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Abstract

This contribution describes MediaTek’s proposal, which is a proposal in response to the “Joint Call for Proposals on Video Compression Technology” (VCEG-AM91 or WG11 N11113) issued jointly by two standard bodies, ITU-T SG 16 Question 6 (the ITU-T Visual Coding Experts Group – a.k.a. VCEG) and ISO/IEC JTC 1/SC 29/WG 11 (MPEG). This proposal includes many well-known tools in the KTA software, e.g., extended macroblocks, High Precision Interpolation Filter (HPIF), Internal Bit Depth Increase (IBDI), and Motion Vector Competition (MVC). It also includes a few effective KTA tools strengthened with MediaTek’s improvements, e.g., Adaptive Interpolation Filters (AIF), Adaptive Loop Filters (ALF), and scaled motion vector predictor. Several new tools are also included in the proposal, e.g., spatial-temporal direct mode, enhanced intra coding, modified decoder-side motion vector derivation, and 32-point transform. Its average BD-rate reductions in comparison with the Alpha, Beta, and Gamma anchors are 29.66%, 28.83%, and 46.40%, respectively.
1 Introduction
In response to the “Joint Call for Proposals on Video Compression Technology” (VCEG-AM91 [1] or WG11 N11113 [2]), MediaTek has submitted the required coded test material. This contribution is a technical description of MediaTek’s proposal.
We integrated many effective tools together to achieve significantly better coding efficiency than the CfP anchors. The integrated tools include many well-known tools in the KTA software, e.g., extended macroblocks, High Precision Interpolation Filter (HPIF), Internal Bit Depth Increase (IBDI), and Motion Vector Competition (MVC). We also further improve a few effective KTA tools, e.g., Adaptive Interpolation Filters (AIF), Adaptive Loop Filters (ALF), and scaled motion vector predictor. Several new tools are also integrated, e.g., spatial-temporal direct mode, enhanced intra coding, modified decoder-side motion vector derivation, and 32-point transform. We have solved the compatibility issues among these tools. Currently, our software has no mismatch between encoder and decoder throughout all the tests we have done, including all the test cases required by the CfP. This software can be a good starting framework for the development of this standard since it already includes many promising techniques up to date.
2 Algorithm description
2.1 Motion representation
In the proposed scheme, block-based motion estimation and compensation are used for inter-prediction, which is the same as the conventional video coding schemes such as H.264/AVC. In this process, quarter-pel motion vector accuracy and a maximum macroblock (MB) size of 64x64 are adopted. We use high precision interpolation filter (HPIF) [3] instead of the one used in the current H.264/AVC to improve prediction efficiency. In order to further improve the coding efficiency, adaptive interpolation filtering (AIF) method is also used in motion estimation and compensation process. Different from the current AIF techniques in KTA software, we use a new partition-based AIF method which is capable of local adaptation and achieves better coding efficiency. We named our scheme Advanced AIF (AAIF). The details of the proposed AIF method are as follows.
2.1.1 Encoding flow of AAIF
The proposed AIF method is based on the observation that the optimal filter may vary for different areas within one picture. Therefore, we use multiple interpolation filters for one inter-predictive picture and perform rate-distortion (RD) selection at multiple block partition levels. Figure 1 shows the encoding flow of the proposed method. Frame-level multi-pass encoding is applied in this scheme
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Figure 1  Encoding flow of the proposed AAIF
The first pass is similar to the normal H.264/AVC encoding pass. In this pass, two kinds of interpolation filters may be used to generate fractional pixels for the entire frame. One is the fixed HPIF, and the other is the time-delayed Wiener filter trained from the previous frame. The use of the time-delayed Wiener filter is based on the observation that consecutive frames may have similar AIF coefficients if they have similar visual contents and motions. Simulation results show that in many cases, time-delayed filters help to improve the prediction accuracy of the first encoding pass, and thereby generate more accurate AIF coefficients which can be used in the subsequent encoding passes.
A set of AIF coefficients is calculated at the end of the first encoding pass. We adopt the Enhanced AIF (EAIF) [4]

 REF _Ref257123873 \r \h 
[5] in this proposal for its good performance. Having generated the filters, a competitive filter set (CFS) is built up for the second encoding pass. This CFS contains several candidate filters which may include the optimal Wiener filters trained from the prior encoding pass of the current frame, those trained from previous frames, and the HPIF. The optimal filter will be selected from the candidate filters using an RD optimization criterion in the subsequent encoding procedure. Figure 2 shows an example of CFS for IPPP structure. For frame Pt, a filter candidate set CFSt is built up. The CFSt contains three candidate filters: Wiener filter of the current frame Ft, Wiener filter from the previous frame Ft-1, and the fixed HPIF. The RD selection is performed at partition levels, which can be predefined. We use three kinds of partition sizes which will be described in details in the following subsection. The number of filters in CFS can be predefined. When the number is 1, only Wiener filter of the current frame is used. When the number is larger than 1, Wiener filters from previous frames and the HPIF are also included.
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Figure 2  An example of CFS for IPPP structure.

At the end of the second encoding pass, AIF coefficients are calculated again. Different from the first pass, only the blocks which have chosen Wiener filters in the RD selection of the first pass are used in the derivation of the refined AIF coefficients. We call this process refinement, and thereby the third encoding pass refinement pass. After the refined AIF coefficients are obtained, the partition-level filter selection similar to the second pass is performed. This refinement AIF pass can be skipped if lower complexity is desired and a small degradation of coding efficiency can be tolerated. In our submitted test materials, this refinement AIF pass was turned off. Note that this is an encoder-only issue.
2.1.2 RD selection of multiple filters
We use partition-level adaptation among different candidate filters in this proposal. To balance the coding efficiency and the coding complexity, we define three partition levels: 64x64, 32x32, and 16x16. For each partition level, a filter index is assigned and sent in the bitstream. Figure 3 shows an example of the relationship between partitions and filter indices. The figure on the left represents a case in which a 64x64 partition is chosen as one 64x64 block after RD optimization. In this case, only one filter index needs to be transmitted (Idx). The figure in the middle represents a case in which the 64x64 partition is further divided into four 32x32 partitions. For each 32x32 partition, block size of 32x32 is chosen. In this case, one filter index for each 32x32 partition needs to be sent. The figure on the right is another case of the 64x64 partition further divided into four 32x32 partitions. In this case, the bottom left 32x32 partition is further divided into four 16x16 partitions. Therefore, totally 7 filter indices are needed. According to our design, for each 64x64 partition, 16 filter indices need to be sent at most.
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Figure 3  Example of the relationship between partitions and filter indices
The mode decision process is similar to normal H.264 except that the proposed method needs to check each candidate filter in CFS. Assuming filter i is checked currently, all reference frames in the frame buffer are interpolated by this filter. The best MB mode, modei, then can be formulated as
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where Ji is the RD cost function; Di and Ri are the distortion function and rate function respectively; and 
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 is Lagrange multiplier. After all the candidate filters have been checked, the optimal filter type is chosen as,
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The filter index is then entropy coded and transmitted for each partition. We use the smaller of the filter index of the partition to the left of the current partition and that of the partition to the top of the current partition as the predictor of the current filter index. One predictive bit is used to indicate whether the current filter index is equal to the predictor or not. If not, a fixed-length binarization is used to signal the correct index, which is similar to the method used for intra 4x4 prediction modes in H.264/AVC.
2.1.3 Syntax definition
Table 1 shows the syntax definition of the proposed partition-based AIF method. Based on the current syntax elements in KTA software, we added several new ones. In picture parameter set (PPS), we added two new syntax elements after the current “adaptive_filter_flag”: “advanced_aif_flag” and “aif_filternum_minus1”. The “advanced_aif_flag” can be 1 or 0, which represents the proposed partition-based AIF on or off. If this flag is equal to 1, the syntax element “aif_filternum_minus1” will be transmitted to indicate how many filters will be included in CFS. At MB level and partition level, we added two new syntax elements: “most_probable_filter” and “rem_filter_index”. The first one is a bit to indicate whether the current filter index is equal to the predictive value or not. If it is equal to 0, i.e., wrong prediction, the “rem_filter_index” is transmitted to indicate the current filter index. Please note that although the two new syntax elements are not sent for Skip partitions, the most probable filter is used in this case.
Table 1  Syntax elements of the proposed AAIF
	pic_parameter_set_rbsp( ) {
	C
	Descriptor

	…
	
	

	entropy_coding_mode_flag
	1
	u(1)

	adaptive_filter_flag
	1
	u(1)

	if( adaptive_filter_flag > 0) {
	
	

	advanced_aif_flag
	1
	u(1)

	if(advanced_aif_flag > 0)
	
	

	aif_filternum_minus1
	1
	ue(v)

	}
	
	

	…
	
	

	}
	
	


	macroblock64x64_layer( ) {
	C
	Descriptor

	mb64x64_skip_flag
	2
	ae(v)

	Skip = mb64x64_skip_flag
	
	

	if( !Skip ) {
	
	

	mb64x64_type
	2
	ae(v)

	MbType = mb64x64_type
	
	

	if( MbType <= 3 ) {
	
	

	…
	
	

	if( aif_filter_num_minus1 > 0 ) {
	
	

	most_probable_filter[ 0 ][ 0 ]
	2
	ae(v)

	MostProbableFilter = most_probable_filter[ 0 ][ 0 ]
	
	

	if( !MostProbableFilter && aif_filter_num_minus1 > 1 ) {
	
	

	rem_filter_index[ 0 ][ 0 ]
	2
	ae(v)

	RemFilterIndex = rem_filter_idx[ 0 ][ 0 ]
	
	

	}
	
	

	}
	
	

	…
	
	

	} else {
	
	

	for( mb32x32PartIdx = 0; mb32x32PartIdx < 4; mb32x32PartIdx++ )
	
	

	macroblock32x32_layer( )
	
	

	}
	
	

	}
	
	

	…
	
	

	}
	
	


	macroblock32x32_layer( ) {
	C
	Descriptor

	mb32x32_skip_flag[ mb32x32PartIdx ]
	2
	ae(v)

	Skip = mb32x32_skip_flag[ mb32x32PartIdx ]
	
	

	if( !Skip ) {
	
	

	mb32x32_type[ mb32x32PartIdx ]
	2
	ae(v)

	MbType = mb32x32_type[ mb32x32PartIdx ]
	
	

	if( MbType <= 3 ) {
	
	

	…
	
	

	if( aif_filter_num_minus1 > 0 ) {
	
	

	most_probable_filter[ mb32x32PartIdx ][ 0 ]
	2
	ae(v)

	MostProbableFilter = most_probable_filter[ mb32x32PartIdx ][ 0 ]
	
	

	if( !MostProbableFilter && aif_filter_num_minus1 > 1 ) {
	
	

	rem_filter_index[ mb32x32PartIdx ][ 0 ]
	2
	ae(v)

	RemFilterIndex = rem_filter_index[ mb32x32PartIdx ][ 0 ]
	
	

	}
	
	

	}
	
	

	…
	
	

	} else {
	
	

	for( mb16x16PartIdx = 0; mb16x16PartIdx < 4; mb16x16PartIdx++ )
	
	

	macroblock16x16_layer( )
	
	

	}
	
	

	}
	
	

	…
	
	

	}
	
	


	macroblock16x16_layer( ) {
	C
	Descriptor

	mb16x16_skip_flag[ mb32x32PartIdx ][ mb16x16PartIdx ]
	2
	ae(v)

	Skip = mb16x16_skip_flag[ mb32x32PartIdx ][ mb16x16PartIdx ]
	
	

	if( !Skip ) {
	
	

	mb16x16_type[ mb32x32PartIdx ][ mb16x16PartIdx ]
	2
	ae(v)

	MbType = mb16x16_type[ mb32x32PartIdx ][ mb16x16PartIdx ]
	
	

	…
	
	

	if( aif_filter_num_minus1 > 0 ) {
	
	

	most_probable_filter[ mb32x32PartIdx ][ mb16x16PartIdx ]
	2
	ae(v)

	MostProbableFilter = 

most_probable_filter[ mb32x32PartIdx ][ mb16x16PartIdx ]
	
	

	if( !MostProbableFilter && aif_filter_num_minus1 > 1 ) {
	
	

	rem_filter_index[ mb32x32PartIdx ][ mb16x16PartIdx ]
	2
	ae(v)

	RemFilterIndex = 

rem_filter_index[ mb32x32PartIdx ][ mb16x16PartIdx ]
	
	

	}
	
	

	}
	
	

	…
	
	

	}
	
	

	…
	
	

	}
	
	


2.2 Intra-frame prediction
The intra prediction method for chroma is the same as that in H.264/AVC. The following sections focus on the proposed prediction method for luma.
2.2.1 Intra-prediction on Intra 4x4/8x8 blocks
For each intra 4x4 macroblock (I4MB) or intra 8x8 macroblock (I8MB), an obip_flag is used to indicate if all 4x4 or 8x8 blocks in the MB are predicted by the Overlapped Block Intra-Prediction (OBIP) method (when obip_flag=1) or by the normal method as in H.264/AVC. The OBIP method is described as follows.
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Figure 4  Illustration of neighboring blocks to the left and to the top of the current block
As depicted in Figure 4, we denote the neighboring blocks to the left and to the top of the current block as A and B, respectively. The intra-prediction modes for block A, B, and the current block are denoted as ModeA, ModeB, and ModeC, respectively. For a pixel S(i, j), where (i, j) is the coordinate in the current block, three possible predictors PC(i, j), PA(i, j), and PB(i, j) can be generated by the normal directional prediction method as in H.264/AVC with ModeC, ModeA and ModeB respectively. Then the prediction P(i, j) for S(i, j) can be calculated as
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where 
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is the weighting value on PX(i, j) when the current block mode is ModeC. Thus, we formulate the prediction P(i, j) for S(i, j) as a weighting sum of three possible predictors PC(i, j), PA(i, j), and PB(i, j). The weighting values depend on the pixel positions (i, j), the current block mode (ModeC), and the position of the weighted predictor (X).
We define a neighboring block A or B is ‘valid’ if it is coded in I4MB or I8MB, but not coded with the DC prediction mode (mode 2). If either block A or block B is not valid, Equation ( 3 ) is degenerated from three to two terms. Three different sets of weighting values are used for three cases: both A and B are valid; only A is valid; and only B is valid. If neither A nor B is valid, OBIP is degenerated to just one term, which is exactly the normal intra prediction in H.264. In addition, we treat ModeA = ModeB as a special case, where Equation ( 3 ) is also degenerated to two terms since PA(i, j), = PB(i, j) for all (i, j). A special set of weighting values is used for this special case. Therefore, there are totally 1296 (9*3*16+3*9*2*16) and 5184 (9*3*64+3*9*2*64) different weighting values for I4MB and I8MB, respectively.
All the weighting values are offline trained and do not change throughout the encoding or decoding process. To avoid floating-point operations, 
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 is quantized to a 14-bit integer. Equation ( 3 ) can then be rewritten as
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2.2.2 Intra-prediction on Intra 16x16 blocks
There are 9 prediction modes in Intra 16x16 blocks. Mode 0, 1, 2, and 4 hold the same prediction procedure as the Intra_16x16_Vertical, Intra_16x16_Horizontal, Intra_16x16_DC, and Intra_16x16_Plane modes in H.264/AVC, respectively. The other 5 modes are:

Mode 3: Intra_16x16_Diag_Down_Left,

Mode 5: Intra_16x16_Vert_Right,

Mode 6: Intra_16x16_Hor_Down,

Mode 7: Intra_16x16_Vert_Left,

Mode 8: Intra_16x16_Hor_Up.
The prediction procedures of the above 5 modes are similar to the 5 corresponding Intra_4x4 prediction modes except for the different scale.
Unlike H.264/AVC, the Intra_16x16 prediction modes are not coded within the mb16x16_type information. Instead, they are coded in a uniform manner as Intra_4x4/Intra_8x8 prediction modes, which will be described in the following subsection. In an Intra_16x16 MB, the cbp information is still carried within the mb16x16_type. The coding tree of the mb16x16_type in I-slice is depicted in Figure 5. In Figure 5, a left branch represents a ‘0’ and a right branch represents a ‘1’. A pair (x, y) of a leaf node represents the cbp value of an Intra_16x16 MB with x being the cbp_chroma and y being the cbp_luma. In Context-based Adaptive Binary Arithmetic Coding (CABAC), this coding tree corresponds to the binarization process, and each internal node should be assigned a context. In P-slice or B-slice, the same prefix codes are added as those in H.264/AVC.
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Figure 5  Coding tree of mb16x16_type in I-slice where (x, y) denotes (cbp_chroma, cbp_luma)
2.2.3 Coding of the intra-prediction mode information
We utilize a Context Dependent Mode Representation (CDMR) method to code the Intra_16x16, Intra_8x8, and Intra_4x4 prediction modes.
We define the intra-prediction modes of the neighboring blocks to the left and to the top of the current block as the ‘context’. As depicted in Figure 4, the context can be denoted as (MA, MB). If block A or B does not exist or is not coded in intra-mode, MA or MB is set to ‘9’. Two tables, denoted as 
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, are maintained for each individual context (MA, MB). The length of both
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 is equal to the number of valid prediction modes in the context (MA, MB). PT records the occurrence frequency of each mode in a descending order, MT records the corresponding modes, and C selects the binarization method. In other words, mode MT[i] takes the ith largest occurrence frequency, which is recorded as PT[i]. When mode MT[i] is transmitted, i is the coding word. There are 9 candidate binarization methods T0, T1,…, T8 , and Tk is used to code the word i where k = 
[image: image18.wmf](,)

AB

MM

C

. The nine coding trees are shown in Figure 6. In CABAC, each internal node is assigned a context.
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Figure 6  Nine coding trees of intra prediction modes
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 are initialized with predefined values at the beginning of encoding or decoding a slice. After one mode MT[i] in the context (MA, MB) has been encoded or decoded, the 
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where lk(m) represents the code length of the coding word m in the coding tree k. 
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2.2.4 Syntax definition
Table 2 shows the syntax elements of the proposed enhanced intra coding (EIC). The “use_eic” flag is added at the slice header to indicate whether the enhanced intra coding is turned on or off. Except mmklt_pred_flag and mmklt_rem, context formation for rest new intra coding syntax elements has been introduced before. Multiple Model Karhunen–Loève Transform (MMKLT) will be explained in Section 2.3.2. In H.264/AVC, the quantization parameter for an Intra_16x16 MB is always sent. However, in our proposal, the quantization parameter for an Intra_16x16 is sent when the coded block pattern is nonzero. This is not shown in Table 2 for the sake of brevity because there are many other conditions to be satisfied for sending the quantization parameter due to extended macroblocks.
Table 2  Syntax elements of the proposed EIC
	slice_header( ) {
	C
	Descriptor

	…
	
	

	use_eic
	2
	u(1)

	…
	
	

	}
	
	


	macroblock16x16_layer( ) {
	C
	Descriptor

	mb16x16_skip_flag[ mb32x32PartIdx ][ mb16x16PartIdx ]
	2
	ae(v)

	if( !mb16x16_skip_flag[ mb32x32PartIdx ][ mb16x16PartIdx ] ) {
	
	

	mb16x16_type[ mb32x32PartIdx ][ mb16x16PartIdx ]
	2
	ae(v)

	MbType = mb16x16_type[ mb32x32PartIdx ][ mb16x16PartIdx ]
	
	

	if( MbType = = I_PCM ) {
	
	

	…
	
	

	if( … ) {
	
	

	…
	
	

	} else {
	
	

	…
	
	

	mb16x16_pred( MbType )
	
	

	}
	
	

	} else {
	
	

	…
	
	

	if( Mb16x16PartPredMode( MbType, 0 ) != Intra_16x16 ) {
	
	

	coded_block_pattern[ mb32x32PartIdx ][ mb16x16PartIdx ]
	2
	ae(v)

	if( use_eic && MbType = = I_NxN && 
CodedBlockPatternLuma > 0 ) {
	
	

	mmklt_pred_flag[ mb32x32PartIdx ][ mb16x16PartIdx ]
	2
	ae(v)

	MmkltPredFlag = 

mmklt_pred_flag[ mb32x32PartIdx ][ mb16x16PartIdx ]
	
	

	if( !MmkltPredFlag ) {
	
	

	mmklt_rem[ mb32x32PartIdx ][ mb16x16PartIdx ]
	2
	ae(v)

	MmkltRem = 

mmklt_rem[ mb32x32PartIdx ][ mb16x16PartIdx ]
	
	

	}
	
	

	}
	
	

	…
	
	

	}
	
	

	if( … ) {
	
	

	mb_qp_delta
	2
	ae(v)

	residual( 0, 0, 15 )
	3 | 4
	

	}
	
	

	}
	
	

	}
	
	

	…
	
	

	}
	
	


	mb16x16_pred( MbType ) {
	C
	Descriptor

	if( Mb16x16PartPredMode( MbType, 0 ) = = Intra_4x4 | | 
Mb16x16PartPredMode( MbType, 0 ) = = Intra_8x8 )
	
	

	obip_flag
	2
	ae(v)

	if( Mb16x16PartPredMode( MbType, 0 ) = = Intra_4x4 | | 
Mb16x16PartPredMode( MbType, 0 ) = = Intra_8x8 | | 
Mb16x16PartPredMode( MbType, 0 ) = = Intra_16x16 ) {
	
	

	if( Mb16x16PartPredMode( MbType, 0 ) = = Intra_4x4 )
	
	

	for( luma4x4BlkIdx = 0; luma4x4BlkIdx < 16; luma4x4BlkIdx++ )
	
	

	intra4x4_pred_mode[ mb32x32PartIdx ][ mb16x16PartIdx ]
[ luma4x4BlkIdx ]
	2
	ae(v)

	if( Mb16x16PartPredMode( MbType, 0 ) = = Intra_8x8 )
	
	

	for( luma8x8BlkIdx = 0; luma8x8BlkIdx < 4; luma8x8BlkIdx++ )
	
	

	intra8x8_pred_mode[ mb32x32PartIdx ][ mb16x16PartIdx ]
[ luma8x8BlkIdx ]
	2
	ae(v)

	if( Mb16x16PartPredMode( MbType, 0 ) = = Intra_16x16 )
	
	

	intra16x16_pred_mode[ mb32x32PartIdx ][ mb16x16PartIdx ]
	2
	ae(v)

	…
	
	

	} else if( Mb16x16PartPredMode( MbType, 0 ) != Direct ) {
	
	

	…
	
	

	}
	
	

	}
	
	


2.3 Spatial transforms
2.3.1 Inter transform
It has been proved that a larger transform size can achieve better energy concentration, especially for high definition videos [6]. For inter coded macroblocks in our proposal, compared with H.264, 32x32, 32x16, 16x32, 16x16, 16x8, and 8x16 transforms are used in addition to 4x4 and 8x8 transforms. The new transform uses two 1-D DCTs to achieve a 2-D transform. The 1-D DCT is shown as follows:
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where N= 8, 16, 32. When N = 8 or N =16, 8-bit integers are used to represent the DCT coefficients, and when N = 32, 9-bit integers are used to represent the DCT coefficients. By using 32-point 1-D DCT and 16-point 1-D DCT, we can achieve 2-D 32x16 and 16x32 2-D transforms.

If motion partitions are 64x64, 64x32, 32x64, and 32x32, transform size of 32x32, 16x16, 8x8, and 4x4 can be used. The transform size is indicated by the transform_size_8x8_flag. In the case of 32x16 and 16x32 motion partitions, 32x32 transform is replaced by 32x16 transform and 16x32 transform, respectively. The allowed transforms of different partition sizes are shown in Table 3.
Table 3  Allowed transforms of different partition sizes
	Motion Block Size
	Allowed Transform
	transform_size_8x8_flag 

	64x64, 64x32, 32x64, 32x32
	32x32, 16x16, 8x8, 4x4
	3, 2, 1, 0

	32x16
	32x16, 16x16, 8x8, 4x4
	3, 2, 1, 0

	16x32
	16x32, 16x16, 8x8, 4x4
	3, 2, 1, 0

	16x16
	16x16, 8x8, 4x4
	2, 1, 0

	16x8
	16x8, 8x8, 4x4
	2, 1, 0

	8x16
	8x16, 8x8, 4x4
	2, 1, 0

	8x8
	8x8, 4x4
	1, 0

	8x4, 4x8, 4x4
	4x4
	0


2.3.1.1 Syntax definition
Table 4 shows the syntax definition of the proposed transform, which is modified from [6]. We add use_transform32 in PPS to enable our new transform. For a 64x64 region, when the partition mode is P64x64 or P64x32 or P32x64, sixteen 16x16 macroblocks share one transform_size_flag32, which is used to indicate if the 64x64 region uses 32-point transform or not. For a 32x32 region, when the partition mode is P32x32 or P32x16 or P16x32, four 16x16 macroblocks share one transform_size_flag32, which is used to indicate if the 32x32 region uses 32-point transform or not. If transform_size_flag32 is 0, one transform_size_8x8_flag has to be signaled additionally to indicate the transform size for each 16x16 macroblock. If transform_size_flag32 is 1, 32-point transform is used for all motion partitions, and transform_size_8x8_flag of each macroblock is automatically set to 3.

If transform_size_8x8_flag is 3 and the motion partition is 64x64 or 64x32 or 32x64 or 32x32, a 1-bit cbp32x32 flag is signaled for each 32x32 region. In the case of cbp32x32 = 0, no additional luma residue is signaled; otherwise, in the case of cbp32x32 = 1, luma residues are sent. If transform_size_8x8_flag is 3 and the motion partition is 32x16, a 2-bit cbp32x16 symbol is signaled for each 32x32 region, and each bit indicates if a 32x16 partition has nonzero quantized transform coefficients or not. A similar coded block pattern design is also used for P16x32 partitions. If transform_size_8x8_flag is 2 and the motion partition is larger than 8x8, the cbp signaling is the same as that in [6]. Chroma residual information is signaled by sending chroma_cbp and the chroma quantized transform coefficients with existing H.264 syntax elements.
Table 4  Syntax elements of the proposed 32-point transform
	pic_parameter_set_rbsp( ) {
	C
	Descriptor

	…
	
	

	use_transform32
	2
	u(1)

	…
	
	

	}
	
	


	macroblock64x64_layer() {
	
	

	…
	
	

	if( use_transform32 && CBP != 0 && ( MbType <= 3 ) ) {
	
	

	transform_size_flag32
	2
	ae(v)

	if( transform_size_flag32 ) {
	
	

	for( mb32x32PartIdx = 0; mb32x32PartIdx < 4; mb32x32PartIdx++ )
	
	

	cbp32x32[ mb32x32PartIdx ]
	2
	ae(v)

	}
	
	

	}
	
	

	…
	
	

	}
	
	


	macroblock32x32_layer() {
	
	

	…
	
	

	if( use_transform32 && CBP != 0 && ( MbType <= 3 ) ) {
	
	

	transform_size_flag32
	2
	ae(v)

	if( transform_size_flag32 ) {
	
	

	if( MB32.mb_type <= 1 )
	
	

	cbp32x32[ mb32x32PartIdx ]
	2
	ae(v)

	else if ( MB32.mb_type = = 2 )
	
	

	cbp32x16[ mb32x32PartIdx ]
	2
	ae(v)

	else if ( MB32.mb_type = = 3 )
	
	

	cbp16x32[ mb32x32PartIdx ]
	2
	ae(v)

	}
	
	

	}
	
	

	…
	
	

	}
	
	


2.3.2 Intra transform
The same intra transform method for chroma is used as that in H.264/AVC, and Multiple Model Karhunen–Loève Transform (MMKLT) technique is proposed in intra transform for luma.
In MMKLT, there are three transform classes, denoted as {T0}, {T1}, and {T2}, and each contains specific transforms depending on Intra_4x4, Intra_8x8, and Intra_16x16 prediction modes except the DC mode (mode 2). In other words, there are 3*(9-1) = 24 types of 4x4 transforms, 3*(9-1) = 24 types of 8x8 transforms, and 3*(9-1) = 24 types of 16x16 transforms. All the transform coefficients are off-line trained. They are all fixed numbers and do not change throughout the encoding or decoding process. In an Intra-MB (Intra_4x4 or Intra_8x8 or Intra_16x16), an MMKLT class type is conveyed. The coding method of the MMKLT class type will be described in the following paragraph. Suppose the current Intra-MB possesses the MMKLT class type t, which can be 0, or 1, or 2, then a block (with size of 4x4, 8x8 or 16x16) in this MB with prediction mode m not equal to 2 should utilize the transform Tt(m). As for a block with the prediction mode 2, it should use the normal DCT as in H.264/AVC.
As previously shown in Table 2, we use syntax element mmklt_pred_flag and mmklt_rem to convey the MMKLT class type denoted as t in an MB. These two syntax elements should be omitted if cbp_luma = 0. We maintain a probability table P to record the occurrence frequencies of the three MMKLT class types. Suppose the MMKLT class type in the neighboring left MB and the neighboring upper MB is tA and tB, respectively, then the prediction for the MMKLT class type in the current MB is
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If t equals to pred_type, then mmklt_pred_flag = 1, and mmklt_rem is omitted; Otherwise, mmklt_pred_flag = 0, and mmklt_rem is conveyed to indicate the right one in the remaining two types. Suppose the remaining two types are t1, t2, and t1<t2, then 
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Table P takes three items with length of one byte and is initialized with three predefined values at the beginning of encoding or decoding a slice. P(t) is increased by 1 after the current MB with the MMKLT class type t has been encoded or decoded. If P(t) > 128, all the three items in P is halved.
In our solution, the 4x4 transforms are non-separable, whereas the 8x8 transforms and 16x16 transforms are separable. In the 4x4 transform, the size of the transform matrix denoted as T is 16x16. Since T is orthogonal, the inverse transform is T’. Before transform, the 2-D residual signals in a 4x4 block should be mapped into a 1-D residual signal R with length of 16 in a row-first manner. The 1-D transformed signal Y then should be
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Suppose Yr is the reconstructed 1-D transformed signal, then the 1-D reconstructed residual signal Rr should be
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Then Rr is mapped into a 2-D reconstructed residual signal in a 4x4 block in a row-first manner. The 8x8 transform and 16x16 transform are separable and take the same operation steps as MDDT [7].
The quantized coefficients should be scanned before entropy coding. We adopt an adaptive scan scheme different from that in MDDT [7].
Adaptive scan works on Intra_4x4, Intra_8x8, as well as Intra16x16 blocks. Two specific tables, denoted as ST and PT are maintained for each individual combination of MMKLT class type and intra-prediction mode. In other words, there are 3*9 =27 ST4 tables and 27 PT4 tables for Intra_4x4 blocks, 27 ST8 tables and 27 PT8 tables for Intra_8x8 blocks, and 27 ST16 tables and 27 PT16 tables for Intra_16x16 blocks. An Intra_NxN block with MMKLT class type t, prediction mode m will only work on the table STN{t, m} and PTN{t, m}.
STN and PTN both possess N items. STN[i] records the position of the coefficient that is the ith scanned. This position is a 2-D coordinate for Intra_8x8 or Intra_16x16 blocks, or is a 1-D position for Intra_4x4 blocks. PTN[i] records the probability of the ith scanned coefficient to be non-zero. STN is used to guide the scanning process. If scanning at the ith coefficient Ci and Ci > 0, then PTN[i] is increased by one. Then a procedure described as the following C-style pseudo code is executed.

[image: image35]
All the STs and PTs are initialized by some predefined values at the beginning of encoding or decoding a slice. After the initialization, it is satisfied that PTN [ x ] >= PTN [ x + 1 ] for all valid x.
The quantization and dequantization method of MMKLT is just the same as that of MDDT [7].
The syntax element mb_qp_delta is omitted if cpb = 0 in an Intra_16x16 MB. In addition, deblocking filter should only work at the MB edges in an Intra_16x16 MB.
2.4 Quantization
The quantization of our proposal is similar to the uniform scalar quantization in H.264/AVC. We use multiplication operations and shift operations to replace division operations in the quantization process as presented in [8] in order to reduce complexity. For simplicity, the quantization matrix elements of the new 32-point transform are not dependent on coefficient positions, and the implementation of quantization and dequantization processes will be unified for all coefficient positions without absorbing the transform matrix elements into quantization matrix elements. To improve coding efficiency, our implementation also supports an encoder-only technique which is called RDO_Q proposed in [9]. Furthermore, to support extended macroblocks [6], the delta quantization parameter (QP) information will be sent once for each 32x32 region, that is, a 32x32 region shares the same QP.

2.5 In-loop filtering
2.5.1 Algorithm description

An adaptive loop filter (ALF) is added between the H.264 deblocking filter and the reference frame buffer. In prior, we proposed Improved Quadtree-based Adaptive Loop Filter (IQALF) [10] based on Toshiba’s Quadtree-based Adaptive Loop Filter (QALF) [11]

 REF _Ref257361309 \r \h 
[12]. Here, we further propose Improved Multiple Quadtree-based Adaptive Loop Filter (IMQALF) to enhance the coding efficiency of ALF. The main difference between IQALF and IMQALF is to allow a second filter for each picture partition. Let us summarize IMQALF as follows. First, a picture can be divided into partitions. A top down splitting strategy is adopted to divide a picture into multi-level quadtree partitions by using a rate-distortion criterion, as shown in Figure 7. Second, each picture partition can be further divided into blocks, and one filter or two filters can be used for a picture partition. As shown in Figure 8, if one filter is selected, a filter flag per block is transmitted to indicate filter on or filter off; if two filters are selected, a filter flag per block is transmitted to indicate a first filter or a second filter. Filter flags of a partition can be coded with CABAC, or with run representation using Variable Length Coding (VLC), or with a quadtree-based representation method. Third, time-delayed filters can be used to avoid transmitting filter coefficients. Even if new filters are used, new filter coefficients can be predicted by predefined values or by time-delayed filter coefficients. In our experiments, we adopt 5-level quadtree picture partitioning and up to 8 time-delayed filters in the buffer for each tap number (5x5, 7x7, and 9x9).
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Figure 7
  An example of a 3-level quadtree structure

[image: image37.png]1-Filter Mode 2-Filter Mode

0: filter off 0: second filter
1: filter on 1: first filter
oj1]ojo| |oj1]of0]
o]0 0]0]

0] 0]

Divide a Picture into Divide a Partition into
Partitions Blocks with Filter Flags




Figure 8  An example of further dividing a partition into blocks
2.5.2 Syntax definition
Table 5 shows the syntax definition of IMQALF. In our experiments, we set imqalf_max_multifilter_partition_level = 4 (5-level quadtree picture partitioning), imqalf_max_base_filter_num_minus1 = 7 (up to 8 filters in the buffer of each filter tap size for temporal prediction of filter coefficients), imqalf_use_td_filtering = 1 (time-delayed filtering enabled), imqalf_use_second_filter = 1 (allow two filters per partition), and imqalf_use_filter_information_pointer = 0 (filter information pointer disabled). Please note that if imqalf_use_filter_information_pointer = 1, filter_info( ) is located at the end of slice_data( ) instead of at the end of slice_header( ). The filter buffer status parameters, alf_cnt[ tap_idx ][ base ] and alf_bits[ tap_idx ][ base ], are set to zero for IDR frames and are updated accordingly after encoding or decoding an entire frame. Similar to Toshiba’s QALF, filter_flag_quadtree_one_part( ), filter_flag_CABAC_one_part( ), and filter_flag_run_length_one_part( ) describe syntax elements for encoding or decoding binary filter flags (filter on/off or 1st/2nd filter) of blocks in one partition. These functions are not shown in Table 5 for the sake of brevity. QALF can be regarded as a special case of IMQALF when the entire frame is treated as one partition without time-delayed filtering or second filtering.
Table 5  Syntax elements of the proposed IMQALF
	pic_parameter_set_rbsp( ) {
	C
	Descriptor

	…
	
	

	use_imqalf
	1
	u(1)

	if( use_imqalf ) {
	
	

	imqalf_max_multifilter_partition_level
	1
	ue(v)

	imqalf_max_base_filter_num_minus1
	1
	u(4)

	imqalf_use_second_filter
	1
	u(1)

	imqalf_use_td_filtering
	1
	u(1)

	imqalf_use_filter_information_pointer
	1
	u(1)

	}
	
	

	…
	
	

	}
	
	


	slice_header( ) {
	C
	Descriptor

	…
	
	

	if( use_imqalf ) {
	
	

	if( imqalf_use_filter_information_pointer )
	
	

	filter_info_pointer
	2
	u(v)

	else
	
	

	filter_info( )
	2
	

	}
	
	

	}
	
	


	slice_data( ) {
	C
	Descriptor

	…
	
	

	if( use_imqalf ) {
	
	

	if( imqalf_use_filter_information_pointer ) {
	
	

	while( !byte_aligned( ) )
	
	

	alf_alignment_stuffing_bit
	2
	u(1)

	filter_info( )
	2
	

	}
	
	

	}
	
	

	}
	
	


	filter_info( ) {
	C
	Descriptor

	adaptive_loop_filter_flag
	2
	u(1)

	if( !imqalf_use_filter_information_pointer ) {
	
	

	while( !byte_aligned( ) )
	
	

	alf_alignment_stuffing_bit
	2
	u(1)

	}
	
	

	if( adaptive_loop_filter_flag ) {
	
	

	pred_coef_mode
	2
	u(1)

	chroma_filter_info( )
	2
	

	clear_all_part_split_flag( )
	
	

	max_level = imqalf_max_multifilter_partition_level
	
	

	for( part_level = 0; part_level <= max_ level; part_level++ ) {
	
	

	max_row = 1 << part_level
	
	

	for( part_row = 0; part_row < max_row; part_row++ ) {
	
	

	max_col = 1 << part_level
	
	

	for( part_col = 0; part_col < max_col; part_col++ ) {
	
	

	if( part_level != 0 ) {
	
	

	plevel = part_level – 1

prow = part_row / 2

pcol = part_col / 2
parent_part_idx = find_part_idx( plevel, prow, pcol )
	
	

	if( !part_split_flag[ parent_part_idx ] )
	
	

	continue
	
	

	}
	
	

	part_idx = find_part_idx( part_level, part_row, part_col )
	
	

	if( part_level < max_level ) {
	
	

	part_split_flag[ part_idx ]
	2
	u(1)

	further_split_flag = part_split_flag[ part_idx ]
	
	

	} else
	
	

	further_split_flag = 0
	
	

	if( !further_split_flag )
	
	

	filter_info_one_part( part_idx )
	2
	

	}
	
	

	}
	
	

	}
	
	

	}
	
	

	if( !imqalf_use_filter_information_pointer ) {
	
	

	while( !byte_aligned( ) )
	
	

	alf_alignment_stuffing_bit
	2
	u(1)

	}
	
	

	}
	
	


	chroma_filter_info( ) {
	C
	Descriptor

	alf_chroma_idc
	2
	u(2)

	if( alf_chroma_idc ) {
	
	

	filter_tap_chroma_idx
	2
	ue(v)

	if( filter_tap_chroma_idx = = 0 )
	
	

	num_coeff_chroma = 14
	
	

	else if( filter_tap_chroma_idx = = 1 )
	
	

	num_coeff_chroma = 26
	
	

	else if( filter_tap_chroma_idx = = 2 )
	
	

	num_coeff_chroma = 42
	
	

	for( pos = 0; pos < num_coeff_chroma; pos++ )
	
	

	coeff_chroma[ pos ]
	2
	se(v)

	}
	
	

	}
	
	


	clear_all_part_split_flag( ) {
	C
	Descriptor

	max_level = imqalf_max_multifilter_partition_level
	
	

	for( part_level = 0; part_level <= max_ level; part_level++ ) {
	
	

	max_row = 1 << part_level
	
	

	for( part_row = 0; part_row < max_row; part_row++ ) {
	
	

	max_col = 1 << part_level
	
	

	for( part_col = 0; part_col < max_col; part_col++ ) {
	
	

	part_idx = find_part_idx( part_level, part_row, part_col )
	
	

	part_split_flag[ part_idx ] = 0
	
	

	}
	
	

	}
	
	

	}
	
	

	}
	
	

	}
	
	


	find_part_idx( part_level, part_row, part_col ) {
	C
	Descriptor

	if( part_level = = 0 )
	
	

	return 0
	
	

	else if( part_level = = 1 )
	
	

	return ( 1 + part_row * 2 + part_col )
	
	

	else if( part_level = = 2 )
	
	

	return ( 5 + part_row * 4 + part_col )
	
	

	else if( part_level = = 3 )
	
	

	return ( 21 + part_row * 8 + part_col )
	
	

	else if( part_level = = 4 )
	
	

	return ( 85 + part_row * 16 + part_col )
	
	

	}
	
	


	filter_info_one_part( part_idx ) {
	C
	Descriptor

	part_alf_flag[ part_idx ]
	2
	u(1)

	if( part_alf_flag[ part_idx ] ) {
	
	

	part_alf_tap_idx[ part_idx ]
	2
	ue(v)

	tap_idx = part_alf_tap_idx[ part_idx ]
	
	

	if( slice_type = = I )
	
	

	base = 0
	
	

	else if( slice_type = = P )
	
	

	base = 1
	
	

	else if( slice_type = = B && nal_ref_idc > 0 )
	
	

	base = 2
	
	

	else if( slice_type = = B && nal_ref_idc = = 0 )
	
	

	base = 3
	
	

	if( imqalf_use_td_filtering && alf_cnt[ tap_idx ][ base ] > 0_)
	
	

	part_td_filtering[ part_idx ]
	2
	u(1)

	else
	
	

	part_td_filtering[ part_idx ] = 0
	
	

	if( part_td_filtering[ part_idx ] ) {
	
	

	if( alf_bits[ tap_idx ][ base ] > 0 )
	
	

	part_td_filtering_idx[ part_idx ]
	2
	u(v)

	else
	
	

	part_td_filtering_idx[ part_idx ] = 0
	
	

	} else if( pred_coef_mode) {
	
	

	if( tap_idx = = 0 )
	
	

	part_num_coeff[ part_idx ] = 14
	
	

	else if( tap_idx = = 1 )
	
	

	part_num_coeff[ part_idx ] = 26
	
	

	else if( tap_idx = = 2 )
	
	

	part_num_coeff[ part_idx ] = 42
	
	

	for( pos = 0; pos < part_num_coeff[ part_idx ]; pos++ )
	
	

	part_coeff[ part_idx ][ pos ]
	2
	se(v)

	} else {
	
	

	if( alf_cnt[ tap_idx ][ base ] > 0 )
	
	

	part_coef_td_pred[ part_idx ]
	2
	u(1)

	else
	
	

	part_coef_td_pred[ part_idx ] = 0
	
	

	if( part_coef_td_pred[ part_idx ] && alf_bits[ tap_idx ][ base ] > 0 )
	
	

	part_coef_td_pred_idx[ part_idx ]
	2
	u(v)

	else
	
	

	part_coef_td_pred_idx[ part_idx ] = 0
	
	

	if( tap_idx = = 0 )
	
	

	part_num_coeff[ part_idx ] = 14
	
	

	else if( tap_idx = = 1 )
	
	

	part_num_coeff[ part_idx ] = 26
	
	

	else if( tap_idx = = 2 )
	
	

	part_num_coeff[ part_idx ] = 42
	
	

	for( pos = 0; pos < part_num_coeff[ part_idx ]; pos++ )
	
	

	part_coeff[ part_idx ][ pos ]
	2
	se(v)

	}
	
	

	part_block_control_flag[ part_idx ]
	2
	u(1)

	if( part_block_control_flag[ part_idx ] {
	
	

	if( imqalf_use_second_filter )
	
	

	part_second_alf_flag[ part_idx ]
	2
	u(1)

	else
	
	

	part_second_alf_flag[ part_idx ] = 0
	
	

	if( part_second_alf_flag[ part_idx ] ) {
	
	

	part_second_alf_tap_idx[ part_idx ]
	2
	ue(v)

	tap_idx = part_second_alf_tap_idx[ part_idx ]
	
	

	if( imqalf_use_td_filtering && alf_cnt[ tap_idx ][ base ] > 0_)
	
	

	part_second_td_filtering[ part_idx ]
	2
	u(1)

	else
	
	

	part_second_td_filtering[ part_idx ] = 0
	
	

	if( part_second_td_filtering[ part_idx ] ) {
	
	

	if( alf_bits[ tap_idx ][ base ] > 0 )
	
	

	part_second_td_filtering_idx[ part_idx ]
	2
	u(v)

	else
	
	

	part_second_td_filtering_idx[ part_idx ] = 0
	
	

	} else if( pred_coef_mode) {
	
	

	if( tap_idx == 0 )
	
	

	part_second_num_coeff[ part_idx ] = 14
	
	

	else if( tap_idx == 1 )
	
	

	part_ second_num_coeff[ part_idx ] = 26
	
	

	else if( tap_idx == 2 )
	
	

	part_ second_num_coeff[ part_idx ] = 42
	
	

	for( pos = 0; pos < part_second_num_coeff[ part_idx ]; pos++ )
	
	

	part_second_coeff[ part_idx ][ pos ]
	2
	se(v)

	} else {
	
	

	if( alf_cnt[ tap_idx ][ base ] > 0 )
	
	

	part_second_coef_td_pred[ part_idx ]
	2
	u(1)

	else
	
	

	part_second_coef_td_pred[ part_idx ] = 0
	
	

	if( part_second_coef_td_pred[ part_idx ] && 
alf_bits[ tap_idx ][ base ] > 0 )
	
	

	part_second_coef_td_pred_idx[ part_idx ]
	2
	u(v)

	else
	
	

	part_second_coef_td_pred_idx[ part_idx ] = 0
	
	

	if( tap_idx == 0 )
	
	

	part_second_num_coeff[ part_idx ] = 14
	
	

	else if( tap_idx == 1 )
	
	

	part_second_num_coeff[ part_idx ] = 26
	
	

	else if( tap_idx == 2 )
	
	

	part_second_num_coeff[ part_idx ] = 42
	
	

	for( pos = 0; pos < part_second_num_coeff[ part_idx ]; pos++ )
	
	

	part_second_coeff[ part_idx ][ pos ]
	2
	se(v)

	}
	
	

	}
	
	

	part_alf_block_size_idx[ part_idx ]
	2
	u(3)

	part_qt_partition_flag[ part_idx ]
	2
	u(1)

	if( part_qt_partition_flag[ part_idx ] )
	
	

	filter_flag_quadtree_one_part( )
	2
	

	else if( entropy_coding_mode_flag && 
part_num_alf_block[ part_idx ] >= 
MIN_CABAC_PART_BLK_NUM )
	
	

	filter_flag_CABAC_one_part( )
	2
	

	else
	
	

	filter_flag_run_length_one_part( )
	2
	

	}
	
	

	}
	
	

	}
	
	


2.6 Entropy coding
Our entropy coding core is the same as that of H.264 including VLC and CABAC. Generally, syntax elements in sequence parameter set (SPS), PPS, and slice header uses the VLC function in JM16.2 [13] while the rest syntax elements use CABAC for better coding efficiency. The only exception is for the filter on/off flags or the 1st/2nd filter flags of IMQALF in the slice header, which may sometimes use CABAC after RD optimization. New context models are developed for new syntax elements while the VLC and CABAC engines remain the same.
2.7 Spatial-temporal direct mode
Direct mode and Skip mode are very important for B frame encoding, especially when the bitrate is low. For both of them, no reference index or motion vector (MV) needs to be sent. A motion derivation process is performed on both encoding and decoding sides for deriving the same reference indices and MVs. There are two kinds of motion derivation methods in the current H.264/AVC standard: spatial method and temporal method. A parameter is provided to allow slice level switch between these two methods. Because the motion types may vary in different areas within one picture, it is more effective to adopt a local adaptation of the two motion derivation methods. Thus, we adopt a partition-level adaptation, called spatial-temporal direct mode, in this proposal.
2.7.1 Algorithm description
We use spatial-temporal direct mode at three different partition levels: 64x64, 32x32 and 16x16. We adopt the same spatial direct mode as the one in H.264/AVC and replace the current scaling method of the temporal direct mode by division for higher accuracy. Figure 9 shows the motion derivation process of temporal direct mode.
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Figure 9  Motion derivation of temporal direct mode

We use the following equations to compute the forward MV (MVF) and the backward MV (MVB) for the current block: 
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	( 12 )


where TRp is the temporal distance between the forward reference and the backward reference; and TRb is the temporal distance between the forward reference and the current picture.
When the encoding of current partition begins, the spatial MVs and the temporal MVs are calculated for each block within the partition using the spatial method and the temporal method. In the mode decision process, the RD costs of both the spatial MVs and the temporal MVs are computed when the mode is 0. The mode with the minor cost will be chosen as the direct mode of the current partition. Figure 10 shows an example of RD selection. In this example, the current 64x64 partition is divided into four 32x32 partitions, and the left-bottom 32x32 partition is further divided into four 16x16 partitions. For each 32x32 partition and 16x16 partition, the RD selection will be performed once, and a flag is transmitted to indicate which direct mode is chosen. Totally 7 bits need to be transmitted for the current 64x64 partition in this example, and 16 bits are needed at most for a 64x64 partition.
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Figure 10  An example of RD selection of spatial-temporal direct
2.7.2 Syntax definition
We added a new syntax element at three partition levels, named “spatial_temporal_direct_flag”, to indicate the chosen direct mode. As shown in Table 6, if spatial-temporal direct mode is used, in B pictures, this flag will be transmitted when mb_type is equal to 0. Note that this flag will also be transmitted under B skip mode.
Table 6  Syntax elements of the proposed spatial-temporal direct mode
	slice_header( ) {
	C
	Descriptor

	…
	
	

	if( slice_type = = B )
	
	

	direct_sptial_mv_pred_flag
	2
	u(2)

	…
	
	

	}
	
	


	macroblock64x64_layer( ) {
	C
	Descriptor

	mb64x64_skip_flag
	2
	ae(v)

	Skip = mb64x64_skip_flag
	
	

	if( !Skip ) {
	
	

	mb64x64_type
	2
	ae(v)

	MbType = mb64x64_type
	
	

	if( MbType <= 3 ) {
	
	

	…
	
	

	if( slice_type = = B && direct_spatial_mv_pred_flag = = 2 && 

MbType = = 0 )
	
	

	spatial_temporal_direct_flag[ 0 ][ 0 ]
	2
	ae(v)

	…
	
	

	} else {
	
	

	for( mb32x32PartIdx = 0; mb32x32PartIdx < 4; mb32x32PartIdx++ )
	
	

	macroblock32x32_layer( )
	
	

	}
	
	

	}
	
	

	else {
	
	

	if( slice_type = = B && direct_spatial_mv_pred_flag = = 2 && 

MbType = = 0 )
	
	

	spatial_temporal_direct_flag[ 0 ][ 0 ]
	2
	ae(v)

	}
	
	

	}
	
	


	macroblock32x32_layer( ) {
	C
	Descriptor

	mb32x32_skip_flag[ mb32x32PartIdx ]
	2
	ae(v)

	Skip = mb32x32_skip_flag[ mb32x32PartIdx ]
	
	

	if( !Skip ) {
	
	

	mb32x32_type[ mb32x32PartIdx ]
	2
	ae(v)

	MbType = mb32x32_type[ mb32x32PartIdx ]
	
	

	if( MbType <= 3 ) {
	
	

	…
	
	

	if( slice_type = = B && direct_spatial_mv_pred_flag = = 2 && 

MbType = = 0 )
	
	

	spatial_temporal_direct_flag [ mb32x32PartIdx ][ 0 ]
	2
	ae(v)

	…
	
	

	} else {
	
	

	for( mb16x16PartIdx = 0; mb16x16PartIdx < 4; mb16x16PartIdx++ )
	
	

	macroblock16x16_layer( )
	
	

	}
	
	

	}
	
	

	else {
	
	

	if( slice_type = = B && direct_spatial_mv_pred_flag = = 2 && 

MbType = = 0 )
	
	

	spatial_temporal_direct_flag [ mb32x32PartIdx ][ 0 ]
	2
	ae(v)

	}
	
	

	}
	
	


	macroblock16x16_layer( ) {
	C
	Descriptor

	mb16x16_skip_flag[ mb32x32PartIdx ][ mb16x16PartIdx ]
	2
	ae(v)

	Skip = mb16x16_skip_flag[ mb32x32PartIdx ][ mb16x16PartIdx ]
	
	

	if( !Skip ) {
	
	

	mb16x16_type[ mb32x32PartIdx ][ mb16x16PartIdx ]
	2
	ae(v)

	MbType = mb16x16_type[ mb32x32PartIdx ][ mb16x16PartIdx ]
	
	

	…
	
	

	if( slice_type = = B && direct_spatial_mv_pred_flag = = 2 && 

MbType = = 0 )
	
	

	spatial_temporal_direct_flag [ mb32x32PartIdx ][ mb16x16PartIdx ]
	2
	ae(v)

	…
	
	

	}
	
	

	else {
	
	

	if( slice_type = = B && direct_spatial_mv_pred_flag = = 2 && 

MbType = = 0 )
	
	

	spatial_temporal_direct_flag [ mb32x32PartIdx ][ mb16x16PartIdx ]
	2
	ae(v)

	}
	
	

	}
	
	


2.8 Modified decoder-side motion vector derivation
2.8.1 Algorithm description

Decoder-side motion vector derivation (DMVD) was previously proposed by RWTH Aachen University [14]

 REF _Ref257363050 \r \h 
[15]

 REF _Ref257363069 \r \h 
[16]

 REF _Ref257363089 \r \h 
[17]

 REF _Ref257363099 \r \h 
[18]. The main concept is that since reference indices and motion vectors can be derived by template matching (TM) on both encoder and decoder sides, they do not have to be transmitted. Moreover, multi-hypothesis prediction with DMVD is used to further improve the coding efficiency. In our proposal, we developed DMVD from scratch because the prior DMVD software was not released. Conceptually, the prior DMVD is modified as follows. First, compatibility with extended macroblocks is achieved, and DMVD is applied to 16x16, 32x32, and 64x64 partitions. Second, the TM target size is designed to be the same as the transform size (4x4/8x8/16x16/32x32) for DMVD Non-Skip modes in which residues are transmitted. The TM target size is designed to be the same as the partition size (16x16/32x32/64x64) for DMVD Skip modes in which no residue is transmitted. Consequently, there is no side information for TM target size. In prior DMVD proposals, TM target size is fixed for a macroblock type, while in the proposed DMVD, TM target size is adaptive for 16x16, 32x32, and 64x64 partitions. Third, B pictures are supported. Fourth, H.264 weighted prediction is supported, although it is not turned on in our final submitted data. Fifth, the TM distortion criterion can be switched at PPS level. Sixth, the search algorithm or the search range can be switched at PPS level, and a fast search method similar to enhanced predictive zonal search (EPZS) is developed. Seventh, motion vector precision for DMVD modes can be switched at PPS level. Up to one eighth pixel accuracy is allowed. Please note that one eighth pixel accuracy is only applied during motion compensation (MC) of DMVD blocks. MVs of DMVD blocks are truncated to quarter pixel accuracy for predicting MVs of following blocks. Eighth, unlike tm_skip_flag syntax designed in the prior DMVD, our tm_skip_flag syntax design is free of any parsing problem when there is any loss in reference frames.

2.8.2 Syntax definition
Table 7 shows syntax elements of DMVD. In our experiments, sum of squared differences (SSD) is used as the TM distortion criterion (tm_distortion_measurement = 1), frame-level one eighth pixel accuracy for DMVD is applied for Class C and D sequences (lower resolutions) (tm_sub_pel_refinement_flag = 3) while frame-level quarter pixel accuracy for DMVD is applied for Class A, B, and E sequences (higher resolutions) (tm_sub_pel_refinement_flag = 2), EPZS is used (tm_search_method = 0), and 4-hypothesis prediction (tm_multi_hypothesis_num_minus1 = 3) is adopted. Please note that partition-level adaptive MV resolution is not enabled in our final submission (tm_adaptive_mv_resolution = 0).

Table 7  Syntax elements of the proposed DMVD
	pic_parameter_set_rbsp( ) {
	C
	Descriptor

	…
	
	

	use_dmvd
	1
	u(1)

	if( use_dmvd ) {
	
	

	tm_search_method
	1
	u(1)

	if( tm_search_method = = TM_FULL_SEARCH )
	
	

	tm_full_pel_search_range
	1
	u(3)

	tm_sub_pel_refinement_flag
	1
	u(2)

	if( tm_sub_pel_refinement_flag = = ONE_EIGHTH_PEL )
	
	

	tm_adaptive_mv_resolution
	1
	u(1)

	tm_multi_hypothesis_num_minus1
	1
	u(2)

	tm_distortion_measurement
	1
	u(1)

	}
	
	

	…
	
	

	}
	
	


	macroblock64x64_layer( ) {
	C
	Descriptor

	mb64x64_skip_flag
	2
	ae(v)

	Skip = mb64x64_skip_flag
	
	

	if( !Skip ) {
	
	

	mb64x64_type
	2
	ae(v)

	MbType = mb64x64_type
	
	

	if( MbType <= 3 ) {
	
	

	if( use_dmvd && MbType = = 1 ) {
	
	

	tm_flag[ 0 ][ 0 ]
	2
	ae(v)

	TmFlag = tm_flag[ 0 ][ 0 ]
	
	

	if( TmFlag )
	
	

	tm_skip_flag[ 0 ][ 0 ]
	2
	ae(v)

	if( TmFlag && tm_sub_pel_refinement_flag = = 3 && 

tm_adaptive_mv_resolution )
	
	

	tm_mv_res_flag[ 0 ][ 0 ]
	2
	ae(v)

	}
	
	

	…
	
	

	} else {
	
	

	for( mb32x32PartIdx = 0; mb32x32PartIdx < 4; mb32x32PartIdx++ )
	
	

	macroblock32x32_layer( )
	
	

	}
	
	

	}
	
	

	…
	
	

	}
	
	


	macroblock32x32_layer( ) {
	C
	Descriptor

	mb32x32_skip_flag[ mb32x32PartIdx ]
	2
	ae(v)

	Skip = mb32x32_skip_flag[ mb32x32PartIdx ]
	
	

	if( !Skip ) {
	
	

	mb32x32_type[ mb32x32PartIdx ]
	2
	ae(v)

	MbType = mb32x32_type[ mb32x32PartIdx ]
	
	

	if( MbType <= 3 ) {
	
	

	if( use_dmvd && MbType = = 1 ) {
	
	

	tm_flag[ mb32x32PartIdx ][ 0 ]
	2
	ae(v)

	TmFlag = tm_flag[ mb32x32PartIdx ][ 0 ]
	
	

	if( TmFlag )
	
	

	tm_skip_flag[ mb32x32PartIdx ][ 0 ]
	2
	ae(v)

	if( TmFlag && tm_sub_pel_refinement_flag = = 3 && 

tm_adaptive_mv_resolution )
	
	

	tm_mv_res_flag[ mb32x32PartIdx ][ 0 ]
	2
	ae(v)

	}
	
	

	…
	
	

	} else {
	
	

	for( mb16x16PartIdx = 0; mb16x16PartIdx < 4; mb16x16PartIdx++ )
	
	

	macroblock16x16_layer( )
	
	

	}
	
	

	}
	
	

	…
	
	

	}
	
	


	macroblock16x16_layer( ) {
	C
	Descriptor

	mb16x16_skip_flag[ mb32x32PartIdx ][ mb16x16PartIdx ]
	2
	ae(v)

	Skip = mb16x16_skip_flag[ mb32x32PartIdx ][ mb16x16PartIdx ]
	
	

	if( !Skip ) {
	
	

	mb16x16_type[ mb32x32PartIdx ][ mb16x16PartIdx ]
	2
	ae(v)

	MbType = mb16x16_type[ mb32x32PartIdx ][ mb16x16PartIdx ]
	
	

	…
	
	

	if( use_dmvd && MbType = = 1 ) {
	
	

	tm_flag[ mb32x32PartIdx ][ mb16x16PartIdx ]
	2
	ae(v)

	TmFlag = tm_flag[ mb32x32PartIdx ][ mb16x16PartIdx ]
	
	

	if( TmFlag )
	
	

	tm_skip_flag[ mb32x32PartIdx ][ mb16x16PartIdx ]
	2
	ae(v)

	if( TmFlag && tm_sub_pel_refinement_flag = = 3 && 

tm_adaptive_mv_resolution )
	
	

	tm_mv_res_flag[ mb32x32PartIdx ][ mb16x16PartIdx ]
	2
	ae(v)

	}
	
	

	…
	
	

	}
	
	

	…
	
	

	}
	
	


2.9 Scaled motion vector predictor
A modification of motion vector predictor, called scaled motion vector predictor (SMVP), is also included in our proposal to improve the accuracy of the H.264 motion vector predictor (MVP). It is almost the same as H.264 MVP except that the MVs of neighboring blocks used for derivation of MVP are scaled with temporal distances because the reference indices of neighboring blocks may be different from the reference index of the current block. In our software, scaled_mvp_flag is added in PPS to indicate if this new method is turned on. This method also applies to Motion Vector Competition (MVC) [19]. The H.264 MVP candidate used in MVC is replaced by the proposed SMVP candidate.
2.10 Hierarchical P
The Hierarchical P (HP) picture coding structure with temporal scalability for low delay applications is added in this proposal. Our HP implementation is the same as the one in JM 16.2 [13]. Figure 11 shows the picture coding structure of HP. The frames in the different vertical layers are in different temporal layers. Frames 1, 3, 5, 7, …, 15 are in temporal layer 2. Frames 2, 6, 10, 14 are in temporal layer 1, and frames 0, 4, 8, 12 are in temporal layer 0. The horizontal position of a frame shows the display order. The frames in HP do not predict from higher temporal layer frames. Frames in the higher temporal layers can be skipped during decoding processes. Therefore, the frame rate can be changed to achieve temporal scalability.
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Figure 11  An example of HP picture coding structure with temporal scalability
2.11 Extended macroblocks
It has been demonstrated that motion partitions with sizes larger than 16x16 pixels can provide substantial coding gain compared to H.264, especially when applied to high definition videos [6]. Our software uses KTA2.6 [20] as a starting point, and all our new coding tools are compatible with the existing Extended Macroblocks (ExtMB).
2.12 Other techniques as KTA software or H.264
In addition to H.264, there are many new coding tools in the KTA2.6 [20]. A portion of new coding tools is included in our final submission. We enable the High Precision Interpolation Filter (HPIF) proposed in [3] to reduce the rounding errors of fractional pixel interpolation. In H.264, half-pixels are filtered and rounded before being used for quarter pixel interpolation. HPIF does not round half pixels until quarter pixels are generated and thus can effectively reduce rounding errors. To further reduce rounding errors, we also enable the Internal Bit Depth Increase (IBDI) proposed in [21]. IBDI does not need special encoding techniques but only increases the internal bit depth along video coding paths. Reference frame pixels are rounded to the same bit depth as that of input frame pixels. In our experiments, the input frame pixels are 8-bit, and the internal bit depth is set as 12-bit. We also adopt the bi-prediction rounding control in [22], the H.264 in-loop deblocking filter [23], and the Motion Vector Competition (MVC) [19]. Instead of using one single MV predictor, MVC selects the best MV predictor from a set of candidate MV predictors. The index of the selected MV predictor is sent unless all candidate MV predictors are the same. MVC is also applied to Direct mode and Skip mode.
3 Compression performance discussion
In order to achieve the target bitrates specified in the Joint Call for Proposals on Video Compression Technology [1]

 REF _Ref257301387 \r \h 
[2] as shown in Table 8, a rate control should be used in real applications. However, as required by the Call for Proposal, the quantization settings should be kept static. In the submitted materials, we manually tested several quantization parameters (QPs) and selected the most appropriate one as the submitted result for each test point. We used the quantization control scheme provided in JM16.2, i.e. the QP can be changed to another value at a specified frame, and the new QP is applied to subsequent frames. Due to the time limitation, we simply adopted the ChangeQPStart used in the CfP anchor configuration for each test point.

It is difficult to adjust all the test points to perfectly fit the target bitrates. We used the QP setting provided by CfP anchor as a starting point to search the appropriate QP setting for each test point. Due to the time limitation, we could not fit the bitrate very well. For each test point, we selected the test result that has the highest PSNR among the test results with bitrates lower than the target bit rate. However, the largest difference between the bitrate of a selected test result and the corresponding target bit rate is about 20%, which means our choice may not give the best BD-rate performance.
Table 8  Target bitrate for the test points in [1] and [2]
	Class
	Rate 1
	Rate 2
	Rate 3
	Rate 4
	Rate 5

	A: 2560x1600p30
	2.5 Mbit/s
	3.5 Mbit/s
	5 Mbit/s
	8 Mbit/s
	14 Mbit/s

	B1: 1080p24
	1 Mbit/s
	1.6 Mbit/s
	2.5 Mbit/s
	4 Mbit/s
	6 Mbit/s

	B2: 1080p50-60
	2 Mbit/s
	3 Mbit/s
	4.5 Mbit/s
	7 Mbit/s
	10 Mbit/s

	C: WVGAp30-60
	384 kbit/s
	512 kbit/s
	768 kbit/s
	1.2 Mbit/s
	2 Mbit/s

	D: WQVGAp30-60
	256 kbit/s
	384 kbit/s
	512 kbit/s
	850 kbit/s
	1.5 Mbit/s

	E: 720p60
	256 kbit/s
	384 kbit/s
	512 kbit/s
	850 kbit/s
	1.5 Mbit/s


3.1 Objective compression performance
The objective performance is presented by the 5-point BD-rates, which can be calculated from the “AnalysisTool v1.1.zip” released by Dr. Gary Sullivan on the JCT-VC email reflector. The BD-rates between our proposal and JM16.2 anchor are shown in Table 9. There are three columns: “CS1 vs Anchor Alpha”, “CS2 vs Anchor Beta”, and “CS2 vs Anchor Gamma”. CS1 and CS2 represent constraint set 1, and constraint set 2, respectively. The feature of CS1 bitstreams is random-access, and the feature of CS2 bitstreams is low delay. Thus, CS1 bitstreams are compared with the ones in the alpha anchor of JM16.2, and CS2 bitstreams are compared with the ones in the beta anchor and the gamma anchor. Class E and Class A sequences are bypassed for CS1 and CS2, respectively. As Table 9 shows, the average BD-rates are -29.66%, -28.83%, and -46.40% for CS1 compared with Alpha anchor, CS2 compared with Beta anchor, and CS2 compared with Gamma anchor, respectively. The best BD-rates are -42.18% and -50.61% for “CS1 versus Anchor Alpha” and “CS2 versus Anchor Beta”, respectively. Both cases are for the test sequence S07 BQTerrace.

Under the same target bitrate, the PSNR of the proposed codec is 1-2dB higher than that of JM16.2 on average.

Table 9  5-point BD-rate for each selected test point versus the corresponding anchor
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3.2 Subjective compression performance
There are different characteristics in the subjective view comparison between the proposal and JM16.2 anchor.

3.2.1 Class A
For class A test sequences, the camera is static, and no global motion happens. So the main criterion is the texture quality on the people and cars of the two sequences. In our test results, the image edges of the people in the S01 test sequence are very clear, and the image noise caused by the sensor is correctly coded. The corresponding results of the anchor are much more blurred in comparison with ours. It is observed that there are more defects in results of the anchor while the video sequences become more complex. Figure 12 shows the comparison of S02R2C1 frame #2.

[image: image44]
Figure 12  Comparison of S02R2C1 frame #2
3.2.2 Class B

For class B test sequences, global motion happens very frequently. For S06 test sequence, there are many straight and solid lines moving fast on the basketball field. The lines in the results of the anchor are blurred and broken. However, in our results, the lines are very straight and solid. The proposed codec shows higher fidelity of the scene. Figure 13 shows the comparison of S06R2C1 frame #2.

[image: image45]
Figure 13  Comparison of S06R2C1 frame #2

3.2.3 Class C

For class C test sequences, the results of our proposal still outperform those of the anchor. The lines of the basketball field in the S08 test sequences are still straight and solid using our proposed codec. In S10 PartyScene and S11 RaceHorses test sequences, the motions of objects are very complex, but the results of our proposed codec are still smooth and correct. Figure 14 shows the comparison of S09R3C1 frame #2.

[image: image46]
Figure 14  Comparison of S09R3C1 frame #2

3.2.4 Class D

For class D test sequences, the picture resolutions become much smaller, so the texture complexity is reduced. The proposed codec still performs well under the target bitrates. Subjective examples are omitted in this document for the sake of brevity.
3.2.5 Class E

For class E test sequences, video conference scenes are tested. Our proposed codec provides much better and smoother subjective views than JM16.2 under lower bitrates. Subjective examples are omitted in this document for the sake of brevity.
3.2.6 Overall
The proposed codec utilizes more coding tools to predict pictures more precisely. Thus, more details are kept, and lines are more straight and solid. The proposed codec gives higher subjective performance even in the fast-motion and complex scenes.
3.3 Constraint set 1 configuration relative to Alpha anchor
The configuration of CS1 in our experiment is similar to the Alpha anchor. The main features are listed as follows:

· Hierarchical B (HB) pictures IbBbBbBbP (8) coding structure – each picture uses at most 4 reference pictures in each list for inter prediction
· Open GOP structuring with an Intra picture every 24, 32, 48 and 64 pictures for 24 fps, 30 fps, 50 and 60 fps sequences, respectively

· num_reorder_frames = 3 ("GOP length 8") 

· max_ref_frames = 4

· QP scaling: QP (I picture), QP+1 (P picture), QP+2 (first B layer), QP+3 (second B layer), QP+4 (third B layer)
· CABAC, 4x4, 8x8, 8x16, 16x8, 16x16, 16x32, 32x16, and 32x32 transforms enabled – different from anchor
· RD Optimization enabled

· RDOQ enabled (fast mode, NUM=1)

· Adaptive rounding disabled

· Weighted prediction disabled – different from anchor
· Fast motion estimation (range 128x128)

3.4 Constraint set 2 configuration relative to Beta and Gamma anchors
We tested both Beta-anchor-like (Hierarchical P) configuration and Gamma-anchor-like (IPPP) configuration. In the submitted results for CS2, 65% are from the Hierarchical-P configuration and 35% are from IPPP configuration.
The configuration settings for hierarchical P are listed as follows:

· No random access refresh requirement (a single I frame as the first picture) 

· Hierarchical P pictures IpPp (GOP size of 4, with 3 temporal P picture layers, and no backward reference for inter prediction, nested_prediction_flag=on) coding structure – each picture uses at most 4 reference pictures for inter prediction

· QP scaling: QP (I picture), QP+1 (first P layer), QP+4 (second P layer), QP+5 (third P layer)

· num_reorder_frames=0

· max_ref_frames = 4

· CABAC, 4x4, 8x8, 8x16, 16x8, 16x16, 16x32, 32x16, and 32x32 transforms enabled – different from anchor
· Flat quantization weighting matrices

· RD Optimization enabled

· RDOQ enabled (fast mode, NUM=1)

· Adaptive rounding disabled

· Weighted prediction disabled – different from anchor
· Fast motion estimation. (range 128x128)

The configuration settings for IPPP are listed as follows:

· IPPPP coding structure (num_reorder_frames=0)
· CABAC, 4x4, 8x8, 8x16, 16x8, 16x16, 16x32, 32x16, and 32x32 transforms enabled – different from anchor
· 4 reference pictures (max_ref_frames = 4) – different from anchor
· RD Optimization enabled

· RDOQ enabled (fast mode, NUM=1)

· Adaptive rounding disabled
· Weighted prediction disabled
· Fast motion estimation (range 128x128)

The main difference of the settings between our proposed codec and anchors is the number of reference pictures, the entropy coder, and the transforms. Other proprietary tools are all enabled for best coding efficiency.

4 Complexity analysis
The simulation is mainly carried out by two kinds of simulation environment, which have similar computational powers. Their CPUs are AMD Opteron Processor 254 2.8GHz and Intel Xeon 5160 3.0GHz. The operating system is RHEL AS 4.6 64bit version. The software JM16.2 used as anchor and the proposed software are compiled with Intel C++ Compiler. With the above environment settings, we will compare the encoding and decoding execution times of both JM16.2 and our proposed software to show the rough complexity ratio between these two implementations.
4.1 Encoding time and measurement methodology
We selected two sequences for encoding time analysis. One is S04 ParkScene, and the other one is S07 BQTerrace. These two test sequences might represent the best execution time and the worst execution time in our experiments. Here we are going to compare the execution times of JM16.2 and our software.

The comparison of the JM16.2 encoder and the proposed encoder is shown in Table 10. The execution time increases while the target bitrate increases on both the JM16.2 encoder and the proposed encoder. The average ratio of the proposed software execution time to the JM16.2 execution time is 13.23. This means the proposed software needs 13.23 times of JM16.2’s execution time to encode a sequence.

Table 10  Comparison of encoder execution time

	Alpha Condition
	JM16.2
	Proposed Software
	Ratio

	
	Execution Time (sec)
	Execution Time (sec)
	

	S04
	R1
	20489.03 
	212582.87 
	10.38 

	
	R2
	17207.42 
	215321.11 
	12.51 

	
	R3
	17370.57 
	205466.76 
	11.83 

	
	R4
	17710.71 
	210446.93 
	11.88 

	
	R5
	18607.72 
	430031.19 
	23.11 

	S07
	R1
	42930.94 
	576249.23 
	13.42 

	
	R2
	44062.58 
	562850.09 
	12.77 

	
	R3
	44273.42 
	533859.66 
	12.06 

	
	R4
	44910.58 
	533394.33 
	11.88 

	
	R5
	46034.54 
	573526.14 
	12.46 

	Average
	31359.75 
	405372.83 
	13.23 


4.2 Decoding time and measurement methodology
As for the comparison of decoder execution time, Table 11 shows that the ratio of the proposed software execution time to the JM16.2 execution time is 15.87. It is observed that the decoder execution time of the proposed software increases faster than JM16.2 while the target bitrate increases. Please note that the proposed software is based on KTA2.6, which is originated from JM11.0. It is known that the decoder speed of JM16.2 has a very significant improvement over JM11.0. According to our test, JM11.0 requires 4.57 times of execution time in comparison with JM16.2 when the same bitstream is decoded. Therefore, the original execution time ratio can only be referenced but not for serious consideration. The normalized execution time ratio is 15.87 / 4.57 = 3.47, which means the proposed decoder requires roughly 3.47 times of complexity in comparison with JM11.0.
Table 11  Comparison of decoder execution time
	Alpha Condition
	JM16.2
	Proposed Software
	Ratio

	
	Execution Time (sec)
	Execution Time (sec)
	

	S04
	R1
	38.79 
	545.90 
	14.07 

	
	R2
	57.57 
	641.92 
	11.15 

	
	R3
	54.91 
	727.65 
	13.25 

	
	R4
	31.60 
	819.48 
	25.93 

	
	R5
	34.65 
	1623.04 
	46.85 

	S07
	R1
	134.41 
	1116.70 
	8.31 

	
	R2
	145.28 
	1225.07 
	8.43 

	
	R3
	142.97 
	1301.74 
	9.10 

	
	R4
	149.20 
	1470.68 
	9.86 

	
	R5
	144.96 
	1697.19 
	11.71 

	Average
	93.43 
	1116.94 
	15.87 

	Normalized
	
	
	15.87 / 4.37 = 3.47


4.3 Expected memory usage of encoder
The major memory requirements are listed in Table 12. Other memory requirements are quite minor to count, such as the memory buffers to store motion vectors, prediction modes, contexts for CABAC, filter coefficients, etc.

Table 12  Major memory requirements for the proposed encoder
	Items
	Required memory size

	AAIF
	128 x frame size

	IMQALF
	44 x frame size

	Bitstream buffer
	98.3 Mbits


The frame size is defined as frame_width*frame_height in bytes. The parameters frame_width and frame_height represent the frame width in pixels and the frame hight in pixels, respectively. The listed memory requirements are just for a straightforward implementation without any optimization. The requirements can be reduced substantially, e.g., by 90 %, in real implementations.
4.4 Expected memory usage of decoder
The memory usage of decoder is similar to that in KTA2.6 [20]. The major memory requirements are listed in Table 13, where frame_size is equal to frame_width x frame_height x 1.5 bytes for YUV420. Besides the listed items, some small buffers are also needed to store the decoded side information including motion vectors, prediction modes, entropy context tables, filter coefficients, and so on. However, these side information buffers are much smaller than the listed two, so we do not count them in Table 13.

Table 13  Major memory requirements for the proposed decoder

	Item
	Requirement 

	Bitstream (NALU buffer)
	8 Mbytes

	Reference/Current frame (decoded picture buffer)
	(The max number of reference frame +1) x frame_size


4.5 Complexity characteristics of encoder motion estimation and motion segmentation selection
We use extended MB sizes in our scheme. That is, the MB size is up to 64x64, and totally 13 kinds of partitions will be used in motion estimation and motion compensation: 64x64, 64x32, 32x64, 32x32, 32x16, 16x32, 16x16, 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4. Therefore, the basic complexity of motion estimation and RD optimization in our scheme is the same as KTA with ExtMB on and larger than H.264/AVC. There are also several new tools in our schemes which need additional motion search or RD selection.
4.5.1 Additional motion search
DMVD and AAIF
For DMVD, when mode is 1, i.e. for partitions 64x64, 32x32 and 16x16, additional motion estimation is needed. The complexity increase is determined by template size, template matching distortion criterion, and the number of candidate motion vectors.
For AAIF, when mode is from 1 to 3, i.e. for partitions 64x64, 32x32 and 16x16, additional motion estimation is needed. The complexity increase is determined by the number of candidate filters in CFS. In our test, 3 candidate filters are used for both P frames when the GOP structure is IPPP or HP, and 2 candidate filters are used for both P frames and B frames when the GOP structure is HB. Therefore, additional 1x and 2x motion complexity are needed for IPPP/HP inter-frames and HB inter-frames, respectively. The RD optimization complexity is similar too. Note that parallel computing is allowed for different filters in AAIF. Therefore, the motion search can be easily accelerated in hardware implementation.
4.5.2 Additional RD Optimization
Spatial-temporal direct mode

For B frames, when the mode is 0 for 64x64, 32x32 and 16x16 partitions, additional RD optimization is needed to determine the type of direct mode.
4.6 Complexity characteristics of decoder motion compensation
When DMVD adopts one eighth pixel accuracy, complexity of motion compensation (MC) is the same as that of MC with one eighth pixel accuracy in KTA. When quarter pixel accuracy is adopted, complexity of MC is the same as those of MC with H.264 6-tap filter, high precision interpolation filter (HPIF), and enhanced adaptive interpolation filter (EAIF) when a macroblock selects H.264 interpolation, HPIF, and advanced adaptive interpolation filter (AAIF), respectively. To sum up, the MC complexity of our proposal is about the same as that in KTA. However, DMVD also requires template matching (TM) on the decoder side. For DMVD blocks, TM complexity is about 70-100 times of the MC complexity with our DMVD parameter setting. Fortunately, TM operations are easy for massive acceleration with parallel processing.

4.7 Complexity characteristics of encoder intra-frame prediction type selection
In each Intra_8x8/Intra_4x4 macroblock, the RDO process tries to code this MB with OBIP or not. In each Intra_16x16/Intra_8x8/Intra_4x4 block, the RDO process tries to code this block with all valid modes, up to 9.
4.8 Complexity characteristics of decoder intra-frame prediction operation
In an Intra_NxN block with OBIP, the decoder needs to generate at most three different directional predictors, and then 3N2 multiplication operations, 2N2 addition operations and N2 shift operations are required to attain the final prediction.
OBIP requires 1296 * 2 ≈ 2.53 k bytes Read-Only-Memory, which should have been written already before the encoding or decoding process.
In Context Dependent Mode Representation (CDMR), the changes of 
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 require 8 comparison operations and 16 swap operations at the worst case. However, in most cases, one comparison operation and two swap operations are enough in average. The change of 
[image: image49.wmf](,)

AB

MM

C

 requires 9 * 9 = 81 multiplication operations, 9 * 8 = 72 addition operations, and 8 comparison operations.
CDMR requires no more than 2 * 9 * 10 * 10 ≈ 1.76 k bytes ROM, which should have been written already before the encoding or decoding process. Moreover, the same size of RAM is also required.
4.9 Complexity characteristics of encoder transforms and transform type selection
4.9.1 Inter Transform and transform type selection
To encode inter mode residues, the new MxN 2-D separable integer transform is achieved by first applying one MxM by MxN matrix multiplication followed by one MxN by NxN matrix multiplication where M and N can be 4, 8, 16, or 32. For example, a 32x32 by 32x32 matrix multiplication needs 2x32x32x32 multiplication operations and 2x31x32x32 addition operations. Therefore, the number of multiplication operations for an NxN transform is 2N3, and the number of addition operations is 2N2(N-1). The numbers of operations for different transform sizes are shown in Table 14.

Table 14  Complexity of different transform sizes
	Transform Size
	Addition
	Multiplication
	Additions / MB
	Multiplications / MB

	32x32
	63488
	65536
	15872
	16384

	32x16, 16x32
	23552
	24576
	47104
	49152

	16x16
	7680
	8192
	7680
	8192

	16x8, 8x16
	2816
	3072
	5632
	6144


The transform type selection is decided by rate-distortion optimization, i.e. trying different transform types to choose the one with the minimum cost. When the motion partition size is larger than 16x16, the transform type selection module tries four different transform types, and the computational complexity in transform type selection will become double in comparison with that in JM16.2. For the motion partitions with size of 16x16, 16x8, and 8x16, three transform types are tried, and the computational complexity of transform type selection becomes 1.5 times in comparison with that in JM16.2.

4.9.2 Intra Transform and transform type selection
In each Intra_16x16/Intra_8x8/Intra_4x4 macro-block, the RDO process tries to code this MB with MMKLT type equal to 0,1 or 2.
We ignore the operations on quantization. To transform a 4x4 block with MMKLT, 16 * 16 = 256 multiplication operations and 16 * 15 = 240 addition operations are required. To transform an 8x8 block with MMKLT, 2 * 64 * 8 = 1024 multiplication operations and 2 * 64 * 7 = 896 addition operations are required. To transform a 16x16 block with MMKLT, 2 * 256 * 16 = 8192 multiplication operations and 2 * 256 * 15 = 7680 addition operations are required.
In adaptive scan, the changes of PT and ST require 256 comparison operations and 512 swap operations for the worst case, which occurs rarely. In most cases, one comparison operation and two swap operations are enough on average.

MMKLT requires 3 * ( 9 * 256 * 2 + 9 * 2 * 64 + 9 * 2 * 256 ) ≈ 30.38 k bytes ROM, which should have been written already before the encoding process.
Adaptive scan requires 2 * 3 * ( 9 * 16 + 9 * 64 + 9 * 256 ) ≈ 17.72 k bytes ROM, which should have been written already before the encoding process. Moreover, the same size of RAM is also required.
4.10 Complexity characteristics of decoder inverse transform operation
4.10.1 Inter inverse transform

To decode inter-mode residues, the inverse transforms of 4x4 and 8x8 are the same as those in H.264. The inverse transforms with a size larger than 8 are also implemented as matrix multiplication operations similar to the forward transforms in the encoder, which have been analyzed in Section 4.9.1.
4.10.2 Intra inverse transform

We ignore the operations on quantization. To perform inverse transform for a 4x4 block with MMKLT, 16 * 16 = 256 multiplication operations and 16 * 15 = 240 addition operations are required. To perform inverse transform for an 8x8 block with MMKLT, 2 * 64 * 8 = 1024 multiplication operations and 2 * 64 * 7 = 896 addition operations are required. To perform inverse transform for a 16x16 block in MMKLT, 2 * 256 * 16 = 8192 multiplication operations and 2 * 256 * 15 = 7680 addition operations are required.
In adaptive scan, the changes of PT and ST require 256 comparison operations and 512 swap operations for the worst case, which occurs rarely. In most cases, one comparison operation and two swap operations are enough on average.

MMKLT requires 3 * ( 9 * 256 * 2 + 9 * 2 * 64 + 9 * 2 * 256 ) ≈ 30.38 k bytes ROM, which should have been written already before the decoding process.
Adaptive scan requires 2 * 3 * ( 9 * 16 + 9 * 64 + 9 * 256 ) ≈ 17.72 k bytes ROM, which should have been written already before the decoding process. Moreover, the same size of RAM is also required.
4.11 Complexity characteristics of encoder quantization and quantization type selection

The proposed quantization design technique is similar to H.264, that is, the division operation in quantization process is implemented by using multiplication and shift operations. Therefore, the complexity characteristics of our codec are similar to those in H.264. However, the RDO_Q [9], which is an encoder-only method, increases the complexity of quantization process. The complexity of RDO_Q is the same as that in KTA2.6 [20].
4.12 Complexity characteristics of decoder inverse quantization

The complexity characteristics of decoder inverse quantization are the same as those in H.264.
4.13 Complexity characteristics of encoder in-loop filtering type selection
In comparison with quadtree-based adaptive loop filter (QALF) in KTA2.6 encoder, the complexity of improved multiple quadtree-based adaptive loop filter (IMQALF) is about 2.5 times in terms of execution time. However, the increased complexity can be relieved by parallel processing for different filters during filter selection and for different partitions during picture partitioning.

4.14 Complexity characteristics of decoder in-loop filtering operation

The complexity of IMQALF is similar to that of QALF in the KTA2.6 decoder.

4.15 Complexity characteristics of encoder entropy encoding operation
The complexity characteristics of entropy encoding are same as those in H.264, which can be referred in [24].
4.16 Complexity characteristics of decoder entropy decoding operation

The complexity characteristics of entropy decoding are same as those in H.264.
4.17 Degree of capability for encoder parallel processing

Our encoder adopts a frame-level two-pass algorithm and a frame-level one-pass algorithm when AAIF is on and off, respectively. Frame-level coding passes have to be processed in sequential. In each frame-level coding pass, block-based motion compensated transform coding is still the main framework. Therefore, 64x64/32x32/16x16 macroblocks have to be sequentially processed. However, different modes of a macroblock can be processed in parallel on the encoder side. Pixel-level parallelism can be applied for transform, motion compensation, interpolation, filtering… etc. Moreover, macroblocks can be processed in pipelines to achieve a higher throughput. With more advanced silicon technologies, real-time processing should be achievable.

4.18 Degree of capability for decoder parallel processing

On the decoder side, 64x64/32x32/16x16 macroblocks have to be sequentially processed. However, pixel-level parallelism can be applied for transform, motion compensation, interpolation, filtering… etc. Moreover, macroblocks can be processed in pipelines to achieve a higher throughput. With more advanced silicon technologies, real-time processing should be achievable.

5 Algorithmic characteristics
5.1 Random access characteristics

Our supported group of pictures (GOP) structures such as IPPP, hierarchical P (HP, IpPpP), IbbP, and hierarchical B (HB, IbBbBbBbP), are the same as those in JM16.2. Open GOP is also supported in our software. Therefore, with periodic insertion of I-frames, random access can be achieved without any problem.

5.2 Delay characteristics

In our proposal, we support three kinds of GOP structures: IPPP, Hierarchical P (HP), and Hierarchical B (HB). For HB structure, we use the same GOP size (8), coding order, reference relationship, and dyadic hierarchy stages (4) as the alpha anchor. For HP and IPPP structures, the same parameters as beta anchor and gamma anchor are used, respectively. Therefore, the encoding and decoding delay due to the amount of frame reordering and buffering is the same as that of the anchor. Because we support multi-pass encoding when partition level AIF is on, there is additional delay due to the frame level multi-pass decisions (2x or 3x). However, this delay can be avoided by using independent candidate filters, i.e. the CFS of current frame only includes the time-delayed AIF filters from previous frames and fixed filters. In this case, the multiple encoding passes can also be processed in parallel.
6 Software implementation description

Our software is based on KTA2.6 and implemented in C codes. New tools including advanced adaptive interpolation filter (AAIF), enhanced intra coding (EIC) with overlapped bidirectional intra prediction (OBIP), multi-model Karhunen-Loeve transform (MMKLT), and context dependent mode representation (CDMR), 32-point transform (T32), improved multiple quadtree-based adaptive loop filter (IMQALF), spatial-temporal direct mode (STDirect), decoder-side motion vector derivation (DMVD), scaled motion vector prediction (SMVP), and hierarchical P structure (HP) are developed. They are all compatible with following KTA tools that were adopted in our experiments: extended macroblocks (ExtMB), internal bit depth increase (IBDI), high precision interpolation filter (HPIF), motion vector competition (MVC), rate-distortion optimized quantization (RDOQ), and bi-prediction rounding control. A few bugs found in KTA2.6 have also been fixed. Please note that the current implementation has not yet been optimized in memory and speed, but it is enough to verify coding efficiency. Reconstructed videos on the encoder side and decoded videos on the decoder side are all matched without any discrepancy.

7 Closing remarks
MediaTek has submitted all required materials for CfP to JCT-VC. There is no mismatch between our encoder and decoder. Bitrate values are all computed from encoded bitstreams. PSNR values are all computed from decoded videos. The coding efficiency of our codec is summarized as follows. We can achieve 29.66%, 28.83%, and 46.40% bitrate reductions in comparison with the Alpha anchor, Beta anchor, and Gamma anchor, respectively. The encoding execution time is 13.23 times in comparison with JM16.2, and the decoding execution time is 3.47 times in comparison with JM11.0 when the GOP structure is hierarchical B.
8 Patent rights declaration(s)
MediaTek may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
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PT[MA][MB] [ i ] ++;


x = i;


while( x > 0 && PT[MA][MB][ x ] > PT[MA][MB] [ x - 1 ])


{


SWAP_BYTE(PT[MA][MB][ x ], PT[MA][MB] [ x - 1 ] );              SWAP_BYTE(MT[MA][MB][ x ], MT[MA][MB] [ x - 1 ] ); 


x--;


}


if(PT[MA][MB][ 0 ] >= 240 )


{


for( k = 0; k < 9; k++ )


{


PT[MA][MB] [ k ] >>= 1;


}


}





x = i;


while( x > 0 && PTN [ x ] > PTN [ x - 1 ] )


{


SWAP (PTN [ x ], PTN [ x - 1 ] );


SWAP (STN [ x ], STN [ x - 1 ] );


x --;


}


if(PTN [0]>= 254 )


{


for( x = 0; x < 256; x ++ )


{


PTN [ x ] >>= 1;


}


}
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