skip32_flag, skip16_flag, inter32_flag, inter16_flag, extended_mb_flag, direct32_flag, direct16_flag, direct8_flag, B_pdir, cbp32_flag, cbp16_flag and partition_type. All the other syntax elements are coded in the same way as the H.264/AVC CABAC. B_pdir and inter32_flag are binarized in two bins. The tables below show binarization for inter32_flag and B_pdir syntax elements. 
Table 2‑7. Specifiation of the value inter32_flag and bin string
	The value of inter32_flag
	
	bin string

	0
	all blocks are intra predicted in EMB
	00

	1
	all blocks are inter predicted in EMB
	1

	2
	Intra and inter modes are mixed in EMB
	01



Table 2‑8. Specifiation of the value B_pdir and bin string
	The value of B_pdir
	
	bin string

	0
	L0 prediction
	00

	1
	L1 prediction
	01

	2
	Bi-prediction
	1


Table 2-9 shows the context model indices (ctxIdx) for each bin of the syntax elements designed in this proposal except the syntax element partition_type. The syntax element partition_type is explained later. All other context model indices are unchanged from H.264/AVC. All the bins in the syntax elements in this table have different context model depending on its context. ctxIdx value is calculated adding ctxIdxInc value of the binIdx to ctxIdxOffset of the syntax_element in Table 2-9.
Table 2‑9. Assignment of ctxIdxInc to binIdx for all ctxIdxOffset values for additional syntax except partition_type
	syntax
	ctxIdxOffset
	binIdx

	
	
	0
	1
	2
	3
	4
	5
	>= 6

	
	…
	
	
	
	na
	na
	na
	na

	
	276
	0
	na
	na
	na
	na
	na
	na

	skip32_flag
	277
	0, 1, 2
	na
	na
	na
	na
	na
	na

	skip16_flag
	280
	0, 1, 2
	na
	na
	na
	na
	na
	na

	inter32_flag
	283
	0, 1, 2, 3, 4, 5
	6
	na
	na
	na
	na
	na

	inter16_flag
	290
	0, 1, 2
	na
	na
	na
	na
	na
	na

	extended_mb_flag
	293
	0, 1, 2
	na
	na
	na
	na
	na
	na

	direct32_flag
	296
	0, 1, 2
	na
	na
	na
	na
	na
	na

	direct16_flag
	299
	0, 1, 2
	na
	na
	na
	na
	na
	na

	direct8_flag
	302
	0, 1, 2
	na
	na
	na
	na
	na
	na

	B_pdir
	305
	0, 1, 2, 3, 4, 5
	6
	na
	na
	na
	na
	na

	cbp32_flag
	312
	0, 1, 2
	na
	na
	na
	na
	na
	na

	cbp16_flag
	315
	0, 1, 2
	na
	na
	na
	na
	na
	na

	
	
	..
	
	
	
	
	
	

	
	399
	
	na
	na
	na
	na
	na
	na


Context models for each syntax elements are described in detail. Context is decided by already decoded same syntax elements of the neighboring blocks. Block A denotes left neighboring block, block B denotes upper neighboring block. 
Figure 2-7 shows the context models for skipX _flag (skip16_flag and skip32_flag). The context model is decided by the skipX_flag of block A and block B. If a neighboring blockN (with N being either A or B) is not available or skipX_flagN equals to 1, condTermFlagNis set to 0, otherwise, condTermFlagN is set to 1. The variable ctxIdxInc is derived by ctxIdxInc = condTermFlagA + condTermFlagB.

[image: image12.emf]0

1

current

block

1

0

current

block

0

0

current

block

1

1

current

block

ctx_inc = 2

ctx_inc = 1 ctx_inc = 0


Figure 2‑7. ctxIdxInc for the syntax element skipX_flag
Figure 2-8 shows the context models for inter32 _flag. When binIdx equals to 0, the context model is decided by the inter32_flag of block A and block B. If the neighboring block is not available, its inter32_flag is set 0. If inter32_flag for both of the neighboring blocks are not equal to 2, the variable ctxIdxInc is derived by 
ctxIdxInc = inter32_flagA + inter32_flagB.
If inter32_flag for at least one of the neighboring blocks equals to 2, the variable ctxIdxInc is derived by 
ctxIdxInc = inter32_flagA + inter32_flagB + 1.
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Figure 2‑8. ctxIdxInc for the syntax element inter32_flag
For binIdx 1, the ctxIdxInc is fixed to 6. 

Figure 2-9 shows the context models for inter16_flag. If a neighboring block is not available, its inter16_flag is set to 0 and the variable ctxIdxInc is derived by 
ctxIdxInc = inter32_flagA + inter32_flagB .
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Figure 2‑9. ctxIdxInc for the syntax element inter16_flag
Figure 2-10 shows the context models for extended_mb_flag. If a neighboring block is not available, its extended_mb_flag is set to 0 and the variable ctxIdxInc is derived by 
ctxIdxInc = extended_mb_flagA + extended_mb_flagB .
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Figure 2‑10. ctxIdxInc for the syntax element extended_mb_flag
Figure 2-11 shows the context models for directX_flag (X being 8, 16 or 32). If a neighboring block N (with N being either A or B) is not available or directX_flagN equals to 0, condTermFlagN is set to 0, otherwise, condTermFlagN is set to 1. The variable ctxIdxInc is derived by 
ctxIdxInc = condTermFlagA + condTermFlagB.
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Figure 2‑11. ctxIdxInc for the syntax element directX_flag
Figure 2-12 shows the context models for B_pdir. When the binIdx equals to 0, the ctxIdxInc is decided by the following description. If a neighboring block N (with N being either A or B) is not available or intra coded, then its B_pdirN is set to 0. If B_pdir for both of neighboring blocks are not equal to 2, the variable ctxIdxInc is derived by 
ctxIdxInc = ctxIdxInc = B_pdirA + B_pdirB.
If inter32_flag for at least one of the neighboring blocks equals to 2, the variable ctxIdxInc is derived by 
ctxIdxInc = B_pdirA + B_pdirB + 1.
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Figure 2‑12. ctxIdxInc for the syntax element B_pdir
For binIdx 1, the ctxIdxInc is fixed to 6. 

Figure 2-13 shows the context models for cbpX_flag (X being 16 and 32). If a neighboring block N (with N being either A or B) is not available or cbpX_flag equals to 0, condTermFlagN is set to 0, otherwise, condTermFlagN is set to 1. The variable ctxIdxInc is derived by 
ctxIdxInc = condTermFlagA + condTermFlagB.
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Figure 2‑13. ctxIdxInc for the syntax element cbpX_flag
The syntax element partition_type is binarised in a quad-tree way different from the above explained syntax elements. Figure 2-14 shows partition_type values for a square block. The syntax_element partition_type shows how each of four 16x16 blocks consisting an EMB is partitioned in intra/inter prediction cases. Each 16x16 block may be partitioned further in a quad-tree manner, from size 16x16 down to size 4x4. The 16x16 block type of four 16x16 blocks are signaled by partition_type shown in Figure 2-14. For the partition_type 3 case, each of the four consisting blocks can be further recursively partitioned with a partition_type of 0, 1, 2 and 3. 
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Figure 2‑14. partition type value
M1(0,0), M1(0,1), M1(1,0) and M1(1,1) represent the partition_type information of 16x16 blocks and Figure 2-14 shows its tree form representation. The value of root M0 node is set to the maximum value of its children nodes. 
For binarising partition_type of the current 16x16 block, the difference d from the value of its parent node is calculated.
Each node is coded with d number of 0’s followed by a 1. The exceptional cases are explained in Figures 2-15 and 2-16. For example, if the difference value d is 0, and only 1 is binarized. When the difference value d equals to the biggest partition_type value, then only the d number of 0’s are coded.
In Figure 2-15, the value M0 is set to the value 0, because M1 values are all 0s. The differences between the parent and current node, M1(i, j) ,are 0. So the partition_type of M0 is coded with one 1. In this case the children nodes don’t need to code.
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Figure 2‑15. An example of partition_type coding
In the following Figure 2-16, the value M0 is set to the maximum partition_type value of 3. The value of M1(0,0) is 0, the value of M1(0,1) is 0, the value of M1(1,0) is 0, so that the value of M1(1,1) should be 3. The coding bits of M1(0,0), M1(0,1) and M1(1,0) are “000” and M1(1,1) does not have to code.
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Figure 2‑16. An example of partition_type coding
The partition type of 8x8 block is coded in the same way as the 8x8 subblock coding method of H.264/AVC.
Table 2‑10. Binarization for partition_type for 8x8 block
	Value of 8x8 partition_type
	8x8 partition_type
	Bin string

	0
	8x8
	1

	1
	8x4
	00

	2
	4x8
	011

	3
	4x4
	010


2.7 Rate distortion optimized quantization
In this section, Rate Distortion Optimized Quantization (RDO-Q) deployed in the proposal is described. To increase coding efficiency for the quantized coefficients, Rate Distortion cost (RD cost) is used in RDO-Q module. Since transforms used in the proposal are orthogonal, the RD cost 
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 is the value of the reconstructed coefficient obtained by de-quantization:
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As in the case of de-quantization scaling matrix R, values of normalization matrix N(QP%6,i,j) depend only on the location in the block specified by i and j and value of QP%6=0,1,…,5. Since CABAC is used as an entropy coder in the proposal, the number of bits bits(lij) required to code value lij is calculated by estimating the level lij using CABAC.
Since various size transforms and the EMB are used in the proposal, RDO-Q module considers CBPs (Coded Block Pattern) for various block sizes from 32x32 to 8x8. Other technical methods of RDO-Q implemented in the proposal are almost equivalent to those described in section 3.1 of [6]. Macroblock level adaptive QP selection are not applied to the proposal because of encoding complexity.
2.8 Quadtree-based adaptive loop filter
In this section, the Quadtree-based adaptive loop filter deployed in the proposal is described. QALF implies a loop filter used adaptively with quadtree structure. Codec incorporating QALF is shown in Figure 2-17. QALF is applied to the reconstructed data which are filtered with the deblocking filter. The coefficients of QALF are optimized to reduce the mean squared error between original and the reconstructed image. 
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Figure 2‑17. Block diagram of codec using QALF
Since QALF is selectively applied to each block whose size is variable from 2x2 to 128x128. For each block two flags are used. One flag is used to indicate whether the block is filtered or not. When the block is filtered, then the other flag is used to indicate whether the block is further partitioned or not. The flags are encoded with quadtree structure shown in Figure 2-18 where each node having a circle corresponds to a block. A block can be divided to four smaller blocks. The terminal node is called as ‘leaf’ which is not divided further. The number in a circle informs whether the block is divided to smaller blocks or the block is a leaf. All leafs have their diamond-shaped boxes which indicate whether the block is filtered or not. The number ‘1’ in the diamond-shaped box implies the block is filtered with QALF. The information related to QALF, such as the number of taps, filter coefficients, filtering-on/off, partitioning, are inserted between slice header and EMB header in the bitstream. Other technical details are almost equivalent to those described in [7].
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Figure 2‑18. Quadtree to indicate the information about block partition and filtering for QALF
2.9 Picture padding process 
This section describes a picture padding process before actual coding to support picture coding of any arbitrary spatial size. In H.264/AVC, when a picture is coded in units of 16x16 MB, and when the width or height of input picture is not an integer multiples of 16, the right and bottom boundaries of the input picture are extended by adding extra pixels to make the width or the height integer multiples of 16. In the same way, when a picture is coded in units of EMB, and when the width or height of input picture are not an integer multiple of 32, the right and bottom boundaries of the input picture are extended by adding extra pixels to make the width or the height integer multiples of 32. The additional process for EMB is as follows. 
Suppose input picture is in the units of 16 (if not, assume it is already padded as in H.264/AVC) not an integer multiple of 32 in its width and/or height. When the width and/or height of input picture (or input picture padded to integer multiples of 16) is not an integer multiple of 32, the exterior area to be padded to the EMB as shown in Figure 2-19. 
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Figure 2‑19. Input picture and location of EMB to encode
As depicted in Figure 2-20, there are three types in the padded area depending on the location of a block, and encoder codes only one or two 16x16 given picture area data in one EMB based on the location of block. It is noted that an EMB can contain one or two MB data only, when the EMB has the unpadded area. Decoder can recognize whether an EMB has padded area or not, and its type from the transmitted information on the width and height of the input picture via a sequence parameter set. Therefore, decoding process decodes only one or two 16x16 area data.
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Figure 2‑20. Current EMB and its three types of newly padded area
2.10  Hierarchical coding structure
The hierarchical-B picture (HBP) coding structure with temporal scalability for random access applications is shown in Figure 2-21 where frames are not predicted from frames of the higher temporal layer. In Figure 2-21, frames are vertically placed according to their temporal layer levels: frames 1, 9, 17, … are in temporal layer 0 (TL0), frames 10, 18, … are in TL1, frames 11, 14,  … are in TL2, and frames 12, 13, … are in TL3. The letters in each frame represent the decoding order. The management scheme for DPB and the delay is described in Section 5.1 and 5.2.

[image: image36.emf]22

10

9

18

17

23 24

1

11

12 13

14

15 16

19

20 21

P

b b

B

B

IDR

B

P

b

B

b b

B

b b

B

b

. . . . . .

TL0

TL2

TL3

TL1


Figure 2‑21. Coding structure of Hierarchical-B picture 
The hierarchical-P picture (HPP) coding structure with temporal scalability for low-delay applications is shown in Figure 2-22 where frames are vertically placed according to their temporal levels: Frames 0, 4, 8, … are in temporal layer 0 (TL0), Frames 2, 6, 10, … are in TL1, and Frames 1, 3, 5, … are in TL2.
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Figure 2‑22. Coding structure of Hierarchical-P picture 
3 Compression performance discussion

3.1 Objective versus subjective compression performance

The PSNR gain (
[image: image38.wmf]D

PSNR) and the bitrate reduction (
[image: image39.wmf]D

Bitrate) were calculated based on BD-PSNR and BD-Rate (VCEG-AI11[8]). Table 3-1 and Table 3-2 show test results of constraint set 1 and constraint set 2 compared to those of anchors alpha and beta, respectively.

It can be seen that the proposed coder outperforms anchor for all sequences at all target points. On average of constraint set 1, 17.823% bit rate reduction is achieved. The best case is 29.3% reduction for BQsquare, which has plenty of regions containing detailed texture and high frequencies. And the worst case is 15.237% reduction for Cactus, which has noise and new objects appearing in the middle of sequence. For the constraint set 2, the average gain is 13.9 %, with the best for the sequence Kimono 20.693 %. The sequence BlowingBubbles provides the worst gain of 3.382%. It is observed that the proposed performs better in the bigger picture resolutions. 
Overall, the significant coding gain is achieved especially for sequences which contain complicated motions and detailed texture such as BasketballDrive, Kimono, BQTerrace and BQsqure. 
Table 3‑1: Coding efficiency of constraint set 1
	MB size
	Sequence
	BD-PSNR
	BD-RATE

	ClassA
	Traffic
	0.638
	-16.375

	
	People on street
	0.799
	-14.412

	ClassB
	Kimono
	1.027
	-25.467

	
	ParkScene
	0.602
	-15.411

	
	Cactus
	0.482
	-15.237

	
	Basketball Drive
	0.703
	-20.521

	
	BQTerrace
	0.501
	-26.114

	ClassC
	Basketball Drill
	0.638
	-14.428

	
	BQMall
	0.963
	-18.613

	
	PartyScence
	0.673
	-16.649

	
	RaceHorses
	0.886
	-19.637

	ClassD
	Basketball
	0.707
	-13.428

	
	BQSquare
	1.217
	-29.300

	
	Blowing Bubbles
	0.654
	-14.477

	
	RaceHorses
	0.659
	-12.294

	
	Average
	0.739
	-17.823


Table 3‑2: Coding efficiency of constraint set 2
	MB size
	Sequence
	BD-PSNR
	BD-RATE

	ClassB
	Kimono
	0.842
	-20.693

	
	ParkScene
	0.469
	-12.857

	
	Cactus
	0.357
	-10.913

	
	Basketball Drive
	0.787
	-21.341

	
	BQTerrace
	0.657
	-29.973

	ClassC
	Basketball Drill
	0.386
	-9.404

	
	BQMall
	0.552
	-11.053

	
	PartyScence
	0.377
	-9.898

	
	RaceHorses
	0.375
	-9.313

	ClassD
	Basketball
	0.385
	-7.808

	
	BQSquare
	0.520
	-14.351

	
	Blowing Bubbles
	0.141
	-3.382

	
	RaceHorses
	0.188
	-3.731

	ClassE
	Vidyo 1
	0.875
	-19.740

	
	Vidyo 3
	0.868
	-19.348

	
	Vidyo 4
	0.780
	-18.975

	
	Average
	0.535
	-13.924


3.2 Constraint set 1 configuration relative to Alpha anchor
The table 3-3 shows the configuration used for the test. QPs are selected according to QP tables from section 3.2.1 to section 3.2.4.

Table 3‑3: configuration for constraint set 1
	configuration
	Alpha anchor
	Proposed coder

	Test Seq.
	class A. 

(2560x1600@30) Traffic, People on Street

class B. 

(1920x1080@24) ParkScene, Kimono
(1920x1080@50) Cactus, BasketballDrive, BQTerrace

class C. 

(832x480@30-60) BaseketballDrill, BQMall, PartyScene, RaceHorses

class D. 

(416x240@30-60) BaseketballPass, BQSquare, BlowingBubbles, Race Horses

	Codig structure
	Hierarchical B pictures IbBbBbBbP (8) coding structure – each picture uses at most 2 reference pictures in each list for inter prediction

· Open GOP structuring with an Intra picture every 24, 32, 48 and 64 pictures for 24 fps, 30 fps, 50 and 60 fps sequences, respectively
· num_reorder_frames = 3 ("GOP length 8") 

· max_ref_frames = 4

· QP scaling: QP (I picture), QP+1 (P picture), QP+2 (first B layer), QP+3 (second B layer), QP+4 (third B layer)

	CABAC
	enabled

	8x8 Transform
	enabled

	Flat quantization weighing matrices
	enabled

	RD Optimization
	enabled

	RDO-Q
	enabled (fast mode, NUM=1)

	Adaptive rounding
	disabled

	RD-picture decision
	enabled
	disabled

	Weighted prediction
	enabled
	disabled

	Fast motion estimation
	enabled (range 128x128)

	RD Picture decision
	enable
	disable

	Weighted Prediction
	enable
	disable

	New offset
	enable
	disable

	QALF
	disable
	enable

	MDDT
	disable
	enable

	AMVP
	disable
	enable

	HPF
	disable
	enable


3.2.1 Class A

ChangeQPStart : a secondary QP which set from frame at temporal frame position ChangeQPStart. If value is 0, secondary quantization parameter is not used. 

ChangeQPI : Sets QP offset for intra coded slices to be used from frame ChangeQPStart and beyond.

ChangeQPP : Sets QP offset for inter P coded slices to be used from frame ChangeQPStart and beyond.  ChangeQPB : Sets QP for inter B coded slices to be used from frame ChangeQPStart and beyond. 
Table 3‑4: QP and ChangeQP for class A
	Sequence
	Taget
 Bitrate(kbps)
	QP
	ChangeQP

	
	
	
	

	
	
	I
	P
	B
	ChangeQPStart
	I
	P
	B

	Traffic
	2500
	34
	35
	36
	140
	0
	1
	1

	
	3500
	32
	33
	34
	69
	0
	-1
	-1

	
	5000
	29
	30
	31
	130
	0
	1
	1

	
	8000
	26
	27
	28
	110
	0
	1
	1

	
	14000
	23
	24
	25
	131
	0
	1
	1

	People On
Street
	2500
	45
	46
	47
	85
	0
	-1
	-1

	
	3500
	42
	43
	44
	128
	0
	-1
	-1

	
	5000
	39
	40
	41
	100
	0
	-1
	-1

	
	8000
	34
	35
	36
	78
	0
	1
	1

	
	14000
	29
	30
	31
	15
	0
	1
	1


3.2.2 Class B

Table 3‑5: QP and ChangeQP for class B
	Sequence
	Taget
 Bitrate(kbps)
	QP
	ChangeQP

	
	
	
	

	
	
	I
	P
	B
	ChangeQPStart
	I
	P
	B

	Kimono
	1000
	35
	36
	37
	117
	0
	-1
	-1

	
	1600
	31
	32
	33
	80
	0
	1
	1

	
	2500
	28
	29
	30
	175
	0
	1
	1

	
	4000
	25
	26
	27
	0
	0
	0
	0

	
	6000
	22
	23
	24
	60
	0
	1
	1

	ParkScene
	1000
	36
	37
	38
	110
	0
	1
	1

	
	1600
	33
	34
	35
	220
	0
	1
	1

	
	2500
	30
	31
	32
	180
	0
	1
	1

	
	4000
	27
	28
	29
	190
	0
	1
	1

	
	6000
	25
	26
	27
	150
	0
	-1
	-1

	Cactus
	2000
	36
	37
	38
	196
	0
	1
	1

	
	3000
	33
	34
	35
	315
	0
	1
	1

	
	4500
	30
	31
	32
	240
	0
	1
	1

	
	7000
	27
	28
	29
	150
	0
	1
	1

	
	10000
	25
	26
	27
	100
	0
	1
	1

	Basketball
Drive
	2000
	38
	39
	40
	255
	0
	-1
	-1

	
	3000
	34
	35
	36
	445
	0
	1
	1

	
	4500
	31
	32
	33
	407
	0
	1
	1

	
	7000
	28
	32
	33
	1

48

470
	0

0

0
	+1

-3

1
	+1

-3

1

	
	10000
	26
	30
	31
	48

450
	0

0
	-3

-1
	-3

-1

	BQTerrace
	2000
	34
	35
	36
	490
	0
	1
	1

	
	3000
	32
	33
	34
	590
	0
	-1
	-1

	
	4500
	30
	31
	32
	0
	0
	0
	0

	
	7000
	28
	29
	30
	515
	0
	1
	1

	
	10000
	27
	28
	29
	550
	0
	-1
	-1


3.2.3 Class C

Table 3‑6: QP and ChangeQP for class C
	Sequence
	Taget
 Bitrate(kbps)
	QP
	ChangeQP

	
	
	
	

	
	
	I
	P
	B
	ChangeQPStart
	I
	P
	B

	Basketball
Drill
	384
	41
	42
	43
	300
	0
	-1
	-1

	
	512
	39
	40
	41
	120
	0
	-1
	-1

	
	768
	35
	36
	37
	470
	0
	1
	1

	
	1200
	32
	33
	34
	350
	0
	-1
	-1

	
	2000
	28
	29
	30
	450
	0
	1
	1

	BQMall
	384
	41
	42
	43
	350
	0
	-1
	-1

	
	512
	38
	39
	40
	480
	0
	1
	1

	
	768
	35
	36
	37
	585
	0
	-1
	-1

	
	1200
	31
	32
	33
	280
	0
	1
	1

	
	2000
	27
	28
	29
	100
	0
	1
	1

	PartyScene
	384
	42
	43
	44
	300
	0
	-1
	-1

	
	512
	40
	41
	42
	400
	0
	1
	1

	
	768
	38
	39
	40
	250
	0
	-1
	-1

	
	1200
	35
	36
	37
	380
	0
	-1
	-1

	
	2000
	32
	33
	34
	190
	0
	-1
	-1

	RaceHorses
	384
	40
	41
	42
	200
	0
	1
	1

	
	512
	38
	39
	40
	205
	0
	1
	1

	
	768
	36
	37
	38
	60
	0
	-1
	-1

	
	1200
	32
	33
	34
	220
	0
	1
	1

	
	2000
	29
	30
	31
	180
	0
	-1
	-1


3.2.4 Class D

Table 3‑7: QP and ChangeQP for class D
	Sequence
	Taget
 Bitrate(kbps)
	QP
	ChangeQP

	
	
	
	

	
	
	I
	P
	B
	ChangeQPStart
	I
	P
	B

	Basketball
Pass
	256
	37
	38
	39
	443
	0
	1
	1

	
	384
	34
	35
	36
	484
	0
	-1
	-1

	
	512
	32
	33
	34
	419
	0
	-1
	-1

	
	850
	28
	29
	30
	424
	0
	1
	1

	
	1500
	24
	25
	26
	450
	0
	-1
	-1

	BQSquare
	256
	35
	36
	37
	250
	0
	-1
	-1

	
	384
	32
	33
	34
	435
	0
	-1
	-1

	
	512
	30
	31
	32
	580
	0
	-1
	-1

	
	850
	27
	28
	29
	520
	0
	1
	1

	
	1500
	24
	25
	26
	430
	0
	1
	1

	Blowing
Bubbles
	256
	36
	37
	38
	199
	0
	-1
	-1

	
	384
	33
	34
	35
	455
	0
	-1
	-1

	
	512
	31
	32
	33
	486
	0
	1
	1

	
	850
	28
	29
	30
	363
	0
	-1
	-1

	
	1500
	24
	25
	26
	480
	0
	1
	1

	RaceHorses
	256
	35
	36
	37
	205
	0
	-1
	-1

	
	384
	32
	33
	34
	225
	0
	-1
	-1

	
	512
	30
	31
	32
	228
	0
	-1
	-1

	
	850
	26
	27
	28
	232
	0
	1
	1

	
	1500
	22
	23
	24
	290
	0
	1
	1


3.2.5 Overall
Compared to anchor alpha, for proposed coder, weighted prediction, RD-picture decision and NewOffset are disabled and QALF, MDDT, AMVP and HPF are enabled.
3.3 Constraint set 2 configuration relative to Beta and Gamma anchors
The table 3-8 shows the configuration used for the test. The QPs are set as the QP tables from section 3.3.1 to section 3.3.4. 
Table 3‑8: configuration for constraint set 2
	configuration
	Beta anchor
	Proposed coder

	Test Seq.
	class B. 

(1920x1080@24) ParkScene, Kimono
(1920x1080@50) Cactus, BasketballDrive, BQTerrace

class C. 

(832x480@30-60) BaseketballDrill, BQMall, PartyScene, RaceHorses

class D. 

(416x240@30-60) BaseketballPass, BQSquare, BlowingBubbles, Race Horses

class E. 

(1280x720@30-60) Vidyo1, Vidyo3, Vidyo4

	
	No random access refresh requirement (a single I frame as the first picture

	Codig structure
	Hierarchical P pictures IpPp (GOP size of 4, with 3 temporal P picture layers, and no backward reference for inter prediction, nested_prediction_flag=on) coding structure – each picture uses at most 4 reference pictures for inter prediction

· QP scaling: QP (I picture), QP+1 (first P layer), QP+4 (second P layer), QP+5 (third P layer)

· num_reorder_frames=0

· max_ref_frames = 4

	CABAC
	enabled

	8x8 Transform
	enabled

	Flat quantization weighing matrices
	enabled

	RD Optimization
	enabled

	RDO-Q
	enabled (fast mode, NUM=1)

	Adaptive rounding
	disabled

	Weighted prediction
	enabled
	disabled

	Fast motion estimation
	enabled (range 128x128)

	RD Picture decision
	enable
	disable

	Weighted Prediction
	enable
	disable

	New offset
	disable
	disable

	QALF
	disable
	enable

	MDDT
	disable
	enable

	AMVP
	disable
	enable

	HPF
	disable
	enable

	EMB
	disable
	enable


3.3.1 Class B
Table 3‑9: QP and ChangeQP for class B
	Sequence
	Taget
 Bitrate(kbps)
	QP
	ChangeQP

	
	
	
	

	
	
	I
	P
	ChangeQPStart
	I
	P

	Kimono
_1920x1080_24
	1000
	36
	37
	130
	0
	1

	
	1600
	33
	34
	199
	0
	-1

	
	2500
	29
	30
	90
	0
	1

	
	4000
	26
	27
	224
	0
	-1

	
	6000
	23
	24
	0
	0
	0

	ParkScene
_1920x1080_24
	1000
	37
	38
	0
	0
	0

	
	1600
	33
	34
	134
	0
	1

	
	2500
	30
	31
	95
	0
	1

	
	4000
	28
	29
	150
	0
	-1

	
	6000
	25
	26
	189
	0
	1

	Cactus
_1920x1080_50
	2000
	37
	38
	289
	0
	1

	
	3000
	34
	35
	217
	0
	1

	
	4500
	31
	32
	189
	0
	1

	
	7000
	29
	30
	0
	0
	0

	
	10000
	26
	27
	88
	0
	1

	BasketballDrive
_1920x1080_50
	2000
	39
	40
	334
	0
	1

	
	3000
	36
	37
	399
	0
	1

	
	4500
	33
	34
	0
	0
	0

	
	7000
	29
	30
	54
	0
	1

	
	10000
	27
	28
	294
	0
	1

	BQTerrace
_1920x1080_60
	2000
	35
	36
	0
	0
	0

	
	3000
	33
	34
	0
	0
	0

	
	4500
	30
	31
	4
	0
	1

	
	7000
	29
	30
	424
	0
	1

	
	10000
	28
	29
	0
	0
	0


3.3.2 Class C

Table 3‑10: QP and ChangeQP for class C
	Sequence
	Taget
 Bitrate(kbps)
	QP
	ChangeQP

	
	
	
	

	
	
	I
	P
	ChangeQPStart
	I
	P

	BasketballDrill
_832x480_50
	384
	41
	42
	250
	0
	1

	
	512
	39
	40
	345
	0
	1

	
	768
	36
	37
	362
	0
	1

	
	1200
	33
	34
	482
	0
	-1

	
	2000
	29
	30
	365
	0
	1

	BQMall
_832x480_60
	384
	42
	43
	520
	0
	-1

	
	512
	39
	40
	200
	0
	1

	
	768
	36
	37
	320
	0
	1

	
	1200
	33
	34
	590
	0
	1

	
	2000
	29
	30
	447
	0
	1

	PartyScene
_832x480_50
	384
	42
	43
	150
	0
	1

	
	512
	40
	41
	20
	0
	1

	
	768
	38
	39
	100
	0
	1

	
	1200
	36
	37
	493
	0
	1

	
	2000
	32
	33
	30
	0
	1

	RaceHorses
_832x480_30
	384
	41
	42
	235
	0
	1

	
	512
	39
	40
	188
	0
	1

	
	768
	36
	37
	78
	0
	1

	
	1200
	33
	34
	60
	0
	1

	
	2000
	30
	31
	138
	0
	1


3.3.3 Class D

Table 3‑11: QP and ChangeQP for class D
	Sequence
	Taget
 Bitrate(kbps)
	QP
	ChangeQP

	
	
	
	

	
	
	I
	P
	ChangeQPStart
	I
	P

	BasketballPass
_416x240_50
	256
	39
	40
	470
	0
	-1

	
	384
	35
	36
	50
	0
	1

	
	512
	33
	34
	150
	0
	1

	
	850
	29
	30
	80
	0
	1

	
	1500
	25
	26
	364
	0
	1

	BQSquare
_416x240_60
	256
	35
	36
	250
	0
	1

	
	384
	33
	34
	350
	0
	1

	
	512
	32
	33
	500
	0
	-1

	
	850
	29
	30
	460
	0
	1

	
	1500
	26
	27
	400
	0
	1

	BlowingBubbles
_416x240_50
	256
	36
	37
	350
	0
	1

	
	384
	33
	34
	30
	0
	1

	
	512
	32
	33
	444
	0
	1

	
	850
	29
	30
	0
	0
	0

	
	1500
	25
	26
	300
	0
	1

	RaceHorses
_416x240_30
	256
	36
	37
	220
	0
	1

	
	384
	33
	34
	180
	0
	1

	
	512
	31
	32
	200
	0
	1

	
	850
	27
	28
	120
	0
	1

	
	1500
	23
	24
	0
	0
	0


3.3.4 Class E

Table 3‑12: QP and ChangeQP for class E
	Sequence
	Taget
 Bitrate(kbps)
	QP
	Change
QP

	
	
	
	

	
	
	I
	P
	ChangeQPStart
	I
	P

	vidyo1
_720p_60
	256
	38
	39
	0
	0
	0

	
	384
	35
	36
	389
	0
	-1

	
	512
	33
	34
	339
	0
	-1

	
	850
	29
	30
	489
	0
	-1

	
	1500
	25
	26
	464
	0
	1

	vidyo3
_720p_60
	256
	39
	40
	399
	0
	-1

	
	384
	36
	37
	354
	0
	-1

	
	512
	33
	34
	379
	0
	1

	
	850
	30
	31
	469
	0
	-1

	
	1500
	26
	27
	384
	0
	1

	vidyo4
_720p_60
	256
	38
	39
	189
	0
	-1

	
	384
	35
	36
	64
	0
	-1

	
	512
	32
	33
	544
	0
	-1

	
	850
	29
	30
	425
	0
	-1

	
	1500
	25
	26
	219
	0
	1


3.3.5 Overall

Compared to anchor beta, for proposed coder, weighted prediction and RD-picture decision are disabled and QALF, MDDT, AMVP and HPF are enabled.
4 Complexity analysis

4.1 Encoding time and measurement methodology

The total encoding time of the proposed encoder and JM17.0 encoder for the all test sequences are computed by using _ftime() function. The encoding time of the proposed method is increased on the average by 136.39% in constraint set 1 and by 199.73% in constraint set 2, respectively, compared with those of the JM17.0 encoder.
Table 4‑1. Total encoding times comparison of the proposed method and JM17.0 in constraint set 1
	Const1
	Sequences
	Encoding time 

of the proposed encoder
	Encoding time 

of JM17.0 encoder
	Encoding time increase (%)
	Average time increase (%)

	
	
	
	
	
	

	
	
	Total time (ms)
	Encoding  Time/frame
	Total time (ms)
	Encoding  Time/frame
	
	

	Class B
	Kimono
	37914599
	157977.50
	14616735
	60903.06
	159.39 
	126.39 

	
	ParkScene
	35919730
	149665.54
	14209029
	59204.29
	152.80 
	

	
	Cactus
	70877036
	141754.07
	28583320
	57166.64
	147.97 
	

	
	BasketballDrive
	78004254
	156008.51
	41143699
	82287.40
	89.59 
	

	
	BQTerrace
	88538315
	177076.63
	48594778
	97189.56
	82.20 
	

	Class C
	BasketballDrill
	13200451
	26400.90
	5469247
	10938.49
	141.36 
	135.77 

	
	BQMall
	15027682
	25046.14
	6774567
	11290.95
	121.82 
	

	
	PartyScene
	14948761
	29897.52
	6074549
	12149.10
	146.09 
	

	
	RaceHorses
	9101949
	30339.83
	3893172
	12977.24
	133.79 
	

	Class D
	BasketballPass
	3924258
	7848.52
	1625692
	3251.38
	141.39 
	147.00 

	
	BQSquare
	4799206
	7998.68
	1896040
	3160.07
	153.12 
	

	
	BlowingBubbles
	4053768
	8107.54
	1631759
	3263.52
	148.43 
	

	
	RaceHorses
	2708512
	9028.37
	1105157
	3683.86
	145.08 
	


Table 4‑2. Total encoding time comparison of the proposed method and JM17.0 in constraint set 2
	Const2
	Sequences
	Encoding time 

of the proposed encoder
	Encoding time 

of JM17.0 encoder
	Encoding time increase (%)
	Average time increase (%)

	
	
	
	
	
	

	
	
	Total time (ms)
	Encoding  Time/frame
	Total time (ms)
	Encoding  Time/frame
	
	

	Class B
	Kimono
	31890419
	132876.75
	10222362
	42593.18
	211.97 
	181.85 

	
	ParkScene
	30546135
	127275.56
	11010130
	45875.54
	177.44 
	

	
	Cactus
	58035355 
	116070.71
	23665604
	47331.21
	145.23 
	

	
	BasketballDrive
	65970357 
	131940.71
	21362129
	42724.26
	208.82 
	

	
	BQTerrace
	74248630
	148497.26
	27935724
	55871.45
	165.78 
	

	Class C
	BasketballDrill
	11588133
	23176.27
	4771153
	9542.31
	142.88 
	198.96 

	
	BQMall
	13726074
	22876.79
	3039387
	5065.65
	351.61 
	

	
	PartyScene
	12086974
	24173.95
	4977898
	9955.80
	142.81 
	

	
	RaceHorses
	7831657
	26105.52
	3028990
	10096.63
	158.56 
	

	Class D
	BasketballPass
	3236691
	6473.38
	1169944
	2339.89
	176.65 
	223.66 

	
	BQSquare
	3832521
	6387.54
	822572
	1370.95
	365.92 
	

	
	BlowingBubbles
	3203097
	6406.19
	1181909
	2363.82
	171.01 
	

	
	RaceHorses
	2151981
	7173.27
	765690
	2552.30
	181.05 
	

	Class E
	Vidyo1
	26840632
	44734.39
	7929122
	13215.20
	238.51 
	194.43 

	
	Vidyo3
	26109890
	43516.48
	9170001
	15283.33
	184.73 
	

	
	Vidyo4
	26207503
	43679.17
	10077441
	16795.73
	160.06 
	


4.2 Decoding time and measurement methodology and comparison vs. anchor bitstreams decoded by JM 17.0

The total decoding time of JM17.0 decoder and the proposed decoder is computed with YUV output enabled and reference disable. The decoding time is computed by using _ftime() function. The decoding time of the proposed method is increased on the average by 199.01% in constraint set 1 and by 275.55% in constraint set 2, respectively, compared with those of the JM17.0 decoder.
Table 4‑3. Total decoding time comparison of the proposed method and JM17.0 in constraint set 1
	Const1
	Sequences
	Decoding time 

of the proposed decoder
	Decoding time 

of JM17.0 decoder
	Decoding time increase (%)
	Average time increase (%)

	
	
	
	
	
	

	
	
	Total time (ms)
	Decoding Time/frame
	Total time (ms)
	Decoding Time/frame
	
	

	Class B
	Kimono
	152.28 
	0.63
	29.93 
	0.12
	408.80 
	257.26 

	
	ParkScene
	148.26 
	0.62
	35.04 
	0.15
	323.08 
	

	
	Cactus
	197.34 
	0.39
	96.54 
	0.19
	104.41 
	

	
	BasketballDrive
	308.95 
	0.62
	84.17 
	0.17
	267.06 
	

	
	BQTerrace
	378.27 
	0.76
	133.69 
	0.27
	182.95 
	

	Class C
	BasketballDrill
	31.16 
	0.06
	23.11 
	0.05
	34.83 
	104.00 

	
	BQMall
	48.85 
	0.08
	25.00 
	0.04
	95.41 
	

	
	PartyScene
	46.88 
	0.09
	23.89 
	0.05
	96.25 
	

	
	RaceHorses
	28.66 
	0.10
	9.90 
	0.03
	189.50 
	

	Class D
	BasketballPass
	10.93 
	0.02
	3.86 
	0.01
	182.90 
	235.77 

	
	BQSquare
	19.80 
	0.03
	4.29 
	0.01
	361.95 
	

	
	BlowingBubbles
	11.35 
	0.02
	3.23 
	0.01
	251.10 
	

	
	RaceHorses
	8.50 
	0.03
	3.44 
	0.01
	147.15 
	


Table 4‑4. Total decoding time comparison of the proposed method and JM17.0 in constraint set 2
	Const2
	Sequences
	Decoding time 

of the proposed decoder
	Decoding time 

of JM17.0 decoder
	Decoding time increase (%)
	Average time increase (%)

	
	
	
	
	
	

	
	
	Total time (ms)
	Decoding Time/frame
	Total time (ms)
	Decoding Time/frame
	
	

	Class B
	Kimono
	126.34 
	0.53
	24.46 
	0.10
	416.49 
	270.99 

	
	ParkScene
	126.69 
	0.53
	29.11 
	0.12
	335.28 
	

	
	Cactus
	169.92 
	0.34
	84.72 
	0.17
	100.55 
	

	
	BasketballDrive
	246.90 
	0.49
	76.97 
	0.15
	220.79 
	

	
	BQTerrace
	318.74 
	0.64
	83.47 
	0.17
	281.86 
	

	Class C
	BasketballDrill
	30.50 
	0.06
	7.03 
	0.01
	334.10 
	362.10 

	
	BQMall
	42.88 
	0.07
	9.60 
	0.02
	346.43 
	

	
	PartyScene
	40.66 
	0.08
	8.20 
	0.02
	395.72 
	

	
	RaceHorses
	27.58 
	0.09
	5.84 
	0.02
	372.16 
	

	Class D
	BasketballPass
	10.34 
	0.02
	2.33 
	0.00
	343.89 
	393.72 

	
	BQSquare
	18.28 
	0.03
	2.87 
	0.00
	536.37 
	

	
	BlowingBubbles
	11.35 
	0.02
	2.51 
	0.01
	351.94 
	

	
	RaceHorses
	8.31 
	0.03
	1.88 
	0.01
	342.70 
	

	Class E
	Vidyo1
	70.24 
	0.12
	40.31 
	0.07
	74.28 
	75.37 

	
	Vidyo3
	72.28 
	0.12
	39.38 
	0.07
	83.53 
	

	
	Vidyo4
	74.82
	0.12
	44.46
	0.07
	68.31 
	


4.3 Description of computing platform used to determine encoding and decoding times reported in sections 4.1 and 4.2
The encoder and the decoder executables of JM17.0 and the proposed method are executed on Intel Xeon two Quadcore CPUs 64 bit Windows 7 with 16G bytes memory and hard disk of SATA2(NTFS file formatted).The current implementation does not implement multi-core parallel processing technology for fair comparison with JM17.0 encoder and decoder. 
4.4 Expected memory usage of encoder

In the proposed method, both L0 and L1 lists need 2 reference frames, with 1/8 pel resolution. In a Class B sequence, the maximum memory size of Constraint set 1 configuration can be estimated in B picture type by the following calculation:
B picture maximum memory: (1920 x 1080 x 3 for one reference picture) x (4 for L0 and L1) x (8 for 1/8 Hor interpolation) x (8 for 1/8 Ver interpolation) + (1920x1080 x 1.5 for input picture) + extra memories.
The calculation of the expected memory size in Constraint set 1 based on the above example shows the following results: 
	Constraint set 1

	
	Height
	Width
	Expected memory(KB)

	Class A
	2560
	1600
	3,078,000

	Class B
	1920
	1080
	1,558,238

	Class C
	832
	480
	300,105

	Class D
	416
	240
	75,026


In a Class B sequence, the maximum memory size of Constraint set 2 configuration can be estimated by the following calculation:
P picture maximum memory: (1920 x 1080 x 3 for one reference picture) x (4 for L0 memory) x (8 for 1/8 Hor interpolation) x (8 for 1/8 Ver interpolation) + (1920x1080 x 1.5 for input picture) + extra memories
The calculation of the expected memory size in Constraint set 2 based on the above example shows the following results:
	Constraint set 2

	
	Height
	Width
	Expected memory (KB)

	Class B
	1920
	1080
	1,558,238

	Class C
	832
	480
	300,105

	Class D
	416
	240
	75,026

	Class E
	1280
	720
	692,550


4.5 Expected memory usage of decoder

The memory usage of the proposed decoder is similar to that of the JM17.0 decoder.
In a Class B sequence, the maximum memory size of Constraint set 1 configuration can be estimated in B picture by the following calculation:
B picture maximum memory: (1920 x 1080 x 3 for one reference picture) x (4 for L0 and L1) + extra memories
The calculation of the expected memory size in Constraint set 1 based on the above example shows the following results:
	Constraint set 1

	　
	Height
	Width
	Expected Memory(KB)

	Class A
	2560
	1600
	48,000 

	Class B
	1920
	1080
	24,300 

	Class C
	832
	480
	4,680 

	Class D
	416
	240
	1,170 


In a Class B sequence, the maximum memory size of Constraint set 2 configuration can be estimated in P picture by the following calculation:

P picture maximum memory: (1920 x 1080 x 3 for one reference picture) x (4 for L0) + extra memories
The calculation of the expected memory size in Constraint set 2 based on the above example shows the following results:
	Constraint set 2

	
	Height
	Width
	Expected memory (KB)

	Class B
	1920
	1080
	24,300

	Class C
	832
	480
	4,680

	Class D
	416
	240
	1,170

	Class E
	1280
	720
	10,800


4.6 Complexity characteristics of encoder motion estimation and motion segmentation selection

· The number of reference pictures: 2 pictures for L0 and 2 pictures for L1.
· Frame size memory: 1/8 pixel image is needed for 1/8 interpolation and motion estimation.
· Sample value word length: 8 bits/pixel
· Block size: 32x32, and 16x16, 16x8, 8x16 and 8x8 for each 16x16 block size, and 8x8, 8x4, 4x8, and 4x4 for each 8x8 block size
· Motion compensation interpolation filter: a 6-tab for 1/2 pel, a bilinear interpolation for 1/4 pel and a bilinear interpolation for 1/8 pixel with high precision (HP)
· Interpolation sample unit: 1/8 pixel interpolation
4.7 Complexity characteristics of decoder motion compensation

The decoder needs the same interpolation and motion compensation methods as the encoder. However, the 1/2 pel, 1/4 pel and 1/8 pel interpolation memories are not needed because the block-based interpolation is used in the decoding process. The complexity of the decoder is only increased for a possible block based 1/8 pel interpolation compared with that of the JM17.0 decoder.
4.8 Complexity characteristics of encoder intra-frame prediction type selection

One of the following Intra prediction types is determined in unit of 16x16 block within an EMB by the RDO process in H.264/AVC: 
· 16x16 Intra prediction with four direction modes
· 16x8 Intra prediction, 8x16 Intra prediction with three direction modes (Vertical mode, Horizontal mode, DC mode)
· 8x8 Intra prediction with nine direction modes
· 8x4 Intra prediction, 4x8 Intra prediction with three direction modes (Vertical mode, Horizontal mode, DC mode)
· 4x4 Intra prediction with nine direction modes
4.9 Complexity characteristics of decoder intra-frame prediction operation

The reconstruction process according to the directional prediction mode of the Intra prediction type is performed on the decoder.
4.10 Complexity characteristics of encoder transforms and transform type selection

One of the following transform types is determined in unit of 16x16 block or EMB by the RDO process.
Transform types in Intra 16x16 block: 4x4 MDDT, 8x8 MDDT, and 16x16 MDDT.
Transform types in Inter 16x16 block: 16x16 Integer DCT, 16x8 Integer DCT, 8x16 Integer DCT, 8x8 Integer DCT, and 4x4 Integer DCT.
4.11 Complexity characteristics of decoder inverse transform operation

The inverse transform according to the transform type is performed on the decoder. 
4.12 Complexity characteristics of encoder quantization and quantization type selection

The quantization process of the proposed method is the same as that of H.264/AVC.
4.13 Complexity characteristics of decoder inverse quantization

The inverse quantization process of the proposed method is the same as that of H.264/AVC.
4.14 Complexity characteristics of encoder in-loop filtering type selection

The complexity of deblocking filtering of the proposed method is similar to that of JM17.0 and QALF of the proposed method is similar to that of KTA 2.4r1.
4.15 Complexity characteristics of decoder in-loop filtering operation

The complexity of deblocking filtering of the proposed method is similar to that of JM17.0 and QALF of the proposed method is similar to that of KTA 2.4r1.
4.16 Complexity characteristics of encoder entropy coding type selection

The syntax elements of interX_flag, extended_mb_flag, direct_X_flag, B_pdir, partition_type, and AMVP_flag are added to the H.264/AVC syntax elements. The syntax elements of skipX_flag, cpbX_flag, transform_size are modified for the proposed encoder. In particular, quad-tree based coding is used in partition_type. All the syntax elements in the proposed method are coded as the H.264/AVC CABAC engine.
4.17 Complexity characteristics of decoder entropy decoding operation

The entropy decoding process of the proposed method is the same as that of H.264/AVC CABAC.
4.18 Complexity characteristics of encoder AMVP
The precision of motion vector is adaptively selected among 1/2 pixel, 1/4 pixel, and 1/8 pixel on the 16x16 block level or EMB level by using the RDO process. 
4.19 Complexity characteristics of decoder AMVP
The decoding process for AMVP is as simple as that of JM17.0 since the block-based interpolation is performed.
4.20 Degree of capability for encoder parallel processing

The proposed method uses EMB level block-based processing so that parallel processing and pipeline processing using multi-core can be performed on problems with QALF in the similar way to JM17.0.
4.21 Degree of capability for decoder parallel processing

The proposed method uses EMB level block-based processing so that parallel processing and pipeline processing using multi-core can be performed on problems with QALF in the similar way to JM17.0.
5 Algorithmic characteristics

5.1 Random access characteristics

In this proposal, random access interval of 1.1 seconds or less is guaranteed. In order to support random access, a modified IDR (Instantaneous Decoding Refresh) picture type used in H.264/AVC standard is adopted to this contribution. Management scheme for DPB is modified to increase the coding performance while random access is enabled. 
After decoding IDR picture type, just before decoding the next picture in display order, the DPB is cleared out only keeping the IDR picture. Figure 5-1 shows an example. DPB memory is refreshed just before decoding the P picture with display order 12 only keeping the IDR picture with display order 8..
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Figure 5‑1. DPB management for random access
5.2 Delay characteristics

This proposal uses hierarchical B picture structure for constraint set 1. The delay characteristics are same as the anchor alpha. 

6 Software implementation description
6.1 Encoding Implementation Issue
The encoder is implemented in the standard C language. The software is not optimized. No parallel processing is implemented. 
6.2 Decoding Implementation Issue
The decoder is implemented in the standard C language. The software is not optimized. No parallel processing is implemented. 
6.3 Other issues

1. None.
7 Highlighted aspects discussion

For intra coding, non square partition types with three direction modes are supported in this proposal (section 2.2). An EMB is divided into four 16x16 blocks. 16x8 block and 8x16 block for each 16x16 block, and 8x4 block and 4x8 block for each 8x8 block with three modes of horizontal, vertical and DC predictions are used in addition to H.264/AVC-based 16x16, 8x8 and 4x4 prediction partition types and their prediction modes. 

For inter coding, new partition types and transforms are supported in this proposal (section 2.1 and section 2.3). A whole 32x32 partition type is added to the existing partition types of H.264/AVC with 16x16 block. This 32x32 partition type supports skip, direct, and motion with residual coding. Transform sizes larger than 8x8 such as 16x8, 8x16 and 16x16 DCT transform sizes are used in addition to the H.264/AVC-based 4x4 and 8x8 inter DCT transforms. Groups of possible transform sizes are dependent on the partition sizes. For example, a group of 16x16, 8x8 and 4x4 transforms is used for 32x32 or 16x16 partition block. The selected transform sizes for actual coding are signaled in the EMB header bit-stream. 
Partition type information is binarized using a tree based method (section 2.6). The partition types of four 16x16 blocks in an EMB are coded in group. 
For motion compensation (section 2.1), motion vector precision is adaptively selected on a EMB or 16x16 block levels among 1/2-pel, 1/4-pel and 1/8-pel precisions. 
8 Closing remarks

From the analysis of results with the proposed video codec, the following four areas are recommended to be further explored through core experiements such as extended marcroblock partition structure, adaptive transform selection with larger transform sizes than 8x8, adaptive motion vector precision selection and efficient partition type information coding.
9 Patent rights declaration(s)
SK telecom may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
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